PM / QoS: Remove redundant check
[deliverable/linux.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44 * Number of bytes to reserve for memory allocations made by device drivers
45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46 * cause image creation to fail (tunable via /sys/power/reserved_size).
47 */
48 unsigned long reserved_size;
49
50 void __init hibernate_reserved_size_init(void)
51 {
52 reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54
55 /*
56 * Preferred image size in bytes (tunable via /sys/power/image_size).
57 * When it is set to N, swsusp will do its best to ensure the image
58 * size will not exceed N bytes, but if that is impossible, it will
59 * try to create the smallest image possible.
60 */
61 unsigned long image_size;
62
63 void __init hibernate_image_size_init(void)
64 {
65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67
68 /* List of PBEs needed for restoring the pages that were allocated before
69 * the suspend and included in the suspend image, but have also been
70 * allocated by the "resume" kernel, so their contents cannot be written
71 * directly to their "original" page frames.
72 */
73 struct pbe *restore_pblist;
74
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77
78 /**
79 * @safe_needed - on resume, for storing the PBE list and the image,
80 * we can only use memory pages that do not conflict with the pages
81 * used before suspend. The unsafe pages have PageNosaveFree set
82 * and we count them using unsafe_pages.
83 *
84 * Each allocated image page is marked as PageNosave and PageNosaveFree
85 * so that swsusp_free() can release it.
86 */
87
88 #define PG_ANY 0
89 #define PG_SAFE 1
90 #define PG_UNSAFE_CLEAR 1
91 #define PG_UNSAFE_KEEP 0
92
93 static unsigned int allocated_unsafe_pages;
94
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97 void *res;
98
99 res = (void *)get_zeroed_page(gfp_mask);
100 if (safe_needed)
101 while (res && swsusp_page_is_free(virt_to_page(res))) {
102 /* The page is unsafe, mark it for swsusp_free() */
103 swsusp_set_page_forbidden(virt_to_page(res));
104 allocated_unsafe_pages++;
105 res = (void *)get_zeroed_page(gfp_mask);
106 }
107 if (res) {
108 swsusp_set_page_forbidden(virt_to_page(res));
109 swsusp_set_page_free(virt_to_page(res));
110 }
111 return res;
112 }
113
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121 struct page *page;
122
123 page = alloc_page(gfp_mask);
124 if (page) {
125 swsusp_set_page_forbidden(page);
126 swsusp_set_page_free(page);
127 }
128 return page;
129 }
130
131 /**
132 * free_image_page - free page represented by @addr, allocated with
133 * get_image_page (page flags set by it must be cleared)
134 */
135
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138 struct page *page;
139
140 BUG_ON(!virt_addr_valid(addr));
141
142 page = virt_to_page(addr);
143
144 swsusp_unset_page_forbidden(page);
145 if (clear_nosave_free)
146 swsusp_unset_page_free(page);
147
148 __free_page(page);
149 }
150
151 /* struct linked_page is used to build chains of pages */
152
153 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
154
155 struct linked_page {
156 struct linked_page *next;
157 char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163 while (list) {
164 struct linked_page *lp = list->next;
165
166 free_image_page(list, clear_page_nosave);
167 list = lp;
168 }
169 }
170
171 /**
172 * struct chain_allocator is used for allocating small objects out of
173 * a linked list of pages called 'the chain'.
174 *
175 * The chain grows each time when there is no room for a new object in
176 * the current page. The allocated objects cannot be freed individually.
177 * It is only possible to free them all at once, by freeing the entire
178 * chain.
179 *
180 * NOTE: The chain allocator may be inefficient if the allocated objects
181 * are not much smaller than PAGE_SIZE.
182 */
183
184 struct chain_allocator {
185 struct linked_page *chain; /* the chain */
186 unsigned int used_space; /* total size of objects allocated out
187 * of the current page
188 */
189 gfp_t gfp_mask; /* mask for allocating pages */
190 int safe_needed; /* if set, only "safe" pages are allocated */
191 };
192
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196 ca->chain = NULL;
197 ca->used_space = LINKED_PAGE_DATA_SIZE;
198 ca->gfp_mask = gfp_mask;
199 ca->safe_needed = safe_needed;
200 }
201
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204 void *ret;
205
206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 struct linked_page *lp;
208
209 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210 if (!lp)
211 return NULL;
212
213 lp->next = ca->chain;
214 ca->chain = lp;
215 ca->used_space = 0;
216 }
217 ret = ca->chain->data + ca->used_space;
218 ca->used_space += size;
219 return ret;
220 }
221
222 /**
223 * Data types related to memory bitmaps.
224 *
225 * Memory bitmap is a structure consiting of many linked lists of
226 * objects. The main list's elements are of type struct zone_bitmap
227 * and each of them corresonds to one zone. For each zone bitmap
228 * object there is a list of objects of type struct bm_block that
229 * represent each blocks of bitmap in which information is stored.
230 *
231 * struct memory_bitmap contains a pointer to the main list of zone
232 * bitmap objects, a struct bm_position used for browsing the bitmap,
233 * and a pointer to the list of pages used for allocating all of the
234 * zone bitmap objects and bitmap block objects.
235 *
236 * NOTE: It has to be possible to lay out the bitmap in memory
237 * using only allocations of order 0. Additionally, the bitmap is
238 * designed to work with arbitrary number of zones (this is over the
239 * top for now, but let's avoid making unnecessary assumptions ;-).
240 *
241 * struct zone_bitmap contains a pointer to a list of bitmap block
242 * objects and a pointer to the bitmap block object that has been
243 * most recently used for setting bits. Additionally, it contains the
244 * pfns that correspond to the start and end of the represented zone.
245 *
246 * struct bm_block contains a pointer to the memory page in which
247 * information is stored (in the form of a block of bitmap)
248 * It also contains the pfns that correspond to the start and end of
249 * the represented memory area.
