x86: put irq_2_iommu pointer into irq_desc
[deliverable/linux.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
34
35 #include "power.h"
36
37 static int swsusp_page_is_free(struct page *);
38 static void swsusp_set_page_forbidden(struct page *);
39 static void swsusp_unset_page_forbidden(struct page *);
40
41 /* List of PBEs needed for restoring the pages that were allocated before
42 * the suspend and included in the suspend image, but have also been
43 * allocated by the "resume" kernel, so their contents cannot be written
44 * directly to their "original" page frames.
45 */
46 struct pbe *restore_pblist;
47
48 /* Pointer to an auxiliary buffer (1 page) */
49 static void *buffer;
50
51 /**
52 * @safe_needed - on resume, for storing the PBE list and the image,
53 * we can only use memory pages that do not conflict with the pages
54 * used before suspend. The unsafe pages have PageNosaveFree set
55 * and we count them using unsafe_pages.
56 *
57 * Each allocated image page is marked as PageNosave and PageNosaveFree
58 * so that swsusp_free() can release it.
59 */
60
61 #define PG_ANY 0
62 #define PG_SAFE 1
63 #define PG_UNSAFE_CLEAR 1
64 #define PG_UNSAFE_KEEP 0
65
66 static unsigned int allocated_unsafe_pages;
67
68 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
69 {
70 void *res;
71
72 res = (void *)get_zeroed_page(gfp_mask);
73 if (safe_needed)
74 while (res && swsusp_page_is_free(virt_to_page(res))) {
75 /* The page is unsafe, mark it for swsusp_free() */
76 swsusp_set_page_forbidden(virt_to_page(res));
77 allocated_unsafe_pages++;
78 res = (void *)get_zeroed_page(gfp_mask);
79 }
80 if (res) {
81 swsusp_set_page_forbidden(virt_to_page(res));
82 swsusp_set_page_free(virt_to_page(res));
83 }
84 return res;
85 }
86
87 unsigned long get_safe_page(gfp_t gfp_mask)
88 {
89 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
90 }
91
92 static struct page *alloc_image_page(gfp_t gfp_mask)
93 {
94 struct page *page;
95
96 page = alloc_page(gfp_mask);
97 if (page) {
98 swsusp_set_page_forbidden(page);
99 swsusp_set_page_free(page);
100 }
101 return page;
102 }
103
104 /**
105 * free_image_page - free page represented by @addr, allocated with
106 * get_image_page (page flags set by it must be cleared)
107 */
108
109 static inline void free_image_page(void *addr, int clear_nosave_free)
110 {
111 struct page *page;
112
113 BUG_ON(!virt_addr_valid(addr));
114
115 page = virt_to_page(addr);
116
117 swsusp_unset_page_forbidden(page);
118 if (clear_nosave_free)
119 swsusp_unset_page_free(page);
120
121 __free_page(page);
122 }
123
124 /* struct linked_page is used to build chains of pages */
125
126 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
127
128 struct linked_page {
129 struct linked_page *next;
130 char data[LINKED_PAGE_DATA_SIZE];
131 } __attribute__((packed));
132
133 static inline void
134 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
135 {
136 while (list) {
137 struct linked_page *lp = list->next;
138
139 free_image_page(list, clear_page_nosave);
140 list = lp;
141 }
142 }
143
144 /**
145 * struct chain_allocator is used for allocating small objects out of
146 * a linked list of pages called 'the chain'.
147 *
148 * The chain grows each time when there is no room for a new object in
149 * the current page. The allocated objects cannot be freed individually.
150 * It is only possible to free them all at once, by freeing the entire
151 * chain.
152 *
153 * NOTE: The chain allocator may be inefficient if the allocated objects
154 * are not much smaller than PAGE_SIZE.
155 */
156
157 struct chain_allocator {
158 struct linked_page *chain; /* the chain */
159 unsigned int used_space; /* total size of objects allocated out
160 * of the current page
161 */
162 gfp_t gfp_mask; /* mask for allocating pages */
163 int safe_needed; /* if set, only "safe" pages are allocated */
164 };
165
166 static void
167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
168 {
169 ca->chain = NULL;
170 ca->used_space = LINKED_PAGE_DATA_SIZE;
171 ca->gfp_mask = gfp_mask;
172 ca->safe_needed = safe_needed;
173 }
174
175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
176 {
177 void *ret;
178
179 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180 struct linked_page *lp;
181
182 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
183 if (!lp)
184 return NULL;
185
186 lp->next = ca->chain;
187 ca->chain = lp;
188 ca->used_space = 0;
189 }
190 ret = ca->chain->data + ca->used_space;
191 ca->used_space += size;
192 return ret;
193 }
194
195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
196 {
197 free_list_of_pages(ca->chain, clear_page_nosave);
198 memset(ca, 0, sizeof(struct chain_allocator));
199 }
200
201 /**
202 * Data types related to memory bitmaps.
203 *
204 * Memory bitmap is a structure consiting of many linked lists of
205 * objects. The main list's elements are of type struct zone_bitmap
206 * and each of them corresonds to one zone. For each zone bitmap
207 * object there is a list of objects of type struct bm_block that
208 * represent each blocks of bitmap in which information is stored.
209 *
210 * struct memory_bitmap contains a pointer to the main list of zone
211 * bitmap objects, a struct bm_position used for browsing the bitmap,
212 * and a pointer to the list of pages used for allocating all of the
213 * zone bitmap objects and bitmap block objects.
214 *
215 * NOTE: It has to be possible to lay out the bitmap in memory
216 * using only allocations of order 0. Additionally, the bitmap is
217 * designed to work with arbitrary number of zones (this is over the
218 * top for now, but let's avoid making unnecessary assumptions ;-).
219 *
220 * struct zone_bitmap contains a pointer to a list of bitmap block
221 * objects and a pointer to the bitmap block object that has been
222 * most recently used for setting bits. Additionally, it contains the
223 * pfns that correspond to the start and end of the represented zone.
224 *
225 * struct bm_block contains a pointer to the memory page in which
226 * information is stored (in the form of a block of bitmap)
227 * It also contains the pfns that correspond to the start and end of
228 * the represented memory area.
