Merge tag 'usb-3.18-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[deliverable/linux.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 #include <linux/compiler.h>
31
32 #include <asm/uaccess.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <asm/io.h>
37
38 #include "power.h"
39
40 static int swsusp_page_is_free(struct page *);
41 static void swsusp_set_page_forbidden(struct page *);
42 static void swsusp_unset_page_forbidden(struct page *);
43
44 /*
45 * Number of bytes to reserve for memory allocations made by device drivers
46 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
47 * cause image creation to fail (tunable via /sys/power/reserved_size).
48 */
49 unsigned long reserved_size;
50
51 void __init hibernate_reserved_size_init(void)
52 {
53 reserved_size = SPARE_PAGES * PAGE_SIZE;
54 }
55
56 /*
57 * Preferred image size in bytes (tunable via /sys/power/image_size).
58 * When it is set to N, swsusp will do its best to ensure the image
59 * size will not exceed N bytes, but if that is impossible, it will
60 * try to create the smallest image possible.
61 */
62 unsigned long image_size;
63
64 void __init hibernate_image_size_init(void)
65 {
66 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
67 }
68
69 /* List of PBEs needed for restoring the pages that were allocated before
70 * the suspend and included in the suspend image, but have also been
71 * allocated by the "resume" kernel, so their contents cannot be written
72 * directly to their "original" page frames.
73 */
74 struct pbe *restore_pblist;
75
76 /* Pointer to an auxiliary buffer (1 page) */
77 static void *buffer;
78
79 /**
80 * @safe_needed - on resume, for storing the PBE list and the image,
81 * we can only use memory pages that do not conflict with the pages
82 * used before suspend. The unsafe pages have PageNosaveFree set
83 * and we count them using unsafe_pages.
84 *
85 * Each allocated image page is marked as PageNosave and PageNosaveFree
86 * so that swsusp_free() can release it.
87 */
88
89 #define PG_ANY 0
90 #define PG_SAFE 1
91 #define PG_UNSAFE_CLEAR 1
92 #define PG_UNSAFE_KEEP 0
93
94 static unsigned int allocated_unsafe_pages;
95
96 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
97 {
98 void *res;
99
100 res = (void *)get_zeroed_page(gfp_mask);
101 if (safe_needed)
102 while (res && swsusp_page_is_free(virt_to_page(res))) {
103 /* The page is unsafe, mark it for swsusp_free() */
104 swsusp_set_page_forbidden(virt_to_page(res));
105 allocated_unsafe_pages++;
106 res = (void *)get_zeroed_page(gfp_mask);
107 }
108 if (res) {
109 swsusp_set_page_forbidden(virt_to_page(res));
110 swsusp_set_page_free(virt_to_page(res));
111 }
112 return res;
113 }
114
115 unsigned long get_safe_page(gfp_t gfp_mask)
116 {
117 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
118 }
119
120 static struct page *alloc_image_page(gfp_t gfp_mask)
121 {
122 struct page *page;
123
124 page = alloc_page(gfp_mask);
125 if (page) {
126 swsusp_set_page_forbidden(page);
127 swsusp_set_page_free(page);
128 }
129 return page;
130 }
131
132 /**
133 * free_image_page - free page represented by @addr, allocated with
134 * get_image_page (page flags set by it must be cleared)
135 */
136
137 static inline void free_image_page(void *addr, int clear_nosave_free)
138 {
139 struct page *page;
140
141 BUG_ON(!virt_addr_valid(addr));
142
143 page = virt_to_page(addr);
144
145 swsusp_unset_page_forbidden(page);
146 if (clear_nosave_free)
147 swsusp_unset_page_free(page);
148
149 __free_page(page);
150 }
151
152 /* struct linked_page is used to build chains of pages */
153
154 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
155
156 struct linked_page {
157 struct linked_page *next;
158 char data[LINKED_PAGE_DATA_SIZE];
159 } __packed;
160
161 static inline void
162 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
163 {
164 while (list) {
165 struct linked_page *lp = list->next;
166
167 free_image_page(list, clear_page_nosave);
168 list = lp;
169 }
170 }
171
172 /**
173 * struct chain_allocator is used for allocating small objects out of
174 * a linked list of pages called 'the chain'.
175 *
176 * The chain grows each time when there is no room for a new object in
177 * the current page. The allocated objects cannot be freed individually.
178 * It is only possible to free them all at once, by freeing the entire
179 * chain.
180 *
181 * NOTE: The chain allocator may be inefficient if the allocated objects
182 * are not much smaller than PAGE_SIZE.
183 */
184
185 struct chain_allocator {
186 struct linked_page *chain; /* the chain */
187 unsigned int used_space; /* total size of objects allocated out
188 * of the current page
189 */
190 gfp_t gfp_mask; /* mask for allocating pages */
191 int safe_needed; /* if set, only "safe" pages are allocated */
192 };
193
194 static void
195 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
196 {
197 ca->chain = NULL;
198 ca->used_space = LINKED_PAGE_DATA_SIZE;
199 ca->gfp_mask = gfp_mask;
200 ca->safe_needed = safe_needed;
201 }
202
203 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
204 {
205 void *ret;
206
207 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
208 struct linked_page *lp;
209
210 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
211 if (!lp)
212 return NULL;
213
214 lp->next = ca->chain;
215 ca->chain = lp;
216 ca->used_space = 0;
217 }
218 ret = ca->chain->data + ca->used_space;
219 ca->used_space += size;
220 return ret;
221 }
222
223 /**
224 * Data types related to memory bitmaps.
225 *
226 * Memory bitmap is a structure consiting of many linked lists of
227 * objects. The main list's elements are of type struct zone_bitmap
228 * and each of them corresonds to one zone. For each zone bitmap
229 * object there is a list of objects of type struct bm_block that
230 * represent each blocks of bitmap in which information is stored.
231 *
232 * struct memory_bitmap contains a pointer to the main list of zone
233 * bitmap objects, a struct bm_position used for browsing the bitmap,
234 * and a pointer to the list of pages used for allocating all of the
235 * zone bitmap objects and bitmap block objects.
236 *
237 * NOTE: It has to be possible to lay out the bitmap in memory
238 * using only allocations of order 0. Additionally, the bitmap is
239 * designed to work with arbitrary number of zones (this is over the
240 * top for now, but let's avoid making unnecessary assumptions ;-).
241 *
242 * struct zone_bitmap contains a pointer to a list of bitmap block
243 * objects and a pointer to the bitmap block object that has been
244 * most recently used for setting bits. Additionally, it contains the
245 * pfns that correspond to the start and end of the represented zone.
246 *
247 * struct bm_block contains a pointer to the memory page in which
248 * information is stored (in the form of a block of bitmap)
249 * It also contains the pfns that correspond to the start and end of
250 * the represented memory area.
251 *
252 * The memory bitmap is organized as a radix tree to guarantee fast random
253 * access to the bits. There is one radix tree for each zone (as returned
254 * from create_mem_extents).
255 *
256 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
257 * two linked lists for the nodes of the tree, one for the inner nodes and
258 * one for the leave nodes. The linked leave nodes are used for fast linear
259 * access of the memory bitmap.
260 *
261 * The struct rtree_node represents one node of the radix tree.
262 */
263
264 #define BM_END_OF_MAP (~0UL)
265
266 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
267 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
268 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
269
270 /*
271 * struct rtree_node is a wrapper struct to link the nodes
272 * of the rtree together for easy linear iteration over
273 * bits and easy freeing
274 */
275 struct rtree_node {
276 struct list_head list;
277 unsigned long *data;
278 };
279
280 /*
281 * struct mem_zone_bm_rtree represents a bitmap used for one
282 * populated memory zone.
283 */
284 struct mem_zone_bm_rtree {
285 struct list_head list; /* Link Zones together */
286 struct list_head nodes; /* Radix Tree inner nodes */
287 struct list_head leaves; /* Radix Tree leaves */
288 unsigned long start_pfn; /* Zone start page frame */
289 unsigned long end_pfn; /* Zone end page frame + 1 */
290 struct rtree_node *rtree; /* Radix Tree Root */
291 int levels; /* Number of Radix Tree Levels */
292 unsigned int blocks; /* Number of Bitmap Blocks */
293 };
294
295 /* strcut bm_position is used for browsing memory bitmaps */
296
297 struct bm_position {
298 struct mem_zone_bm_rtree *zone;
299 struct rtree_node *node;
300 unsigned long node_pfn;
301 int node_bit;
302 };
303
304 struct memory_bitmap {
305 struct list_head zones;
306 struct linked_page *p_list; /* list of pages used to store zone
307 * bitmap objects and bitmap block
308 * objects
309 */
310 struct bm_position cur; /* most recently used bit position */
311 };
312
313 /* Functions that operate on memory bitmaps */
314
315 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
316 #if BITS_PER_LONG == 32
317 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
318 #else
319 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
320 #endif
321 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
322
323 /*
324 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
325 *
326 * This function is used to allocate inner nodes as well as the
327 * leave nodes of the radix tree. It also adds the node to the
328 * corresponding linked list passed in by the *list parameter.
329 */
330 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
331 struct chain_allocator *ca,
332 struct list_head *list)
333 {
334 struct rtree_node *node;
335
336 node = chain_alloc(ca, sizeof(struct rtree_node));
337 if (!node)
338 return NULL;
339
340 node->data = get_image_page(gfp_mask, safe_needed);
341 if (!node->data)
342 return NULL;
343
344 list_add_tail(&node->list, list);
345
346 return node;
347 }
348
349 /*
350 * add_rtree_block - Add a new leave node to the radix tree
351 *
352 * The leave nodes need to be allocated in order to keep the leaves
353 * linked list in order. This is guaranteed by the zone->blocks
354 * counter.