250 */
251
252 #define BM_END_OF_MAP (~0UL)
253
254 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
255
256 struct bm_block {
257 struct list_head hook; /* hook into a list of bitmap blocks */
258 unsigned long start_pfn; /* pfn represented by the first bit */
259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
260 unsigned long *data; /* bitmap representing pages */
261 };
262
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265 return bb->end_pfn - bb->start_pfn;
266 }
267
268 /* strcut bm_position is used for browsing memory bitmaps */
269
270 struct bm_position {
271 struct bm_block *block;
272 int bit;
273 };
274
275 struct memory_bitmap {
276 struct list_head blocks; /* list of bitmap blocks */
277 struct linked_page *p_list; /* list of pages used to store zone
278 * bitmap objects and bitmap block
279 * objects
280 */
281 struct bm_position cur; /* most recently used bit position */
282 };
283
284 /* Functions that operate on memory bitmaps */
285
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289 bm->cur.bit = 0;
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295 * create_bm_block_list - create a list of block bitmap objects
296 * @pages - number of pages to track
297 * @list - list to put the allocated blocks into
298 * @ca - chain allocator to be used for allocating memory
299 */
300 static int create_bm_block_list(unsigned long pages,
301 struct list_head *list,
302 struct chain_allocator *ca)
303 {
304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306 while (nr_blocks-- > 0) {
307 struct bm_block *bb;
308
309 bb = chain_alloc(ca, sizeof(struct bm_block));
310 if (!bb)
311 return -ENOMEM;
312 list_add(&bb->hook, list);
313 }
314
315 return 0;
316 }
317
318 struct mem_extent {
319 struct list_head hook;
320 unsigned long start;
321 unsigned long end;
322 };
323
324 /**
325 * free_mem_extents - free a list of memory extents
326 * @list - list of extents to empty
327 */
328 static void free_mem_extents(struct list_head *list)
329 {
330 struct mem_extent *ext, *aux;
331
332 list_for_each_entry_safe(ext, aux, list, hook) {
333 list_del(&ext->hook);
334 kfree(ext);
335 }
336 }
337
338 /**
339 * create_mem_extents - create a list of memory extents representing
340 * contiguous ranges of PFNs
341 * @list - list to put the extents into
342 * @gfp_mask - mask to use for memory allocations
343 */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346 struct zone *zone;
347
348 INIT_LIST_HEAD(list);
349
350 for_each_populated_zone(zone) {
351 unsigned long zone_start, zone_end;
352 struct mem_extent *ext, *cur, *aux;
353
354 zone_start = zone->zone_start_pfn;
355 zone_end = zone->zone_start_pfn + zone->spanned_pages;
356
357 list_for_each_entry(ext, list, hook)
358 if (zone_start <= ext->end)
359 break;
360
361 if (&ext->hook == list || zone_end < ext->start) {
362 /* New extent is necessary */
363 struct mem_extent *new_ext;
364
365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 if (!new_ext) {
367 free_mem_extents(list);
368 return -ENOMEM;
369 }
370 new_ext->start = zone_start;
371 new_ext->end = zone_end;
372 list_add_tail(&new_ext->hook, &ext->hook);
373 continue;
374 }
375
376 /* Merge this zone's range of PFNs with the existing one */
377 if (zone_start < ext->start)
378 ext->start = zone_start;
379 if (zone_end > ext->end)
380 ext->end = zone_end;
381
382 /* More merging may be possible */
383 cur = ext;
384 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 if (zone_end < cur->start)
386 break;
387 if (zone_end < cur->end)
388 ext->end = cur->end;
389 list_del(&cur->hook);
390 kfree(cur);
391 }
392 }
393
394 return 0;
395 }
396
397 /**
398 * memory_bm_create - allocate memory for a memory bitmap
399 */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403 struct chain_allocator ca;
404 struct list_head mem_extents;
405 struct mem_extent *ext;
406 int error;
407
408 chain_init(&ca, gfp_mask, safe_needed);
409 INIT_LIST_HEAD(&bm->blocks);
410
411 error = create_mem_extents(&mem_extents, gfp_mask);
412 if (error)
413 return error;
414
415 list_for_each_entry(ext, &mem_extents, hook) {
416 struct bm_block *bb;
417 unsigned long pfn = ext->start;
418 unsigned long pages = ext->end - ext->start;
419
420 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 if (error)
424 goto Error;
425
426 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 bb->data = get_image_page(gfp_mask, safe_needed);
428 if (!bb->data) {
429 error = -ENOMEM;
430 goto Error;
431 }
432
433 bb->start_pfn = pfn;
434 if (pages >= BM_BITS_PER_BLOCK) {
435 pfn += BM_BITS_PER_BLOCK;
436 pages -= BM_BITS_PER_BLOCK;
437 } else {
438 /* This is executed only once in the loop */
439 pfn += pages;
440 }
441 bb->end_pfn = pfn;
442 }
443 }
444
445 bm->p_list = ca.chain;
446 memory_bm_position_reset(bm);
447 Exit:
448 free_mem_extents(&mem_extents);
449 return error;
450
451 Error:
452 bm->p_list = ca.chain;
453 memory_bm_free(bm, PG_UNSAFE_CLEAR);
454 goto Exit;
455 }
456
457 /**
458 * memory_bm_free - free memory occupied by the memory bitmap @bm
459 */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462 struct bm_block *bb;
463
464 list_for_each_entry(bb, &bm->blocks, hook)
465 if (bb->data)
466 free_image_page(bb->data, clear_nosave_free);
467
468 free_list_of_pages(bm->p_list, clear_nosave_free);
469
470 INIT_LIST_HEAD(&bm->blocks);
471 }
472
473 /**
474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
476 * of @bm->cur_zone_bm are updated.
477 */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479 void **addr, unsigned int *bit_nr)
480 {
481 struct bm_block *bb;
482
483 /*
484 * Check if the pfn corresponds to the current bitmap block and find
485 * the block where it fits if this is not the case.
486 */
487 bb = bm->cur.block;
488 if (pfn < bb->start_pfn)
489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 if (pfn >= bb->start_pfn)
491 break;
492
493 if (pfn >= bb->end_pfn)
494 list_for_each_entry_continue(bb, &bm->blocks, hook)
495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 break;
497
498 if (&bb->hook == &bm->blocks)
499 return -EFAULT;
500
501 /* The block has been found */
502 bm->cur.block = bb;
503 pfn -= bb->start_pfn;
504 bm->cur.bit = pfn + 1;
505 *bit_nr = pfn;
506 *addr = bb->data;
507 return 0;
508 }
509
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512 void *addr;
513 unsigned int bit;
514 int error;
515
516 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 BUG_ON(error);
518 set_bit(bit, addr);
519 }
520
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523 void *addr;
524 unsigned int bit;
525 int error;
526
527 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 if (!error)
529 set_bit(bit, addr);
530 return error;
531 }
532
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535 void *addr;
536 unsigned int bit;
537 int error;
538
539 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 BUG_ON(error);
541 clear_bit(bit, addr);
542 }
543
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546 void *addr;
547 unsigned int bit;
548 int error;
549
550 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 BUG_ON(error);
552 return test_bit(bit, addr);
553 }
554
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557 void *addr;
558 unsigned int bit;
559
560 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562
563 /**
564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
566 * returned.
567 *
568 * It is required to run memory_bm_position_reset() before the first call to
569 * this function.
570 */
571
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574 struct bm_block *bb;
575 int bit;
576
577 bb = bm->cur.block;
578 do {
579 bit = bm->cur.bit;
580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 if (bit < bm_block_bits(bb))
582 goto Return_pfn;
583
584 bb = list_entry(bb->hook.next, struct bm_block, hook);
585 bm->cur.block = bb;
586 bm->cur.bit = 0;
587 } while (&bb->hook != &bm->blocks);
588
589 memory_bm_position_reset(bm);
590 return BM_END_OF_MAP;
591
592 Return_pfn:
593 bm->cur.bit = bit + 1;
594 return bb->start_pfn + bit;
595 }
596
597 /**
598 * This structure represents a range of page frames the contents of which
599 * should not be saved during the suspend.
600 */
601
602 struct nosave_region {
603 struct list_head list;
604 unsigned long start_pfn;
605 unsigned long end_pfn;
606 };
607
608 static LIST_HEAD(nosave_regions);
609
610 /**
611 * register_nosave_region - register a range of page frames the contents
612 * of which should not be saved during the suspend (to be used in the early
613 * initialization code)
614 */
615
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 int use_kmalloc)
619 {
620 struct nosave_region *region;
621
622 if (start_pfn >= end_pfn)
623 return;
624
625 if (!list_empty(&nosave_regions)) {
626 /* Try to extend the previous region (they should be sorted) */
627 region = list_entry(nosave_regions.prev,
628 struct nosave_region, list);
629 if (region->end_pfn == start_pfn) {
630 region->end_pfn = end_pfn;
631 goto Report;
632 }
633 }
634 if (use_kmalloc) {
635 /* during init, this shouldn't fail */
636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 BUG_ON(!region);
638 } else
639 /* This allocation cannot fail */
640 region = alloc_bootmem(sizeof(struct nosave_region));
641 region->start_pfn = start_pfn;
642 region->end_pfn = end_pfn;
643 list_add_tail(&region->list, &nosave_regions);
644 Report:
645 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
646 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
647 }
648
649 /*
650 * Set bits in this map correspond to the page frames the contents of which
651 * should not be saved during the suspend.
652 */
653 static struct memory_bitmap *forbidden_pages_map;
654
655 /* Set bits in this map correspond to free page frames. */
656 static struct memory_bitmap *free_pages_map;
657
658 /*
659 * Each page frame allocated for creating the image is marked by setting the
660 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
661 */
662
663 void swsusp_set_page_free(struct page *page)
664 {
665 if (free_pages_map)
666 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
667 }
668
669 static int swsusp_page_is_free(struct page *page)
670 {
671 return free_pages_map ?
672 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
673 }
674
675 void swsusp_unset_page_free(struct page *page)
676 {
677 if (free_pages_map)
678 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
679 }
680
681 static void swsusp_set_page_forbidden(struct page *page)
682 {
683 if (forbidden_pages_map)
684 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
685 }
686
687 int swsusp_page_is_forbidden(struct page *page)
688 {
689 return forbidden_pages_map ?
690 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
691 }
692
693 static void swsusp_unset_page_forbidden(struct page *page)
694 {
695 if (forbidden_pages_map)
696 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
697 }
698
699 /**
700 * mark_nosave_pages - set bits corresponding to the page frames the
701 * contents of which should not be saved in a given bitmap.
