[PATCH] Use ZVC for free_pages
[deliverable/linux.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/smp_lock.h>
18 #include <linux/delay.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/kernel.h>
22 #include <linux/pm.h>
23 #include <linux/device.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
34
35 #include "power.h"
36
37 /* List of PBEs needed for restoring the pages that were allocated before
38 * the suspend and included in the suspend image, but have also been
39 * allocated by the "resume" kernel, so their contents cannot be written
40 * directly to their "original" page frames.
41 */
42 struct pbe *restore_pblist;
43
44 /* Pointer to an auxiliary buffer (1 page) */
45 static void *buffer;
46
47 /**
48 * @safe_needed - on resume, for storing the PBE list and the image,
49 * we can only use memory pages that do not conflict with the pages
50 * used before suspend. The unsafe pages have PageNosaveFree set
51 * and we count them using unsafe_pages.
52 *
53 * Each allocated image page is marked as PageNosave and PageNosaveFree
54 * so that swsusp_free() can release it.
55 */
56
57 #define PG_ANY 0
58 #define PG_SAFE 1
59 #define PG_UNSAFE_CLEAR 1
60 #define PG_UNSAFE_KEEP 0
61
62 static unsigned int allocated_unsafe_pages;
63
64 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
65 {
66 void *res;
67
68 res = (void *)get_zeroed_page(gfp_mask);
69 if (safe_needed)
70 while (res && PageNosaveFree(virt_to_page(res))) {
71 /* The page is unsafe, mark it for swsusp_free() */
72 SetPageNosave(virt_to_page(res));
73 allocated_unsafe_pages++;
74 res = (void *)get_zeroed_page(gfp_mask);
75 }
76 if (res) {
77 SetPageNosave(virt_to_page(res));
78 SetPageNosaveFree(virt_to_page(res));
79 }
80 return res;
81 }
82
83 unsigned long get_safe_page(gfp_t gfp_mask)
84 {
85 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
86 }
87
88 static struct page *alloc_image_page(gfp_t gfp_mask)
89 {
90 struct page *page;
91
92 page = alloc_page(gfp_mask);
93 if (page) {
94 SetPageNosave(page);
95 SetPageNosaveFree(page);
96 }
97 return page;
98 }
99
100 /**
101 * free_image_page - free page represented by @addr, allocated with
102 * get_image_page (page flags set by it must be cleared)
103 */
104
105 static inline void free_image_page(void *addr, int clear_nosave_free)
106 {
107 struct page *page;
108
109 BUG_ON(!virt_addr_valid(addr));
110
111 page = virt_to_page(addr);
112
113 ClearPageNosave(page);
114 if (clear_nosave_free)
115 ClearPageNosaveFree(page);
116
117 __free_page(page);
118 }
119
120 /* struct linked_page is used to build chains of pages */
121
122 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
123
124 struct linked_page {
125 struct linked_page *next;
126 char data[LINKED_PAGE_DATA_SIZE];
127 } __attribute__((packed));
128
129 static inline void
130 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
131 {
132 while (list) {
133 struct linked_page *lp = list->next;
134
135 free_image_page(list, clear_page_nosave);
136 list = lp;
137 }
138 }
139
140 /**
141 * struct chain_allocator is used for allocating small objects out of
142 * a linked list of pages called 'the chain'.
143 *
144 * The chain grows each time when there is no room for a new object in
145 * the current page. The allocated objects cannot be freed individually.
146 * It is only possible to free them all at once, by freeing the entire
147 * chain.
148 *
149 * NOTE: The chain allocator may be inefficient if the allocated objects
150 * are not much smaller than PAGE_SIZE.
151 */
152
153 struct chain_allocator {
154 struct linked_page *chain; /* the chain */
155 unsigned int used_space; /* total size of objects allocated out
156 * of the current page
157 */
158 gfp_t gfp_mask; /* mask for allocating pages */
159 int safe_needed; /* if set, only "safe" pages are allocated */
160 };
161
162 static void
163 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
164 {
165 ca->chain = NULL;
166 ca->used_space = LINKED_PAGE_DATA_SIZE;
167 ca->gfp_mask = gfp_mask;
168 ca->safe_needed = safe_needed;
169 }
170
171 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
172 {
173 void *ret;
174
175 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
176 struct linked_page *lp;
177
178 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
179 if (!lp)
180 return NULL;
181
182 lp->next = ca->chain;
183 ca->chain = lp;
184 ca->used_space = 0;
185 }
186 ret = ca->chain->data + ca->used_space;
187 ca->used_space += size;
188 return ret;
189 }
190
191 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
192 {
193 free_list_of_pages(ca->chain, clear_page_nosave);
194 memset(ca, 0, sizeof(struct chain_allocator));
195 }
196
197 /**
198 * Data types related to memory bitmaps.
199 *
200 * Memory bitmap is a structure consiting of many linked lists of
201 * objects. The main list's elements are of type struct zone_bitmap
202 * and each of them corresonds to one zone. For each zone bitmap
203 * object there is a list of objects of type struct bm_block that
204 * represent each blocks of bit chunks in which information is
205 * stored.
206 *
207 * struct memory_bitmap contains a pointer to the main list of zone
208 * bitmap objects, a struct bm_position used for browsing the bitmap,
209 * and a pointer to the list of pages used for allocating all of the
210 * zone bitmap objects and bitmap block objects.
211 *
212 * NOTE: It has to be possible to lay out the bitmap in memory
213 * using only allocations of order 0. Additionally, the bitmap is
214 * designed to work with arbitrary number of zones (this is over the
215 * top for now, but let's avoid making unnecessary assumptions ;-).
216 *
217 * struct zone_bitmap contains a pointer to a list of bitmap block
218 * objects and a pointer to the bitmap block object that has been
219 * most recently used for setting bits. Additionally, it contains the
220 * pfns that correspond to the start and end of the represented zone.
221 *
222 * struct bm_block contains a pointer to the memory page in which
223 * information is stored (in the form of a block of bit chunks
224 * of type unsigned long each). It also contains the pfns that
225 * correspond to the start and end of the represented memory area and
226 * the number of bit chunks in the block.
227 *
228 * NOTE: Memory bitmaps are used for two types of operations only:
229 * "set a bit" and "find the next bit set". Moreover, the searching
230 * is always carried out after all of the "set a bit" operations
231 * on given bitmap.
