Merge branch 'txq_max_rate'
[deliverable/linux.git] / kernel / power / swap.c
1 /*
2 * linux/kernel/power/swap.c
3 *
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
6 *
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10 *
11 * This file is released under the GPLv2.
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG "S1SUSPEND"
38
39 /*
40 * The swap map is a data structure used for keeping track of each page
41 * written to a swap partition. It consists of many swap_map_page
42 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
43 * These structures are stored on the swap and linked together with the
44 * help of the .next_swap member.
45 *
46 * The swap map is created during suspend. The swap map pages are
47 * allocated and populated one at a time, so we only need one memory
48 * page to set up the entire structure.
49 *
50 * During resume we pick up all swap_map_page structures into a list.
51 */
52
53 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
54
55 /*
56 * Number of free pages that are not high.
57 */
58 static inline unsigned long low_free_pages(void)
59 {
60 return nr_free_pages() - nr_free_highpages();
61 }
62
63 /*
64 * Number of pages required to be kept free while writing the image. Always
65 * half of all available low pages before the writing starts.
66 */
67 static inline unsigned long reqd_free_pages(void)
68 {
69 return low_free_pages() / 2;
70 }
71
72 struct swap_map_page {
73 sector_t entries[MAP_PAGE_ENTRIES];
74 sector_t next_swap;
75 };
76
77 struct swap_map_page_list {
78 struct swap_map_page *map;
79 struct swap_map_page_list *next;
80 };
81
82 /**
83 * The swap_map_handle structure is used for handling swap in
84 * a file-alike way
85 */
86
87 struct swap_map_handle {
88 struct swap_map_page *cur;
89 struct swap_map_page_list *maps;
90 sector_t cur_swap;
91 sector_t first_sector;
92 unsigned int k;
93 unsigned long reqd_free_pages;
94 u32 crc32;
95 };
96
97 struct swsusp_header {
98 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
99 sizeof(u32)];
100 u32 crc32;
101 sector_t image;
102 unsigned int flags; /* Flags to pass to the "boot" kernel */
103 char orig_sig[10];
104 char sig[10];
105 } __packed;
106
107 static struct swsusp_header *swsusp_header;
108
109 /**
110 * The following functions are used for tracing the allocated
111 * swap pages, so that they can be freed in case of an error.
112 */
113
114 struct swsusp_extent {
115 struct rb_node node;
116 unsigned long start;
117 unsigned long end;
118 };
119
120 static struct rb_root swsusp_extents = RB_ROOT;
121
122 static int swsusp_extents_insert(unsigned long swap_offset)
123 {
124 struct rb_node **new = &(swsusp_extents.rb_node);
125 struct rb_node *parent = NULL;
126 struct swsusp_extent *ext;
127
128 /* Figure out where to put the new node */
129 while (*new) {
130 ext = rb_entry(*new, struct swsusp_extent, node);
131 parent = *new;
132 if (swap_offset < ext->start) {
133 /* Try to merge */
134 if (swap_offset == ext->start - 1) {
135 ext->start--;
136 return 0;
137 }
138 new = &((*new)->rb_left);
139 } else if (swap_offset > ext->end) {
140 /* Try to merge */
141 if (swap_offset == ext->end + 1) {
142 ext->end++;
143 return 0;
144 }
145 new = &((*new)->rb_right);
146 } else {
147 /* It already is in the tree */
148 return -EINVAL;
149 }
150 }
151 /* Add the new node and rebalance the tree. */
152 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
153 if (!ext)
154 return -ENOMEM;
155
156 ext->start = swap_offset;
157 ext->end = swap_offset;
158 rb_link_node(&ext->node, parent, new);
159 rb_insert_color(&ext->node, &swsusp_extents);
160 return 0;
161 }
162
163 /**
164 * alloc_swapdev_block - allocate a swap page and register that it has
165 * been allocated, so that it can be freed in case of an error.
166 */
167
168 sector_t alloc_swapdev_block(int swap)
169 {
170 unsigned long offset;
171
172 offset = swp_offset(get_swap_page_of_type(swap));
173 if (offset) {
174 if (swsusp_extents_insert(offset))
175 swap_free(swp_entry(swap, offset));
176 else
177 return swapdev_block(swap, offset);
178 }
179 return 0;
180 }
181
182 /**
183 * free_all_swap_pages - free swap pages allocated for saving image data.
184 * It also frees the extents used to register which swap entries had been
185 * allocated.