702 */
703
704 static void mark_nosave_pages(struct memory_bitmap *bm)
705 {
706 struct nosave_region *region;
707
708 if (list_empty(&nosave_regions))
709 return;
710
711 list_for_each_entry(region, &nosave_regions, list) {
712 unsigned long pfn;
713
714 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
715 region->start_pfn << PAGE_SHIFT,
716 region->end_pfn << PAGE_SHIFT);
717
718 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
719 if (pfn_valid(pfn)) {
720 /*
721 * It is safe to ignore the result of
722 * mem_bm_set_bit_check() here, since we won't
723 * touch the PFNs for which the error is
724 * returned anyway.
725 */
726 mem_bm_set_bit_check(bm, pfn);
727 }
728 }
729 }
730
731 /**
732 * create_basic_memory_bitmaps - create bitmaps needed for marking page
733 * frames that should not be saved and free page frames. The pointers
734 * forbidden_pages_map and free_pages_map are only modified if everything
735 * goes well, because we don't want the bits to be used before both bitmaps
736 * are set up.
737 */
738
739 int create_basic_memory_bitmaps(void)
740 {
741 struct memory_bitmap *bm1, *bm2;
742 int error = 0;
743
744 BUG_ON(forbidden_pages_map || free_pages_map);
745
746 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
747 if (!bm1)
748 return -ENOMEM;
749
750 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
751 if (error)
752 goto Free_first_object;
753
754 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
755 if (!bm2)
756 goto Free_first_bitmap;
757
758 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
759 if (error)
760 goto Free_second_object;
761
762 forbidden_pages_map = bm1;
763 free_pages_map = bm2;
764 mark_nosave_pages(forbidden_pages_map);
765
766 pr_debug("PM: Basic memory bitmaps created\n");
767
768 return 0;
769
770 Free_second_object:
771 kfree(bm2);
772 Free_first_bitmap:
773 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
774 Free_first_object:
775 kfree(bm1);
776 return -ENOMEM;
777 }
778
779 /**
780 * free_basic_memory_bitmaps - free memory bitmaps allocated by
781 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
782 * so that the bitmaps themselves are not referred to while they are being
783 * freed.
784 */
785
786 void free_basic_memory_bitmaps(void)
787 {
788 struct memory_bitmap *bm1, *bm2;
789
790 BUG_ON(!(forbidden_pages_map && free_pages_map));
791
792 bm1 = forbidden_pages_map;
793 bm2 = free_pages_map;
794 forbidden_pages_map = NULL;
795 free_pages_map = NULL;
796 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
797 kfree(bm1);
798 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
799 kfree(bm2);
800
801 pr_debug("PM: Basic memory bitmaps freed\n");
802 }
803
804 /**
805 * snapshot_additional_pages - estimate the number of additional pages
806 * be needed for setting up the suspend image data structures for given
807 * zone (usually the returned value is greater than the exact number)
808 */
809
810 unsigned int snapshot_additional_pages(struct zone *zone)
811 {
812 unsigned int res;
813
814 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
815 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
816 return 2 * res;
817 }
818
819 #ifdef CONFIG_HIGHMEM
820 /**
821 * count_free_highmem_pages - compute the total number of free highmem
822 * pages, system-wide.
823 */
824
825 static unsigned int count_free_highmem_pages(void)
826 {
827 struct zone *zone;
828 unsigned int cnt = 0;
829
830 for_each_populated_zone(zone)
831 if (is_highmem(zone))
832 cnt += zone_page_state(zone, NR_FREE_PAGES);
833
834 return cnt;
835 }
836
837 /**
838 * saveable_highmem_page - Determine whether a highmem page should be
839 * included in the suspend image.
840 *
841 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
842 * and it isn't a part of a free chunk of pages.
843 */
844 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
845 {
846 struct page *page;
847
848 if (!pfn_valid(pfn))
849 return NULL;
850
851 page = pfn_to_page(pfn);
852 if (page_zone(page) != zone)
853 return NULL;
854
855 BUG_ON(!PageHighMem(page));
856
857 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
858 PageReserved(page))
859 return NULL;
860
861 return page;
862 }
863
864 /**
865 * count_highmem_pages - compute the total number of saveable highmem
866 * pages.
867 */
868
869 static unsigned int count_highmem_pages(void)
870 {
871 struct zone *zone;
872 unsigned int n = 0;
873
874 for_each_populated_zone(zone) {
875 unsigned long pfn, max_zone_pfn;
876
877 if (!is_highmem(zone))
878 continue;
879
880 mark_free_pages(zone);
881 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
882 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
883 if (saveable_highmem_page(zone, pfn))
884 n++;
885 }
886 return n;
887 }
888 #else
889 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
890 {
891 return NULL;
892 }
893 #endif /* CONFIG_HIGHMEM */
894
895 /**
896 * saveable_page - Determine whether a non-highmem page should be included
897 * in the suspend image.
898 *
899 * We should save the page if it isn't Nosave, and is not in the range
900 * of pages statically defined as 'unsaveable', and it isn't a part of
901 * a free chunk of pages.
902 */
903 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
904 {
905 struct page *page;
906
907 if (!pfn_valid(pfn))
908 return NULL;
909
910 page = pfn_to_page(pfn);
911 if (page_zone(page) != zone)
912 return NULL;
913
914 BUG_ON(PageHighMem(page));
915
916 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
917 return NULL;
918
919 if (PageReserved(page)
920 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
921 return NULL;
922
923 return page;
924 }
925
926 /**
927 * count_data_pages - compute the total number of saveable non-highmem
928 * pages.
929 */
930
931 static unsigned int count_data_pages(void)
932 {
933 struct zone *zone;
934 unsigned long pfn, max_zone_pfn;
935 unsigned int n = 0;
936
937 for_each_populated_zone(zone) {
938 if (is_highmem(zone))
939 continue;
940
941 mark_free_pages(zone);
942 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
943 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
944 if (saveable_page(zone, pfn))
945 n++;
946 }
947 return n;
948 }
949
950 /* This is needed, because copy_page and memcpy are not usable for copying
951 * task structs.
952 */
953 static inline void do_copy_page(long *dst, long *src)
954 {
955 int n;
956
957 for (n = PAGE_SIZE / sizeof(long); n; n--)
958 *dst++ = *src++;
959 }
960
961
962 /**
963 * safe_copy_page - check if the page we are going to copy is marked as
964 * present in the kernel page tables (this always is the case if
965 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
966 * kernel_page_present() always returns 'true').
967 */
968 static void safe_copy_page(void *dst, struct page *s_page)
969 {
970 if (kernel_page_present(s_page)) {
971 do_copy_page(dst, page_address(s_page));
972 } else {
973 kernel_map_pages(s_page, 1, 1);
974 do_copy_page(dst, page_address(s_page));
975 kernel_map_pages(s_page, 1, 0);
976 }
977 }
978
979
980 #ifdef CONFIG_HIGHMEM
981 static inline struct page *
982 page_is_saveable(struct zone *zone, unsigned long pfn)
983 {
984 return is_highmem(zone) ?
985 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
986 }
987
988 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
989 {
990 struct page *s_page, *d_page;
991 void *src, *dst;
992
993 s_page = pfn_to_page(src_pfn);
994 d_page = pfn_to_page(dst_pfn);
995 if (PageHighMem(s_page)) {
996 src = kmap_atomic(s_page, KM_USER0);
997 dst = kmap_atomic(d_page, KM_USER1);
998 do_copy_page(dst, src);
999 kunmap_atomic(dst, KM_USER1);
1000 kunmap_atomic(src, KM_USER0);
1001 } else {
1002 if (PageHighMem(d_page)) {
1003 /* Page pointed to by src may contain some kernel
1004 * data modified by kmap_atomic()
1005 */
1006 safe_copy_page(buffer, s_page);
1007 dst = kmap_atomic(d_page, KM_USER0);
1008 copy_page(dst, buffer);
1009 kunmap_atomic(dst, KM_USER0);
1010 } else {
1011 safe_copy_page(page_address(d_page), s_page);
1012 }
1013 }
1014 }
1015 #else
1016 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1017
1018 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1019 {
1020 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1021 pfn_to_page(src_pfn));
1022 }
1023 #endif /* CONFIG_HIGHMEM */
1024
1025 static void
1026 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1027 {
1028 struct zone *zone;
1029 unsigned long pfn;
1030
1031 for_each_populated_zone(zone) {
1032 unsigned long max_zone_pfn;
1033
1034 mark_free_pages(zone);
1035 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1036 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1037 if (page_is_saveable(zone, pfn))
1038 memory_bm_set_bit(orig_bm, pfn);
1039 }
1040 memory_bm_position_reset(orig_bm);
1041 memory_bm_position_reset(copy_bm);
1042 for(;;) {
1043 pfn = memory_bm_next_pfn(orig_bm);
1044 if (unlikely(pfn == BM_END_OF_MAP))
1045 break;
1046 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1047 }
1048 }
1049
1050 /* Total number of image pages */
1051 static unsigned int nr_copy_pages;
1052 /* Number of pages needed for saving the original pfns of the image pages */
1053 static unsigned int nr_meta_pages;
1054 /*
1055 * Numbers of normal and highmem page frames allocated for hibernation image
1056 * before suspending devices.