229 */
230
231 #define BM_END_OF_MAP (~0UL)
232
233 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
234
235 struct bm_block {
236 struct bm_block *next; /* next element of the list */
237 unsigned long start_pfn; /* pfn represented by the first bit */
238 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
239 unsigned long *data; /* bitmap representing pages */
240 };
241
242 static inline unsigned long bm_block_bits(struct bm_block *bb)
243 {
244 return bb->end_pfn - bb->start_pfn;
245 }
246
247 struct zone_bitmap {
248 struct zone_bitmap *next; /* next element of the list */
249 unsigned long start_pfn; /* minimal pfn in this zone */
250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
251 struct bm_block *bm_blocks; /* list of bitmap blocks */
252 struct bm_block *cur_block; /* recently used bitmap block */
253 };
254
255 /* strcut bm_position is used for browsing memory bitmaps */
256
257 struct bm_position {
258 struct zone_bitmap *zone_bm;
259 struct bm_block *block;
260 int bit;
261 };
262
263 struct memory_bitmap {
264 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */
265 struct linked_page *p_list; /* list of pages used to store zone
266 * bitmap objects and bitmap block
267 * objects
268 */
269 struct bm_position cur; /* most recently used bit position */
270 };
271
272 /* Functions that operate on memory bitmaps */
273
274 static void memory_bm_position_reset(struct memory_bitmap *bm)
275 {
276 struct zone_bitmap *zone_bm;
277
278 zone_bm = bm->zone_bm_list;
279 bm->cur.zone_bm = zone_bm;
280 bm->cur.block = zone_bm->bm_blocks;
281 bm->cur.bit = 0;
282 }
283
284 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
285
286 /**
287 * create_bm_block_list - create a list of block bitmap objects
288 */
289
290 static inline struct bm_block *
291 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
292 {
293 struct bm_block *bblist = NULL;
294
295 while (nr_blocks-- > 0) {
296 struct bm_block *bb;
297
298 bb = chain_alloc(ca, sizeof(struct bm_block));
299 if (!bb)
300 return NULL;
301
302 bb->next = bblist;
303 bblist = bb;
304 }
305 return bblist;
306 }
307
308 /**
309 * create_zone_bm_list - create a list of zone bitmap objects
310 */
311
312 static inline struct zone_bitmap *
313 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
314 {
315 struct zone_bitmap *zbmlist = NULL;
316
317 while (nr_zones-- > 0) {
318 struct zone_bitmap *zbm;
319
320 zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
321 if (!zbm)
322 return NULL;
323
324 zbm->next = zbmlist;
325 zbmlist = zbm;
326 }
327 return zbmlist;
328 }
329
330 /**
331 * memory_bm_create - allocate memory for a memory bitmap
332 */
333
334 static int
335 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
336 {
337 struct chain_allocator ca;
338 struct zone *zone;
339 struct zone_bitmap *zone_bm;
340 struct bm_block *bb;
341 unsigned int nr;
342
343 chain_init(&ca, gfp_mask, safe_needed);
344
345 /* Compute the number of zones */
346 nr = 0;
347 for_each_zone(zone)
348 if (populated_zone(zone))
349 nr++;
350
351 /* Allocate the list of zones bitmap objects */
352 zone_bm = create_zone_bm_list(nr, &ca);
353 bm->zone_bm_list = zone_bm;
354 if (!zone_bm) {
355 chain_free(&ca, PG_UNSAFE_CLEAR);
356 return -ENOMEM;
357 }
358
359 /* Initialize the zone bitmap objects */
360 for_each_zone(zone) {
361 unsigned long pfn;
362
363 if (!populated_zone(zone))
364 continue;
365
366 zone_bm->start_pfn = zone->zone_start_pfn;
367 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
368 /* Allocate the list of bitmap block objects */
369 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
370 bb = create_bm_block_list(nr, &ca);
371 zone_bm->bm_blocks = bb;
372 zone_bm->cur_block = bb;
373 if (!bb)
374 goto Free;
375
376 nr = zone->spanned_pages;
377 pfn = zone->zone_start_pfn;
378 /* Initialize the bitmap block objects */
379 while (bb) {
380 unsigned long *ptr;
381
382 ptr = get_image_page(gfp_mask, safe_needed);
383 bb->data = ptr;
384 if (!ptr)
385 goto Free;
386
387 bb->start_pfn = pfn;
388 if (nr >= BM_BITS_PER_BLOCK) {
389 pfn += BM_BITS_PER_BLOCK;
390 nr -= BM_BITS_PER_BLOCK;
391 } else {
392 /* This is executed only once in the loop */
393 pfn += nr;
394 }
395 bb->end_pfn = pfn;
396 bb = bb->next;
397 }
398 zone_bm = zone_bm->next;
399 }
400 bm->p_list = ca.chain;
401 memory_bm_position_reset(bm);
402 return 0;
403
404 Free:
405 bm->p_list = ca.chain;
406 memory_bm_free(bm, PG_UNSAFE_CLEAR);
407 return -ENOMEM;
408 }
409
410 /**
411 * memory_bm_free - free memory occupied by the memory bitmap @bm
412 */
413
414 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
415 {
416 struct zone_bitmap *zone_bm;
417
418 /* Free the list of bit blocks for each zone_bitmap object */
419 zone_bm = bm->zone_bm_list;
420 while (zone_bm) {
421 struct bm_block *bb;
422
423 bb = zone_bm->bm_blocks;
424 while (bb) {
425 if (bb->data)
426 free_image_page(bb->data, clear_nosave_free);
427 bb = bb->next;
428 }
429 zone_bm = zone_bm->next;
430 }
431 free_list_of_pages(bm->p_list, clear_nosave_free);
432 bm->zone_bm_list = NULL;
433 }
434
435 /**
436 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
437 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
438 * of @bm->cur_zone_bm are updated.
439 */
440
441 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
442 void **addr, unsigned int *bit_nr)
443 {
444 struct zone_bitmap *zone_bm;
445 struct bm_block *bb;
446
447 /* Check if the pfn is from the current zone */
448 zone_bm = bm->cur.zone_bm;
449 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
450 zone_bm = bm->zone_bm_list;
451 /* We don't assume that the zones are sorted by pfns */
452 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
453 zone_bm = zone_bm->next;
454
455 if (!zone_bm)
456 return -EFAULT;
457 }
458 bm->cur.zone_bm = zone_bm;
459 }
460 /* Check if the pfn corresponds to the current bitmap block */
461 bb = zone_bm->cur_block;
462 if (pfn < bb->start_pfn)
463 bb = zone_bm->bm_blocks;
464
465 while (pfn >= bb->end_pfn) {
466 bb = bb->next;
467
468 BUG_ON(!bb);
469 }
470 zone_bm->cur_block = bb;
471 pfn -= bb->start_pfn;
472 *bit_nr = pfn;
473 *addr = bb->data;
474 return 0;
475 }
476
477 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
478 {
479 void *addr;
480 unsigned int bit;
481 int error;
482
483 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
484 BUG_ON(error);
485 set_bit(bit, addr);
486 }
487
488 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
489 {
490 void *addr;
491 unsigned int bit;
492 int error;
493
494 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
495 if (!error)
496 set_bit(bit, addr);
497 return error;
498 }
499
500 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
501 {
502 void *addr;
503 unsigned int bit;
504 int error;
505
506 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
507 BUG_ON(error);
508 clear_bit(bit, addr);
509 }
510
511 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
512 {
513 void *addr;
514 unsigned int bit;
515 int error;
516
517 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
518 BUG_ON(error);
519 return test_bit(bit, addr);
520 }
521
522 /**
523 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
524 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
525 * returned.
526 *
527 * It is required to run memory_bm_position_reset() before the first call to
528 * this function.