232 */
233
234 #define BM_END_OF_MAP (~0UL)
235
236 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long))
237 #define BM_BITS_PER_CHUNK (sizeof(long) << 3)
238 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
239
240 struct bm_block {
241 struct bm_block *next; /* next element of the list */
242 unsigned long start_pfn; /* pfn represented by the first bit */
243 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
244 unsigned int size; /* number of bit chunks */
245 unsigned long *data; /* chunks of bits representing pages */
246 };
247
248 struct zone_bitmap {
249 struct zone_bitmap *next; /* next element of the list */
250 unsigned long start_pfn; /* minimal pfn in this zone */
251 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
252 struct bm_block *bm_blocks; /* list of bitmap blocks */
253 struct bm_block *cur_block; /* recently used bitmap block */
254 };
255
256 /* strcut bm_position is used for browsing memory bitmaps */
257
258 struct bm_position {
259 struct zone_bitmap *zone_bm;
260 struct bm_block *block;
261 int chunk;
262 int bit;
263 };
264
265 struct memory_bitmap {
266 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */
267 struct linked_page *p_list; /* list of pages used to store zone
268 * bitmap objects and bitmap block
269 * objects
270 */
271 struct bm_position cur; /* most recently used bit position */
272 };
273
274 /* Functions that operate on memory bitmaps */
275
276 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
277 {
278 bm->cur.chunk = 0;
279 bm->cur.bit = -1;
280 }
281
282 static void memory_bm_position_reset(struct memory_bitmap *bm)
283 {
284 struct zone_bitmap *zone_bm;
285
286 zone_bm = bm->zone_bm_list;
287 bm->cur.zone_bm = zone_bm;
288 bm->cur.block = zone_bm->bm_blocks;
289 memory_bm_reset_chunk(bm);
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295 * create_bm_block_list - create a list of block bitmap objects
296 */
297
298 static inline struct bm_block *
299 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
300 {
301 struct bm_block *bblist = NULL;
302
303 while (nr_blocks-- > 0) {
304 struct bm_block *bb;
305
306 bb = chain_alloc(ca, sizeof(struct bm_block));
307 if (!bb)
308 return NULL;
309
310 bb->next = bblist;
311 bblist = bb;
312 }
313 return bblist;
314 }
315
316 /**
317 * create_zone_bm_list - create a list of zone bitmap objects
318 */
319
320 static inline struct zone_bitmap *
321 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
322 {
323 struct zone_bitmap *zbmlist = NULL;
324
325 while (nr_zones-- > 0) {
326 struct zone_bitmap *zbm;
327
328 zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
329 if (!zbm)
330 return NULL;
331
332 zbm->next = zbmlist;
333 zbmlist = zbm;
334 }
335 return zbmlist;
336 }
337
338 /**
339 * memory_bm_create - allocate memory for a memory bitmap
340 */
341
342 static int
343 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
344 {
345 struct chain_allocator ca;
346 struct zone *zone;
347 struct zone_bitmap *zone_bm;
348 struct bm_block *bb;
349 unsigned int nr;
350
351 chain_init(&ca, gfp_mask, safe_needed);
352
353 /* Compute the number of zones */
354 nr = 0;
355 for_each_zone(zone)
356 if (populated_zone(zone))
357 nr++;
358
359 /* Allocate the list of zones bitmap objects */
360 zone_bm = create_zone_bm_list(nr, &ca);
361 bm->zone_bm_list = zone_bm;
362 if (!zone_bm) {
363 chain_free(&ca, PG_UNSAFE_CLEAR);
364 return -ENOMEM;
365 }
366
367 /* Initialize the zone bitmap objects */
368 for_each_zone(zone) {
369 unsigned long pfn;
370
371 if (!populated_zone(zone))
372 continue;
373
374 zone_bm->start_pfn = zone->zone_start_pfn;
375 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
376 /* Allocate the list of bitmap block objects */
377 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
378 bb = create_bm_block_list(nr, &ca);
379 zone_bm->bm_blocks = bb;
380 zone_bm->cur_block = bb;
381 if (!bb)
382 goto Free;
383
384 nr = zone->spanned_pages;
385 pfn = zone->zone_start_pfn;
386 /* Initialize the bitmap block objects */
387 while (bb) {
388 unsigned long *ptr;
389
390 ptr = get_image_page(gfp_mask, safe_needed);
391 bb->data = ptr;
392 if (!ptr)
393 goto Free;
394
395 bb->start_pfn = pfn;
396 if (nr >= BM_BITS_PER_BLOCK) {
397 pfn += BM_BITS_PER_BLOCK;
398 bb->size = BM_CHUNKS_PER_BLOCK;
399 nr -= BM_BITS_PER_BLOCK;
400 } else {
401 /* This is executed only once in the loop */
402 pfn += nr;
403 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
404 }
405 bb->end_pfn = pfn;
406 bb = bb->next;
407 }
408 zone_bm = zone_bm->next;
409 }
410 bm->p_list = ca.chain;
411 memory_bm_position_reset(bm);
412 return 0;
413
414 Free:
415 bm->p_list = ca.chain;
416 memory_bm_free(bm, PG_UNSAFE_CLEAR);
417 return -ENOMEM;
418 }
419
420 /**
421 * memory_bm_free - free memory occupied by the memory bitmap @bm
422 */
423
424 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
425 {
426 struct zone_bitmap *zone_bm;
427
428 /* Free the list of bit blocks for each zone_bitmap object */
429 zone_bm = bm->zone_bm_list;
430 while (zone_bm) {
431 struct bm_block *bb;
432
433 bb = zone_bm->bm_blocks;
434 while (bb) {
435 if (bb->data)
436 free_image_page(bb->data, clear_nosave_free);
437 bb = bb->next;
438 }
439 zone_bm = zone_bm->next;
440 }
441 free_list_of_pages(bm->p_list, clear_nosave_free);
442 bm->zone_bm_list = NULL;
443 }
444
445 /**
446 * memory_bm_set_bit - set the bit in the bitmap @bm that corresponds
447 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
448 * of @bm->cur_zone_bm are updated.
449 *
450 * If the bit cannot be set, the function returns -EINVAL .