1057 */
1058 unsigned int alloc_normal, alloc_highmem;
1059 /*
1060 * Memory bitmap used for marking saveable pages (during hibernation) or
1061 * hibernation image pages (during restore)
1062 */
1063 static struct memory_bitmap orig_bm;
1064 /*
1065 * Memory bitmap used during hibernation for marking allocated page frames that
1066 * will contain copies of saveable pages. During restore it is initially used
1067 * for marking hibernation image pages, but then the set bits from it are
1068 * duplicated in @orig_bm and it is released. On highmem systems it is next
1069 * used for marking "safe" highmem pages, but it has to be reinitialized for
1070 * this purpose.
1071 */
1072 static struct memory_bitmap copy_bm;
1073
1074 /**
1075 * swsusp_free - free pages allocated for the suspend.
1076 *
1077 * Suspend pages are alocated before the atomic copy is made, so we
1078 * need to release them after the resume.
1079 */
1080
1081 void swsusp_free(void)
1082 {
1083 struct zone *zone;
1084 unsigned long pfn, max_zone_pfn;
1085
1086 for_each_populated_zone(zone) {
1087 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1088 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1089 if (pfn_valid(pfn)) {
1090 struct page *page = pfn_to_page(pfn);
1091
1092 if (swsusp_page_is_forbidden(page) &&
1093 swsusp_page_is_free(page)) {
1094 swsusp_unset_page_forbidden(page);
1095 swsusp_unset_page_free(page);
1096 __free_page(page);
1097 }
1098 }
1099 }
1100 nr_copy_pages = 0;
1101 nr_meta_pages = 0;
1102 restore_pblist = NULL;
1103 buffer = NULL;
1104 alloc_normal = 0;
1105 alloc_highmem = 0;
1106 }
1107
1108 /* Helper functions used for the shrinking of memory. */
1109
1110 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1111
1112 /**
1113 * preallocate_image_pages - Allocate a number of pages for hibernation image
1114 * @nr_pages: Number of page frames to allocate.
1115 * @mask: GFP flags to use for the allocation.
1116 *
1117 * Return value: Number of page frames actually allocated
1118 */
1119 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1120 {
1121 unsigned long nr_alloc = 0;
1122
1123 while (nr_pages > 0) {
1124 struct page *page;
1125
1126 page = alloc_image_page(mask);
1127 if (!page)
1128 break;
1129 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1130 if (PageHighMem(page))
1131 alloc_highmem++;
1132 else
1133 alloc_normal++;
1134 nr_pages--;
1135 nr_alloc++;
1136 }
1137
1138 return nr_alloc;
1139 }
1140
1141 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1142 unsigned long avail_normal)
1143 {
1144 unsigned long alloc;
1145
1146 if (avail_normal <= alloc_normal)
1147 return 0;
1148
1149 alloc = avail_normal - alloc_normal;
1150 if (nr_pages < alloc)
1151 alloc = nr_pages;
1152
1153 return preallocate_image_pages(alloc, GFP_IMAGE);
1154 }
1155
1156 #ifdef CONFIG_HIGHMEM
1157 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1158 {
1159 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1160 }
1161
1162 /**
1163 * __fraction - Compute (an approximation of) x * (multiplier / base)
1164 */
1165 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1166 {
1167 x *= multiplier;
1168 do_div(x, base);
1169 return (unsigned long)x;
1170 }
1171
1172 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1173 unsigned long highmem,
1174 unsigned long total)
1175 {
1176 unsigned long alloc = __fraction(nr_pages, highmem, total);
1177
1178 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1179 }
1180 #else /* CONFIG_HIGHMEM */
1181 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1182 {
1183 return 0;
1184 }
1185
1186 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1187 unsigned long highmem,
1188 unsigned long total)
1189 {
1190 return 0;
1191 }
1192 #endif /* CONFIG_HIGHMEM */
1193
1194 /**
1195 * free_unnecessary_pages - Release preallocated pages not needed for the image
1196 */
1197 static void free_unnecessary_pages(void)
1198 {
1199 unsigned long save, to_free_normal, to_free_highmem;
1200
1201 save = count_data_pages();
1202 if (alloc_normal >= save) {
1203 to_free_normal = alloc_normal - save;
1204 save = 0;
1205 } else {
1206 to_free_normal = 0;
1207 save -= alloc_normal;
1208 }
1209 save += count_highmem_pages();
1210 if (alloc_highmem >= save) {
1211 to_free_highmem = alloc_highmem - save;
1212 } else {
1213 to_free_highmem = 0;
1214 save -= alloc_highmem;
1215 if (to_free_normal > save)
1216 to_free_normal -= save;
1217 else
1218 to_free_normal = 0;
1219 }
1220
1221 memory_bm_position_reset(&copy_bm);
1222
1223 while (to_free_normal > 0 || to_free_highmem > 0) {
1224 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1225 struct page *page = pfn_to_page(pfn);
1226
1227 if (PageHighMem(page)) {
1228 if (!to_free_highmem)
1229 continue;
1230 to_free_highmem--;
1231 alloc_highmem--;
1232 } else {
1233 if (!to_free_normal)
1234 continue;
1235 to_free_normal--;
1236 alloc_normal--;
1237 }
1238 memory_bm_clear_bit(&copy_bm, pfn);
1239 swsusp_unset_page_forbidden(page);
1240 swsusp_unset_page_free(page);
1241 __free_page(page);
1242 }
1243 }
1244
1245 /**
1246 * minimum_image_size - Estimate the minimum acceptable size of an image
1247 * @saveable: Number of saveable pages in the system.
1248 *
1249 * We want to avoid attempting to free too much memory too hard, so estimate the
1250 * minimum acceptable size of a hibernation image to use as the lower limit for
1251 * preallocating memory.
1252 *
1253 * We assume that the minimum image size should be proportional to
1254 *
1255 * [number of saveable pages] - [number of pages that can be freed in theory]
1256 *
1257 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1258 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1259 * minus mapped file pages.
1260 */
1261 static unsigned long minimum_image_size(unsigned long saveable)
1262 {
1263 unsigned long size;
1264
1265 size = global_page_state(NR_SLAB_RECLAIMABLE)
1266 + global_page_state(NR_ACTIVE_ANON)
1267 + global_page_state(NR_INACTIVE_ANON)
1268 + global_page_state(NR_ACTIVE_FILE)
1269 + global_page_state(NR_INACTIVE_FILE)
1270 - global_page_state(NR_FILE_MAPPED);
1271
1272 return saveable <= size ? 0 : saveable - size;
1273 }
1274
1275 /**
1276 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1277 *
1278 * To create a hibernation image it is necessary to make a copy of every page
1279 * frame in use. We also need a number of page frames to be free during
1280 * hibernation for allocations made while saving the image and for device
1281 * drivers, in case they need to allocate memory from their hibernation
1282 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1283 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1284 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1285 * total number of available page frames and allocate at least
1286 *
1287 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1288 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1289 *
1290 * of them, which corresponds to the maximum size of a hibernation image.
1291 *
1292 * If image_size is set below the number following from the above formula,
1293 * the preallocation of memory is continued until the total number of saveable
1294 * pages in the system is below the requested image size or the minimum
1295 * acceptable image size returned by minimum_image_size(), whichever is greater.