529 */
530
531 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
532 {
533 struct zone_bitmap *zone_bm;
534 struct bm_block *bb;
535 int bit;
536
537 do {
538 bb = bm->cur.block;
539 do {
540 bit = bm->cur.bit;
541 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
542 if (bit < bm_block_bits(bb))
543 goto Return_pfn;
544
545 bb = bb->next;
546 bm->cur.block = bb;
547 bm->cur.bit = 0;
548 } while (bb);
549 zone_bm = bm->cur.zone_bm->next;
550 if (zone_bm) {
551 bm->cur.zone_bm = zone_bm;
552 bm->cur.block = zone_bm->bm_blocks;
553 bm->cur.bit = 0;
554 }
555 } while (zone_bm);
556 memory_bm_position_reset(bm);
557 return BM_END_OF_MAP;
558
559 Return_pfn:
560 bm->cur.bit = bit + 1;
561 return bb->start_pfn + bit;
562 }
563
564 /**
565 * This structure represents a range of page frames the contents of which
566 * should not be saved during the suspend.
567 */
568
569 struct nosave_region {
570 struct list_head list;
571 unsigned long start_pfn;
572 unsigned long end_pfn;
573 };
574
575 static LIST_HEAD(nosave_regions);
576
577 /**
578 * register_nosave_region - register a range of page frames the contents
579 * of which should not be saved during the suspend (to be used in the early
580 * initialization code)
581 */
582
583 void __init
584 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
585 int use_kmalloc)
586 {
587 struct nosave_region *region;
588
589 if (start_pfn >= end_pfn)
590 return;
591
592 if (!list_empty(&nosave_regions)) {
593 /* Try to extend the previous region (they should be sorted) */
594 region = list_entry(nosave_regions.prev,
595 struct nosave_region, list);
596 if (region->end_pfn == start_pfn) {
597 region->end_pfn = end_pfn;
598 goto Report;
599 }
600 }
601 if (use_kmalloc) {
602 /* during init, this shouldn't fail */
603 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
604 BUG_ON(!region);
605 } else
606 /* This allocation cannot fail */
607 region = alloc_bootmem_low(sizeof(struct nosave_region));
608 region->start_pfn = start_pfn;
609 region->end_pfn = end_pfn;
610 list_add_tail(&region->list, &nosave_regions);
611 Report:
612 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
613 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
614 }
615
616 /*
617 * Set bits in this map correspond to the page frames the contents of which
618 * should not be saved during the suspend.
619 */
620 static struct memory_bitmap *forbidden_pages_map;
621
622 /* Set bits in this map correspond to free page frames. */
623 static struct memory_bitmap *free_pages_map;
624
625 /*
626 * Each page frame allocated for creating the image is marked by setting the
627 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
628 */
629
630 void swsusp_set_page_free(struct page *page)
631 {
632 if (free_pages_map)
633 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
634 }
635
636 static int swsusp_page_is_free(struct page *page)
637 {
638 return free_pages_map ?
639 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
640 }
641
642 void swsusp_unset_page_free(struct page *page)
643 {
644 if (free_pages_map)
645 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
646 }
647
648 static void swsusp_set_page_forbidden(struct page *page)
649 {
650 if (forbidden_pages_map)
651 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
652 }
653
654 int swsusp_page_is_forbidden(struct page *page)
655 {
656 return forbidden_pages_map ?
657 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
658 }
659
660 static void swsusp_unset_page_forbidden(struct page *page)
661 {
662 if (forbidden_pages_map)
663 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
664 }
665
666 /**
667 * mark_nosave_pages - set bits corresponding to the page frames the
668 * contents of which should not be saved in a given bitmap.
669 */
670
671 static void mark_nosave_pages(struct memory_bitmap *bm)
672 {
673 struct nosave_region *region;
674
675 if (list_empty(&nosave_regions))
676 return;
677
678 list_for_each_entry(region, &nosave_regions, list) {
679 unsigned long pfn;
680
681 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
682 region->start_pfn << PAGE_SHIFT,
683 region->end_pfn << PAGE_SHIFT);
684
685 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
686 if (pfn_valid(pfn)) {
687 /*
688 * It is safe to ignore the result of
689 * mem_bm_set_bit_check() here, since we won't
690 * touch the PFNs for which the error is
691 * returned anyway.
692 */
693 mem_bm_set_bit_check(bm, pfn);
694 }
695 }
696 }
697
698 /**
699 * create_basic_memory_bitmaps - create bitmaps needed for marking page
700 * frames that should not be saved and free page frames. The pointers
701 * forbidden_pages_map and free_pages_map are only modified if everything
702 * goes well, because we don't want the bits to be used before both bitmaps
703 * are set up.
704 */
705
706 int create_basic_memory_bitmaps(void)
707 {
708 struct memory_bitmap *bm1, *bm2;
709 int error = 0;
710
711 BUG_ON(forbidden_pages_map || free_pages_map);
712
713 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
714 if (!bm1)
715 return -ENOMEM;
716
717 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
718 if (error)
719 goto Free_first_object;
720
721 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
722 if (!bm2)
723 goto Free_first_bitmap;
724
725 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
726 if (error)
727 goto Free_second_object;
728
729 forbidden_pages_map = bm1;
730 free_pages_map = bm2;
731 mark_nosave_pages(forbidden_pages_map);
732
733 pr_debug("PM: Basic memory bitmaps created\n");
734
735 return 0;
736
737 Free_second_object:
738 kfree(bm2);
739 Free_first_bitmap:
740 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
741 Free_first_object:
742 kfree(bm1);
743 return -ENOMEM;
744 }
745
746 /**
747 * free_basic_memory_bitmaps - free memory bitmaps allocated by
748 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
749 * so that the bitmaps themselves are not referred to while they are being
750 * freed.
751 */
752
753 void free_basic_memory_bitmaps(void)
754 {
755 struct memory_bitmap *bm1, *bm2;
756
757 BUG_ON(!(forbidden_pages_map && free_pages_map));
758
759 bm1 = forbidden_pages_map;
760 bm2 = free_pages_map;
761 forbidden_pages_map = NULL;
762 free_pages_map = NULL;
763 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
764 kfree(bm1);
765 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
766 kfree(bm2);
767
768 pr_debug("PM: Basic memory bitmaps freed\n");
769 }
770
771 /**
772 * snapshot_additional_pages - estimate the number of additional pages
773 * be needed for setting up the suspend image data structures for given
774 * zone (usually the returned value is greater than the exact number)
775 */
776
777 unsigned int snapshot_additional_pages(struct zone *zone)
778 {
779 unsigned int res;
780
781 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
782 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
783 return 2 * res;
784 }
785
786 #ifdef CONFIG_HIGHMEM
787 /**
788 * count_free_highmem_pages - compute the total number of free highmem
789 * pages, system-wide.
790 */
791
792 static unsigned int count_free_highmem_pages(void)
793 {
794 struct zone *zone;
795 unsigned int cnt = 0;
796
797 for_each_zone(zone)
798 if (populated_zone(zone) && is_highmem(zone))
799 cnt += zone_page_state(zone, NR_FREE_PAGES);
800
801 return cnt;
802 }
803
804 /**
805 * saveable_highmem_page - Determine whether a highmem page should be
806 * included in the suspend image.