355 */
356 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
357 int safe_needed, struct chain_allocator *ca)
358 {
359 struct rtree_node *node, *block, **dst;
360 unsigned int levels_needed, block_nr;
361 int i;
362
363 block_nr = zone->blocks;
364 levels_needed = 0;
365
366 /* How many levels do we need for this block nr? */
367 while (block_nr) {
368 levels_needed += 1;
369 block_nr >>= BM_RTREE_LEVEL_SHIFT;
370 }
371
372 /* Make sure the rtree has enough levels */
373 for (i = zone->levels; i < levels_needed; i++) {
374 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
375 &zone->nodes);
376 if (!node)
377 return -ENOMEM;
378
379 node->data[0] = (unsigned long)zone->rtree;
380 zone->rtree = node;
381 zone->levels += 1;
382 }
383
384 /* Allocate new block */
385 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
386 if (!block)
387 return -ENOMEM;
388
389 /* Now walk the rtree to insert the block */
390 node = zone->rtree;
391 dst = &zone->rtree;
392 block_nr = zone->blocks;
393 for (i = zone->levels; i > 0; i--) {
394 int index;
395
396 if (!node) {
397 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
398 &zone->nodes);
399 if (!node)
400 return -ENOMEM;
401 *dst = node;
402 }
403
404 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
405 index &= BM_RTREE_LEVEL_MASK;
406 dst = (struct rtree_node **)&((*dst)->data[index]);
407 node = *dst;
408 }
409
410 zone->blocks += 1;
411 *dst = block;
412
413 return 0;
414 }
415
416 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
417 int clear_nosave_free);
418
419 /*
420 * create_zone_bm_rtree - create a radix tree for one zone
421 *
422 * Allocated the mem_zone_bm_rtree structure and initializes it.
423 * This function also allocated and builds the radix tree for the
424 * zone.
425 */
426 static struct mem_zone_bm_rtree *
427 create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
428 struct chain_allocator *ca,
429 unsigned long start, unsigned long end)
430 {
431 struct mem_zone_bm_rtree *zone;
432 unsigned int i, nr_blocks;
433 unsigned long pages;
434
435 pages = end - start;
436 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
437 if (!zone)
438 return NULL;
439
440 INIT_LIST_HEAD(&zone->nodes);
441 INIT_LIST_HEAD(&zone->leaves);
442 zone->start_pfn = start;
443 zone->end_pfn = end;
444 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
445
446 for (i = 0; i < nr_blocks; i++) {
447 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
448 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
449 return NULL;
450 }
451 }
452
453 return zone;
454 }
455
456 /*
457 * free_zone_bm_rtree - Free the memory of the radix tree
458 *
459 * Free all node pages of the radix tree. The mem_zone_bm_rtree
460 * structure itself is not freed here nor are the rtree_node
461 * structs.
462 */
463 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
464 int clear_nosave_free)
465 {
466 struct rtree_node *node;
467
468 list_for_each_entry(node, &zone->nodes, list)
469 free_image_page(node->data, clear_nosave_free);
470
471 list_for_each_entry(node, &zone->leaves, list)
472 free_image_page(node->data, clear_nosave_free);
473 }
474
475 static void memory_bm_position_reset(struct memory_bitmap *bm)
476 {
477 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
478 list);
479 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
480 struct rtree_node, list);
481 bm->cur.node_pfn = 0;
482 bm->cur.node_bit = 0;
483 }
484
485 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
486
487 struct mem_extent {
488 struct list_head hook;
489 unsigned long start;
490 unsigned long end;
491 };
492
493 /**
494 * free_mem_extents - free a list of memory extents
495 * @list - list of extents to empty
496 */
497 static void free_mem_extents(struct list_head *list)
498 {
499 struct mem_extent *ext, *aux;
500
501 list_for_each_entry_safe(ext, aux, list, hook) {
502 list_del(&ext->hook);
503 kfree(ext);
504 }
505 }
506
507 /**
508 * create_mem_extents - create a list of memory extents representing
509 * contiguous ranges of PFNs
510 * @list - list to put the extents into
511 * @gfp_mask - mask to use for memory allocations
512 */
513 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
514 {
515 struct zone *zone;
516
517 INIT_LIST_HEAD(list);
518
519 for_each_populated_zone(zone) {
520 unsigned long zone_start, zone_end;
521 struct mem_extent *ext, *cur, *aux;
522
523 zone_start = zone->zone_start_pfn;
524 zone_end = zone_end_pfn(zone);
525
526 list_for_each_entry(ext, list, hook)
527 if (zone_start <= ext->end)
528 break;
529
530 if (&ext->hook == list || zone_end < ext->start) {
531 /* New extent is necessary */
532 struct mem_extent *new_ext;
533
534 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
535 if (!new_ext) {
536 free_mem_extents(list);
537 return -ENOMEM;
538 }
539 new_ext->start = zone_start;
540 new_ext->end = zone_end;
541 list_add_tail(&new_ext->hook, &ext->hook);
542 continue;
543 }
544
545 /* Merge this zone's range of PFNs with the existing one */
546 if (zone_start < ext->start)
547 ext->start = zone_start;
548 if (zone_end > ext->end)
549 ext->end = zone_end;
550
551 /* More merging may be possible */
552 cur = ext;
553 list_for_each_entry_safe_continue(cur, aux, list, hook) {
554 if (zone_end < cur->start)
555 break;
556 if (zone_end < cur->end)
557 ext->end = cur->end;
558 list_del(&cur->hook);
559 kfree(cur);
560 }
561 }
562
563 return 0;
564 }
565
566 /**
567 * memory_bm_create - allocate memory for a memory bitmap
568 */
569 static int
570 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
571 {
572 struct chain_allocator ca;
573 struct list_head mem_extents;
574 struct mem_extent *ext;
575 int error;
576
577 chain_init(&ca, gfp_mask, safe_needed);
578 INIT_LIST_HEAD(&bm->zones);
579
580 error = create_mem_extents(&mem_extents, gfp_mask);
581 if (error)
582 return error;
583
584 list_for_each_entry(ext, &mem_extents, hook) {
585 struct mem_zone_bm_rtree *zone;
586
587 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
588 ext->start, ext->end);
589 if (!zone) {
590 error = -ENOMEM;
591 goto Error;
592 }
593 list_add_tail(&zone->list, &bm->zones);
594 }
595
596 bm->p_list = ca.chain;
597 memory_bm_position_reset(bm);
598 Exit:
599 free_mem_extents(&mem_extents);
600 return error;
601
602 Error:
603 bm->p_list = ca.chain;
604 memory_bm_free(bm, PG_UNSAFE_CLEAR);
605 goto Exit;
606 }
607
608 /**
609 * memory_bm_free - free memory occupied by the memory bitmap @bm
610 */
611 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
612 {
613 struct mem_zone_bm_rtree *zone;
614
615 list_for_each_entry(zone, &bm->zones, list)
616 free_zone_bm_rtree(zone, clear_nosave_free);
617
618 free_list_of_pages(bm->p_list, clear_nosave_free);
619
620 INIT_LIST_HEAD(&bm->zones);
621 }
622
623 /**
624 * memory_bm_find_bit - Find the bit for pfn in the memory
625 * bitmap
626 *
627 * Find the bit in the bitmap @bm that corresponds to given pfn.
628 * The cur.zone, cur.block and cur.node_pfn member of @bm are
629 * updated.
630 * It walks the radix tree to find the page which contains the bit for
631 * pfn and returns the bit position in **addr and *bit_nr.
632 */
633 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
634 void **addr, unsigned int *bit_nr)
635 {
636 struct mem_zone_bm_rtree *curr, *zone;
637 struct rtree_node *node;
638 int i, block_nr;
639
640 zone = bm->cur.zone;
641
642 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
643 goto zone_found;
644
645 zone = NULL;
646
647 /* Find the right zone */
648 list_for_each_entry(curr, &bm->zones, list) {
649 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
650 zone = curr;
651 break;
652 }
653 }
654
655 if (!zone)
656 return -EFAULT;
657
658 zone_found:
659 /*
660 * We have a zone. Now walk the radix tree to find the leave
661 * node for our pfn.
662 */
663
664 node = bm->cur.node;
665 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
666 goto node_found;
667
668 node = zone->rtree;
669 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
670
671 for (i = zone->levels; i > 0; i--) {
672 int index;
673
674 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
675 index &= BM_RTREE_LEVEL_MASK;
676 BUG_ON(node->data[index] == 0);
677 node = (struct rtree_node *)node->data[index];
678 }
679
680 node_found:
681 /* Update last position */
682 bm->cur.zone = zone;
683 bm->cur.node = node;
684 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
685
686 /* Set return values */
687 *addr = node->data;
688 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
689
690 return 0;
691 }
692
693 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
694 {
695 void *addr;
696 unsigned int bit;
697 int error;
698
699 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
700 BUG_ON(error);
701 set_bit(bit, addr);
702 }
703
704 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
705 {
706 void *addr;
707 unsigned int bit;
708 int error;
709
710 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
711 if (!error)
712 set_bit(bit, addr);
713
714 return error;
715 }
716
717 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
718 {
719 void *addr;
720 unsigned int bit;
721 int error;
722
723 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
724 BUG_ON(error);
725 clear_bit(bit, addr);
726 }
727
728 static void memory_bm_clear_current(struct memory_bitmap *bm)
729 {
730 int bit;
731
732 bit = max(bm->cur.node_bit - 1, 0);
733 clear_bit(bit, bm->cur.node->data);
734 }
735
736 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
737 {
738 void *addr;
739 unsigned int bit;
740 int error;
741
742 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
743 BUG_ON(error);
744 return test_bit(bit, addr);
745 }
746
747 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
748 {
749 void *addr;
750 unsigned int bit;
751
752 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
753 }
754
755 /*
756 * rtree_next_node - Jumps to the next leave node
757 *
758 * Sets the position to the beginning of the next node in the
759 * memory bitmap. This is either the next node in the current
760 * zone's radix tree or the first node in the radix tree of the
761 * next zone.