451 */
452
453 static int
454 memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
455 {
456 struct zone_bitmap *zone_bm;
457 struct bm_block *bb;
458
459 /* Check if the pfn is from the current zone */
460 zone_bm = bm->cur.zone_bm;
461 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462 zone_bm = bm->zone_bm_list;
463 /* We don't assume that the zones are sorted by pfns */
464 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
465 zone_bm = zone_bm->next;
466 if (unlikely(!zone_bm))
467 return -EINVAL;
468 }
469 bm->cur.zone_bm = zone_bm;
470 }
471 /* Check if the pfn corresponds to the current bitmap block */
472 bb = zone_bm->cur_block;
473 if (pfn < bb->start_pfn)
474 bb = zone_bm->bm_blocks;
475
476 while (pfn >= bb->end_pfn) {
477 bb = bb->next;
478 if (unlikely(!bb))
479 return -EINVAL;
480 }
481 zone_bm->cur_block = bb;
482 pfn -= bb->start_pfn;
483 set_bit(pfn % BM_BITS_PER_CHUNK, bb->data + pfn / BM_BITS_PER_CHUNK);
484 return 0;
485 }
486
487 /* Two auxiliary functions for memory_bm_next_pfn */
488
489 /* Find the first set bit in the given chunk, if there is one */
490
491 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
492 {
493 bit++;
494 while (bit < BM_BITS_PER_CHUNK) {
495 if (test_bit(bit, chunk_p))
496 return bit;
497
498 bit++;
499 }
500 return -1;
501 }
502
503 /* Find a chunk containing some bits set in given block of bits */
504
505 static inline int next_chunk_in_block(int n, struct bm_block *bb)
506 {
507 n++;
508 while (n < bb->size) {
509 if (bb->data[n])
510 return n;
511
512 n++;
513 }
514 return -1;
515 }
516
517 /**
518 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
519 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
520 * returned.
521 *
522 * It is required to run memory_bm_position_reset() before the first call to
523 * this function.
524 */
525
526 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
527 {
528 struct zone_bitmap *zone_bm;
529 struct bm_block *bb;
530 int chunk;
531 int bit;
532
533 do {
534 bb = bm->cur.block;
535 do {
536 chunk = bm->cur.chunk;
537 bit = bm->cur.bit;
538 do {
539 bit = next_bit_in_chunk(bit, bb->data + chunk);
540 if (bit >= 0)
541 goto Return_pfn;
542
543 chunk = next_chunk_in_block(chunk, bb);
544 bit = -1;
545 } while (chunk >= 0);
546 bb = bb->next;
547 bm->cur.block = bb;
548 memory_bm_reset_chunk(bm);
549 } while (bb);
550 zone_bm = bm->cur.zone_bm->next;
551 if (zone_bm) {
552 bm->cur.zone_bm = zone_bm;
553 bm->cur.block = zone_bm->bm_blocks;
554 memory_bm_reset_chunk(bm);
555 }
556 } while (zone_bm);
557 memory_bm_position_reset(bm);
558 return BM_END_OF_MAP;
559
560 Return_pfn:
561 bm->cur.chunk = chunk;
562 bm->cur.bit = bit;
563 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
564 }
565
566 /**
567 * snapshot_additional_pages - estimate the number of additional pages
568 * be needed for setting up the suspend image data structures for given
569 * zone (usually the returned value is greater than the exact number)
570 */
571
572 unsigned int snapshot_additional_pages(struct zone *zone)
573 {
574 unsigned int res;
575
576 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
577 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
578 return 2 * res;
579 }
580
581 #ifdef CONFIG_HIGHMEM
582 /**
583 * count_free_highmem_pages - compute the total number of free highmem
584 * pages, system-wide.
585 */
586
587 static unsigned int count_free_highmem_pages(void)
588 {
589 struct zone *zone;
590 unsigned int cnt = 0;
591
592 for_each_zone(zone)
593 if (populated_zone(zone) && is_highmem(zone))
594 cnt += zone_page_state(zone, NR_FREE_PAGES);
595
596 return cnt;
597 }
598
599 /**
600 * saveable_highmem_page - Determine whether a highmem page should be
601 * included in the suspend image.
602 *
603 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
604 * and it isn't a part of a free chunk of pages.
605 */
606
607 static struct page *saveable_highmem_page(unsigned long pfn)
608 {
609 struct page *page;
610
611 if (!pfn_valid(pfn))
612 return NULL;
613
614 page = pfn_to_page(pfn);
615
616 BUG_ON(!PageHighMem(page));
617
618 if (PageNosave(page) || PageReserved(page) || PageNosaveFree(page))
619 return NULL;
620
621 return page;
622 }
623
624 /**
625 * count_highmem_pages - compute the total number of saveable highmem
626 * pages.
627 */
628
629 unsigned int count_highmem_pages(void)
630 {
631 struct zone *zone;
632 unsigned int n = 0;
633
634 for_each_zone(zone) {
635 unsigned long pfn, max_zone_pfn;
636
637 if (!is_highmem(zone))
638 continue;
639
640 mark_free_pages(zone);
641 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
642 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
643 if (saveable_highmem_page(pfn))
644 n++;
645 }
646 return n;
647 }
648 #else
649 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
650 static inline unsigned int count_highmem_pages(void) { return 0; }
651 #endif /* CONFIG_HIGHMEM */
652
653 /**
654 * pfn_is_nosave - check if given pfn is in the 'nosave' section
655 */
656
657 static inline int pfn_is_nosave(unsigned long pfn)
658 {
659 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
660 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
661 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
662 }
663
664 /**
665 * saveable - Determine whether a non-highmem page should be included in
666 * the suspend image.
667 *
668 * We should save the page if it isn't Nosave, and is not in the range
669 * of pages statically defined as 'unsaveable', and it isn't a part of
670 * a free chunk of pages.
671 */
672
673 static struct page *saveable_page(unsigned long pfn)
674 {
675 struct page *page;
676
677 if (!pfn_valid(pfn))
678 return NULL;
679
680 page = pfn_to_page(pfn);
681
682 BUG_ON(PageHighMem(page));
683
684 if (PageNosave(page) || PageNosaveFree(page))
685 return NULL;
686
687 if (PageReserved(page) && pfn_is_nosave(pfn))
688 return NULL;
689
690 return page;
691 }
692
693 /**
694 * count_data_pages - compute the total number of saveable non-highmem
695 * pages.
696 */
697
698 unsigned int count_data_pages(void)
699 {
700 struct zone *zone;
701 unsigned long pfn, max_zone_pfn;
702 unsigned int n = 0;
703
704 for_each_zone(zone) {
705 if (is_highmem(zone))
706 continue;
707
708 mark_free_pages(zone);
709 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
710 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
711 if(saveable_page(pfn))
712 n++;
713 }
714 return n;
715 }
716
717 /* This is needed, because copy_page and memcpy are not usable for copying
718 * task structs.