807 *
808 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
809 * and it isn't a part of a free chunk of pages.
810 */
811
812 static struct page *saveable_highmem_page(unsigned long pfn)
813 {
814 struct page *page;
815
816 if (!pfn_valid(pfn))
817 return NULL;
818
819 page = pfn_to_page(pfn);
820
821 BUG_ON(!PageHighMem(page));
822
823 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
824 PageReserved(page))
825 return NULL;
826
827 return page;
828 }
829
830 /**
831 * count_highmem_pages - compute the total number of saveable highmem
832 * pages.
833 */
834
835 unsigned int count_highmem_pages(void)
836 {
837 struct zone *zone;
838 unsigned int n = 0;
839
840 for_each_zone(zone) {
841 unsigned long pfn, max_zone_pfn;
842
843 if (!is_highmem(zone))
844 continue;
845
846 mark_free_pages(zone);
847 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
848 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
849 if (saveable_highmem_page(pfn))
850 n++;
851 }
852 return n;
853 }
854 #else
855 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
856 #endif /* CONFIG_HIGHMEM */
857
858 /**
859 * saveable_page - Determine whether a non-highmem page should be included
860 * in the suspend image.
861 *
862 * We should save the page if it isn't Nosave, and is not in the range
863 * of pages statically defined as 'unsaveable', and it isn't a part of
864 * a free chunk of pages.
865 */
866
867 static struct page *saveable_page(unsigned long pfn)
868 {
869 struct page *page;
870
871 if (!pfn_valid(pfn))
872 return NULL;
873
874 page = pfn_to_page(pfn);
875
876 BUG_ON(PageHighMem(page));
877
878 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
879 return NULL;
880
881 if (PageReserved(page)
882 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
883 return NULL;
884
885 return page;
886 }
887
888 /**
889 * count_data_pages - compute the total number of saveable non-highmem
890 * pages.
891 */
892
893 unsigned int count_data_pages(void)
894 {
895 struct zone *zone;
896 unsigned long pfn, max_zone_pfn;
897 unsigned int n = 0;
898
899 for_each_zone(zone) {
900 if (is_highmem(zone))
901 continue;
902
903 mark_free_pages(zone);
904 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
905 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
906 if(saveable_page(pfn))
907 n++;
908 }
909 return n;
910 }
911
912 /* This is needed, because copy_page and memcpy are not usable for copying
913 * task structs.
914 */
915 static inline void do_copy_page(long *dst, long *src)
916 {
917 int n;
918
919 for (n = PAGE_SIZE / sizeof(long); n; n--)
920 *dst++ = *src++;
921 }
922
923
924 /**
925 * safe_copy_page - check if the page we are going to copy is marked as
926 * present in the kernel page tables (this always is the case if
927 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
928 * kernel_page_present() always returns 'true').
929 */
930 static void safe_copy_page(void *dst, struct page *s_page)
931 {
932 if (kernel_page_present(s_page)) {
933 do_copy_page(dst, page_address(s_page));
934 } else {
935 kernel_map_pages(s_page, 1, 1);
936 do_copy_page(dst, page_address(s_page));
937 kernel_map_pages(s_page, 1, 0);
938 }
939 }
940
941
942 #ifdef CONFIG_HIGHMEM
943 static inline struct page *
944 page_is_saveable(struct zone *zone, unsigned long pfn)
945 {
946 return is_highmem(zone) ?
947 saveable_highmem_page(pfn) : saveable_page(pfn);
948 }
949
950 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
951 {
952 struct page *s_page, *d_page;
953 void *src, *dst;
954
955 s_page = pfn_to_page(src_pfn);
956 d_page = pfn_to_page(dst_pfn);
957 if (PageHighMem(s_page)) {
958 src = kmap_atomic(s_page, KM_USER0);
959 dst = kmap_atomic(d_page, KM_USER1);
960 do_copy_page(dst, src);
961 kunmap_atomic(src, KM_USER0);
962 kunmap_atomic(dst, KM_USER1);
963 } else {
964 if (PageHighMem(d_page)) {
965 /* Page pointed to by src may contain some kernel
966 * data modified by kmap_atomic()
967 */
968 safe_copy_page(buffer, s_page);
969 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
970 memcpy(dst, buffer, PAGE_SIZE);
971 kunmap_atomic(dst, KM_USER0);
972 } else {
973 safe_copy_page(page_address(d_page), s_page);
974 }
975 }
976 }
977 #else
978 #define page_is_saveable(zone, pfn) saveable_page(pfn)
979
980 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
981 {
982 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
983 pfn_to_page(src_pfn));
984 }
985 #endif /* CONFIG_HIGHMEM */
986
987 static void
988 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
989 {
990 struct zone *zone;
991 unsigned long pfn;
992
993 for_each_zone(zone) {
994 unsigned long max_zone_pfn;
995
996 mark_free_pages(zone);
997 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
998 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
999 if (page_is_saveable(zone, pfn))
1000 memory_bm_set_bit(orig_bm, pfn);
1001 }
1002 memory_bm_position_reset(orig_bm);
1003 memory_bm_position_reset(copy_bm);
1004 for(;;) {
1005 pfn = memory_bm_next_pfn(orig_bm);
1006 if (unlikely(pfn == BM_END_OF_MAP))
1007 break;
1008 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1009 }
1010 }
1011
1012 /* Total number of image pages */
1013 static unsigned int nr_copy_pages;
1014 /* Number of pages needed for saving the original pfns of the image pages */
1015 static unsigned int nr_meta_pages;
1016
1017 /**
1018 * swsusp_free - free pages allocated for the suspend.
1019 *
1020 * Suspend pages are alocated before the atomic copy is made, so we
1021 * need to release them after the resume.
1022 */
1023
1024 void swsusp_free(void)
1025 {
1026 struct zone *zone;
1027 unsigned long pfn, max_zone_pfn;
1028
1029 for_each_zone(zone) {
1030 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1031 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1032 if (pfn_valid(pfn)) {
1033 struct page *page = pfn_to_page(pfn);
1034
1035 if (swsusp_page_is_forbidden(page) &&
1036 swsusp_page_is_free(page)) {
1037 swsusp_unset_page_forbidden(page);
1038 swsusp_unset_page_free(page);
1039 __free_page(page);
1040 }
1041 }
1042 }
1043 nr_copy_pages = 0;
1044 nr_meta_pages = 0;
1045 restore_pblist = NULL;
1046 buffer = NULL;
1047 }
1048
1049 #ifdef CONFIG_HIGHMEM
1050 /**
1051 * count_pages_for_highmem - compute the number of non-highmem pages
1052 * that will be necessary for creating copies of highmem pages.
1053 */
1054
1055 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1056 {
1057 unsigned int free_highmem = count_free_highmem_pages();
1058
1059 if (free_highmem >= nr_highmem)
1060 nr_highmem = 0;
1061 else
1062 nr_highmem -= free_highmem;
1063
1064 return nr_highmem;
1065 }
1066 #else
1067 static unsigned int
1068 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1069 #endif /* CONFIG_HIGHMEM */
1070
1071 /**
1072 * enough_free_mem - Make sure we have enough free memory for the
1073 * snapshot image.