186 */
187
188 void free_all_swap_pages(int swap)
189 {
190 struct rb_node *node;
191
192 while ((node = swsusp_extents.rb_node)) {
193 struct swsusp_extent *ext;
194 unsigned long offset;
195
196 ext = container_of(node, struct swsusp_extent, node);
197 rb_erase(node, &swsusp_extents);
198 for (offset = ext->start; offset <= ext->end; offset++)
199 swap_free(swp_entry(swap, offset));
200
201 kfree(ext);
202 }
203 }
204
205 int swsusp_swap_in_use(void)
206 {
207 return (swsusp_extents.rb_node != NULL);
208 }
209
210 /*
211 * General things
212 */
213
214 static unsigned short root_swap = 0xffff;
215 struct block_device *hib_resume_bdev;
216
217 /*
218 * Saving part
219 */
220
221 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
222 {
223 int error;
224
225 hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
226 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
227 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
228 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
229 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
230 swsusp_header->image = handle->first_sector;
231 swsusp_header->flags = flags;
232 if (flags & SF_CRC32_MODE)
233 swsusp_header->crc32 = handle->crc32;
234 error = hib_bio_write_page(swsusp_resume_block,
235 swsusp_header, NULL);
236 } else {
237 printk(KERN_ERR "PM: Swap header not found!\n");
238 error = -ENODEV;
239 }
240 return error;
241 }
242
243 /**
244 * swsusp_swap_check - check if the resume device is a swap device
245 * and get its index (if so)
246 *
247 * This is called before saving image
248 */
249 static int swsusp_swap_check(void)
250 {
251 int res;
252
253 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
254 &hib_resume_bdev);
255 if (res < 0)
256 return res;
257
258 root_swap = res;
259 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
260 if (res)
261 return res;
262
263 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
264 if (res < 0)
265 blkdev_put(hib_resume_bdev, FMODE_WRITE);
266
267 return res;
268 }
269
270 /**
271 * write_page - Write one page to given swap location.
272 * @buf: Address we're writing.
273 * @offset: Offset of the swap page we're writing to.
274 * @bio_chain: Link the next write BIO here
275 */
276
277 static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
278 {
279 void *src;
280 int ret;
281
282 if (!offset)
283 return -ENOSPC;
284
285 if (bio_chain) {
286 src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
287 __GFP_NORETRY);
288 if (src) {
289 copy_page(src, buf);
290 } else {
291 ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
292 if (ret)
293 return ret;
294 src = (void *)__get_free_page(__GFP_WAIT |
295 __GFP_NOWARN |
296 __GFP_NORETRY);
297 if (src) {
298 copy_page(src, buf);
299 } else {
300 WARN_ON_ONCE(1);
301 bio_chain = NULL; /* Go synchronous */
302 src = buf;
303 }
304 }
305 } else {
306 src = buf;
307 }
308 return hib_bio_write_page(offset, src, bio_chain);
309 }
310
311 static void release_swap_writer(struct swap_map_handle *handle)
312 {
313 if (handle->cur)
314 free_page((unsigned long)handle->cur);
315 handle->cur = NULL;
316 }
317
318 static int get_swap_writer(struct swap_map_handle *handle)
319 {
320 int ret;
321
322 ret = swsusp_swap_check();
323 if (ret) {
324 if (ret != -ENOSPC)
325 printk(KERN_ERR "PM: Cannot find swap device, try "
326 "swapon -a.\n");
327 return ret;
328 }
329 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
330 if (!handle->cur) {
331 ret = -ENOMEM;
332 goto err_close;
333 }
334 handle->cur_swap = alloc_swapdev_block(root_swap);
335 if (!handle->cur_swap) {
336 ret = -ENOSPC;
337 goto err_rel;
338 }
339 handle->k = 0;
340 handle->reqd_free_pages = reqd_free_pages();
341 handle->first_sector = handle->cur_swap;
342 return 0;
343 err_rel:
344 release_swap_writer(handle);
345 err_close:
346 swsusp_close(FMODE_WRITE);
347 return ret;
348 }
349
350 static int swap_write_page(struct swap_map_handle *handle, void *buf,
351 struct bio **bio_chain)
352 {
353 int error = 0;
354 sector_t offset;
355
356 if (!handle->cur)
357 return -EINVAL;
358 offset = alloc_swapdev_block(root_swap);
359 error = write_page(buf, offset, bio_chain);
360 if (error)
361 return error;
362 handle->cur->entries[handle->k++] = offset;
363 if (handle->k >= MAP_PAGE_ENTRIES) {
364 offset = alloc_swapdev_block(root_swap);
365 if (!offset)
366 return -ENOSPC;
367 handle->cur->next_swap = offset;
368 error = write_page(handle->cur, handle->cur_swap, bio_chain);
369 if (error)
370 goto out;
371 clear_page(handle->cur);
372 handle->cur_swap = offset;
373 handle->k = 0;
374
375 if (bio_chain && low_free_pages() <= handle->reqd_free_pages) {
376 error = hib_wait_on_bio_chain(bio_chain);
377 if (error)
378 goto out;
379 /*
380 * Recalculate the number of required free pages, to
381 * make sure we never take more than half.