762 *
763 * Returns true if there is a next node, false otherwise.
764 */
765 static bool rtree_next_node(struct memory_bitmap *bm)
766 {
767 bm->cur.node = list_entry(bm->cur.node->list.next,
768 struct rtree_node, list);
769 if (&bm->cur.node->list != &bm->cur.zone->leaves) {
770 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
771 bm->cur.node_bit = 0;
772 touch_softlockup_watchdog();
773 return true;
774 }
775
776 /* No more nodes, goto next zone */
777 bm->cur.zone = list_entry(bm->cur.zone->list.next,
778 struct mem_zone_bm_rtree, list);
779 if (&bm->cur.zone->list != &bm->zones) {
780 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
781 struct rtree_node, list);
782 bm->cur.node_pfn = 0;
783 bm->cur.node_bit = 0;
784 return true;
785 }
786
787 /* No more zones */
788 return false;
789 }
790
791 /**
792 * memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
793 *
794 * Starting from the last returned position this function searches
795 * for the next set bit in the memory bitmap and returns its
796 * number. If no more bit is set BM_END_OF_MAP is returned.
797 *
798 * It is required to run memory_bm_position_reset() before the
799 * first call to this function.
800 */
801 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
802 {
803 unsigned long bits, pfn, pages;
804 int bit;
805
806 do {
807 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
808 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
809 bit = find_next_bit(bm->cur.node->data, bits,
810 bm->cur.node_bit);
811 if (bit < bits) {
812 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
813 bm->cur.node_bit = bit + 1;
814 return pfn;
815 }
816 } while (rtree_next_node(bm));
817
818 return BM_END_OF_MAP;
819 }
820
821 /**
822 * This structure represents a range of page frames the contents of which
823 * should not be saved during the suspend.
824 */
825
826 struct nosave_region {
827 struct list_head list;
828 unsigned long start_pfn;
829 unsigned long end_pfn;
830 };
831
832 static LIST_HEAD(nosave_regions);
833
834 /**
835 * register_nosave_region - register a range of page frames the contents
836 * of which should not be saved during the suspend (to be used in the early
837 * initialization code)
838 */
839
840 void __init
841 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
842 int use_kmalloc)
843 {
844 struct nosave_region *region;
845
846 if (start_pfn >= end_pfn)
847 return;
848
849 if (!list_empty(&nosave_regions)) {
850 /* Try to extend the previous region (they should be sorted) */
851 region = list_entry(nosave_regions.prev,
852 struct nosave_region, list);
853 if (region->end_pfn == start_pfn) {
854 region->end_pfn = end_pfn;
855 goto Report;
856 }
857 }
858 if (use_kmalloc) {
859 /* during init, this shouldn't fail */
860 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
861 BUG_ON(!region);
862 } else
863 /* This allocation cannot fail */
864 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
865 region->start_pfn = start_pfn;
866 region->end_pfn = end_pfn;
867 list_add_tail(&region->list, &nosave_regions);
868 Report:
869 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
870 (unsigned long long) start_pfn << PAGE_SHIFT,
871 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
872 }
873
874 /*
875 * Set bits in this map correspond to the page frames the contents of which
876 * should not be saved during the suspend.
877 */
878 static struct memory_bitmap *forbidden_pages_map;
879
880 /* Set bits in this map correspond to free page frames. */
881 static struct memory_bitmap *free_pages_map;
882
883 /*
884 * Each page frame allocated for creating the image is marked by setting the
885 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
886 */
887
888 void swsusp_set_page_free(struct page *page)
889 {
890 if (free_pages_map)
891 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
892 }
893
894 static int swsusp_page_is_free(struct page *page)
895 {
896 return free_pages_map ?
897 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
898 }
899
900 void swsusp_unset_page_free(struct page *page)
901 {
902 if (free_pages_map)
903 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
904 }
905
906 static void swsusp_set_page_forbidden(struct page *page)
907 {
908 if (forbidden_pages_map)
909 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
910 }
911
912 int swsusp_page_is_forbidden(struct page *page)
913 {
914 return forbidden_pages_map ?
915 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
916 }
917
918 static void swsusp_unset_page_forbidden(struct page *page)
919 {
920 if (forbidden_pages_map)
921 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
922 }
923
924 /**
925 * mark_nosave_pages - set bits corresponding to the page frames the
926 * contents of which should not be saved in a given bitmap.
927 */
928
929 static void mark_nosave_pages(struct memory_bitmap *bm)
930 {
931 struct nosave_region *region;
932
933 if (list_empty(&nosave_regions))
934 return;
935
936 list_for_each_entry(region, &nosave_regions, list) {
937 unsigned long pfn;
938
939 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
940 (unsigned long long) region->start_pfn << PAGE_SHIFT,
941 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
942 - 1);
943
944 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
945 if (pfn_valid(pfn)) {
946 /*
947 * It is safe to ignore the result of
948 * mem_bm_set_bit_check() here, since we won't
949 * touch the PFNs for which the error is
950 * returned anyway.
951 */
952 mem_bm_set_bit_check(bm, pfn);
953 }
954 }
955 }
956
957 static bool is_nosave_page(unsigned long pfn)
958 {
959 struct nosave_region *region;
960
961 list_for_each_entry(region, &nosave_regions, list) {
962 if (pfn >= region->start_pfn && pfn < region->end_pfn) {
963 pr_err("PM: %#010llx in e820 nosave region: "
964 "[mem %#010llx-%#010llx]\n",
965 (unsigned long long) pfn << PAGE_SHIFT,
966 (unsigned long long) region->start_pfn << PAGE_SHIFT,
967 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
968 - 1);
969 return true;
970 }
971 }
972
973 return false;
974 }
975
976 /**
977 * create_basic_memory_bitmaps - create bitmaps needed for marking page
978 * frames that should not be saved and free page frames. The pointers
979 * forbidden_pages_map and free_pages_map are only modified if everything
980 * goes well, because we don't want the bits to be used before both bitmaps
981 * are set up.
982 */
983
984 int create_basic_memory_bitmaps(void)
985 {
986 struct memory_bitmap *bm1, *bm2;
987 int error = 0;
988
989 if (forbidden_pages_map && free_pages_map)
990 return 0;
991 else
992 BUG_ON(forbidden_pages_map || free_pages_map);
993
994 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
995 if (!bm1)
996 return -ENOMEM;
997
998 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
999 if (error)
1000 goto Free_first_object;
1001
1002 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1003 if (!bm2)
1004 goto Free_first_bitmap;
1005
1006 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1007 if (error)
1008 goto Free_second_object;
1009
1010 forbidden_pages_map = bm1;
1011 free_pages_map = bm2;
1012 mark_nosave_pages(forbidden_pages_map);
1013
1014 pr_debug("PM: Basic memory bitmaps created\n");
1015
1016 return 0;
1017
1018 Free_second_object:
1019 kfree(bm2);
1020 Free_first_bitmap:
1021 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1022 Free_first_object:
1023 kfree(bm1);
1024 return -ENOMEM;
1025 }
1026
1027 /**
1028 * free_basic_memory_bitmaps - free memory bitmaps allocated by
1029 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
1030 * so that the bitmaps themselves are not referred to while they are being
1031 * freed.
1032 */
1033
1034 void free_basic_memory_bitmaps(void)
1035 {
1036 struct memory_bitmap *bm1, *bm2;
1037
1038 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1039 return;
1040
1041 bm1 = forbidden_pages_map;
1042 bm2 = free_pages_map;
1043 forbidden_pages_map = NULL;
1044 free_pages_map = NULL;
1045 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1046 kfree(bm1);
1047 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1048 kfree(bm2);
1049
1050 pr_debug("PM: Basic memory bitmaps freed\n");
1051 }
1052
1053 /**
1054 * snapshot_additional_pages - estimate the number of additional pages
1055 * be needed for setting up the suspend image data structures for given
1056 * zone (usually the returned value is greater than the exact number)
1057 */
1058
1059 unsigned int snapshot_additional_pages(struct zone *zone)
1060 {
1061 unsigned int rtree, nodes;
1062
1063 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1064 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1065 LINKED_PAGE_DATA_SIZE);
1066 while (nodes > 1) {
1067 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1068 rtree += nodes;
1069 }
1070
1071 return 2 * rtree;
1072 }
1073
1074 #ifdef CONFIG_HIGHMEM
1075 /**
1076 * count_free_highmem_pages - compute the total number of free highmem
1077 * pages, system-wide.