1074 */
1075
1076 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1077 {
1078 struct zone *zone;
1079 unsigned int free = 0, meta = 0;
1080
1081 for_each_zone(zone) {
1082 meta += snapshot_additional_pages(zone);
1083 if (!is_highmem(zone))
1084 free += zone_page_state(zone, NR_FREE_PAGES);
1085 }
1086
1087 nr_pages += count_pages_for_highmem(nr_highmem);
1088 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
1089 nr_pages, PAGES_FOR_IO, meta, free);
1090
1091 return free > nr_pages + PAGES_FOR_IO + meta;
1092 }
1093
1094 #ifdef CONFIG_HIGHMEM
1095 /**
1096 * get_highmem_buffer - if there are some highmem pages in the suspend
1097 * image, we may need the buffer to copy them and/or load their data.
1098 */
1099
1100 static inline int get_highmem_buffer(int safe_needed)
1101 {
1102 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1103 return buffer ? 0 : -ENOMEM;
1104 }
1105
1106 /**
1107 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1108 * Try to allocate as many pages as needed, but if the number of free
1109 * highmem pages is lesser than that, allocate them all.
1110 */
1111
1112 static inline unsigned int
1113 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1114 {
1115 unsigned int to_alloc = count_free_highmem_pages();
1116
1117 if (to_alloc > nr_highmem)
1118 to_alloc = nr_highmem;
1119
1120 nr_highmem -= to_alloc;
1121 while (to_alloc-- > 0) {
1122 struct page *page;
1123
1124 page = alloc_image_page(__GFP_HIGHMEM);
1125 memory_bm_set_bit(bm, page_to_pfn(page));
1126 }
1127 return nr_highmem;
1128 }
1129 #else
1130 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1131
1132 static inline unsigned int
1133 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1134 #endif /* CONFIG_HIGHMEM */
1135
1136 /**
1137 * swsusp_alloc - allocate memory for the suspend image
1138 *
1139 * We first try to allocate as many highmem pages as there are
1140 * saveable highmem pages in the system. If that fails, we allocate
1141 * non-highmem pages for the copies of the remaining highmem ones.
1142 *
1143 * In this approach it is likely that the copies of highmem pages will
1144 * also be located in the high memory, because of the way in which
1145 * copy_data_pages() works.
1146 */
1147
1148 static int
1149 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1150 unsigned int nr_pages, unsigned int nr_highmem)
1151 {
1152 int error;
1153
1154 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1155 if (error)
1156 goto Free;
1157
1158 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1159 if (error)
1160 goto Free;
1161
1162 if (nr_highmem > 0) {
1163 error = get_highmem_buffer(PG_ANY);
1164 if (error)
1165 goto Free;
1166
1167 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1168 }
1169 while (nr_pages-- > 0) {
1170 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1171
1172 if (!page)
1173 goto Free;
1174
1175 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1176 }
1177 return 0;
1178
1179 Free:
1180 swsusp_free();
1181 return -ENOMEM;
1182 }
1183
1184 /* Memory bitmap used for marking saveable pages (during suspend) or the
1185 * suspend image pages (during resume)
1186 */
1187 static struct memory_bitmap orig_bm;
1188 /* Memory bitmap used on suspend for marking allocated pages that will contain
1189 * the copies of saveable pages. During resume it is initially used for
1190 * marking the suspend image pages, but then its set bits are duplicated in
1191 * @orig_bm and it is released. Next, on systems with high memory, it may be
1192 * used for marking "safe" highmem pages, but it has to be reinitialized for
1193 * this purpose.
1194 */
1195 static struct memory_bitmap copy_bm;
1196
1197 asmlinkage int swsusp_save(void)
1198 {
1199 unsigned int nr_pages, nr_highmem;
1200
1201 printk(KERN_INFO "PM: Creating hibernation image: \n");
1202
1203 drain_local_pages(NULL);
1204 nr_pages = count_data_pages();
1205 nr_highmem = count_highmem_pages();
1206 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1207
1208 if (!enough_free_mem(nr_pages, nr_highmem)) {
1209 printk(KERN_ERR "PM: Not enough free memory\n");
1210 return -ENOMEM;
1211 }
1212
1213 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1214 printk(KERN_ERR "PM: Memory allocation failed\n");
1215 return -ENOMEM;
1216 }
1217
1218 /* During allocating of suspend pagedir, new cold pages may appear.
1219 * Kill them.
1220 */
1221 drain_local_pages(NULL);
1222 copy_data_pages(&copy_bm, &orig_bm);
1223
1224 /*
1225 * End of critical section. From now on, we can write to memory,
1226 * but we should not touch disk. This specially means we must _not_
1227 * touch swap space! Except we must write out our image of course.
1228 */
1229
1230 nr_pages += nr_highmem;
1231 nr_copy_pages = nr_pages;
1232 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1233
1234 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1235 nr_pages);
1236
1237 return 0;
1238 }
1239
1240 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1241 static int init_header_complete(struct swsusp_info *info)
1242 {
1243 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1244 info->version_code = LINUX_VERSION_CODE;
1245 return 0;
1246 }
1247
1248 static char *check_image_kernel(struct swsusp_info *info)
1249 {
1250 if (info->version_code != LINUX_VERSION_CODE)
1251 return "kernel version";
1252 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1253 return "system type";
1254 if (strcmp(info->uts.release,init_utsname()->release))
1255 return "kernel release";
1256 if (strcmp(info->uts.version,init_utsname()->version))
1257 return "version";
1258 if (strcmp(info->uts.machine,init_utsname()->machine))
1259 return "machine";
1260 return NULL;
1261 }
1262 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1263
1264 unsigned long snapshot_get_image_size(void)
1265 {
1266 return nr_copy_pages + nr_meta_pages + 1;
1267 }
1268
1269 static int init_header(struct swsusp_info *info)
1270 {
1271 memset(info, 0, sizeof(struct swsusp_info));
1272 info->num_physpages = num_physpages;
1273 info->image_pages = nr_copy_pages;
1274 info->pages = snapshot_get_image_size();
1275 info->size = info->pages;
1276 info->size <<= PAGE_SHIFT;
1277 return init_header_complete(info);
1278 }
1279
1280 /**
1281 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1282 * are stored in the array @buf[] (1 page at a time)
1283 */
1284
1285 static inline void
1286 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1287 {
1288 int j;
1289
1290 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1291 buf[j] = memory_bm_next_pfn(bm);
1292 if (unlikely(buf[j] == BM_END_OF_MAP))
1293 break;
1294 }
1295 }
1296
1297 /**
1298 * snapshot_read_next - used for reading the system memory snapshot.
1299 *
1300 * On the first call to it @handle should point to a zeroed
1301 * snapshot_handle structure. The structure gets updated and a pointer
1302 * to it should be passed to this function every next time.
1303 *
1304 * The @count parameter should contain the number of bytes the caller
1305 * wants to read from the snapshot. It must not be zero.