1296 */
1297 int hibernate_preallocate_memory(void)
1298 {
1299 struct zone *zone;
1300 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1301 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1302 struct timeval start, stop;
1303 int error;
1304
1305 printk(KERN_INFO "PM: Preallocating image memory... ");
1306 do_gettimeofday(&start);
1307
1308 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1309 if (error)
1310 goto err_out;
1311
1312 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1313 if (error)
1314 goto err_out;
1315
1316 alloc_normal = 0;
1317 alloc_highmem = 0;
1318
1319 /* Count the number of saveable data pages. */
1320 save_highmem = count_highmem_pages();
1321 saveable = count_data_pages();
1322
1323 /*
1324 * Compute the total number of page frames we can use (count) and the
1325 * number of pages needed for image metadata (size).
1326 */
1327 count = saveable;
1328 saveable += save_highmem;
1329 highmem = save_highmem;
1330 size = 0;
1331 for_each_populated_zone(zone) {
1332 size += snapshot_additional_pages(zone);
1333 if (is_highmem(zone))
1334 highmem += zone_page_state(zone, NR_FREE_PAGES);
1335 else
1336 count += zone_page_state(zone, NR_FREE_PAGES);
1337 }
1338 avail_normal = count;
1339 count += highmem;
1340 count -= totalreserve_pages;
1341
1342 /* Add number of pages required for page keys (s390 only). */
1343 size += page_key_additional_pages(saveable);
1344
1345 /* Compute the maximum number of saveable pages to leave in memory. */
1346 max_size = (count - (size + PAGES_FOR_IO)) / 2
1347 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1348 /* Compute the desired number of image pages specified by image_size. */
1349 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1350 if (size > max_size)
1351 size = max_size;
1352 /*
1353 * If the desired number of image pages is at least as large as the
1354 * current number of saveable pages in memory, allocate page frames for
1355 * the image and we're done.
1356 */
1357 if (size >= saveable) {
1358 pages = preallocate_image_highmem(save_highmem);
1359 pages += preallocate_image_memory(saveable - pages, avail_normal);
1360 goto out;
1361 }
1362
1363 /* Estimate the minimum size of the image. */
1364 pages = minimum_image_size(saveable);
1365 /*
1366 * To avoid excessive pressure on the normal zone, leave room in it to
1367 * accommodate an image of the minimum size (unless it's already too
1368 * small, in which case don't preallocate pages from it at all).
1369 */
1370 if (avail_normal > pages)
1371 avail_normal -= pages;
1372 else
1373 avail_normal = 0;
1374 if (size < pages)
1375 size = min_t(unsigned long, pages, max_size);
1376
1377 /*
1378 * Let the memory management subsystem know that we're going to need a
1379 * large number of page frames to allocate and make it free some memory.
1380 * NOTE: If this is not done, performance will be hurt badly in some
1381 * test cases.
1382 */
1383 shrink_all_memory(saveable - size);
1384
1385 /*
1386 * The number of saveable pages in memory was too high, so apply some
1387 * pressure to decrease it. First, make room for the largest possible
1388 * image and fail if that doesn't work. Next, try to decrease the size
1389 * of the image as much as indicated by 'size' using allocations from
1390 * highmem and non-highmem zones separately.
1391 */
1392 pages_highmem = preallocate_image_highmem(highmem / 2);
1393 alloc = (count - max_size) - pages_highmem;
1394 pages = preallocate_image_memory(alloc, avail_normal);
1395 if (pages < alloc) {
1396 /* We have exhausted non-highmem pages, try highmem. */
1397 alloc -= pages;
1398 pages += pages_highmem;
1399 pages_highmem = preallocate_image_highmem(alloc);
1400 if (pages_highmem < alloc)
1401 goto err_out;
1402 pages += pages_highmem;
1403 /*
1404 * size is the desired number of saveable pages to leave in
1405 * memory, so try to preallocate (all memory - size) pages.
1406 */
1407 alloc = (count - pages) - size;
1408 pages += preallocate_image_highmem(alloc);
1409 } else {
1410 /*
1411 * There are approximately max_size saveable pages at this point
1412 * and we want to reduce this number down to size.
1413 */
1414 alloc = max_size - size;
1415 size = preallocate_highmem_fraction(alloc, highmem, count);
1416 pages_highmem += size;
1417 alloc -= size;
1418 size = preallocate_image_memory(alloc, avail_normal);
1419 pages_highmem += preallocate_image_highmem(alloc - size);
1420 pages += pages_highmem + size;
1421 }
1422
1423 /*
1424 * We only need as many page frames for the image as there are saveable
1425 * pages in memory, but we have allocated more. Release the excessive
1426 * ones now.
1427 */
1428 free_unnecessary_pages();
1429
1430 out:
1431 do_gettimeofday(&stop);
1432 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1433 swsusp_show_speed(&start, &stop, pages, "Allocated");
1434
1435 return 0;
1436
1437 err_out:
1438 printk(KERN_CONT "\n");
1439 swsusp_free();
1440 return -ENOMEM;
1441 }
1442
1443 #ifdef CONFIG_HIGHMEM
1444 /**
1445 * count_pages_for_highmem - compute the number of non-highmem pages
1446 * that will be necessary for creating copies of highmem pages.
1447 */
1448
1449 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1450 {
1451 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1452
1453 if (free_highmem >= nr_highmem)
1454 nr_highmem = 0;
1455 else
1456 nr_highmem -= free_highmem;
1457
1458 return nr_highmem;
1459 }
1460 #else
1461 static unsigned int
1462 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1463 #endif /* CONFIG_HIGHMEM */
1464
1465 /**
1466 * enough_free_mem - Make sure we have enough free memory for the
1467 * snapshot image.
1468 */
1469
1470 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1471 {
1472 struct zone *zone;
1473 unsigned int free = alloc_normal;
1474
1475 for_each_populated_zone(zone)
1476 if (!is_highmem(zone))
1477 free += zone_page_state(zone, NR_FREE_PAGES);
1478
1479 nr_pages += count_pages_for_highmem(nr_highmem);
1480 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1481 nr_pages, PAGES_FOR_IO, free);
1482
1483 return free > nr_pages + PAGES_FOR_IO;
1484 }
1485
1486 #ifdef CONFIG_HIGHMEM
1487 /**
1488 * get_highmem_buffer - if there are some highmem pages in the suspend
1489 * image, we may need the buffer to copy them and/or load their data.
1490 */
1491
1492 static inline int get_highmem_buffer(int safe_needed)
1493 {
1494 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1495 return buffer ? 0 : -ENOMEM;
1496 }
1497
1498 /**
1499 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1500 * Try to allocate as many pages as needed, but if the number of free
1501 * highmem pages is lesser than that, allocate them all.
1502 */
1503
1504 static inline unsigned int
1505 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1506 {
1507 unsigned int to_alloc = count_free_highmem_pages();
1508
1509 if (to_alloc > nr_highmem)
1510 to_alloc = nr_highmem;
1511
1512 nr_highmem -= to_alloc;
1513 while (to_alloc-- > 0) {
1514 struct page *page;
1515
1516 page = alloc_image_page(__GFP_HIGHMEM);
1517 memory_bm_set_bit(bm, page_to_pfn(page));
1518 }
1519 return nr_highmem;
1520 }
1521 #else
1522 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1523
1524 static inline unsigned int
1525 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1526 #endif /* CONFIG_HIGHMEM */
1527
1528 /**
1529 * swsusp_alloc - allocate memory for the suspend image
1530 *
1531 * We first try to allocate as many highmem pages as there are
1532 * saveable highmem pages in the system. If that fails, we allocate
1533 * non-highmem pages for the copies of the remaining highmem ones.
1534 *
1535 * In this approach it is likely that the copies of highmem pages will
1536 * also be located in the high memory, because of the way in which
1537 * copy_data_pages() works.