1078 */
1079
1080 static unsigned int count_free_highmem_pages(void)
1081 {
1082 struct zone *zone;
1083 unsigned int cnt = 0;
1084
1085 for_each_populated_zone(zone)
1086 if (is_highmem(zone))
1087 cnt += zone_page_state(zone, NR_FREE_PAGES);
1088
1089 return cnt;
1090 }
1091
1092 /**
1093 * saveable_highmem_page - Determine whether a highmem page should be
1094 * included in the suspend image.
1095 *
1096 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1097 * and it isn't a part of a free chunk of pages.
1098 */
1099 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1100 {
1101 struct page *page;
1102
1103 if (!pfn_valid(pfn))
1104 return NULL;
1105
1106 page = pfn_to_page(pfn);
1107 if (page_zone(page) != zone)
1108 return NULL;
1109
1110 BUG_ON(!PageHighMem(page));
1111
1112 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
1113 PageReserved(page))
1114 return NULL;
1115
1116 if (page_is_guard(page))
1117 return NULL;
1118
1119 return page;
1120 }
1121
1122 /**
1123 * count_highmem_pages - compute the total number of saveable highmem
1124 * pages.
1125 */
1126
1127 static unsigned int count_highmem_pages(void)
1128 {
1129 struct zone *zone;
1130 unsigned int n = 0;
1131
1132 for_each_populated_zone(zone) {
1133 unsigned long pfn, max_zone_pfn;
1134
1135 if (!is_highmem(zone))
1136 continue;
1137
1138 mark_free_pages(zone);
1139 max_zone_pfn = zone_end_pfn(zone);
1140 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1141 if (saveable_highmem_page(zone, pfn))
1142 n++;
1143 }
1144 return n;
1145 }
1146 #else
1147 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1148 {
1149 return NULL;
1150 }
1151 #endif /* CONFIG_HIGHMEM */
1152
1153 /**
1154 * saveable_page - Determine whether a non-highmem page should be included
1155 * in the suspend image.
1156 *
1157 * We should save the page if it isn't Nosave, and is not in the range
1158 * of pages statically defined as 'unsaveable', and it isn't a part of
1159 * a free chunk of pages.
1160 */
1161 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1162 {
1163 struct page *page;
1164
1165 if (!pfn_valid(pfn))
1166 return NULL;
1167
1168 page = pfn_to_page(pfn);
1169 if (page_zone(page) != zone)
1170 return NULL;
1171
1172 BUG_ON(PageHighMem(page));
1173
1174 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1175 return NULL;
1176
1177 if (PageReserved(page)
1178 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1179 return NULL;
1180
1181 if (page_is_guard(page))
1182 return NULL;
1183
1184 return page;
1185 }
1186
1187 /**
1188 * count_data_pages - compute the total number of saveable non-highmem
1189 * pages.
1190 */
1191
1192 static unsigned int count_data_pages(void)
1193 {
1194 struct zone *zone;
1195 unsigned long pfn, max_zone_pfn;
1196 unsigned int n = 0;
1197
1198 for_each_populated_zone(zone) {
1199 if (is_highmem(zone))
1200 continue;
1201
1202 mark_free_pages(zone);
1203 max_zone_pfn = zone_end_pfn(zone);
1204 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1205 if (saveable_page(zone, pfn))
1206 n++;
1207 }
1208 return n;
1209 }
1210
1211 /* This is needed, because copy_page and memcpy are not usable for copying
1212 * task structs.
1213 */
1214 static inline void do_copy_page(long *dst, long *src)
1215 {
1216 int n;
1217
1218 for (n = PAGE_SIZE / sizeof(long); n; n--)
1219 *dst++ = *src++;
1220 }
1221
1222
1223 /**
1224 * safe_copy_page - check if the page we are going to copy is marked as
1225 * present in the kernel page tables (this always is the case if
1226 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
1227 * kernel_page_present() always returns 'true').
1228 */
1229 static void safe_copy_page(void *dst, struct page *s_page)
1230 {
1231 if (kernel_page_present(s_page)) {
1232 do_copy_page(dst, page_address(s_page));
1233 } else {
1234 kernel_map_pages(s_page, 1, 1);
1235 do_copy_page(dst, page_address(s_page));
1236 kernel_map_pages(s_page, 1, 0);
1237 }
1238 }
1239
1240
1241 #ifdef CONFIG_HIGHMEM
1242 static inline struct page *
1243 page_is_saveable(struct zone *zone, unsigned long pfn)
1244 {
1245 return is_highmem(zone) ?
1246 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1247 }
1248
1249 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1250 {
1251 struct page *s_page, *d_page;
1252 void *src, *dst;
1253
1254 s_page = pfn_to_page(src_pfn);
1255 d_page = pfn_to_page(dst_pfn);
1256 if (PageHighMem(s_page)) {
1257 src = kmap_atomic(s_page);
1258 dst = kmap_atomic(d_page);
1259 do_copy_page(dst, src);
1260 kunmap_atomic(dst);
1261 kunmap_atomic(src);
1262 } else {
1263 if (PageHighMem(d_page)) {
1264 /* Page pointed to by src may contain some kernel
1265 * data modified by kmap_atomic()
1266 */
1267 safe_copy_page(buffer, s_page);
1268 dst = kmap_atomic(d_page);
1269 copy_page(dst, buffer);
1270 kunmap_atomic(dst);
1271 } else {
1272 safe_copy_page(page_address(d_page), s_page);
1273 }
1274 }
1275 }
1276 #else
1277 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1278
1279 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1280 {
1281 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1282 pfn_to_page(src_pfn));
1283 }
1284 #endif /* CONFIG_HIGHMEM */
1285
1286 static void
1287 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1288 {
1289 struct zone *zone;
1290 unsigned long pfn;
1291
1292 for_each_populated_zone(zone) {
1293 unsigned long max_zone_pfn;
1294
1295 mark_free_pages(zone);
1296 max_zone_pfn = zone_end_pfn(zone);
1297 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1298 if (page_is_saveable(zone, pfn))
1299 memory_bm_set_bit(orig_bm, pfn);
1300 }
1301 memory_bm_position_reset(orig_bm);
1302 memory_bm_position_reset(copy_bm);
1303 for(;;) {
1304 pfn = memory_bm_next_pfn(orig_bm);
1305 if (unlikely(pfn == BM_END_OF_MAP))
1306 break;
1307 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1308 }
1309 }
1310
1311 /* Total number of image pages */
1312 static unsigned int nr_copy_pages;
1313 /* Number of pages needed for saving the original pfns of the image pages */
1314 static unsigned int nr_meta_pages;
1315 /*
1316 * Numbers of normal and highmem page frames allocated for hibernation image
1317 * before suspending devices.
1318 */
1319 unsigned int alloc_normal, alloc_highmem;
1320 /*
1321 * Memory bitmap used for marking saveable pages (during hibernation) or
1322 * hibernation image pages (during restore)
1323 */
1324 static struct memory_bitmap orig_bm;
1325 /*
1326 * Memory bitmap used during hibernation for marking allocated page frames that
1327 * will contain copies of saveable pages. During restore it is initially used
1328 * for marking hibernation image pages, but then the set bits from it are
1329 * duplicated in @orig_bm and it is released. On highmem systems it is next
1330 * used for marking "safe" highmem pages, but it has to be reinitialized for
1331 * this purpose.
1332 */
1333 static struct memory_bitmap copy_bm;
1334
1335 /**
1336 * swsusp_free - free pages allocated for the suspend.
1337 *
1338 * Suspend pages are alocated before the atomic copy is made, so we
1339 * need to release them after the resume.
1340 */
1341
1342 void swsusp_free(void)
1343 {
1344 unsigned long fb_pfn, fr_pfn;
1345
1346 if (!forbidden_pages_map || !free_pages_map)
1347 goto out;
1348
1349 memory_bm_position_reset(forbidden_pages_map);
1350 memory_bm_position_reset(free_pages_map);
1351
1352 loop:
1353 fr_pfn = memory_bm_next_pfn(free_pages_map);
1354 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1355
1356 /*
1357 * Find the next bit set in both bitmaps. This is guaranteed to
1358 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1359 */
1360 do {
1361 if (fb_pfn < fr_pfn)
1362 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1363 if (fr_pfn < fb_pfn)
1364 fr_pfn = memory_bm_next_pfn(free_pages_map);
1365 } while (fb_pfn != fr_pfn);
1366
1367 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1368 struct page *page = pfn_to_page(fr_pfn);
1369
1370 memory_bm_clear_current(forbidden_pages_map);
1371 memory_bm_clear_current(free_pages_map);
1372 __free_page(page);
1373 goto loop;
1374 }
1375
1376 out:
1377 nr_copy_pages = 0;
1378 nr_meta_pages = 0;
1379 restore_pblist = NULL;
1380 buffer = NULL;
1381 alloc_normal = 0;
1382 alloc_highmem = 0;
1383 }
1384
1385 /* Helper functions used for the shrinking of memory. */
1386
1387 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1388
1389 /**
1390 * preallocate_image_pages - Allocate a number of pages for hibernation image
1391 * @nr_pages: Number of page frames to allocate.
1392 * @mask: GFP flags to use for the allocation.