382 */
383 handle->reqd_free_pages = reqd_free_pages();
384 }
385 }
386 out:
387 return error;
388 }
389
390 static int flush_swap_writer(struct swap_map_handle *handle)
391 {
392 if (handle->cur && handle->cur_swap)
393 return write_page(handle->cur, handle->cur_swap, NULL);
394 else
395 return -EINVAL;
396 }
397
398 static int swap_writer_finish(struct swap_map_handle *handle,
399 unsigned int flags, int error)
400 {
401 if (!error) {
402 flush_swap_writer(handle);
403 printk(KERN_INFO "PM: S");
404 error = mark_swapfiles(handle, flags);
405 printk("|\n");
406 }
407
408 if (error)
409 free_all_swap_pages(root_swap);
410 release_swap_writer(handle);
411 swsusp_close(FMODE_WRITE);
412
413 return error;
414 }
415
416 /* We need to remember how much compressed data we need to read. */
417 #define LZO_HEADER sizeof(size_t)
418
419 /* Number of pages/bytes we'll compress at one time. */
420 #define LZO_UNC_PAGES 32
421 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
422
423 /* Number of pages/bytes we need for compressed data (worst case). */
424 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
425 LZO_HEADER, PAGE_SIZE)
426 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
427
428 /* Maximum number of threads for compression/decompression. */
429 #define LZO_THREADS 3
430
431 /* Minimum/maximum number of pages for read buffering. */
432 #define LZO_MIN_RD_PAGES 1024
433 #define LZO_MAX_RD_PAGES 8192
434
435
436 /**
437 * save_image - save the suspend image data
438 */
439
440 static int save_image(struct swap_map_handle *handle,
441 struct snapshot_handle *snapshot,
442 unsigned int nr_to_write)
443 {
444 unsigned int m;
445 int ret;
446 int nr_pages;
447 int err2;
448 struct bio *bio;
449 ktime_t start;
450 ktime_t stop;
451
452 printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
453 nr_to_write);
454 m = nr_to_write / 10;
455 if (!m)
456 m = 1;
457 nr_pages = 0;
458 bio = NULL;
459 start = ktime_get();
460 while (1) {
461 ret = snapshot_read_next(snapshot);
462 if (ret <= 0)
463 break;
464 ret = swap_write_page(handle, data_of(*snapshot), &bio);
465 if (ret)
466 break;
467 if (!(nr_pages % m))
468 printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
469 nr_pages / m * 10);
470 nr_pages++;
471 }
472 err2 = hib_wait_on_bio_chain(&bio);
473 stop = ktime_get();
474 if (!ret)
475 ret = err2;
476 if (!ret)
477 printk(KERN_INFO "PM: Image saving done.\n");
478 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
479 return ret;
480 }
481
482 /**
483 * Structure used for CRC32.
484 */
485 struct crc_data {
486 struct task_struct *thr; /* thread */
487 atomic_t ready; /* ready to start flag */
488 atomic_t stop; /* ready to stop flag */
489 unsigned run_threads; /* nr current threads */
490 wait_queue_head_t go; /* start crc update */
491 wait_queue_head_t done; /* crc update done */
492 u32 *crc32; /* points to handle's crc32 */
493 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
494 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
495 };
496
497 /**
498 * CRC32 update function that runs in its own thread.
499 */
500 static int crc32_threadfn(void *data)
501 {
502 struct crc_data *d = data;
503 unsigned i;
504
505 while (1) {
506 wait_event(d->go, atomic_read(&d->ready) ||
507 kthread_should_stop());
508 if (kthread_should_stop()) {
509 d->thr = NULL;
510 atomic_set(&d->stop, 1);
511 wake_up(&d->done);
512 break;
513 }
514 atomic_set(&d->ready, 0);
515
516 for (i = 0; i < d->run_threads; i++)
517 *d->crc32 = crc32_le(*d->crc32,
518 d->unc[i], *d->unc_len[i]);
519 atomic_set(&d->stop, 1);
520 wake_up(&d->done);
521 }
522 return 0;
523 }
524 /**
525 * Structure used for LZO data compression.
526 */
527 struct cmp_data {
528 struct task_struct *thr; /* thread */
529 atomic_t ready; /* ready to start flag */
530 atomic_t stop; /* ready to stop flag */
531 int ret; /* return code */
532 wait_queue_head_t go; /* start compression */
533 wait_queue_head_t done; /* compression done */
534 size_t unc_len; /* uncompressed length */
535 size_t cmp_len; /* compressed length */
536 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
537 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
538 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
539 };
540
541 /**
542 * Compression function that runs in its own thread.
543 */
544 static int lzo_compress_threadfn(void *data)
545 {
546 struct cmp_data *d = data;
547
548 while (1) {
549 wait_event(d->go, atomic_read(&d->ready) ||
550 kthread_should_stop());
551 if (kthread_should_stop()) {
552 d->thr = NULL;
553 d->ret = -1;
554 atomic_set(&d->stop, 1);
555 wake_up(&d->done);
556 break;
557 }
558 atomic_set(&d->ready, 0);
559
560 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
561 d->cmp + LZO_HEADER, &d->cmp_len,
562 d->wrk);
563 atomic_set(&d->stop, 1);
564 wake_up(&d->done);
565 }
566 return 0;
567 }
568
569 /**
570 * save_image_lzo - Save the suspend image data compressed with LZO.
571 * @handle: Swap map handle to use for saving the image.
572 * @snapshot: Image to read data from.
573 * @nr_to_write: Number of pages to save.
574 */
575 static int save_image_lzo(struct swap_map_handle *handle,
576 struct snapshot_handle *snapshot,
577 unsigned int nr_to_write)
578 {
579 unsigned int m;
580 int ret = 0;
581 int nr_pages;
582 int err2;
583 struct bio *bio;
584 ktime_t start;
585 ktime_t stop;
586 size_t off;
587 unsigned thr, run_threads, nr_threads;
588 unsigned char *page = NULL;
589 struct cmp_data *data = NULL;
590 struct crc_data *crc = NULL;
591
592 /*
593 * We'll limit the number of threads for compression to limit memory
594 * footprint.