1538 */
1539
1540 static int
1541 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1542 unsigned int nr_pages, unsigned int nr_highmem)
1543 {
1544 if (nr_highmem > 0) {
1545 if (get_highmem_buffer(PG_ANY))
1546 goto err_out;
1547 if (nr_highmem > alloc_highmem) {
1548 nr_highmem -= alloc_highmem;
1549 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1550 }
1551 }
1552 if (nr_pages > alloc_normal) {
1553 nr_pages -= alloc_normal;
1554 while (nr_pages-- > 0) {
1555 struct page *page;
1556
1557 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1558 if (!page)
1559 goto err_out;
1560 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1561 }
1562 }
1563
1564 return 0;
1565
1566 err_out:
1567 swsusp_free();
1568 return -ENOMEM;
1569 }
1570
1571 asmlinkage int swsusp_save(void)
1572 {
1573 unsigned int nr_pages, nr_highmem;
1574
1575 printk(KERN_INFO "PM: Creating hibernation image:\n");
1576
1577 drain_local_pages(NULL);
1578 nr_pages = count_data_pages();
1579 nr_highmem = count_highmem_pages();
1580 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1581
1582 if (!enough_free_mem(nr_pages, nr_highmem)) {
1583 printk(KERN_ERR "PM: Not enough free memory\n");
1584 return -ENOMEM;
1585 }
1586
1587 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1588 printk(KERN_ERR "PM: Memory allocation failed\n");
1589 return -ENOMEM;
1590 }
1591
1592 /* During allocating of suspend pagedir, new cold pages may appear.
1593 * Kill them.
1594 */
1595 drain_local_pages(NULL);
1596 copy_data_pages(&copy_bm, &orig_bm);
1597
1598 /*
1599 * End of critical section. From now on, we can write to memory,
1600 * but we should not touch disk. This specially means we must _not_
1601 * touch swap space! Except we must write out our image of course.
1602 */
1603
1604 nr_pages += nr_highmem;
1605 nr_copy_pages = nr_pages;
1606 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1607
1608 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1609 nr_pages);
1610
1611 return 0;
1612 }
1613
1614 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1615 static int init_header_complete(struct swsusp_info *info)
1616 {
1617 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1618 info->version_code = LINUX_VERSION_CODE;
1619 return 0;
1620 }
1621
1622 static char *check_image_kernel(struct swsusp_info *info)
1623 {
1624 if (info->version_code != LINUX_VERSION_CODE)
1625 return "kernel version";
1626 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1627 return "system type";
1628 if (strcmp(info->uts.release,init_utsname()->release))
1629 return "kernel release";
1630 if (strcmp(info->uts.version,init_utsname()->version))
1631 return "version";
1632 if (strcmp(info->uts.machine,init_utsname()->machine))
1633 return "machine";
1634 return NULL;
1635 }
1636 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1637
1638 unsigned long snapshot_get_image_size(void)
1639 {
1640 return nr_copy_pages + nr_meta_pages + 1;
1641 }
1642
1643 static int init_header(struct swsusp_info *info)
1644 {
1645 memset(info, 0, sizeof(struct swsusp_info));
1646 info->num_physpages = num_physpages;
1647 info->image_pages = nr_copy_pages;
1648 info->pages = snapshot_get_image_size();
1649 info->size = info->pages;
1650 info->size <<= PAGE_SHIFT;
1651 return init_header_complete(info);
1652 }
1653
1654 /**
1655 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1656 * are stored in the array @buf[] (1 page at a time)
1657 */
1658
1659 static inline void
1660 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1661 {
1662 int j;
1663
1664 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1665 buf[j] = memory_bm_next_pfn(bm);
1666 if (unlikely(buf[j] == BM_END_OF_MAP))
1667 break;
1668 /* Save page key for data page (s390 only). */
1669 page_key_read(buf + j);
1670 }
1671 }
1672
1673 /**
1674 * snapshot_read_next - used for reading the system memory snapshot.
1675 *
1676 * On the first call to it @handle should point to a zeroed
1677 * snapshot_handle structure. The structure gets updated and a pointer
1678 * to it should be passed to this function every next time.
1679 *
1680 * On success the function returns a positive number. Then, the caller
1681 * is allowed to read up to the returned number of bytes from the memory
1682 * location computed by the data_of() macro.
1683 *
1684 * The function returns 0 to indicate the end of data stream condition,
1685 * and a negative number is returned on error. In such cases the
1686 * structure pointed to by @handle is not updated and should not be used
1687 * any more.
1688 */
1689
1690 int snapshot_read_next(struct snapshot_handle *handle)
1691 {
1692 if (handle->cur > nr_meta_pages + nr_copy_pages)
1693 return 0;
1694
1695 if (!buffer) {
1696 /* This makes the buffer be freed by swsusp_free() */
1697 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1698 if (!buffer)
1699 return -ENOMEM;
1700 }
1701 if (!handle->cur) {
1702 int error;
1703
1704 error = init_header((struct swsusp_info *)buffer);
1705 if (error)
1706 return error;
1707 handle->buffer = buffer;
1708 memory_bm_position_reset(&orig_bm);
1709 memory_bm_position_reset(&copy_bm);
1710 } else if (handle->cur <= nr_meta_pages) {
1711 clear_page(buffer);
1712 pack_pfns(buffer, &orig_bm);
1713 } else {
1714 struct page *page;
1715
1716 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1717 if (PageHighMem(page)) {
1718 /* Highmem pages are copied to the buffer,
1719 * because we can't return with a kmapped
1720 * highmem page (we may not be called again).
1721 */
1722 void *kaddr;
1723
1724 kaddr = kmap_atomic(page, KM_USER0);
1725 copy_page(buffer, kaddr);
1726 kunmap_atomic(kaddr, KM_USER0);
1727 handle->buffer = buffer;
1728 } else {
1729 handle->buffer = page_address(page);
1730 }
1731 }
1732 handle->cur++;
1733 return PAGE_SIZE;
1734 }
1735
1736 /**
1737 * mark_unsafe_pages - mark the pages that cannot be used for storing
1738 * the image during resume, because they conflict with the pages that
1739 * had been used before suspend
1740 */
1741
1742 static int mark_unsafe_pages(struct memory_bitmap *bm)
1743 {
1744 struct zone *zone;
1745 unsigned long pfn, max_zone_pfn;
1746
1747 /* Clear page flags */
1748 for_each_populated_zone(zone) {
1749 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1750 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1751 if (pfn_valid(pfn))
1752 swsusp_unset_page_free(pfn_to_page(pfn));
1753 }
1754
1755 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1756 memory_bm_position_reset(bm);
1757 do {
1758 pfn = memory_bm_next_pfn(bm);
1759 if (likely(pfn != BM_END_OF_MAP)) {
1760 if (likely(pfn_valid(pfn)))
1761 swsusp_set_page_free(pfn_to_page(pfn));
1762 else
1763 return -EFAULT;
1764 }
1765 } while (pfn != BM_END_OF_MAP);
1766
1767 allocated_unsafe_pages = 0;
1768
1769 return 0;
1770 }
1771
1772 static void
1773 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1774 {
1775 unsigned long pfn;
1776
1777 memory_bm_position_reset(src);
1778 pfn = memory_bm_next_pfn(src);
1779 while (pfn != BM_END_OF_MAP) {
1780 memory_bm_set_bit(dst, pfn);
1781 pfn = memory_bm_next_pfn(src);
1782 }
1783 }
1784
1785 static int check_header(struct swsusp_info *info)
1786 {
1787 char *reason;
1788
1789 reason = check_image_kernel(info);
1790 if (!reason && info->num_physpages != num_physpages)
1791 reason = "memory size";
1792 if (reason) {
1793 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1794 return -EPERM;
1795 }
1796 return 0;
1797 }
1798
1799 /**
1800 * load header - check the image header and copy data from it
1801 */
1802
1803 static int
1804 load_header(struct swsusp_info *info)
1805 {
1806 int error;
1807
1808 restore_pblist = NULL;
1809 error = check_header(info);
1810 if (!error) {
1811 nr_copy_pages = info->image_pages;
1812 nr_meta_pages = info->pages - info->image_pages - 1;
1813 }
1814 return error;
1815 }
1816
1817 /**
1818 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1819 * the corresponding bit in the memory bitmap @bm
1820 */
1821 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1822 {
1823 int j;
1824
1825 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1826 if (unlikely(buf[j] == BM_END_OF_MAP))
1827 break;
1828
1829 /* Extract and buffer page key for data page (s390 only). */
1830 page_key_memorize(buf + j);
1831
1832 if (memory_bm_pfn_present(bm, buf[j]))
1833 memory_bm_set_bit(bm, buf[j]);
1834 else
1835 return -EFAULT;
1836 }
1837
1838 return 0;
1839 }
1840
1841 /* List of "safe" pages that may be used to store data loaded from the suspend
1842 * image
1843 */
1844 static struct linked_page *safe_pages_list;
1845
1846 #ifdef CONFIG_HIGHMEM
1847 /* struct highmem_pbe is used for creating the list of highmem pages that
1848 * should be restored atomically during the resume from disk, because the page
1849 * frames they have occupied before the suspend are in use.