1393 *
1394 * Return value: Number of page frames actually allocated
1395 */
1396 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1397 {
1398 unsigned long nr_alloc = 0;
1399
1400 while (nr_pages > 0) {
1401 struct page *page;
1402
1403 page = alloc_image_page(mask);
1404 if (!page)
1405 break;
1406 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1407 if (PageHighMem(page))
1408 alloc_highmem++;
1409 else
1410 alloc_normal++;
1411 nr_pages--;
1412 nr_alloc++;
1413 }
1414
1415 return nr_alloc;
1416 }
1417
1418 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1419 unsigned long avail_normal)
1420 {
1421 unsigned long alloc;
1422
1423 if (avail_normal <= alloc_normal)
1424 return 0;
1425
1426 alloc = avail_normal - alloc_normal;
1427 if (nr_pages < alloc)
1428 alloc = nr_pages;
1429
1430 return preallocate_image_pages(alloc, GFP_IMAGE);
1431 }
1432
1433 #ifdef CONFIG_HIGHMEM
1434 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1435 {
1436 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1437 }
1438
1439 /**
1440 * __fraction - Compute (an approximation of) x * (multiplier / base)
1441 */
1442 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1443 {
1444 x *= multiplier;
1445 do_div(x, base);
1446 return (unsigned long)x;
1447 }
1448
1449 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1450 unsigned long highmem,
1451 unsigned long total)
1452 {
1453 unsigned long alloc = __fraction(nr_pages, highmem, total);
1454
1455 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1456 }
1457 #else /* CONFIG_HIGHMEM */
1458 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1459 {
1460 return 0;
1461 }
1462
1463 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1464 unsigned long highmem,
1465 unsigned long total)
1466 {
1467 return 0;
1468 }
1469 #endif /* CONFIG_HIGHMEM */
1470
1471 /**
1472 * free_unnecessary_pages - Release preallocated pages not needed for the image
1473 */
1474 static void free_unnecessary_pages(void)
1475 {
1476 unsigned long save, to_free_normal, to_free_highmem;
1477
1478 save = count_data_pages();
1479 if (alloc_normal >= save) {
1480 to_free_normal = alloc_normal - save;
1481 save = 0;
1482 } else {
1483 to_free_normal = 0;
1484 save -= alloc_normal;
1485 }
1486 save += count_highmem_pages();
1487 if (alloc_highmem >= save) {
1488 to_free_highmem = alloc_highmem - save;
1489 } else {
1490 to_free_highmem = 0;
1491 save -= alloc_highmem;
1492 if (to_free_normal > save)
1493 to_free_normal -= save;
1494 else
1495 to_free_normal = 0;
1496 }
1497
1498 memory_bm_position_reset(&copy_bm);
1499
1500 while (to_free_normal > 0 || to_free_highmem > 0) {
1501 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1502 struct page *page = pfn_to_page(pfn);
1503
1504 if (PageHighMem(page)) {
1505 if (!to_free_highmem)
1506 continue;
1507 to_free_highmem--;
1508 alloc_highmem--;
1509 } else {
1510 if (!to_free_normal)
1511 continue;
1512 to_free_normal--;
1513 alloc_normal--;
1514 }
1515 memory_bm_clear_bit(&copy_bm, pfn);
1516 swsusp_unset_page_forbidden(page);
1517 swsusp_unset_page_free(page);
1518 __free_page(page);
1519 }
1520 }
1521
1522 /**
1523 * minimum_image_size - Estimate the minimum acceptable size of an image
1524 * @saveable: Number of saveable pages in the system.
1525 *
1526 * We want to avoid attempting to free too much memory too hard, so estimate the
1527 * minimum acceptable size of a hibernation image to use as the lower limit for
1528 * preallocating memory.
1529 *
1530 * We assume that the minimum image size should be proportional to
1531 *
1532 * [number of saveable pages] - [number of pages that can be freed in theory]
1533 *
1534 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1535 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1536 * minus mapped file pages.
1537 */
1538 static unsigned long minimum_image_size(unsigned long saveable)
1539 {
1540 unsigned long size;
1541
1542 size = global_page_state(NR_SLAB_RECLAIMABLE)
1543 + global_page_state(NR_ACTIVE_ANON)
1544 + global_page_state(NR_INACTIVE_ANON)
1545 + global_page_state(NR_ACTIVE_FILE)
1546 + global_page_state(NR_INACTIVE_FILE)
1547 - global_page_state(NR_FILE_MAPPED);
1548
1549 return saveable <= size ? 0 : saveable - size;
1550 }
1551
1552 /**
1553 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1554 *
1555 * To create a hibernation image it is necessary to make a copy of every page
1556 * frame in use. We also need a number of page frames to be free during
1557 * hibernation for allocations made while saving the image and for device
1558 * drivers, in case they need to allocate memory from their hibernation
1559 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1560 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1561 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1562 * total number of available page frames and allocate at least
1563 *
1564 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1565 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1566 *
1567 * of them, which corresponds to the maximum size of a hibernation image.
1568 *
1569 * If image_size is set below the number following from the above formula,
1570 * the preallocation of memory is continued until the total number of saveable
1571 * pages in the system is below the requested image size or the minimum
1572 * acceptable image size returned by minimum_image_size(), whichever is greater.
1573 */
1574 int hibernate_preallocate_memory(void)
1575 {
1576 struct zone *zone;
1577 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1578 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1579 struct timeval start, stop;
1580 int error;
1581
1582 printk(KERN_INFO "PM: Preallocating image memory... ");
1583 do_gettimeofday(&start);
1584
1585 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1586 if (error)
1587 goto err_out;
1588
1589 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1590 if (error)
1591 goto err_out;
1592
1593 alloc_normal = 0;
1594 alloc_highmem = 0;
1595
1596 /* Count the number of saveable data pages. */
1597 save_highmem = count_highmem_pages();
1598 saveable = count_data_pages();
1599
1600 /*
1601 * Compute the total number of page frames we can use (count) and the
1602 * number of pages needed for image metadata (size).
1603 */
1604 count = saveable;
1605 saveable += save_highmem;
1606 highmem = save_highmem;
1607 size = 0;
1608 for_each_populated_zone(zone) {
1609 size += snapshot_additional_pages(zone);
1610 if (is_highmem(zone))
1611 highmem += zone_page_state(zone, NR_FREE_PAGES);
1612 else
1613 count += zone_page_state(zone, NR_FREE_PAGES);
1614 }
1615 avail_normal = count;
1616 count += highmem;
1617 count -= totalreserve_pages;
1618
1619 /* Add number of pages required for page keys (s390 only). */
1620 size += page_key_additional_pages(saveable);
1621
1622 /* Compute the maximum number of saveable pages to leave in memory. */
1623 max_size = (count - (size + PAGES_FOR_IO)) / 2
1624 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1625 /* Compute the desired number of image pages specified by image_size. */
1626 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1627 if (size > max_size)
1628 size = max_size;
1629 /*
1630 * If the desired number of image pages is at least as large as the
1631 * current number of saveable pages in memory, allocate page frames for
1632 * the image and we're done.
1633 */
1634 if (size >= saveable) {
1635 pages = preallocate_image_highmem(save_highmem);
1636 pages += preallocate_image_memory(saveable - pages, avail_normal);
1637 goto out;
1638 }
1639
1640 /* Estimate the minimum size of the image. */
1641 pages = minimum_image_size(saveable);
1642 /*
1643 * To avoid excessive pressure on the normal zone, leave room in it to
1644 * accommodate an image of the minimum size (unless it's already too
1645 * small, in which case don't preallocate pages from it at all).
1646 */
1647 if (avail_normal > pages)
1648 avail_normal -= pages;
1649 else
1650 avail_normal = 0;
1651 if (size < pages)
1652 size = min_t(unsigned long, pages, max_size);
1653
1654 /*
1655 * Let the memory management subsystem know that we're going to need a
1656 * large number of page frames to allocate and make it free some memory.
1657 * NOTE: If this is not done, performance will be hurt badly in some
1658 * test cases.
1659 */
1660 shrink_all_memory(saveable - size);
1661
1662 /*
1663 * The number of saveable pages in memory was too high, so apply some
1664 * pressure to decrease it. First, make room for the largest possible
1665 * image and fail if that doesn't work. Next, try to decrease the size
1666 * of the image as much as indicated by 'size' using allocations from
1667 * highmem and non-highmem zones separately.
1668 */
1669 pages_highmem = preallocate_image_highmem(highmem / 2);
1670 alloc = count - max_size;
1671 if (alloc > pages_highmem)
1672 alloc -= pages_highmem;
1673 else
1674 alloc = 0;
1675 pages = preallocate_image_memory(alloc, avail_normal);
1676 if (pages < alloc) {
1677 /* We have exhausted non-highmem pages, try highmem. */
1678 alloc -= pages;
1679 pages += pages_highmem;
1680 pages_highmem = preallocate_image_highmem(alloc);
1681 if (pages_highmem < alloc)
1682 goto err_out;
1683 pages += pages_highmem;
1684 /*
1685 * size is the desired number of saveable pages to leave in
1686 * memory, so try to preallocate (all memory - size) pages.
1687 */
1688 alloc = (count - pages) - size;
1689 pages += preallocate_image_highmem(alloc);
1690 } else {
1691 /*
1692 * There are approximately max_size saveable pages at this point
1693 * and we want to reduce this number down to size.
1694 */
1695 alloc = max_size - size;
1696 size = preallocate_highmem_fraction(alloc, highmem, count);
1697 pages_highmem += size;
1698 alloc -= size;
1699 size = preallocate_image_memory(alloc, avail_normal);
1700 pages_highmem += preallocate_image_highmem(alloc - size);
1701 pages += pages_highmem + size;
1702 }
1703
1704 /*
1705 * We only need as many page frames for the image as there are saveable
1706 * pages in memory, but we have allocated more. Release the excessive
1707 * ones now.