595 */
596 nr_threads = num_online_cpus() - 1;
597 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
598
599 page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
600 if (!page) {
601 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
602 ret = -ENOMEM;
603 goto out_clean;
604 }
605
606 data = vmalloc(sizeof(*data) * nr_threads);
607 if (!data) {
608 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
609 ret = -ENOMEM;
610 goto out_clean;
611 }
612 for (thr = 0; thr < nr_threads; thr++)
613 memset(&data[thr], 0, offsetof(struct cmp_data, go));
614
615 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
616 if (!crc) {
617 printk(KERN_ERR "PM: Failed to allocate crc\n");
618 ret = -ENOMEM;
619 goto out_clean;
620 }
621 memset(crc, 0, offsetof(struct crc_data, go));
622
623 /*
624 * Start the compression threads.
625 */
626 for (thr = 0; thr < nr_threads; thr++) {
627 init_waitqueue_head(&data[thr].go);
628 init_waitqueue_head(&data[thr].done);
629
630 data[thr].thr = kthread_run(lzo_compress_threadfn,
631 &data[thr],
632 "image_compress/%u", thr);
633 if (IS_ERR(data[thr].thr)) {
634 data[thr].thr = NULL;
635 printk(KERN_ERR
636 "PM: Cannot start compression threads\n");
637 ret = -ENOMEM;
638 goto out_clean;
639 }
640 }
641
642 /*
643 * Start the CRC32 thread.
644 */
645 init_waitqueue_head(&crc->go);
646 init_waitqueue_head(&crc->done);
647
648 handle->crc32 = 0;
649 crc->crc32 = &handle->crc32;
650 for (thr = 0; thr < nr_threads; thr++) {
651 crc->unc[thr] = data[thr].unc;
652 crc->unc_len[thr] = &data[thr].unc_len;
653 }
654
655 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
656 if (IS_ERR(crc->thr)) {
657 crc->thr = NULL;
658 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
659 ret = -ENOMEM;
660 goto out_clean;
661 }
662
663 /*
664 * Adjust the number of required free pages after all allocations have
665 * been done. We don't want to run out of pages when writing.
666 */
667 handle->reqd_free_pages = reqd_free_pages();
668
669 printk(KERN_INFO
670 "PM: Using %u thread(s) for compression.\n"
671 "PM: Compressing and saving image data (%u pages)...\n",
672 nr_threads, nr_to_write);
673 m = nr_to_write / 10;
674 if (!m)
675 m = 1;
676 nr_pages = 0;
677 bio = NULL;
678 start = ktime_get();
679 for (;;) {
680 for (thr = 0; thr < nr_threads; thr++) {
681 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
682 ret = snapshot_read_next(snapshot);
683 if (ret < 0)
684 goto out_finish;
685
686 if (!ret)
687 break;
688
689 memcpy(data[thr].unc + off,
690 data_of(*snapshot), PAGE_SIZE);
691
692 if (!(nr_pages % m))
693 printk(KERN_INFO
694 "PM: Image saving progress: "
695 "%3d%%\n",
696 nr_pages / m * 10);
697 nr_pages++;
698 }
699 if (!off)
700 break;
701
702 data[thr].unc_len = off;
703
704 atomic_set(&data[thr].ready, 1);
705 wake_up(&data[thr].go);
706 }
707
708 if (!thr)
709 break;
710
711 crc->run_threads = thr;
712 atomic_set(&crc->ready, 1);
713 wake_up(&crc->go);
714
715 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
716 wait_event(data[thr].done,
717 atomic_read(&data[thr].stop));
718 atomic_set(&data[thr].stop, 0);
719
720 ret = data[thr].ret;
721
722 if (ret < 0) {
723 printk(KERN_ERR "PM: LZO compression failed\n");
724 goto out_finish;
725 }
726
727 if (unlikely(!data[thr].cmp_len ||
728 data[thr].cmp_len >
729 lzo1x_worst_compress(data[thr].unc_len))) {
730 printk(KERN_ERR
731 "PM: Invalid LZO compressed length\n");
732 ret = -1;
733 goto out_finish;
734 }
735
736 *(size_t *)data[thr].cmp = data[thr].cmp_len;
737
738 /*
739 * Given we are writing one page at a time to disk, we
740 * copy that much from the buffer, although the last
741 * bit will likely be smaller than full page. This is
742 * OK - we saved the length of the compressed data, so
743 * any garbage at the end will be discarded when we
744 * read it.
745 */
746 for (off = 0;
747 off < LZO_HEADER + data[thr].cmp_len;
748 off += PAGE_SIZE) {
749 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
750
751 ret = swap_write_page(handle, page, &bio);
752 if (ret)
753 goto out_finish;
754 }
755 }
756
757 wait_event(crc->done, atomic_read(&crc->stop));
758 atomic_set(&crc->stop, 0);
759 }
760
761 out_finish:
762 err2 = hib_wait_on_bio_chain(&bio);
763 stop = ktime_get();
764 if (!ret)
765 ret = err2;
766 if (!ret)
767 printk(KERN_INFO "PM: Image saving done.\n");
768 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
769 out_clean:
770 if (crc) {
771 if (crc->thr)
772 kthread_stop(crc->thr);
773 kfree(crc);
774 }
775 if (data) {
776 for (thr = 0; thr < nr_threads; thr++)
777 if (data[thr].thr)
778 kthread_stop(data[thr].thr);
779 vfree(data);
780 }
781 if (page) free_page((unsigned long)page);
782
783 return ret;
784 }
785
786 /**
787 * enough_swap - Make sure we have enough swap to save the image.