719 */
720 static inline void do_copy_page(long *dst, long *src)
721 {
722 int n;
723
724 for (n = PAGE_SIZE / sizeof(long); n; n--)
725 *dst++ = *src++;
726 }
727
728 #ifdef CONFIG_HIGHMEM
729 static inline struct page *
730 page_is_saveable(struct zone *zone, unsigned long pfn)
731 {
732 return is_highmem(zone) ?
733 saveable_highmem_page(pfn) : saveable_page(pfn);
734 }
735
736 static inline void
737 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
738 {
739 struct page *s_page, *d_page;
740 void *src, *dst;
741
742 s_page = pfn_to_page(src_pfn);
743 d_page = pfn_to_page(dst_pfn);
744 if (PageHighMem(s_page)) {
745 src = kmap_atomic(s_page, KM_USER0);
746 dst = kmap_atomic(d_page, KM_USER1);
747 do_copy_page(dst, src);
748 kunmap_atomic(src, KM_USER0);
749 kunmap_atomic(dst, KM_USER1);
750 } else {
751 src = page_address(s_page);
752 if (PageHighMem(d_page)) {
753 /* Page pointed to by src may contain some kernel
754 * data modified by kmap_atomic()
755 */
756 do_copy_page(buffer, src);
757 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
758 memcpy(dst, buffer, PAGE_SIZE);
759 kunmap_atomic(dst, KM_USER0);
760 } else {
761 dst = page_address(d_page);
762 do_copy_page(dst, src);
763 }
764 }
765 }
766 #else
767 #define page_is_saveable(zone, pfn) saveable_page(pfn)
768
769 static inline void
770 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
771 {
772 do_copy_page(page_address(pfn_to_page(dst_pfn)),
773 page_address(pfn_to_page(src_pfn)));
774 }
775 #endif /* CONFIG_HIGHMEM */
776
777 static void
778 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
779 {
780 struct zone *zone;
781 unsigned long pfn;
782
783 for_each_zone(zone) {
784 unsigned long max_zone_pfn;
785
786 mark_free_pages(zone);
787 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
788 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
789 if (page_is_saveable(zone, pfn))
790 memory_bm_set_bit(orig_bm, pfn);
791 }
792 memory_bm_position_reset(orig_bm);
793 memory_bm_position_reset(copy_bm);
794 do {
795 pfn = memory_bm_next_pfn(orig_bm);
796 if (likely(pfn != BM_END_OF_MAP))
797 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
798 } while (pfn != BM_END_OF_MAP);
799 }
800
801 /* Total number of image pages */
802 static unsigned int nr_copy_pages;
803 /* Number of pages needed for saving the original pfns of the image pages */
804 static unsigned int nr_meta_pages;
805
806 /**
807 * swsusp_free - free pages allocated for the suspend.
808 *
809 * Suspend pages are alocated before the atomic copy is made, so we
810 * need to release them after the resume.
811 */
812
813 void swsusp_free(void)
814 {
815 struct zone *zone;
816 unsigned long pfn, max_zone_pfn;
817
818 for_each_zone(zone) {
819 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
820 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
821 if (pfn_valid(pfn)) {
822 struct page *page = pfn_to_page(pfn);
823
824 if (PageNosave(page) && PageNosaveFree(page)) {
825 ClearPageNosave(page);
826 ClearPageNosaveFree(page);
827 __free_page(page);
828 }
829 }
830 }
831 nr_copy_pages = 0;
832 nr_meta_pages = 0;
833 restore_pblist = NULL;
834 buffer = NULL;
835 }
836
837 #ifdef CONFIG_HIGHMEM
838 /**
839 * count_pages_for_highmem - compute the number of non-highmem pages
840 * that will be necessary for creating copies of highmem pages.
841 */
842
843 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
844 {
845 unsigned int free_highmem = count_free_highmem_pages();
846
847 if (free_highmem >= nr_highmem)
848 nr_highmem = 0;
849 else
850 nr_highmem -= free_highmem;
851
852 return nr_highmem;
853 }
854 #else
855 static unsigned int
856 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
857 #endif /* CONFIG_HIGHMEM */
858
859 /**
860 * enough_free_mem - Make sure we have enough free memory for the
861 * snapshot image.
862 */
863
864 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
865 {
866 struct zone *zone;
867 unsigned int free = 0, meta = 0;
868
869 for_each_zone(zone) {
870 meta += snapshot_additional_pages(zone);
871 if (!is_highmem(zone))
872 free += zone_page_state(zone, NR_FREE_PAGES);
873 }
874
875 nr_pages += count_pages_for_highmem(nr_highmem);
876 pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
877 nr_pages, PAGES_FOR_IO, meta, free);
878
879 return free > nr_pages + PAGES_FOR_IO + meta;
880 }
881
882 #ifdef CONFIG_HIGHMEM
883 /**
884 * get_highmem_buffer - if there are some highmem pages in the suspend
885 * image, we may need the buffer to copy them and/or load their data.
886 */
887
888 static inline int get_highmem_buffer(int safe_needed)
889 {
890 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
891 return buffer ? 0 : -ENOMEM;
892 }
893
894 /**
895 * alloc_highmem_image_pages - allocate some highmem pages for the image.
896 * Try to allocate as many pages as needed, but if the number of free
897 * highmem pages is lesser than that, allocate them all.
898 */
899
900 static inline unsigned int
901 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
902 {
903 unsigned int to_alloc = count_free_highmem_pages();
904
905 if (to_alloc > nr_highmem)
906 to_alloc = nr_highmem;
907
908 nr_highmem -= to_alloc;
909 while (to_alloc-- > 0) {
910 struct page *page;
911
912 page = alloc_image_page(__GFP_HIGHMEM);
913 memory_bm_set_bit(bm, page_to_pfn(page));
914 }
915 return nr_highmem;
916 }
917 #else
918 static inline int get_highmem_buffer(int safe_needed) { return 0; }
919
920 static inline unsigned int
921 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
922 #endif /* CONFIG_HIGHMEM */
923
924 /**
925 * swsusp_alloc - allocate memory for the suspend image
926 *
927 * We first try to allocate as many highmem pages as there are
928 * saveable highmem pages in the system. If that fails, we allocate
929 * non-highmem pages for the copies of the remaining highmem ones.