1708 */
1709 free_unnecessary_pages();
1710
1711 out:
1712 do_gettimeofday(&stop);
1713 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1714 swsusp_show_speed(&start, &stop, pages, "Allocated");
1715
1716 return 0;
1717
1718 err_out:
1719 printk(KERN_CONT "\n");
1720 swsusp_free();
1721 return -ENOMEM;
1722 }
1723
1724 #ifdef CONFIG_HIGHMEM
1725 /**
1726 * count_pages_for_highmem - compute the number of non-highmem pages
1727 * that will be necessary for creating copies of highmem pages.
1728 */
1729
1730 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1731 {
1732 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1733
1734 if (free_highmem >= nr_highmem)
1735 nr_highmem = 0;
1736 else
1737 nr_highmem -= free_highmem;
1738
1739 return nr_highmem;
1740 }
1741 #else
1742 static unsigned int
1743 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1744 #endif /* CONFIG_HIGHMEM */
1745
1746 /**
1747 * enough_free_mem - Make sure we have enough free memory for the
1748 * snapshot image.
1749 */
1750
1751 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1752 {
1753 struct zone *zone;
1754 unsigned int free = alloc_normal;
1755
1756 for_each_populated_zone(zone)
1757 if (!is_highmem(zone))
1758 free += zone_page_state(zone, NR_FREE_PAGES);
1759
1760 nr_pages += count_pages_for_highmem(nr_highmem);
1761 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1762 nr_pages, PAGES_FOR_IO, free);
1763
1764 return free > nr_pages + PAGES_FOR_IO;
1765 }
1766
1767 #ifdef CONFIG_HIGHMEM
1768 /**
1769 * get_highmem_buffer - if there are some highmem pages in the suspend
1770 * image, we may need the buffer to copy them and/or load their data.
1771 */
1772
1773 static inline int get_highmem_buffer(int safe_needed)
1774 {
1775 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1776 return buffer ? 0 : -ENOMEM;
1777 }
1778
1779 /**
1780 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1781 * Try to allocate as many pages as needed, but if the number of free
1782 * highmem pages is lesser than that, allocate them all.
1783 */
1784
1785 static inline unsigned int
1786 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1787 {
1788 unsigned int to_alloc = count_free_highmem_pages();
1789
1790 if (to_alloc > nr_highmem)
1791 to_alloc = nr_highmem;
1792
1793 nr_highmem -= to_alloc;
1794 while (to_alloc-- > 0) {
1795 struct page *page;
1796
1797 page = alloc_image_page(__GFP_HIGHMEM);
1798 memory_bm_set_bit(bm, page_to_pfn(page));
1799 }
1800 return nr_highmem;
1801 }
1802 #else
1803 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1804
1805 static inline unsigned int
1806 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1807 #endif /* CONFIG_HIGHMEM */
1808
1809 /**
1810 * swsusp_alloc - allocate memory for the suspend image
1811 *
1812 * We first try to allocate as many highmem pages as there are
1813 * saveable highmem pages in the system. If that fails, we allocate
1814 * non-highmem pages for the copies of the remaining highmem ones.
1815 *
1816 * In this approach it is likely that the copies of highmem pages will
1817 * also be located in the high memory, because of the way in which
1818 * copy_data_pages() works.
1819 */
1820
1821 static int
1822 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1823 unsigned int nr_pages, unsigned int nr_highmem)
1824 {
1825 if (nr_highmem > 0) {
1826 if (get_highmem_buffer(PG_ANY))
1827 goto err_out;
1828 if (nr_highmem > alloc_highmem) {
1829 nr_highmem -= alloc_highmem;
1830 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1831 }
1832 }
1833 if (nr_pages > alloc_normal) {
1834 nr_pages -= alloc_normal;
1835 while (nr_pages-- > 0) {
1836 struct page *page;
1837
1838 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1839 if (!page)
1840 goto err_out;
1841 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1842 }
1843 }
1844
1845 return 0;
1846
1847 err_out:
1848 swsusp_free();
1849 return -ENOMEM;
1850 }
1851
1852 asmlinkage __visible int swsusp_save(void)
1853 {
1854 unsigned int nr_pages, nr_highmem;
1855
1856 printk(KERN_INFO "PM: Creating hibernation image:\n");
1857
1858 drain_local_pages(NULL);
1859 nr_pages = count_data_pages();
1860 nr_highmem = count_highmem_pages();
1861 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1862
1863 if (!enough_free_mem(nr_pages, nr_highmem)) {
1864 printk(KERN_ERR "PM: Not enough free memory\n");
1865 return -ENOMEM;
1866 }
1867
1868 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1869 printk(KERN_ERR "PM: Memory allocation failed\n");
1870 return -ENOMEM;
1871 }
1872
1873 /* During allocating of suspend pagedir, new cold pages may appear.
1874 * Kill them.
1875 */
1876 drain_local_pages(NULL);
1877 copy_data_pages(&copy_bm, &orig_bm);
1878
1879 /*
1880 * End of critical section. From now on, we can write to memory,
1881 * but we should not touch disk. This specially means we must _not_
1882 * touch swap space! Except we must write out our image of course.
1883 */
1884
1885 nr_pages += nr_highmem;
1886 nr_copy_pages = nr_pages;
1887 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1888
1889 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1890 nr_pages);
1891
1892 return 0;
1893 }
1894
1895 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1896 static int init_header_complete(struct swsusp_info *info)
1897 {
1898 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1899 info->version_code = LINUX_VERSION_CODE;
1900 return 0;
1901 }
1902
1903 static char *check_image_kernel(struct swsusp_info *info)
1904 {
1905 if (info->version_code != LINUX_VERSION_CODE)
1906 return "kernel version";
1907 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1908 return "system type";
1909 if (strcmp(info->uts.release,init_utsname()->release))
1910 return "kernel release";
1911 if (strcmp(info->uts.version,init_utsname()->version))
1912 return "version";
1913 if (strcmp(info->uts.machine,init_utsname()->machine))
1914 return "machine";
1915 return NULL;
1916 }
1917 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1918
1919 unsigned long snapshot_get_image_size(void)
1920 {
1921 return nr_copy_pages + nr_meta_pages + 1;
1922 }
1923
1924 static int init_header(struct swsusp_info *info)
1925 {
1926 memset(info, 0, sizeof(struct swsusp_info));
1927 info->num_physpages = get_num_physpages();
1928 info->image_pages = nr_copy_pages;
1929 info->pages = snapshot_get_image_size();
1930 info->size = info->pages;
1931 info->size <<= PAGE_SHIFT;
1932 return init_header_complete(info);
1933 }
1934
1935 /**
1936 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1937 * are stored in the array @buf[] (1 page at a time)
1938 */
1939
1940 static inline void
1941 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1942 {
1943 int j;
1944
1945 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1946 buf[j] = memory_bm_next_pfn(bm);
1947 if (unlikely(buf[j] == BM_END_OF_MAP))
1948 break;
1949 /* Save page key for data page (s390 only). */
1950 page_key_read(buf + j);
1951 }
1952 }
1953
1954 /**
1955 * snapshot_read_next - used for reading the system memory snapshot.
1956 *
1957 * On the first call to it @handle should point to a zeroed
1958 * snapshot_handle structure. The structure gets updated and a pointer
1959 * to it should be passed to this function every next time.
1960 *
1961 * On success the function returns a positive number. Then, the caller
1962 * is allowed to read up to the returned number of bytes from the memory
1963 * location computed by the data_of() macro.
1964 *
1965 * The function returns 0 to indicate the end of data stream condition,
1966 * and a negative number is returned on error. In such cases the
1967 * structure pointed to by @handle is not updated and should not be used
1968 * any more.
1969 */
1970
1971 int snapshot_read_next(struct snapshot_handle *handle)
1972 {
1973 if (handle->cur > nr_meta_pages + nr_copy_pages)
1974 return 0;
1975
1976 if (!buffer) {
1977 /* This makes the buffer be freed by swsusp_free() */
1978 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1979 if (!buffer)
1980 return -ENOMEM;
1981 }
1982 if (!handle->cur) {
1983 int error;
1984
1985 error = init_header((struct swsusp_info *)buffer);
1986 if (error)
1987 return error;
1988 handle->buffer = buffer;
1989 memory_bm_position_reset(&orig_bm);
1990 memory_bm_position_reset(&copy_bm);
1991 } else if (handle->cur <= nr_meta_pages) {
1992 clear_page(buffer);
1993 pack_pfns(buffer, &orig_bm);
1994 } else {
1995 struct page *page;
1996
1997 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1998 if (PageHighMem(page)) {
1999 /* Highmem pages are copied to the buffer,
2000 * because we can't return with a kmapped
2001 * highmem page (we may not be called again).