788 *
789 * Returns TRUE or FALSE after checking the total amount of swap
790 * space avaiable from the resume partition.
791 */
792
793 static int enough_swap(unsigned int nr_pages, unsigned int flags)
794 {
795 unsigned int free_swap = count_swap_pages(root_swap, 1);
796 unsigned int required;
797
798 pr_debug("PM: Free swap pages: %u\n", free_swap);
799
800 required = PAGES_FOR_IO + nr_pages;
801 return free_swap > required;
802 }
803
804 /**
805 * swsusp_write - Write entire image and metadata.
806 * @flags: flags to pass to the "boot" kernel in the image header
807 *
808 * It is important _NOT_ to umount filesystems at this point. We want
809 * them synced (in case something goes wrong) but we DO not want to mark
810 * filesystem clean: it is not. (And it does not matter, if we resume
811 * correctly, we'll mark system clean, anyway.)
812 */
813
814 int swsusp_write(unsigned int flags)
815 {
816 struct swap_map_handle handle;
817 struct snapshot_handle snapshot;
818 struct swsusp_info *header;
819 unsigned long pages;
820 int error;
821
822 pages = snapshot_get_image_size();
823 error = get_swap_writer(&handle);
824 if (error) {
825 printk(KERN_ERR "PM: Cannot get swap writer\n");
826 return error;
827 }
828 if (flags & SF_NOCOMPRESS_MODE) {
829 if (!enough_swap(pages, flags)) {
830 printk(KERN_ERR "PM: Not enough free swap\n");
831 error = -ENOSPC;
832 goto out_finish;
833 }
834 }
835 memset(&snapshot, 0, sizeof(struct snapshot_handle));
836 error = snapshot_read_next(&snapshot);
837 if (error < PAGE_SIZE) {
838 if (error >= 0)
839 error = -EFAULT;
840
841 goto out_finish;
842 }
843 header = (struct swsusp_info *)data_of(snapshot);
844 error = swap_write_page(&handle, header, NULL);
845 if (!error) {
846 error = (flags & SF_NOCOMPRESS_MODE) ?
847 save_image(&handle, &snapshot, pages - 1) :
848 save_image_lzo(&handle, &snapshot, pages - 1);
849 }
850 out_finish:
851 error = swap_writer_finish(&handle, flags, error);
852 return error;
853 }
854
855 /**
856 * The following functions allow us to read data using a swap map
857 * in a file-alike way
858 */
859
860 static void release_swap_reader(struct swap_map_handle *handle)
861 {
862 struct swap_map_page_list *tmp;
863
864 while (handle->maps) {
865 if (handle->maps->map)
866 free_page((unsigned long)handle->maps->map);
867 tmp = handle->maps;
868 handle->maps = handle->maps->next;
869 kfree(tmp);
870 }
871 handle->cur = NULL;
872 }
873
874 static int get_swap_reader(struct swap_map_handle *handle,
875 unsigned int *flags_p)
876 {
877 int error;
878 struct swap_map_page_list *tmp, *last;
879 sector_t offset;
880
881 *flags_p = swsusp_header->flags;
882
883 if (!swsusp_header->image) /* how can this happen? */
884 return -EINVAL;
885
886 handle->cur = NULL;
887 last = handle->maps = NULL;
888 offset = swsusp_header->image;
889 while (offset) {
890 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
891 if (!tmp) {
892 release_swap_reader(handle);
893 return -ENOMEM;
894 }
895 memset(tmp, 0, sizeof(*tmp));
896 if (!handle->maps)
897 handle->maps = tmp;
898 if (last)
899 last->next = tmp;
900 last = tmp;
901
902 tmp->map = (struct swap_map_page *)
903 __get_free_page(__GFP_WAIT | __GFP_HIGH);
904 if (!tmp->map) {
905 release_swap_reader(handle);
906 return -ENOMEM;
907 }
908
909 error = hib_bio_read_page(offset, tmp->map, NULL);
910 if (error) {
911 release_swap_reader(handle);
912 return error;
913 }
914 offset = tmp->map->next_swap;
915 }
916 handle->k = 0;
917 handle->cur = handle->maps->map;
918 return 0;
919 }
920
921 static int swap_read_page(struct swap_map_handle *handle, void *buf,
922 struct bio **bio_chain)
923 {
924 sector_t offset;
925 int error;
926 struct swap_map_page_list *tmp;
927
928 if (!handle->cur)
929 return -EINVAL;
930 offset = handle->cur->entries[handle->k];
931 if (!offset)
932 return -EFAULT;
933 error = hib_bio_read_page(offset, buf, bio_chain);
934 if (error)
935 return error;
936 if (++handle->k >= MAP_PAGE_ENTRIES) {
937 handle->k = 0;
938 free_page((unsigned long)handle->maps->map);
939 tmp = handle->maps;
940 handle->maps = handle->maps->next;
941 kfree(tmp);
942 if (!handle->maps)
943 release_swap_reader(handle);
944 else
945 handle->cur = handle->maps->map;
946 }
947 return error;
948 }
949
950 static int swap_reader_finish(struct swap_map_handle *handle)
951 {
952 release_swap_reader(handle);
953
954 return 0;
955 }
956
957 /**