930 *
931 * In this approach it is likely that the copies of highmem pages will
932 * also be located in the high memory, because of the way in which
933 * copy_data_pages() works.
934 */
935
936 static int
937 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
938 unsigned int nr_pages, unsigned int nr_highmem)
939 {
940 int error;
941
942 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
943 if (error)
944 goto Free;
945
946 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
947 if (error)
948 goto Free;
949
950 if (nr_highmem > 0) {
951 error = get_highmem_buffer(PG_ANY);
952 if (error)
953 goto Free;
954
955 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
956 }
957 while (nr_pages-- > 0) {
958 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
959
960 if (!page)
961 goto Free;
962
963 memory_bm_set_bit(copy_bm, page_to_pfn(page));
964 }
965 return 0;
966
967 Free:
968 swsusp_free();
969 return -ENOMEM;
970 }
971
972 /* Memory bitmap used for marking saveable pages (during suspend) or the
973 * suspend image pages (during resume)
974 */
975 static struct memory_bitmap orig_bm;
976 /* Memory bitmap used on suspend for marking allocated pages that will contain
977 * the copies of saveable pages. During resume it is initially used for
978 * marking the suspend image pages, but then its set bits are duplicated in
979 * @orig_bm and it is released. Next, on systems with high memory, it may be
980 * used for marking "safe" highmem pages, but it has to be reinitialized for
981 * this purpose.
982 */
983 static struct memory_bitmap copy_bm;
984
985 asmlinkage int swsusp_save(void)
986 {
987 unsigned int nr_pages, nr_highmem;
988
989 printk("swsusp: critical section: \n");
990
991 drain_local_pages();
992 nr_pages = count_data_pages();
993 nr_highmem = count_highmem_pages();
994 printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
995
996 if (!enough_free_mem(nr_pages, nr_highmem)) {
997 printk(KERN_ERR "swsusp: Not enough free memory\n");
998 return -ENOMEM;
999 }
1000
1001 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1002 printk(KERN_ERR "swsusp: Memory allocation failed\n");
1003 return -ENOMEM;
1004 }
1005
1006 /* During allocating of suspend pagedir, new cold pages may appear.
1007 * Kill them.
1008 */
1009 drain_local_pages();
1010 copy_data_pages(&copy_bm, &orig_bm);
1011
1012 /*
1013 * End of critical section. From now on, we can write to memory,
1014 * but we should not touch disk. This specially means we must _not_
1015 * touch swap space! Except we must write out our image of course.
1016 */
1017
1018 nr_pages += nr_highmem;
1019 nr_copy_pages = nr_pages;
1020 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1021
1022 printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
1023
1024 return 0;
1025 }
1026
1027 static void init_header(struct swsusp_info *info)
1028 {
1029 memset(info, 0, sizeof(struct swsusp_info));
1030 info->version_code = LINUX_VERSION_CODE;
1031 info->num_physpages = num_physpages;
1032 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1033 info->cpus = num_online_cpus();
1034 info->image_pages = nr_copy_pages;
1035 info->pages = nr_copy_pages + nr_meta_pages + 1;
1036 info->size = info->pages;
1037 info->size <<= PAGE_SHIFT;
1038 }
1039
1040 /**
1041 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1042 * are stored in the array @buf[] (1 page at a time)
1043 */
1044
1045 static inline void
1046 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1047 {
1048 int j;
1049
1050 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1051 buf[j] = memory_bm_next_pfn(bm);
1052 if (unlikely(buf[j] == BM_END_OF_MAP))
1053 break;
1054 }
1055 }
1056
1057 /**
1058 * snapshot_read_next - used for reading the system memory snapshot.
1059 *
1060 * On the first call to it @handle should point to a zeroed
1061 * snapshot_handle structure. The structure gets updated and a pointer
1062 * to it should be passed to this function every next time.
1063 *
1064 * The @count parameter should contain the number of bytes the caller
1065 * wants to read from the snapshot. It must not be zero.
1066 *
1067 * On success the function returns a positive number. Then, the caller
1068 * is allowed to read up to the returned number of bytes from the memory
1069 * location computed by the data_of() macro. The number returned
1070 * may be smaller than @count, but this only happens if the read would
1071 * cross a page boundary otherwise.
1072 *
1073 * The function returns 0 to indicate the end of data stream condition,
1074 * and a negative number is returned on error. In such cases the
1075 * structure pointed to by @handle is not updated and should not be used
1076 * any more.
1077 */
1078
1079 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1080 {
1081 if (handle->cur > nr_meta_pages + nr_copy_pages)
1082 return 0;
1083
1084 if (!buffer) {
1085 /* This makes the buffer be freed by swsusp_free() */
1086 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1087 if (!buffer)
1088 return -ENOMEM;
1089 }
1090 if (!handle->offset) {
1091 init_header((struct swsusp_info *)buffer);
1092 handle->buffer = buffer;
1093 memory_bm_position_reset(&orig_bm);
1094 memory_bm_position_reset(&copy_bm);
1095 }
1096 if (handle->prev < handle->cur) {
1097 if (handle->cur <= nr_meta_pages) {
1098 memset(buffer, 0, PAGE_SIZE);
1099 pack_pfns(buffer, &orig_bm);
1100 } else {
1101 struct page *page;
1102
1103 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1104 if (PageHighMem(page)) {
1105 /* Highmem pages are copied to the buffer,
1106 * because we can't return with a kmapped
1107 * highmem page (we may not be called again).