1306 *
1307 * On success the function returns a positive number. Then, the caller
1308 * is allowed to read up to the returned number of bytes from the memory
1309 * location computed by the data_of() macro. The number returned
1310 * may be smaller than @count, but this only happens if the read would
1311 * cross a page boundary otherwise.
1312 *
1313 * The function returns 0 to indicate the end of data stream condition,
1314 * and a negative number is returned on error. In such cases the
1315 * structure pointed to by @handle is not updated and should not be used
1316 * any more.
1317 */
1318
1319 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1320 {
1321 if (handle->cur > nr_meta_pages + nr_copy_pages)
1322 return 0;
1323
1324 if (!buffer) {
1325 /* This makes the buffer be freed by swsusp_free() */
1326 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1327 if (!buffer)
1328 return -ENOMEM;
1329 }
1330 if (!handle->offset) {
1331 int error;
1332
1333 error = init_header((struct swsusp_info *)buffer);
1334 if (error)
1335 return error;
1336 handle->buffer = buffer;
1337 memory_bm_position_reset(&orig_bm);
1338 memory_bm_position_reset(&copy_bm);
1339 }
1340 if (handle->prev < handle->cur) {
1341 if (handle->cur <= nr_meta_pages) {
1342 memset(buffer, 0, PAGE_SIZE);
1343 pack_pfns(buffer, &orig_bm);
1344 } else {
1345 struct page *page;
1346
1347 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1348 if (PageHighMem(page)) {
1349 /* Highmem pages are copied to the buffer,
1350 * because we can't return with a kmapped
1351 * highmem page (we may not be called again).
1352 */
1353 void *kaddr;
1354
1355 kaddr = kmap_atomic(page, KM_USER0);
1356 memcpy(buffer, kaddr, PAGE_SIZE);
1357 kunmap_atomic(kaddr, KM_USER0);
1358 handle->buffer = buffer;
1359 } else {
1360 handle->buffer = page_address(page);
1361 }
1362 }
1363 handle->prev = handle->cur;
1364 }
1365 handle->buf_offset = handle->cur_offset;
1366 if (handle->cur_offset + count >= PAGE_SIZE) {
1367 count = PAGE_SIZE - handle->cur_offset;
1368 handle->cur_offset = 0;
1369 handle->cur++;
1370 } else {
1371 handle->cur_offset += count;
1372 }
1373 handle->offset += count;
1374 return count;
1375 }
1376
1377 /**
1378 * mark_unsafe_pages - mark the pages that cannot be used for storing
1379 * the image during resume, because they conflict with the pages that
1380 * had been used before suspend
1381 */
1382
1383 static int mark_unsafe_pages(struct memory_bitmap *bm)
1384 {
1385 struct zone *zone;
1386 unsigned long pfn, max_zone_pfn;
1387
1388 /* Clear page flags */
1389 for_each_zone(zone) {
1390 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1391 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1392 if (pfn_valid(pfn))
1393 swsusp_unset_page_free(pfn_to_page(pfn));
1394 }
1395
1396 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1397 memory_bm_position_reset(bm);
1398 do {
1399 pfn = memory_bm_next_pfn(bm);
1400 if (likely(pfn != BM_END_OF_MAP)) {
1401 if (likely(pfn_valid(pfn)))
1402 swsusp_set_page_free(pfn_to_page(pfn));
1403 else
1404 return -EFAULT;
1405 }
1406 } while (pfn != BM_END_OF_MAP);
1407
1408 allocated_unsafe_pages = 0;
1409
1410 return 0;
1411 }
1412
1413 static void
1414 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1415 {
1416 unsigned long pfn;
1417
1418 memory_bm_position_reset(src);
1419 pfn = memory_bm_next_pfn(src);
1420 while (pfn != BM_END_OF_MAP) {
1421 memory_bm_set_bit(dst, pfn);
1422 pfn = memory_bm_next_pfn(src);
1423 }
1424 }
1425
1426 static int check_header(struct swsusp_info *info)
1427 {
1428 char *reason;
1429
1430 reason = check_image_kernel(info);
1431 if (!reason && info->num_physpages != num_physpages)
1432 reason = "memory size";
1433 if (reason) {
1434 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1435 return -EPERM;
1436 }
1437 return 0;
1438 }
1439
1440 /**
1441 * load header - check the image header and copy data from it
1442 */
1443
1444 static int
1445 load_header(struct swsusp_info *info)
1446 {
1447 int error;
1448
1449 restore_pblist = NULL;
1450 error = check_header(info);
1451 if (!error) {
1452 nr_copy_pages = info->image_pages;
1453 nr_meta_pages = info->pages - info->image_pages - 1;
1454 }
1455 return error;
1456 }
1457
1458 /**
1459 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1460 * the corresponding bit in the memory bitmap @bm
1461 */
1462
1463 static inline void
1464 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1465 {
1466 int j;
1467
1468 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1469 if (unlikely(buf[j] == BM_END_OF_MAP))
1470 break;
1471
1472 memory_bm_set_bit(bm, buf[j]);
1473 }
1474 }
1475
1476 /* List of "safe" pages that may be used to store data loaded from the suspend
1477 * image
1478 */
1479 static struct linked_page *safe_pages_list;
1480
1481 #ifdef CONFIG_HIGHMEM
1482 /* struct highmem_pbe is used for creating the list of highmem pages that
1483 * should be restored atomically during the resume from disk, because the page
1484 * frames they have occupied before the suspend are in use.
1485 */
1486 struct highmem_pbe {
1487 struct page *copy_page; /* data is here now */
1488 struct page *orig_page; /* data was here before the suspend */
1489 struct highmem_pbe *next;
1490 };
1491
1492 /* List of highmem PBEs needed for restoring the highmem pages that were
1493 * allocated before the suspend and included in the suspend image, but have
1494 * also been allocated by the "resume" kernel, so their contents cannot be
1495 * written directly to their "original" page frames.
1496 */
1497 static struct highmem_pbe *highmem_pblist;
1498
1499 /**
1500 * count_highmem_image_pages - compute the number of highmem pages in the
1501 * suspend image. The bits in the memory bitmap @bm that correspond to the
1502 * image pages are assumed to be set.
1503 */
1504
1505 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1506 {
1507 unsigned long pfn;
1508 unsigned int cnt = 0;
1509
1510 memory_bm_position_reset(bm);
1511 pfn = memory_bm_next_pfn(bm);
1512 while (pfn != BM_END_OF_MAP) {
1513 if (PageHighMem(pfn_to_page(pfn)))
1514 cnt++;
1515
1516 pfn = memory_bm_next_pfn(bm);
1517 }
1518 return cnt;
1519 }
1520
1521 /**
1522 * prepare_highmem_image - try to allocate as many highmem pages as
1523 * there are highmem image pages (@nr_highmem_p points to the variable
1524 * containing the number of highmem image pages). The pages that are
1525 * "safe" (ie. will not be overwritten when the suspend image is
1526 * restored) have the corresponding bits set in @bm (it must be
1527 * unitialized).
1528 *
1529 * NOTE: This function should not be called if there are no highmem
1530 * image pages.