958 * load_image - load the image using the swap map handle
959 * @handle and the snapshot handle @snapshot
960 * (assume there are @nr_pages pages to load)
961 */
962
963 static int load_image(struct swap_map_handle *handle,
964 struct snapshot_handle *snapshot,
965 unsigned int nr_to_read)
966 {
967 unsigned int m;
968 int ret = 0;
969 ktime_t start;
970 ktime_t stop;
971 struct bio *bio;
972 int err2;
973 unsigned nr_pages;
974
975 printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
976 nr_to_read);
977 m = nr_to_read / 10;
978 if (!m)
979 m = 1;
980 nr_pages = 0;
981 bio = NULL;
982 start = ktime_get();
983 for ( ; ; ) {
984 ret = snapshot_write_next(snapshot);
985 if (ret <= 0)
986 break;
987 ret = swap_read_page(handle, data_of(*snapshot), &bio);
988 if (ret)
989 break;
990 if (snapshot->sync_read)
991 ret = hib_wait_on_bio_chain(&bio);
992 if (ret)
993 break;
994 if (!(nr_pages % m))
995 printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
996 nr_pages / m * 10);
997 nr_pages++;
998 }
999 err2 = hib_wait_on_bio_chain(&bio);
1000 stop = ktime_get();
1001 if (!ret)
1002 ret = err2;
1003 if (!ret) {
1004 printk(KERN_INFO "PM: Image loading done.\n");
1005 snapshot_write_finalize(snapshot);
1006 if (!snapshot_image_loaded(snapshot))
1007 ret = -ENODATA;
1008 }
1009 swsusp_show_speed(start, stop, nr_to_read, "Read");
1010 return ret;
1011 }
1012
1013 /**
1014 * Structure used for LZO data decompression.
1015 */
1016 struct dec_data {
1017 struct task_struct *thr; /* thread */
1018 atomic_t ready; /* ready to start flag */
1019 atomic_t stop; /* ready to stop flag */
1020 int ret; /* return code */
1021 wait_queue_head_t go; /* start decompression */
1022 wait_queue_head_t done; /* decompression done */
1023 size_t unc_len; /* uncompressed length */
1024 size_t cmp_len; /* compressed length */
1025 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1026 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1027 };
1028
1029 /**
1030 * Deompression function that runs in its own thread.
1031 */
1032 static int lzo_decompress_threadfn(void *data)
1033 {
1034 struct dec_data *d = data;
1035
1036 while (1) {
1037 wait_event(d->go, atomic_read(&d->ready) ||
1038 kthread_should_stop());
1039 if (kthread_should_stop()) {
1040 d->thr = NULL;
1041 d->ret = -1;
1042 atomic_set(&d->stop, 1);
1043 wake_up(&d->done);
1044 break;
1045 }
1046 atomic_set(&d->ready, 0);
1047
1048 d->unc_len = LZO_UNC_SIZE;
1049 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1050 d->unc, &d->unc_len);
1051 atomic_set(&d->stop, 1);
1052 wake_up(&d->done);
1053 }
1054 return 0;
1055 }
1056
1057 /**
1058 * load_image_lzo - Load compressed image data and decompress them with LZO.
1059 * @handle: Swap map handle to use for loading data.
1060 * @snapshot: Image to copy uncompressed data into.
1061 * @nr_to_read: Number of pages to load.
1062 */
1063 static int load_image_lzo(struct swap_map_handle *handle,
1064 struct snapshot_handle *snapshot,
1065 unsigned int nr_to_read)
1066 {
1067 unsigned int m;
1068 int ret = 0;
1069 int eof = 0;
1070 struct bio *bio;
1071 ktime_t start;
1072 ktime_t stop;
1073 unsigned nr_pages;
1074 size_t off;
1075 unsigned i, thr, run_threads, nr_threads;
1076 unsigned ring = 0, pg = 0, ring_size = 0,
1077 have = 0, want, need, asked = 0;
1078 unsigned long read_pages = 0;
1079 unsigned char **page = NULL;
1080 struct dec_data *data = NULL;
1081 struct crc_data *crc = NULL;
1082
1083 /*
1084 * We'll limit the number of threads for decompression to limit memory
1085 * footprint.
1086 */
1087 nr_threads = num_online_cpus() - 1;
1088 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1089
1090 page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1091 if (!page) {
1092 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1093 ret = -ENOMEM;
1094 goto out_clean;
1095 }
1096
1097 data = vmalloc(sizeof(*data) * nr_threads);
1098 if (!data) {
1099 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1100 ret = -ENOMEM;
1101 goto out_clean;
1102 }
1103 for (thr = 0; thr < nr_threads; thr++)
1104 memset(&data[thr], 0, offsetof(struct dec_data, go));
1105
1106 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1107 if (!crc) {
1108 printk(KERN_ERR "PM: Failed to allocate crc\n");
1109 ret = -ENOMEM;
1110 goto out_clean;
1111 }
1112 memset(crc, 0, offsetof(struct crc_data, go));
1113
1114 /*
1115 * Start the decompression threads.