1850 */
1851 struct highmem_pbe {
1852 struct page *copy_page; /* data is here now */
1853 struct page *orig_page; /* data was here before the suspend */
1854 struct highmem_pbe *next;
1855 };
1856
1857 /* List of highmem PBEs needed for restoring the highmem pages that were
1858 * allocated before the suspend and included in the suspend image, but have
1859 * also been allocated by the "resume" kernel, so their contents cannot be
1860 * written directly to their "original" page frames.
1861 */
1862 static struct highmem_pbe *highmem_pblist;
1863
1864 /**
1865 * count_highmem_image_pages - compute the number of highmem pages in the
1866 * suspend image. The bits in the memory bitmap @bm that correspond to the
1867 * image pages are assumed to be set.
1868 */
1869
1870 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1871 {
1872 unsigned long pfn;
1873 unsigned int cnt = 0;
1874
1875 memory_bm_position_reset(bm);
1876 pfn = memory_bm_next_pfn(bm);
1877 while (pfn != BM_END_OF_MAP) {
1878 if (PageHighMem(pfn_to_page(pfn)))
1879 cnt++;
1880
1881 pfn = memory_bm_next_pfn(bm);
1882 }
1883 return cnt;
1884 }
1885
1886 /**
1887 * prepare_highmem_image - try to allocate as many highmem pages as
1888 * there are highmem image pages (@nr_highmem_p points to the variable
1889 * containing the number of highmem image pages). The pages that are
1890 * "safe" (ie. will not be overwritten when the suspend image is
1891 * restored) have the corresponding bits set in @bm (it must be
1892 * unitialized).
1893 *
1894 * NOTE: This function should not be called if there are no highmem
1895 * image pages.
1896 */
1897
1898 static unsigned int safe_highmem_pages;
1899
1900 static struct memory_bitmap *safe_highmem_bm;
1901
1902 static int
1903 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1904 {
1905 unsigned int to_alloc;
1906
1907 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1908 return -ENOMEM;
1909
1910 if (get_highmem_buffer(PG_SAFE))
1911 return -ENOMEM;
1912
1913 to_alloc = count_free_highmem_pages();
1914 if (to_alloc > *nr_highmem_p)
1915 to_alloc = *nr_highmem_p;
1916 else
1917 *nr_highmem_p = to_alloc;
1918
1919 safe_highmem_pages = 0;
1920 while (to_alloc-- > 0) {
1921 struct page *page;
1922
1923 page = alloc_page(__GFP_HIGHMEM);
1924 if (!swsusp_page_is_free(page)) {
1925 /* The page is "safe", set its bit the bitmap */
1926 memory_bm_set_bit(bm, page_to_pfn(page));
1927 safe_highmem_pages++;
1928 }
1929 /* Mark the page as allocated */
1930 swsusp_set_page_forbidden(page);
1931 swsusp_set_page_free(page);
1932 }
1933 memory_bm_position_reset(bm);
1934 safe_highmem_bm = bm;
1935 return 0;
1936 }
1937
1938 /**
1939 * get_highmem_page_buffer - for given highmem image page find the buffer
1940 * that suspend_write_next() should set for its caller to write to.
1941 *
1942 * If the page is to be saved to its "original" page frame or a copy of
1943 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1944 * the copy of the page is to be made in normal memory, so the address of
1945 * the copy is returned.
1946 *
1947 * If @buffer is returned, the caller of suspend_write_next() will write
1948 * the page's contents to @buffer, so they will have to be copied to the
1949 * right location on the next call to suspend_write_next() and it is done
1950 * with the help of copy_last_highmem_page(). For this purpose, if
1951 * @buffer is returned, @last_highmem page is set to the page to which
1952 * the data will have to be copied from @buffer.
1953 */
1954
1955 static struct page *last_highmem_page;
1956
1957 static void *
1958 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1959 {
1960 struct highmem_pbe *pbe;
1961 void *kaddr;
1962
1963 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1964 /* We have allocated the "original" page frame and we can
1965 * use it directly to store the loaded page.
1966 */
1967 last_highmem_page = page;
1968 return buffer;
1969 }
1970 /* The "original" page frame has not been allocated and we have to
1971 * use a "safe" page frame to store the loaded page.
1972 */
1973 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1974 if (!pbe) {
1975 swsusp_free();
1976 return ERR_PTR(-ENOMEM);
1977 }
1978 pbe->orig_page = page;
1979 if (safe_highmem_pages > 0) {
1980 struct page *tmp;
1981
1982 /* Copy of the page will be stored in high memory */
1983 kaddr = buffer;
1984 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1985 safe_highmem_pages--;
1986 last_highmem_page = tmp;
1987 pbe->copy_page = tmp;
1988 } else {
1989 /* Copy of the page will be stored in normal memory */
1990 kaddr = safe_pages_list;
1991 safe_pages_list = safe_pages_list->next;
1992 pbe->copy_page = virt_to_page(kaddr);
1993 }
1994 pbe->next = highmem_pblist;
1995 highmem_pblist = pbe;
1996 return kaddr;
1997 }
1998
1999 /**
2000 * copy_last_highmem_page - copy the contents of a highmem image from
2001 * @buffer, where the caller of snapshot_write_next() has place them,
2002 * to the right location represented by @last_highmem_page .
2003 */
2004
2005 static void copy_last_highmem_page(void)
2006 {
2007 if (last_highmem_page) {
2008 void *dst;
2009
2010 dst = kmap_atomic(last_highmem_page, KM_USER0);
2011 copy_page(dst, buffer);
2012 kunmap_atomic(dst, KM_USER0);
2013 last_highmem_page = NULL;
2014 }
2015 }
2016
2017 static inline int last_highmem_page_copied(void)
2018 {
2019 return !last_highmem_page;
2020 }
2021
2022 static inline void free_highmem_data(void)
2023 {
2024 if (safe_highmem_bm)
2025 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2026
2027 if (buffer)
2028 free_image_page(buffer, PG_UNSAFE_CLEAR);
2029 }
2030 #else
2031 static inline int get_safe_write_buffer(void) { return 0; }
2032
2033 static unsigned int
2034 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2035
2036 static inline int
2037 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2038 {
2039 return 0;
2040 }
2041
2042 static inline void *
2043 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2044 {
2045 return ERR_PTR(-EINVAL);
2046 }
2047
2048 static inline void copy_last_highmem_page(void) {}
2049 static inline int last_highmem_page_copied(void) { return 1; }
2050 static inline void free_highmem_data(void) {}
2051 #endif /* CONFIG_HIGHMEM */
2052
2053 /**
2054 * prepare_image - use the memory bitmap @bm to mark the pages that will
2055 * be overwritten in the process of restoring the system memory state
2056 * from the suspend image ("unsafe" pages) and allocate memory for the
2057 * image.
2058 *
2059 * The idea is to allocate a new memory bitmap first and then allocate
2060 * as many pages as needed for the image data, but not to assign these
2061 * pages to specific tasks initially. Instead, we just mark them as
2062 * allocated and create a lists of "safe" pages that will be used
2063 * later. On systems with high memory a list of "safe" highmem pages is
2064 * also created.
2065 */
2066
2067 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2068
2069 static int
2070 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2071 {
2072 unsigned int nr_pages, nr_highmem;
2073 struct linked_page *sp_list, *lp;
2074 int error;
2075
2076 /* If there is no highmem, the buffer will not be necessary */
2077 free_image_page(buffer, PG_UNSAFE_CLEAR);
2078 buffer = NULL;
2079
2080 nr_highmem = count_highmem_image_pages(bm);
2081 error = mark_unsafe_pages(bm);
2082 if (error)
2083 goto Free;
2084
2085 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2086 if (error)
2087 goto Free;
2088
2089 duplicate_memory_bitmap(new_bm, bm);
2090 memory_bm_free(bm, PG_UNSAFE_KEEP);
2091 if (nr_highmem > 0) {
2092 error = prepare_highmem_image(bm, &nr_highmem);
2093 if (error)
2094 goto Free;
2095 }
2096 /* Reserve some safe pages for potential later use.