1531 */
1532
1533 static unsigned int safe_highmem_pages;
1534
1535 static struct memory_bitmap *safe_highmem_bm;
1536
1537 static int
1538 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1539 {
1540 unsigned int to_alloc;
1541
1542 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1543 return -ENOMEM;
1544
1545 if (get_highmem_buffer(PG_SAFE))
1546 return -ENOMEM;
1547
1548 to_alloc = count_free_highmem_pages();
1549 if (to_alloc > *nr_highmem_p)
1550 to_alloc = *nr_highmem_p;
1551 else
1552 *nr_highmem_p = to_alloc;
1553
1554 safe_highmem_pages = 0;
1555 while (to_alloc-- > 0) {
1556 struct page *page;
1557
1558 page = alloc_page(__GFP_HIGHMEM);
1559 if (!swsusp_page_is_free(page)) {
1560 /* The page is "safe", set its bit the bitmap */
1561 memory_bm_set_bit(bm, page_to_pfn(page));
1562 safe_highmem_pages++;
1563 }
1564 /* Mark the page as allocated */
1565 swsusp_set_page_forbidden(page);
1566 swsusp_set_page_free(page);
1567 }
1568 memory_bm_position_reset(bm);
1569 safe_highmem_bm = bm;
1570 return 0;
1571 }
1572
1573 /**
1574 * get_highmem_page_buffer - for given highmem image page find the buffer
1575 * that suspend_write_next() should set for its caller to write to.
1576 *
1577 * If the page is to be saved to its "original" page frame or a copy of
1578 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1579 * the copy of the page is to be made in normal memory, so the address of
1580 * the copy is returned.
1581 *
1582 * If @buffer is returned, the caller of suspend_write_next() will write
1583 * the page's contents to @buffer, so they will have to be copied to the
1584 * right location on the next call to suspend_write_next() and it is done
1585 * with the help of copy_last_highmem_page(). For this purpose, if
1586 * @buffer is returned, @last_highmem page is set to the page to which
1587 * the data will have to be copied from @buffer.
1588 */
1589
1590 static struct page *last_highmem_page;
1591
1592 static void *
1593 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1594 {
1595 struct highmem_pbe *pbe;
1596 void *kaddr;
1597
1598 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1599 /* We have allocated the "original" page frame and we can
1600 * use it directly to store the loaded page.
1601 */
1602 last_highmem_page = page;
1603 return buffer;
1604 }
1605 /* The "original" page frame has not been allocated and we have to
1606 * use a "safe" page frame to store the loaded page.
1607 */
1608 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1609 if (!pbe) {
1610 swsusp_free();
1611 return NULL;
1612 }
1613 pbe->orig_page = page;
1614 if (safe_highmem_pages > 0) {
1615 struct page *tmp;
1616
1617 /* Copy of the page will be stored in high memory */
1618 kaddr = buffer;
1619 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1620 safe_highmem_pages--;
1621 last_highmem_page = tmp;
1622 pbe->copy_page = tmp;
1623 } else {
1624 /* Copy of the page will be stored in normal memory */
1625 kaddr = safe_pages_list;
1626 safe_pages_list = safe_pages_list->next;
1627 pbe->copy_page = virt_to_page(kaddr);
1628 }
1629 pbe->next = highmem_pblist;
1630 highmem_pblist = pbe;
1631 return kaddr;
1632 }
1633
1634 /**
1635 * copy_last_highmem_page - copy the contents of a highmem image from
1636 * @buffer, where the caller of snapshot_write_next() has place them,
1637 * to the right location represented by @last_highmem_page .
1638 */
1639
1640 static void copy_last_highmem_page(void)
1641 {
1642 if (last_highmem_page) {
1643 void *dst;
1644
1645 dst = kmap_atomic(last_highmem_page, KM_USER0);
1646 memcpy(dst, buffer, PAGE_SIZE);
1647 kunmap_atomic(dst, KM_USER0);
1648 last_highmem_page = NULL;
1649 }
1650 }
1651
1652 static inline int last_highmem_page_copied(void)
1653 {
1654 return !last_highmem_page;
1655 }
1656
1657 static inline void free_highmem_data(void)
1658 {
1659 if (safe_highmem_bm)
1660 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1661
1662 if (buffer)
1663 free_image_page(buffer, PG_UNSAFE_CLEAR);
1664 }
1665 #else
1666 static inline int get_safe_write_buffer(void) { return 0; }
1667
1668 static unsigned int
1669 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1670
1671 static inline int
1672 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1673 {
1674 return 0;
1675 }
1676
1677 static inline void *
1678 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1679 {
1680 return NULL;
1681 }
1682
1683 static inline void copy_last_highmem_page(void) {}
1684 static inline int last_highmem_page_copied(void) { return 1; }
1685 static inline void free_highmem_data(void) {}
1686 #endif /* CONFIG_HIGHMEM */
1687
1688 /**
1689 * prepare_image - use the memory bitmap @bm to mark the pages that will
1690 * be overwritten in the process of restoring the system memory state
1691 * from the suspend image ("unsafe" pages) and allocate memory for the
1692 * image.
1693 *
1694 * The idea is to allocate a new memory bitmap first and then allocate
1695 * as many pages as needed for the image data, but not to assign these
1696 * pages to specific tasks initially. Instead, we just mark them as
1697 * allocated and create a lists of "safe" pages that will be used
1698 * later. On systems with high memory a list of "safe" highmem pages is
1699 * also created.
1700 */
1701
1702 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1703
1704 static int
1705 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1706 {
1707 unsigned int nr_pages, nr_highmem;
1708 struct linked_page *sp_list, *lp;
1709 int error;
1710
1711 /* If there is no highmem, the buffer will not be necessary */
1712 free_image_page(buffer, PG_UNSAFE_CLEAR);
1713 buffer = NULL;
1714
1715 nr_highmem = count_highmem_image_pages(bm);
1716 error = mark_unsafe_pages(bm);
1717 if (error)
1718 goto Free;
1719
1720 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1721 if (error)
1722 goto Free;
1723
1724 duplicate_memory_bitmap(new_bm, bm);
1725 memory_bm_free(bm, PG_UNSAFE_KEEP);
1726 if (nr_highmem > 0) {
1727 error = prepare_highmem_image(bm, &nr_highmem);
1728 if (error)
1729 goto Free;
1730 }
1731 /* Reserve some safe pages for potential later use.