1116 */
1117 for (thr = 0; thr < nr_threads; thr++) {
1118 init_waitqueue_head(&data[thr].go);
1119 init_waitqueue_head(&data[thr].done);
1120
1121 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1122 &data[thr],
1123 "image_decompress/%u", thr);
1124 if (IS_ERR(data[thr].thr)) {
1125 data[thr].thr = NULL;
1126 printk(KERN_ERR
1127 "PM: Cannot start decompression threads\n");
1128 ret = -ENOMEM;
1129 goto out_clean;
1130 }
1131 }
1132
1133 /*
1134 * Start the CRC32 thread.
1135 */
1136 init_waitqueue_head(&crc->go);
1137 init_waitqueue_head(&crc->done);
1138
1139 handle->crc32 = 0;
1140 crc->crc32 = &handle->crc32;
1141 for (thr = 0; thr < nr_threads; thr++) {
1142 crc->unc[thr] = data[thr].unc;
1143 crc->unc_len[thr] = &data[thr].unc_len;
1144 }
1145
1146 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1147 if (IS_ERR(crc->thr)) {
1148 crc->thr = NULL;
1149 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1150 ret = -ENOMEM;
1151 goto out_clean;
1152 }
1153
1154 /*
1155 * Set the number of pages for read buffering.
1156 * This is complete guesswork, because we'll only know the real
1157 * picture once prepare_image() is called, which is much later on
1158 * during the image load phase. We'll assume the worst case and
1159 * say that none of the image pages are from high memory.
1160 */
1161 if (low_free_pages() > snapshot_get_image_size())
1162 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1163 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1164
1165 for (i = 0; i < read_pages; i++) {
1166 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1167 __GFP_WAIT | __GFP_HIGH :
1168 __GFP_WAIT | __GFP_NOWARN |
1169 __GFP_NORETRY);
1170
1171 if (!page[i]) {
1172 if (i < LZO_CMP_PAGES) {
1173 ring_size = i;
1174 printk(KERN_ERR
1175 "PM: Failed to allocate LZO pages\n");
1176 ret = -ENOMEM;
1177 goto out_clean;
1178 } else {
1179 break;
1180 }
1181 }
1182 }
1183 want = ring_size = i;
1184
1185 printk(KERN_INFO
1186 "PM: Using %u thread(s) for decompression.\n"
1187 "PM: Loading and decompressing image data (%u pages)...\n",
1188 nr_threads, nr_to_read);
1189 m = nr_to_read / 10;
1190 if (!m)
1191 m = 1;
1192 nr_pages = 0;
1193 bio = NULL;
1194 start = ktime_get();
1195
1196 ret = snapshot_write_next(snapshot);
1197 if (ret <= 0)
1198 goto out_finish;
1199
1200 for(;;) {
1201 for (i = 0; !eof && i < want; i++) {
1202 ret = swap_read_page(handle, page[ring], &bio);
1203 if (ret) {
1204 /*
1205 * On real read error, finish. On end of data,
1206 * set EOF flag and just exit the read loop.
1207 */
1208 if (handle->cur &&
1209 handle->cur->entries[handle->k]) {
1210 goto out_finish;
1211 } else {
1212 eof = 1;
1213 break;
1214 }
1215 }
1216 if (++ring >= ring_size)
1217 ring = 0;
1218 }
1219 asked += i;
1220 want -= i;
1221
1222 /*
1223 * We are out of data, wait for some more.
1224 */
1225 if (!have) {
1226 if (!asked)
1227 break;
1228
1229 ret = hib_wait_on_bio_chain(&bio);
1230 if (ret)
1231 goto out_finish;
1232 have += asked;
1233 asked = 0;
1234 if (eof)
1235 eof = 2;
1236 }
1237
1238 if (crc->run_threads) {
1239 wait_event(crc->done, atomic_read(&crc->stop));
1240 atomic_set(&crc->stop, 0);
1241 crc->run_threads = 0;
1242 }
1243
1244 for (thr = 0; have && thr < nr_threads; thr++) {
1245 data[thr].cmp_len = *(size_t *)page[pg];
1246 if (unlikely(!data[thr].cmp_len ||
1247 data[thr].cmp_len >
1248 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1249 printk(KERN_ERR
1250 "PM: Invalid LZO compressed length\n");
1251 ret = -1;
1252 goto out_finish;
1253 }
1254
1255 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1256 PAGE_SIZE);
1257 if (need > have) {
1258 if (eof > 1) {
1259 ret = -1;
1260 goto out_finish;
1261 }
1262 break;
1263 }
1264
1265 for (off = 0;
1266 off < LZO_HEADER + data[thr].cmp_len;
1267 off += PAGE_SIZE) {
1268 memcpy(data[thr].cmp + off,
1269 page[pg], PAGE_SIZE);
1270 have--;
1271 want++;
1272 if (++pg >= ring_size)
1273 pg = 0;
1274 }
1275
1276 atomic_set(&data[thr].ready, 1);
1277 wake_up(&data[thr].go);
1278 }
1279
1280 /*
1281 * Wait for more data while we are decompressing.