1108 */
1109 void *kaddr;
1110
1111 kaddr = kmap_atomic(page, KM_USER0);
1112 memcpy(buffer, kaddr, PAGE_SIZE);
1113 kunmap_atomic(kaddr, KM_USER0);
1114 handle->buffer = buffer;
1115 } else {
1116 handle->buffer = page_address(page);
1117 }
1118 }
1119 handle->prev = handle->cur;
1120 }
1121 handle->buf_offset = handle->cur_offset;
1122 if (handle->cur_offset + count >= PAGE_SIZE) {
1123 count = PAGE_SIZE - handle->cur_offset;
1124 handle->cur_offset = 0;
1125 handle->cur++;
1126 } else {
1127 handle->cur_offset += count;
1128 }
1129 handle->offset += count;
1130 return count;
1131 }
1132
1133 /**
1134 * mark_unsafe_pages - mark the pages that cannot be used for storing
1135 * the image during resume, because they conflict with the pages that
1136 * had been used before suspend
1137 */
1138
1139 static int mark_unsafe_pages(struct memory_bitmap *bm)
1140 {
1141 struct zone *zone;
1142 unsigned long pfn, max_zone_pfn;
1143
1144 /* Clear page flags */
1145 for_each_zone(zone) {
1146 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1147 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1148 if (pfn_valid(pfn))
1149 ClearPageNosaveFree(pfn_to_page(pfn));
1150 }
1151
1152 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1153 memory_bm_position_reset(bm);
1154 do {
1155 pfn = memory_bm_next_pfn(bm);
1156 if (likely(pfn != BM_END_OF_MAP)) {
1157 if (likely(pfn_valid(pfn)))
1158 SetPageNosaveFree(pfn_to_page(pfn));
1159 else
1160 return -EFAULT;
1161 }
1162 } while (pfn != BM_END_OF_MAP);
1163
1164 allocated_unsafe_pages = 0;
1165
1166 return 0;
1167 }
1168
1169 static void
1170 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1171 {
1172 unsigned long pfn;
1173
1174 memory_bm_position_reset(src);
1175 pfn = memory_bm_next_pfn(src);
1176 while (pfn != BM_END_OF_MAP) {
1177 memory_bm_set_bit(dst, pfn);
1178 pfn = memory_bm_next_pfn(src);
1179 }
1180 }
1181
1182 static inline int check_header(struct swsusp_info *info)
1183 {
1184 char *reason = NULL;
1185
1186 if (info->version_code != LINUX_VERSION_CODE)
1187 reason = "kernel version";
1188 if (info->num_physpages != num_physpages)
1189 reason = "memory size";
1190 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1191 reason = "system type";
1192 if (strcmp(info->uts.release,init_utsname()->release))
1193 reason = "kernel release";
1194 if (strcmp(info->uts.version,init_utsname()->version))
1195 reason = "version";
1196 if (strcmp(info->uts.machine,init_utsname()->machine))
1197 reason = "machine";
1198 if (reason) {
1199 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
1200 return -EPERM;
1201 }
1202 return 0;
1203 }
1204
1205 /**
1206 * load header - check the image header and copy data from it
1207 */
1208
1209 static int
1210 load_header(struct swsusp_info *info)
1211 {
1212 int error;
1213
1214 restore_pblist = NULL;
1215 error = check_header(info);
1216 if (!error) {
1217 nr_copy_pages = info->image_pages;
1218 nr_meta_pages = info->pages - info->image_pages - 1;
1219 }
1220 return error;
1221 }
1222
1223 /**
1224 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1225 * the corresponding bit in the memory bitmap @bm
1226 */
1227
1228 static inline void
1229 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1230 {
1231 int j;
1232
1233 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1234 if (unlikely(buf[j] == BM_END_OF_MAP))
1235 break;
1236
1237 memory_bm_set_bit(bm, buf[j]);
1238 }
1239 }
1240
1241 /* List of "safe" pages that may be used to store data loaded from the suspend
1242 * image
1243 */
1244 static struct linked_page *safe_pages_list;
1245
1246 #ifdef CONFIG_HIGHMEM
1247 /* struct highmem_pbe is used for creating the list of highmem pages that
1248 * should be restored atomically during the resume from disk, because the page
1249 * frames they have occupied before the suspend are in use.
1250 */
1251 struct highmem_pbe {
1252 struct page *copy_page; /* data is here now */
1253 struct page *orig_page; /* data was here before the suspend */
1254 struct highmem_pbe *next;
1255 };
1256
1257 /* List of highmem PBEs needed for restoring the highmem pages that were
1258 * allocated before the suspend and included in the suspend image, but have
1259 * also been allocated by the "resume" kernel, so their contents cannot be
1260 * written directly to their "original" page frames.
1261 */
1262 static struct highmem_pbe *highmem_pblist;
1263
1264 /**
1265 * count_highmem_image_pages - compute the number of highmem pages in the
1266 * suspend image. The bits in the memory bitmap @bm that correspond to the
1267 * image pages are assumed to be set.
1268 */
1269
1270 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1271 {
1272 unsigned long pfn;
1273 unsigned int cnt = 0;
1274
1275 memory_bm_position_reset(bm);
1276 pfn = memory_bm_next_pfn(bm);
1277 while (pfn != BM_END_OF_MAP) {
1278 if (PageHighMem(pfn_to_page(pfn)))
1279 cnt++;
1280
1281 pfn = memory_bm_next_pfn(bm);
1282 }
1283 return cnt;
1284 }
1285
1286 /**
1287 * prepare_highmem_image - try to allocate as many highmem pages as
1288 * there are highmem image pages (@nr_highmem_p points to the variable
1289 * containing the number of highmem image pages). The pages that are
1290 * "safe" (ie. will not be overwritten when the suspend image is
1291 * restored) have the corresponding bits set in @bm (it must be
1292 * unitialized).
1293 *
1294 * NOTE: This function should not be called if there are no highmem
1295 * image pages.
1296 */
1297
1298 static unsigned int safe_highmem_pages;
1299
1300 static struct memory_bitmap *safe_highmem_bm;
1301
1302 static int
1303 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1304 {
1305 unsigned int to_alloc;
1306
1307 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1308 return -ENOMEM;
1309
1310 if (get_highmem_buffer(PG_SAFE))
1311 return -ENOMEM;
1312
1313 to_alloc = count_free_highmem_pages();
1314 if (to_alloc > *nr_highmem_p)
1315 to_alloc = *nr_highmem_p;
1316 else
1317 *nr_highmem_p = to_alloc;
1318
1319 safe_highmem_pages = 0;
1320 while (to_alloc-- > 0) {
1321 struct page *page;
1322
1323 page = alloc_page(__GFP_HIGHMEM);
1324 if (!PageNosaveFree(page)) {
1325 /* The page is "safe", set its bit the bitmap */
1326 memory_bm_set_bit(bm, page_to_pfn(page));
1327 safe_highmem_pages++;
1328 }
1329 /* Mark the page as allocated */
1330 SetPageNosave(page);
1331 SetPageNosaveFree(page);
1332 }
1333 memory_bm_position_reset(bm);
1334 safe_highmem_bm = bm;
1335 return 0;
1336 }
1337
1338 /**
1339 * get_highmem_page_buffer - for given highmem image page find the buffer
1340 * that suspend_write_next() should set for its caller to write to.