1732 *
1733 * NOTE: This way we make sure there will be enough safe pages for the
1734 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1735 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1736 */
1737 sp_list = NULL;
1738 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1739 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1740 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1741 while (nr_pages > 0) {
1742 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1743 if (!lp) {
1744 error = -ENOMEM;
1745 goto Free;
1746 }
1747 lp->next = sp_list;
1748 sp_list = lp;
1749 nr_pages--;
1750 }
1751 /* Preallocate memory for the image */
1752 safe_pages_list = NULL;
1753 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1754 while (nr_pages > 0) {
1755 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1756 if (!lp) {
1757 error = -ENOMEM;
1758 goto Free;
1759 }
1760 if (!swsusp_page_is_free(virt_to_page(lp))) {
1761 /* The page is "safe", add it to the list */
1762 lp->next = safe_pages_list;
1763 safe_pages_list = lp;
1764 }
1765 /* Mark the page as allocated */
1766 swsusp_set_page_forbidden(virt_to_page(lp));
1767 swsusp_set_page_free(virt_to_page(lp));
1768 nr_pages--;
1769 }
1770 /* Free the reserved safe pages so that chain_alloc() can use them */
1771 while (sp_list) {
1772 lp = sp_list->next;
1773 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1774 sp_list = lp;
1775 }
1776 return 0;
1777
1778 Free:
1779 swsusp_free();
1780 return error;
1781 }
1782
1783 /**
1784 * get_buffer - compute the address that snapshot_write_next() should
1785 * set for its caller to write to.
1786 */
1787
1788 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1789 {
1790 struct pbe *pbe;
1791 struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1792
1793 if (PageHighMem(page))
1794 return get_highmem_page_buffer(page, ca);
1795
1796 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1797 /* We have allocated the "original" page frame and we can
1798 * use it directly to store the loaded page.
1799 */
1800 return page_address(page);
1801
1802 /* The "original" page frame has not been allocated and we have to
1803 * use a "safe" page frame to store the loaded page.
1804 */
1805 pbe = chain_alloc(ca, sizeof(struct pbe));
1806 if (!pbe) {
1807 swsusp_free();
1808 return NULL;
1809 }
1810 pbe->orig_address = page_address(page);
1811 pbe->address = safe_pages_list;
1812 safe_pages_list = safe_pages_list->next;
1813 pbe->next = restore_pblist;
1814 restore_pblist = pbe;
1815 return pbe->address;
1816 }
1817
1818 /**
1819 * snapshot_write_next - used for writing the system memory snapshot.
1820 *
1821 * On the first call to it @handle should point to a zeroed
1822 * snapshot_handle structure. The structure gets updated and a pointer
1823 * to it should be passed to this function every next time.
1824 *
1825 * The @count parameter should contain the number of bytes the caller
1826 * wants to write to the image. It must not be zero.
1827 *
1828 * On success the function returns a positive number. Then, the caller
1829 * is allowed to write up to the returned number of bytes to the memory
1830 * location computed by the data_of() macro. The number returned
1831 * may be smaller than @count, but this only happens if the write would
1832 * cross a page boundary otherwise.
1833 *
1834 * The function returns 0 to indicate the "end of file" condition,
1835 * and a negative number is returned on error. In such cases the
1836 * structure pointed to by @handle is not updated and should not be used
1837 * any more.
1838 */
1839
1840 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1841 {
1842 static struct chain_allocator ca;
1843 int error = 0;
1844
1845 /* Check if we have already loaded the entire image */
1846 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1847 return 0;
1848
1849 if (handle->offset == 0) {
1850 if (!buffer)
1851 /* This makes the buffer be freed by swsusp_free() */
1852 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1853
1854 if (!buffer)
1855 return -ENOMEM;
1856
1857 handle->buffer = buffer;
1858 }
1859 handle->sync_read = 1;
1860 if (handle->prev < handle->cur) {
1861 if (handle->prev == 0) {
1862 error = load_header(buffer);
1863 if (error)
1864 return error;
1865
1866 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1867 if (error)
1868 return error;
1869
1870 } else if (handle->prev <= nr_meta_pages) {
1871 unpack_orig_pfns(buffer, &copy_bm);
1872 if (handle->prev == nr_meta_pages) {
1873 error = prepare_image(&orig_bm, &copy_bm);
1874 if (error)
1875 return error;
1876
1877 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1878 memory_bm_position_reset(&orig_bm);
1879 restore_pblist = NULL;
1880 handle->buffer = get_buffer(&orig_bm, &ca);
1881 handle->sync_read = 0;
1882 if (!handle->buffer)
1883 return -ENOMEM;
1884 }
1885 } else {
1886 copy_last_highmem_page();
1887 handle->buffer = get_buffer(&orig_bm, &ca);
1888 if (handle->buffer != buffer)
1889 handle->sync_read = 0;
1890 }
1891 handle->prev = handle->cur;
1892 }
1893 handle->buf_offset = handle->cur_offset;
1894 if (handle->cur_offset + count >= PAGE_SIZE) {
1895 count = PAGE_SIZE - handle->cur_offset;
1896 handle->cur_offset = 0;
1897 handle->cur++;
1898 } else {
1899 handle->cur_offset += count;
1900 }
1901 handle->offset += count;
1902 return count;
1903 }
1904
1905 /**
1906 * snapshot_write_finalize - must be called after the last call to
1907 * snapshot_write_next() in case the last page in the image happens
1908 * to be a highmem page and its contents should be stored in the
1909 * highmem. Additionally, it releases the memory that will not be
1910 * used any more.
1911 */
1912
1913 void snapshot_write_finalize(struct snapshot_handle *handle)
1914 {
1915 copy_last_highmem_page();
1916 /* Free only if we have loaded the image entirely */
1917 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1918 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1919 free_highmem_data();
1920 }
1921 }
1922
1923 int snapshot_image_loaded(struct snapshot_handle *handle)
1924 {
1925 return !(!nr_copy_pages || !last_highmem_page_copied() ||
1926 handle->cur <= nr_meta_pages + nr_copy_pages);
1927 }
1928
1929 #ifdef CONFIG_HIGHMEM
1930 /* Assumes that @buf is ready and points to a "safe" page */
1931 static inline void
1932 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1933 {
1934 void *kaddr1, *kaddr2;
1935
1936 kaddr1 = kmap_atomic(p1, KM_USER0);
1937 kaddr2 = kmap_atomic(p2, KM_USER1);
1938 memcpy(buf, kaddr1, PAGE_SIZE);
1939 memcpy(kaddr1, kaddr2, PAGE_SIZE);
1940 memcpy(kaddr2, buf, PAGE_SIZE);
1941 kunmap_atomic(kaddr1, KM_USER0);
1942 kunmap_atomic(kaddr2, KM_USER1);
1943 }
1944
1945 /**
1946 * restore_highmem - for each highmem page that was allocated before
1947 * the suspend and included in the suspend image, and also has been
1948 * allocated by the "resume" kernel swap its current (ie. "before
1949 * resume") contents with the previous (ie. "before suspend") one.
1950 *
1951 * If the resume eventually fails, we can call this function once
1952 * again and restore the "before resume" highmem state.
1953 */
1954
1955 int restore_highmem(void)
1956 {
1957 struct highmem_pbe *pbe = highmem_pblist;
1958 void *buf;
1959
1960 if (!pbe)
1961 return 0;
1962
1963 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1964 if (!buf)
1965 return -ENOMEM;
1966
1967 while (pbe) {
1968 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1969 pbe = pbe->next;
1970 }
1971 free_image_page(buf, PG_UNSAFE_CLEAR);
1972 return 0;
1973 }
1974 #endif /* CONFIG_HIGHMEM */
This page took 0.072096 seconds and 5 git commands to generate.