2002 */
2003 void *kaddr;
2004
2005 kaddr = kmap_atomic(page);
2006 copy_page(buffer, kaddr);
2007 kunmap_atomic(kaddr);
2008 handle->buffer = buffer;
2009 } else {
2010 handle->buffer = page_address(page);
2011 }
2012 }
2013 handle->cur++;
2014 return PAGE_SIZE;
2015 }
2016
2017 /**
2018 * mark_unsafe_pages - mark the pages that cannot be used for storing
2019 * the image during resume, because they conflict with the pages that
2020 * had been used before suspend
2021 */
2022
2023 static int mark_unsafe_pages(struct memory_bitmap *bm)
2024 {
2025 struct zone *zone;
2026 unsigned long pfn, max_zone_pfn;
2027
2028 /* Clear page flags */
2029 for_each_populated_zone(zone) {
2030 max_zone_pfn = zone_end_pfn(zone);
2031 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2032 if (pfn_valid(pfn))
2033 swsusp_unset_page_free(pfn_to_page(pfn));
2034 }
2035
2036 /* Mark pages that correspond to the "original" pfns as "unsafe" */
2037 memory_bm_position_reset(bm);
2038 do {
2039 pfn = memory_bm_next_pfn(bm);
2040 if (likely(pfn != BM_END_OF_MAP)) {
2041 if (likely(pfn_valid(pfn)) && !is_nosave_page(pfn))
2042 swsusp_set_page_free(pfn_to_page(pfn));
2043 else
2044 return -EFAULT;
2045 }
2046 } while (pfn != BM_END_OF_MAP);
2047
2048 allocated_unsafe_pages = 0;
2049
2050 return 0;
2051 }
2052
2053 static void
2054 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
2055 {
2056 unsigned long pfn;
2057
2058 memory_bm_position_reset(src);
2059 pfn = memory_bm_next_pfn(src);
2060 while (pfn != BM_END_OF_MAP) {
2061 memory_bm_set_bit(dst, pfn);
2062 pfn = memory_bm_next_pfn(src);
2063 }
2064 }
2065
2066 static int check_header(struct swsusp_info *info)
2067 {
2068 char *reason;
2069
2070 reason = check_image_kernel(info);
2071 if (!reason && info->num_physpages != get_num_physpages())
2072 reason = "memory size";
2073 if (reason) {
2074 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2075 return -EPERM;
2076 }
2077 return 0;
2078 }
2079
2080 /**
2081 * load header - check the image header and copy data from it
2082 */
2083
2084 static int
2085 load_header(struct swsusp_info *info)
2086 {
2087 int error;
2088
2089 restore_pblist = NULL;
2090 error = check_header(info);
2091 if (!error) {
2092 nr_copy_pages = info->image_pages;
2093 nr_meta_pages = info->pages - info->image_pages - 1;
2094 }
2095 return error;
2096 }
2097
2098 /**
2099 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2100 * the corresponding bit in the memory bitmap @bm
2101 */
2102 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2103 {
2104 int j;
2105
2106 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2107 if (unlikely(buf[j] == BM_END_OF_MAP))
2108 break;
2109
2110 /* Extract and buffer page key for data page (s390 only). */
2111 page_key_memorize(buf + j);
2112
2113 if (memory_bm_pfn_present(bm, buf[j]))
2114 memory_bm_set_bit(bm, buf[j]);
2115 else
2116 return -EFAULT;
2117 }
2118
2119 return 0;
2120 }
2121
2122 /* List of "safe" pages that may be used to store data loaded from the suspend
2123 * image
2124 */
2125 static struct linked_page *safe_pages_list;
2126
2127 #ifdef CONFIG_HIGHMEM
2128 /* struct highmem_pbe is used for creating the list of highmem pages that
2129 * should be restored atomically during the resume from disk, because the page
2130 * frames they have occupied before the suspend are in use.
2131 */
2132 struct highmem_pbe {
2133 struct page *copy_page; /* data is here now */
2134 struct page *orig_page; /* data was here before the suspend */
2135 struct highmem_pbe *next;
2136 };
2137
2138 /* List of highmem PBEs needed for restoring the highmem pages that were
2139 * allocated before the suspend and included in the suspend image, but have
2140 * also been allocated by the "resume" kernel, so their contents cannot be
2141 * written directly to their "original" page frames.
2142 */
2143 static struct highmem_pbe *highmem_pblist;
2144
2145 /**
2146 * count_highmem_image_pages - compute the number of highmem pages in the
2147 * suspend image. The bits in the memory bitmap @bm that correspond to the
2148 * image pages are assumed to be set.
2149 */
2150
2151 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2152 {
2153 unsigned long pfn;
2154 unsigned int cnt = 0;
2155
2156 memory_bm_position_reset(bm);
2157 pfn = memory_bm_next_pfn(bm);
2158 while (pfn != BM_END_OF_MAP) {
2159 if (PageHighMem(pfn_to_page(pfn)))
2160 cnt++;
2161
2162 pfn = memory_bm_next_pfn(bm);
2163 }
2164 return cnt;
2165 }
2166
2167 /**
2168 * prepare_highmem_image - try to allocate as many highmem pages as
2169 * there are highmem image pages (@nr_highmem_p points to the variable
2170 * containing the number of highmem image pages). The pages that are
2171 * "safe" (ie. will not be overwritten when the suspend image is
2172 * restored) have the corresponding bits set in @bm (it must be
2173 * unitialized).
2174 *
2175 * NOTE: This function should not be called if there are no highmem
2176 * image pages.
2177 */
2178
2179 static unsigned int safe_highmem_pages;
2180
2181 static struct memory_bitmap *safe_highmem_bm;
2182
2183 static int
2184 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2185 {
2186 unsigned int to_alloc;
2187
2188 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2189 return -ENOMEM;
2190
2191 if (get_highmem_buffer(PG_SAFE))
2192 return -ENOMEM;
2193
2194 to_alloc = count_free_highmem_pages();
2195 if (to_alloc > *nr_highmem_p)
2196 to_alloc = *nr_highmem_p;
2197 else
2198 *nr_highmem_p = to_alloc;
2199
2200 safe_highmem_pages = 0;
2201 while (to_alloc-- > 0) {
2202 struct page *page;
2203
2204 page = alloc_page(__GFP_HIGHMEM);
2205 if (!swsusp_page_is_free(page)) {
2206 /* The page is "safe", set its bit the bitmap */
2207 memory_bm_set_bit(bm, page_to_pfn(page));
2208 safe_highmem_pages++;
2209 }
2210 /* Mark the page as allocated */
2211 swsusp_set_page_forbidden(page);
2212 swsusp_set_page_free(page);
2213 }
2214 memory_bm_position_reset(bm);
2215 safe_highmem_bm = bm;
2216 return 0;
2217 }
2218
2219 /**
2220 * get_highmem_page_buffer - for given highmem image page find the buffer
2221 * that suspend_write_next() should set for its caller to write to.
2222 *
2223 * If the page is to be saved to its "original" page frame or a copy of
2224 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2225 * the copy of the page is to be made in normal memory, so the address of
2226 * the copy is returned.
2227 *
2228 * If @buffer is returned, the caller of suspend_write_next() will write
2229 * the page's contents to @buffer, so they will have to be copied to the
2230 * right location on the next call to suspend_write_next() and it is done
2231 * with the help of copy_last_highmem_page(). For this purpose, if
2232 * @buffer is returned, @last_highmem page is set to the page to which
2233 * the data will have to be copied from @buffer.
2234 */
2235
2236 static struct page *last_highmem_page;
2237
2238 static void *
2239 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2240 {
2241 struct highmem_pbe *pbe;
2242 void *kaddr;
2243
2244 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2245 /* We have allocated the "original" page frame and we can
2246 * use it directly to store the loaded page.
2247 */
2248 last_highmem_page = page;
2249 return buffer;
2250 }
2251 /* The "original" page frame has not been allocated and we have to
2252 * use a "safe" page frame to store the loaded page.
2253 */
2254 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2255 if (!pbe) {
2256 swsusp_free();
2257 return ERR_PTR(-ENOMEM);
2258 }
2259 pbe->orig_page = page;
2260 if (safe_highmem_pages > 0) {
2261 struct page *tmp;
2262
2263 /* Copy of the page will be stored in high memory */
2264 kaddr = buffer;
2265 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2266 safe_highmem_pages--;
2267 last_highmem_page = tmp;
2268 pbe->copy_page = tmp;
2269 } else {
2270 /* Copy of the page will be stored in normal memory */
2271 kaddr = safe_pages_list;
2272 safe_pages_list = safe_pages_list->next;
2273 pbe->copy_page = virt_to_page(kaddr);
2274 }
2275 pbe->next = highmem_pblist;
2276 highmem_pblist = pbe;
2277 return kaddr;
2278 }
2279
2280 /**
2281 * copy_last_highmem_page - copy the contents of a highmem image from
2282 * @buffer, where the caller of snapshot_write_next() has place them,
2283 * to the right location represented by @last_highmem_page .
2284 */
2285
2286 static void copy_last_highmem_page(void)
2287 {
2288 if (last_highmem_page) {
2289 void *dst;
2290
2291 dst = kmap_atomic(last_highmem_page);
2292 copy_page(dst, buffer);
2293 kunmap_atomic(dst);
2294 last_highmem_page = NULL;
2295 }
2296 }
2297
2298 static inline int last_highmem_page_copied(void)
2299 {
2300 return !last_highmem_page;
2301 }
2302
2303 static inline void free_highmem_data(void)
2304 {
2305 if (safe_highmem_bm)
2306 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2307
2308 if (buffer)
2309 free_image_page(buffer, PG_UNSAFE_CLEAR);
2310 }
2311 #else
2312 static inline int get_safe_write_buffer(void) { return 0; }
2313
2314 static unsigned int
2315 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2316
2317 static inline int
2318 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2319 {
2320 return 0;
2321 }
2322
2323 static inline void *
2324 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2325 {
2326 return ERR_PTR(-EINVAL);
2327 }
2328
2329 static inline void copy_last_highmem_page(void) {}
2330 static inline int last_highmem_page_copied(void) { return 1; }
2331 static inline void free_highmem_data(void) {}
2332 #endif /* CONFIG_HIGHMEM */
2333
2334 /**
2335 * prepare_image - use the memory bitmap @bm to mark the pages that will
2336 * be overwritten in the process of restoring the system memory state
2337 * from the suspend image ("unsafe" pages) and allocate memory for the
2338 * image.