1341 *
1342 * If the page is to be saved to its "original" page frame or a copy of
1343 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1344 * the copy of the page is to be made in normal memory, so the address of
1345 * the copy is returned.
1346 *
1347 * If @buffer is returned, the caller of suspend_write_next() will write
1348 * the page's contents to @buffer, so they will have to be copied to the
1349 * right location on the next call to suspend_write_next() and it is done
1350 * with the help of copy_last_highmem_page(). For this purpose, if
1351 * @buffer is returned, @last_highmem page is set to the page to which
1352 * the data will have to be copied from @buffer.
1353 */
1354
1355 static struct page *last_highmem_page;
1356
1357 static void *
1358 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1359 {
1360 struct highmem_pbe *pbe;
1361 void *kaddr;
1362
1363 if (PageNosave(page) && PageNosaveFree(page)) {
1364 /* We have allocated the "original" page frame and we can
1365 * use it directly to store the loaded page.
1366 */
1367 last_highmem_page = page;
1368 return buffer;
1369 }
1370 /* The "original" page frame has not been allocated and we have to
1371 * use a "safe" page frame to store the loaded page.
1372 */
1373 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1374 if (!pbe) {
1375 swsusp_free();
1376 return NULL;
1377 }
1378 pbe->orig_page = page;
1379 if (safe_highmem_pages > 0) {
1380 struct page *tmp;
1381
1382 /* Copy of the page will be stored in high memory */
1383 kaddr = buffer;
1384 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1385 safe_highmem_pages--;
1386 last_highmem_page = tmp;
1387 pbe->copy_page = tmp;
1388 } else {
1389 /* Copy of the page will be stored in normal memory */
1390 kaddr = safe_pages_list;
1391 safe_pages_list = safe_pages_list->next;
1392 pbe->copy_page = virt_to_page(kaddr);
1393 }
1394 pbe->next = highmem_pblist;
1395 highmem_pblist = pbe;
1396 return kaddr;
1397 }
1398
1399 /**
1400 * copy_last_highmem_page - copy the contents of a highmem image from
1401 * @buffer, where the caller of snapshot_write_next() has place them,
1402 * to the right location represented by @last_highmem_page .
1403 */
1404
1405 static void copy_last_highmem_page(void)
1406 {
1407 if (last_highmem_page) {
1408 void *dst;
1409
1410 dst = kmap_atomic(last_highmem_page, KM_USER0);
1411 memcpy(dst, buffer, PAGE_SIZE);
1412 kunmap_atomic(dst, KM_USER0);
1413 last_highmem_page = NULL;
1414 }
1415 }
1416
1417 static inline int last_highmem_page_copied(void)
1418 {
1419 return !last_highmem_page;
1420 }
1421
1422 static inline void free_highmem_data(void)
1423 {
1424 if (safe_highmem_bm)
1425 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1426
1427 if (buffer)
1428 free_image_page(buffer, PG_UNSAFE_CLEAR);
1429 }
1430 #else
1431 static inline int get_safe_write_buffer(void) { return 0; }
1432
1433 static unsigned int
1434 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1435
1436 static inline int
1437 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1438 {
1439 return 0;
1440 }
1441
1442 static inline void *
1443 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1444 {
1445 return NULL;
1446 }
1447
1448 static inline void copy_last_highmem_page(void) {}
1449 static inline int last_highmem_page_copied(void) { return 1; }
1450 static inline void free_highmem_data(void) {}
1451 #endif /* CONFIG_HIGHMEM */
1452
1453 /**
1454 * prepare_image - use the memory bitmap @bm to mark the pages that will
1455 * be overwritten in the process of restoring the system memory state
1456 * from the suspend image ("unsafe" pages) and allocate memory for the
1457 * image.
1458 *
1459 * The idea is to allocate a new memory bitmap first and then allocate
1460 * as many pages as needed for the image data, but not to assign these
1461 * pages to specific tasks initially. Instead, we just mark them as
1462 * allocated and create a lists of "safe" pages that will be used
1463 * later. On systems with high memory a list of "safe" highmem pages is
1464 * also created.
1465 */
1466
1467 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1468
1469 static int
1470 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1471 {
1472 unsigned int nr_pages, nr_highmem;
1473 struct linked_page *sp_list, *lp;
1474 int error;
1475
1476 /* If there is no highmem, the buffer will not be necessary */
1477 free_image_page(buffer, PG_UNSAFE_CLEAR);
1478 buffer = NULL;
1479
1480 nr_highmem = count_highmem_image_pages(bm);
1481 error = mark_unsafe_pages(bm);
1482 if (error)
1483 goto Free;
1484
1485 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1486 if (error)
1487 goto Free;
1488
1489 duplicate_memory_bitmap(new_bm, bm);
1490 memory_bm_free(bm, PG_UNSAFE_KEEP);
1491 if (nr_highmem > 0) {
1492 error = prepare_highmem_image(bm, &nr_highmem);
1493 if (error)
1494 goto Free;
1495 }
1496 /* Reserve some safe pages for potential later use.
1497 *
1498 * NOTE: This way we make sure there will be enough safe pages for the
1499 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1500 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1501 */
1502 sp_list = NULL;
1503 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1504 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1505 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1506 while (nr_pages > 0) {
1507 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1508 if (!lp) {
1509 error = -ENOMEM;
1510 goto Free;
1511 }
1512 lp->next = sp_list;
1513 sp_list = lp;
1514 nr_pages--;
1515 }
1516 /* Preallocate memory for the image */
1517 safe_pages_list = NULL;
1518 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1519 while (nr_pages > 0) {
1520 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1521 if (!lp) {
1522 error = -ENOMEM;
1523 goto Free;
1524 }
1525 if (!PageNosaveFree(virt_to_page(lp))) {
1526 /* The page is "safe", add it to the list */
1527 lp->next = safe_pages_list;
1528 safe_pages_list = lp;
1529 }
1530 /* Mark the page as allocated */
1531 SetPageNosave(virt_to_page(lp));
1532 SetPageNosaveFree(virt_to_page(lp));
1533 nr_pages--;
1534 }
1535 /* Free the reserved safe pages so that chain_alloc() can use them */
1536 while (sp_list) {
1537 lp = sp_list->next;
1538 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1539 sp_list = lp;
1540 }
1541 return 0;
1542
1543 Free:
1544 swsusp_free();
1545 return error;
1546 }
1547
1548 /**
1549 * get_buffer - compute the address that snapshot_write_next() should
1550 * set for its caller to write to.