2097 *
2098 * NOTE: This way we make sure there will be enough safe pages for the
2099 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2100 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2101 */
2102 sp_list = NULL;
2103 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2104 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2105 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2106 while (nr_pages > 0) {
2107 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2108 if (!lp) {
2109 error = -ENOMEM;
2110 goto Free;
2111 }
2112 lp->next = sp_list;
2113 sp_list = lp;
2114 nr_pages--;
2115 }
2116 /* Preallocate memory for the image */
2117 safe_pages_list = NULL;
2118 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2119 while (nr_pages > 0) {
2120 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2121 if (!lp) {
2122 error = -ENOMEM;
2123 goto Free;
2124 }
2125 if (!swsusp_page_is_free(virt_to_page(lp))) {
2126 /* The page is "safe", add it to the list */
2127 lp->next = safe_pages_list;
2128 safe_pages_list = lp;
2129 }
2130 /* Mark the page as allocated */
2131 swsusp_set_page_forbidden(virt_to_page(lp));
2132 swsusp_set_page_free(virt_to_page(lp));
2133 nr_pages--;
2134 }
2135 /* Free the reserved safe pages so that chain_alloc() can use them */
2136 while (sp_list) {
2137 lp = sp_list->next;
2138 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2139 sp_list = lp;
2140 }
2141 return 0;
2142
2143 Free:
2144 swsusp_free();
2145 return error;
2146 }
2147
2148 /**
2149 * get_buffer - compute the address that snapshot_write_next() should
2150 * set for its caller to write to.
2151 */
2152
2153 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2154 {
2155 struct pbe *pbe;
2156 struct page *page;
2157 unsigned long pfn = memory_bm_next_pfn(bm);
2158
2159 if (pfn == BM_END_OF_MAP)
2160 return ERR_PTR(-EFAULT);
2161
2162 page = pfn_to_page(pfn);
2163 if (PageHighMem(page))
2164 return get_highmem_page_buffer(page, ca);
2165
2166 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2167 /* We have allocated the "original" page frame and we can
2168 * use it directly to store the loaded page.
2169 */
2170 return page_address(page);
2171
2172 /* The "original" page frame has not been allocated and we have to
2173 * use a "safe" page frame to store the loaded page.
2174 */
2175 pbe = chain_alloc(ca, sizeof(struct pbe));
2176 if (!pbe) {
2177 swsusp_free();
2178 return ERR_PTR(-ENOMEM);
2179 }
2180 pbe->orig_address = page_address(page);
2181 pbe->address = safe_pages_list;
2182 safe_pages_list = safe_pages_list->next;
2183 pbe->next = restore_pblist;
2184 restore_pblist = pbe;
2185 return pbe->address;
2186 }
2187
2188 /**
2189 * snapshot_write_next - used for writing the system memory snapshot.
2190 *
2191 * On the first call to it @handle should point to a zeroed
2192 * snapshot_handle structure. The structure gets updated and a pointer
2193 * to it should be passed to this function every next time.
2194 *
2195 * On success the function returns a positive number. Then, the caller
2196 * is allowed to write up to the returned number of bytes to the memory
2197 * location computed by the data_of() macro.
2198 *
2199 * The function returns 0 to indicate the "end of file" condition,
2200 * and a negative number is returned on error. In such cases the
2201 * structure pointed to by @handle is not updated and should not be used
2202 * any more.
2203 */
2204
2205 int snapshot_write_next(struct snapshot_handle *handle)
2206 {
2207 static struct chain_allocator ca;
2208 int error = 0;
2209
2210 /* Check if we have already loaded the entire image */
2211 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2212 return 0;
2213
2214 handle->sync_read = 1;
2215
2216 if (!handle->cur) {
2217 if (!buffer)
2218 /* This makes the buffer be freed by swsusp_free() */
2219 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2220
2221 if (!buffer)
2222 return -ENOMEM;
2223
2224 handle->buffer = buffer;
2225 } else if (handle->cur == 1) {
2226 error = load_header(buffer);
2227 if (error)
2228 return error;
2229
2230 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2231 if (error)
2232 return error;
2233
2234 /* Allocate buffer for page keys. */
2235 error = page_key_alloc(nr_copy_pages);
2236 if (error)
2237 return error;
2238
2239 } else if (handle->cur <= nr_meta_pages + 1) {
2240 error = unpack_orig_pfns(buffer, &copy_bm);
2241 if (error)
2242 return error;
2243
2244 if (handle->cur == nr_meta_pages + 1) {
2245 error = prepare_image(&orig_bm, &copy_bm);
2246 if (error)
2247 return error;
2248
2249 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2250 memory_bm_position_reset(&orig_bm);
2251 restore_pblist = NULL;
2252 handle->buffer = get_buffer(&orig_bm, &ca);
2253 handle->sync_read = 0;
2254 if (IS_ERR(handle->buffer))
2255 return PTR_ERR(handle->buffer);
2256 }
2257 } else {
2258 copy_last_highmem_page();
2259 /* Restore page key for data page (s390 only). */
2260 page_key_write(handle->buffer);
2261 handle->buffer = get_buffer(&orig_bm, &ca);
2262 if (IS_ERR(handle->buffer))
2263 return PTR_ERR(handle->buffer);
2264 if (handle->buffer != buffer)
2265 handle->sync_read = 0;
2266 }
2267 handle->cur++;
2268 return PAGE_SIZE;
2269 }
2270
2271 /**
2272 * snapshot_write_finalize - must be called after the last call to
2273 * snapshot_write_next() in case the last page in the image happens
2274 * to be a highmem page and its contents should be stored in the
2275 * highmem. Additionally, it releases the memory that will not be
2276 * used any more.
2277 */
2278
2279 void snapshot_write_finalize(struct snapshot_handle *handle)
2280 {
2281 copy_last_highmem_page();
2282 /* Restore page key for data page (s390 only). */
2283 page_key_write(handle->buffer);
2284 page_key_free();
2285 /* Free only if we have loaded the image entirely */
2286 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2287 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2288 free_highmem_data();
2289 }
2290 }
2291
2292 int snapshot_image_loaded(struct snapshot_handle *handle)
2293 {
2294 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2295 handle->cur <= nr_meta_pages + nr_copy_pages);
2296 }
2297
2298 #ifdef CONFIG_HIGHMEM
2299 /* Assumes that @buf is ready and points to a "safe" page */
2300 static inline void
2301 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2302 {
2303 void *kaddr1, *kaddr2;
2304
2305 kaddr1 = kmap_atomic(p1, KM_USER0);
2306 kaddr2 = kmap_atomic(p2, KM_USER1);
2307 copy_page(buf, kaddr1);
2308 copy_page(kaddr1, kaddr2);
2309 copy_page(kaddr2, buf);
2310 kunmap_atomic(kaddr2, KM_USER1);
2311 kunmap_atomic(kaddr1, KM_USER0);
2312 }
2313
2314 /**
2315 * restore_highmem - for each highmem page that was allocated before
2316 * the suspend and included in the suspend image, and also has been
2317 * allocated by the "resume" kernel swap its current (ie. "before
2318 * resume") contents with the previous (ie. "before suspend") one.
2319 *
2320 * If the resume eventually fails, we can call this function once
2321 * again and restore the "before resume" highmem state.
2322 */
2323
2324 int restore_highmem(void)
2325 {
2326 struct highmem_pbe *pbe = highmem_pblist;
2327 void *buf;
2328
2329 if (!pbe)
2330 return 0;
2331
2332 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2333 if (!buf)
2334 return -ENOMEM;
2335
2336 while (pbe) {
2337 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2338 pbe = pbe->next;
2339 }
2340 free_image_page(buf, PG_UNSAFE_CLEAR);
2341 return 0;
2342 }
2343 #endif /* CONFIG_HIGHMEM */
This page took 0.13115 seconds and 5 git commands to generate.