2339 *
2340 * The idea is to allocate a new memory bitmap first and then allocate
2341 * as many pages as needed for the image data, but not to assign these
2342 * pages to specific tasks initially. Instead, we just mark them as
2343 * allocated and create a lists of "safe" pages that will be used
2344 * later. On systems with high memory a list of "safe" highmem pages is
2345 * also created.
2346 */
2347
2348 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2349
2350 static int
2351 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2352 {
2353 unsigned int nr_pages, nr_highmem;
2354 struct linked_page *sp_list, *lp;
2355 int error;
2356
2357 /* If there is no highmem, the buffer will not be necessary */
2358 free_image_page(buffer, PG_UNSAFE_CLEAR);
2359 buffer = NULL;
2360
2361 nr_highmem = count_highmem_image_pages(bm);
2362 error = mark_unsafe_pages(bm);
2363 if (error)
2364 goto Free;
2365
2366 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2367 if (error)
2368 goto Free;
2369
2370 duplicate_memory_bitmap(new_bm, bm);
2371 memory_bm_free(bm, PG_UNSAFE_KEEP);
2372 if (nr_highmem > 0) {
2373 error = prepare_highmem_image(bm, &nr_highmem);
2374 if (error)
2375 goto Free;
2376 }
2377 /* Reserve some safe pages for potential later use.
2378 *
2379 * NOTE: This way we make sure there will be enough safe pages for the
2380 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2381 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2382 */
2383 sp_list = NULL;
2384 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2385 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2386 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2387 while (nr_pages > 0) {
2388 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2389 if (!lp) {
2390 error = -ENOMEM;
2391 goto Free;
2392 }
2393 lp->next = sp_list;
2394 sp_list = lp;
2395 nr_pages--;
2396 }
2397 /* Preallocate memory for the image */
2398 safe_pages_list = NULL;
2399 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2400 while (nr_pages > 0) {
2401 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2402 if (!lp) {
2403 error = -ENOMEM;
2404 goto Free;
2405 }
2406 if (!swsusp_page_is_free(virt_to_page(lp))) {
2407 /* The page is "safe", add it to the list */
2408 lp->next = safe_pages_list;
2409 safe_pages_list = lp;
2410 }
2411 /* Mark the page as allocated */
2412 swsusp_set_page_forbidden(virt_to_page(lp));
2413 swsusp_set_page_free(virt_to_page(lp));
2414 nr_pages--;
2415 }
2416 /* Free the reserved safe pages so that chain_alloc() can use them */
2417 while (sp_list) {
2418 lp = sp_list->next;
2419 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2420 sp_list = lp;
2421 }
2422 return 0;
2423
2424 Free:
2425 swsusp_free();
2426 return error;
2427 }
2428
2429 /**
2430 * get_buffer - compute the address that snapshot_write_next() should
2431 * set for its caller to write to.
2432 */
2433
2434 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2435 {
2436 struct pbe *pbe;
2437 struct page *page;
2438 unsigned long pfn = memory_bm_next_pfn(bm);
2439
2440 if (pfn == BM_END_OF_MAP)
2441 return ERR_PTR(-EFAULT);
2442
2443 page = pfn_to_page(pfn);
2444 if (PageHighMem(page))
2445 return get_highmem_page_buffer(page, ca);
2446
2447 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2448 /* We have allocated the "original" page frame and we can
2449 * use it directly to store the loaded page.
2450 */
2451 return page_address(page);
2452
2453 /* The "original" page frame has not been allocated and we have to
2454 * use a "safe" page frame to store the loaded page.
2455 */
2456 pbe = chain_alloc(ca, sizeof(struct pbe));
2457 if (!pbe) {
2458 swsusp_free();
2459 return ERR_PTR(-ENOMEM);
2460 }
2461 pbe->orig_address = page_address(page);
2462 pbe->address = safe_pages_list;
2463 safe_pages_list = safe_pages_list->next;
2464 pbe->next = restore_pblist;
2465 restore_pblist = pbe;
2466 return pbe->address;
2467 }
2468
2469 /**
2470 * snapshot_write_next - used for writing the system memory snapshot.
2471 *
2472 * On the first call to it @handle should point to a zeroed
2473 * snapshot_handle structure. The structure gets updated and a pointer
2474 * to it should be passed to this function every next time.
2475 *
2476 * On success the function returns a positive number. Then, the caller
2477 * is allowed to write up to the returned number of bytes to the memory
2478 * location computed by the data_of() macro.
2479 *
2480 * The function returns 0 to indicate the "end of file" condition,
2481 * and a negative number is returned on error. In such cases the
2482 * structure pointed to by @handle is not updated and should not be used
2483 * any more.
2484 */
2485
2486 int snapshot_write_next(struct snapshot_handle *handle)
2487 {
2488 static struct chain_allocator ca;
2489 int error = 0;
2490
2491 /* Check if we have already loaded the entire image */
2492 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2493 return 0;
2494
2495 handle->sync_read = 1;
2496
2497 if (!handle->cur) {
2498 if (!buffer)
2499 /* This makes the buffer be freed by swsusp_free() */
2500 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2501
2502 if (!buffer)
2503 return -ENOMEM;
2504
2505 handle->buffer = buffer;
2506 } else if (handle->cur == 1) {
2507 error = load_header(buffer);
2508 if (error)
2509 return error;
2510
2511 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2512 if (error)
2513 return error;
2514
2515 /* Allocate buffer for page keys. */
2516 error = page_key_alloc(nr_copy_pages);
2517 if (error)
2518 return error;
2519
2520 } else if (handle->cur <= nr_meta_pages + 1) {
2521 error = unpack_orig_pfns(buffer, &copy_bm);
2522 if (error)
2523 return error;
2524
2525 if (handle->cur == nr_meta_pages + 1) {
2526 error = prepare_image(&orig_bm, &copy_bm);
2527 if (error)
2528 return error;
2529
2530 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2531 memory_bm_position_reset(&orig_bm);
2532 restore_pblist = NULL;
2533 handle->buffer = get_buffer(&orig_bm, &ca);
2534 handle->sync_read = 0;
2535 if (IS_ERR(handle->buffer))
2536 return PTR_ERR(handle->buffer);
2537 }
2538 } else {
2539 copy_last_highmem_page();
2540 /* Restore page key for data page (s390 only). */
2541 page_key_write(handle->buffer);
2542 handle->buffer = get_buffer(&orig_bm, &ca);
2543 if (IS_ERR(handle->buffer))
2544 return PTR_ERR(handle->buffer);
2545 if (handle->buffer != buffer)
2546 handle->sync_read = 0;
2547 }
2548 handle->cur++;
2549 return PAGE_SIZE;
2550 }
2551
2552 /**
2553 * snapshot_write_finalize - must be called after the last call to
2554 * snapshot_write_next() in case the last page in the image happens
2555 * to be a highmem page and its contents should be stored in the
2556 * highmem. Additionally, it releases the memory that will not be
2557 * used any more.
2558 */
2559
2560 void snapshot_write_finalize(struct snapshot_handle *handle)
2561 {
2562 copy_last_highmem_page();
2563 /* Restore page key for data page (s390 only). */
2564 page_key_write(handle->buffer);
2565 page_key_free();
2566 /* Free only if we have loaded the image entirely */
2567 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2568 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2569 free_highmem_data();
2570 }
2571 }
2572
2573 int snapshot_image_loaded(struct snapshot_handle *handle)
2574 {
2575 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2576 handle->cur <= nr_meta_pages + nr_copy_pages);
2577 }
2578
2579 #ifdef CONFIG_HIGHMEM
2580 /* Assumes that @buf is ready and points to a "safe" page */
2581 static inline void
2582 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2583 {
2584 void *kaddr1, *kaddr2;
2585
2586 kaddr1 = kmap_atomic(p1);
2587 kaddr2 = kmap_atomic(p2);
2588 copy_page(buf, kaddr1);
2589 copy_page(kaddr1, kaddr2);
2590 copy_page(kaddr2, buf);
2591 kunmap_atomic(kaddr2);
2592 kunmap_atomic(kaddr1);
2593 }
2594
2595 /**
2596 * restore_highmem - for each highmem page that was allocated before
2597 * the suspend and included in the suspend image, and also has been
2598 * allocated by the "resume" kernel swap its current (ie. "before
2599 * resume") contents with the previous (ie. "before suspend") one.
2600 *
2601 * If the resume eventually fails, we can call this function once
2602 * again and restore the "before resume" highmem state.
2603 */
2604
2605 int restore_highmem(void)
2606 {
2607 struct highmem_pbe *pbe = highmem_pblist;
2608 void *buf;
2609
2610 if (!pbe)
2611 return 0;
2612
2613 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2614 if (!buf)
2615 return -ENOMEM;
2616
2617 while (pbe) {
2618 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2619 pbe = pbe->next;
2620 }
2621 free_image_page(buf, PG_UNSAFE_CLEAR);
2622 return 0;
2623 }
2624 #endif /* CONFIG_HIGHMEM */
This page took 0.084152 seconds and 5 git commands to generate.