1551 */
1552
1553 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1554 {
1555 struct pbe *pbe;
1556 struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1557
1558 if (PageHighMem(page))
1559 return get_highmem_page_buffer(page, ca);
1560
1561 if (PageNosave(page) && PageNosaveFree(page))
1562 /* We have allocated the "original" page frame and we can
1563 * use it directly to store the loaded page.
1564 */
1565 return page_address(page);
1566
1567 /* The "original" page frame has not been allocated and we have to
1568 * use a "safe" page frame to store the loaded page.
1569 */
1570 pbe = chain_alloc(ca, sizeof(struct pbe));
1571 if (!pbe) {
1572 swsusp_free();
1573 return NULL;
1574 }
1575 pbe->orig_address = page_address(page);
1576 pbe->address = safe_pages_list;
1577 safe_pages_list = safe_pages_list->next;
1578 pbe->next = restore_pblist;
1579 restore_pblist = pbe;
1580 return pbe->address;
1581 }
1582
1583 /**
1584 * snapshot_write_next - used for writing the system memory snapshot.
1585 *
1586 * On the first call to it @handle should point to a zeroed
1587 * snapshot_handle structure. The structure gets updated and a pointer
1588 * to it should be passed to this function every next time.
1589 *
1590 * The @count parameter should contain the number of bytes the caller
1591 * wants to write to the image. It must not be zero.
1592 *
1593 * On success the function returns a positive number. Then, the caller
1594 * is allowed to write up to the returned number of bytes to the memory
1595 * location computed by the data_of() macro. The number returned
1596 * may be smaller than @count, but this only happens if the write would
1597 * cross a page boundary otherwise.
1598 *
1599 * The function returns 0 to indicate the "end of file" condition,
1600 * and a negative number is returned on error. In such cases the
1601 * structure pointed to by @handle is not updated and should not be used
1602 * any more.
1603 */
1604
1605 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1606 {
1607 static struct chain_allocator ca;
1608 int error = 0;
1609
1610 /* Check if we have already loaded the entire image */
1611 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1612 return 0;
1613
1614 if (handle->offset == 0) {
1615 if (!buffer)
1616 /* This makes the buffer be freed by swsusp_free() */
1617 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1618
1619 if (!buffer)
1620 return -ENOMEM;
1621
1622 handle->buffer = buffer;
1623 }
1624 handle->sync_read = 1;
1625 if (handle->prev < handle->cur) {
1626 if (handle->prev == 0) {
1627 error = load_header(buffer);
1628 if (error)
1629 return error;
1630
1631 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1632 if (error)
1633 return error;
1634
1635 } else if (handle->prev <= nr_meta_pages) {
1636 unpack_orig_pfns(buffer, &copy_bm);
1637 if (handle->prev == nr_meta_pages) {
1638 error = prepare_image(&orig_bm, &copy_bm);
1639 if (error)
1640 return error;
1641
1642 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1643 memory_bm_position_reset(&orig_bm);
1644 restore_pblist = NULL;
1645 handle->buffer = get_buffer(&orig_bm, &ca);
1646 handle->sync_read = 0;
1647 if (!handle->buffer)
1648 return -ENOMEM;
1649 }
1650 } else {
1651 copy_last_highmem_page();
1652 handle->buffer = get_buffer(&orig_bm, &ca);
1653 if (handle->buffer != buffer)
1654 handle->sync_read = 0;
1655 }
1656 handle->prev = handle->cur;
1657 }
1658 handle->buf_offset = handle->cur_offset;
1659 if (handle->cur_offset + count >= PAGE_SIZE) {
1660 count = PAGE_SIZE - handle->cur_offset;
1661 handle->cur_offset = 0;
1662 handle->cur++;
1663 } else {
1664 handle->cur_offset += count;
1665 }
1666 handle->offset += count;
1667 return count;
1668 }
1669
1670 /**
1671 * snapshot_write_finalize - must be called after the last call to
1672 * snapshot_write_next() in case the last page in the image happens
1673 * to be a highmem page and its contents should be stored in the
1674 * highmem. Additionally, it releases the memory that will not be
1675 * used any more.
1676 */
1677
1678 void snapshot_write_finalize(struct snapshot_handle *handle)
1679 {
1680 copy_last_highmem_page();
1681 /* Free only if we have loaded the image entirely */
1682 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1683 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1684 free_highmem_data();
1685 }
1686 }
1687
1688 int snapshot_image_loaded(struct snapshot_handle *handle)
1689 {
1690 return !(!nr_copy_pages || !last_highmem_page_copied() ||
1691 handle->cur <= nr_meta_pages + nr_copy_pages);
1692 }
1693
1694 #ifdef CONFIG_HIGHMEM
1695 /* Assumes that @buf is ready and points to a "safe" page */
1696 static inline void
1697 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1698 {
1699 void *kaddr1, *kaddr2;
1700
1701 kaddr1 = kmap_atomic(p1, KM_USER0);
1702 kaddr2 = kmap_atomic(p2, KM_USER1);
1703 memcpy(buf, kaddr1, PAGE_SIZE);
1704 memcpy(kaddr1, kaddr2, PAGE_SIZE);
1705 memcpy(kaddr2, buf, PAGE_SIZE);
1706 kunmap_atomic(kaddr1, KM_USER0);
1707 kunmap_atomic(kaddr2, KM_USER1);
1708 }
1709
1710 /**
1711 * restore_highmem - for each highmem page that was allocated before
1712 * the suspend and included in the suspend image, and also has been
1713 * allocated by the "resume" kernel swap its current (ie. "before
1714 * resume") contents with the previous (ie. "before suspend") one.
1715 *
1716 * If the resume eventually fails, we can call this function once
1717 * again and restore the "before resume" highmem state.
1718 */
1719
1720 int restore_highmem(void)
1721 {
1722 struct highmem_pbe *pbe = highmem_pblist;
1723 void *buf;
1724
1725 if (!pbe)
1726 return 0;
1727
1728 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1729 if (!buf)
1730 return -ENOMEM;
1731
1732 while (pbe) {
1733 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1734 pbe = pbe->next;
1735 }
1736 free_image_page(buf, PG_UNSAFE_CLEAR);
1737 return 0;
1738 }
1739 #endif /* CONFIG_HIGHMEM */
This page took 0.068621 seconds and 5 git commands to generate.