1282 */
1283 if (have < LZO_CMP_PAGES && asked) {
1284 ret = hib_wait_on_bio_chain(&bio);
1285 if (ret)
1286 goto out_finish;
1287 have += asked;
1288 asked = 0;
1289 if (eof)
1290 eof = 2;
1291 }
1292
1293 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1294 wait_event(data[thr].done,
1295 atomic_read(&data[thr].stop));
1296 atomic_set(&data[thr].stop, 0);
1297
1298 ret = data[thr].ret;
1299
1300 if (ret < 0) {
1301 printk(KERN_ERR
1302 "PM: LZO decompression failed\n");
1303 goto out_finish;
1304 }
1305
1306 if (unlikely(!data[thr].unc_len ||
1307 data[thr].unc_len > LZO_UNC_SIZE ||
1308 data[thr].unc_len & (PAGE_SIZE - 1))) {
1309 printk(KERN_ERR
1310 "PM: Invalid LZO uncompressed length\n");
1311 ret = -1;
1312 goto out_finish;
1313 }
1314
1315 for (off = 0;
1316 off < data[thr].unc_len; off += PAGE_SIZE) {
1317 memcpy(data_of(*snapshot),
1318 data[thr].unc + off, PAGE_SIZE);
1319
1320 if (!(nr_pages % m))
1321 printk(KERN_INFO
1322 "PM: Image loading progress: "
1323 "%3d%%\n",
1324 nr_pages / m * 10);
1325 nr_pages++;
1326
1327 ret = snapshot_write_next(snapshot);
1328 if (ret <= 0) {
1329 crc->run_threads = thr + 1;
1330 atomic_set(&crc->ready, 1);
1331 wake_up(&crc->go);
1332 goto out_finish;
1333 }
1334 }
1335 }
1336
1337 crc->run_threads = thr;
1338 atomic_set(&crc->ready, 1);
1339 wake_up(&crc->go);
1340 }
1341
1342 out_finish:
1343 if (crc->run_threads) {
1344 wait_event(crc->done, atomic_read(&crc->stop));
1345 atomic_set(&crc->stop, 0);
1346 }
1347 stop = ktime_get();
1348 if (!ret) {
1349 printk(KERN_INFO "PM: Image loading done.\n");
1350 snapshot_write_finalize(snapshot);
1351 if (!snapshot_image_loaded(snapshot))
1352 ret = -ENODATA;
1353 if (!ret) {
1354 if (swsusp_header->flags & SF_CRC32_MODE) {
1355 if(handle->crc32 != swsusp_header->crc32) {
1356 printk(KERN_ERR
1357 "PM: Invalid image CRC32!\n");
1358 ret = -ENODATA;
1359 }
1360 }
1361 }
1362 }
1363 swsusp_show_speed(start, stop, nr_to_read, "Read");
1364 out_clean:
1365 for (i = 0; i < ring_size; i++)
1366 free_page((unsigned long)page[i]);
1367 if (crc) {
1368 if (crc->thr)
1369 kthread_stop(crc->thr);
1370 kfree(crc);
1371 }
1372 if (data) {
1373 for (thr = 0; thr < nr_threads; thr++)
1374 if (data[thr].thr)
1375 kthread_stop(data[thr].thr);
1376 vfree(data);
1377 }
1378 vfree(page);
1379
1380 return ret;
1381 }
1382
1383 /**
1384 * swsusp_read - read the hibernation image.
1385 * @flags_p: flags passed by the "frozen" kernel in the image header should
1386 * be written into this memory location
1387 */
1388
1389 int swsusp_read(unsigned int *flags_p)
1390 {
1391 int error;
1392 struct swap_map_handle handle;
1393 struct snapshot_handle snapshot;
1394 struct swsusp_info *header;
1395
1396 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1397 error = snapshot_write_next(&snapshot);
1398 if (error < PAGE_SIZE)
1399 return error < 0 ? error : -EFAULT;
1400 header = (struct swsusp_info *)data_of(snapshot);
1401 error = get_swap_reader(&handle, flags_p);
1402 if (error)
1403 goto end;
1404 if (!error)
1405 error = swap_read_page(&handle, header, NULL);
1406 if (!error) {
1407 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1408 load_image(&handle, &snapshot, header->pages - 1) :
1409 load_image_lzo(&handle, &snapshot, header->pages - 1);
1410 }
1411 swap_reader_finish(&handle);
1412 end:
1413 if (!error)
1414 pr_debug("PM: Image successfully loaded\n");
1415 else
1416 pr_debug("PM: Error %d resuming\n", error);
1417 return error;
1418 }
1419
1420 /**
1421 * swsusp_check - Check for swsusp signature in the resume device
1422 */
1423
1424 int swsusp_check(void)
1425 {
1426 int error;
1427
1428 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1429 FMODE_READ, NULL);
1430 if (!IS_ERR(hib_resume_bdev)) {
1431 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1432 clear_page(swsusp_header);
1433 error = hib_bio_read_page(swsusp_resume_block,
1434 swsusp_header, NULL);
1435 if (error)
1436 goto put;
1437
1438 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1439 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1440 /* Reset swap signature now */
1441 error = hib_bio_write_page(swsusp_resume_block,
1442 swsusp_header, NULL);
1443 } else {
1444 error = -EINVAL;
1445 }
1446
1447 put:
1448 if (error)
1449 blkdev_put(hib_resume_bdev, FMODE_READ);
1450 else
1451 pr_debug("PM: Image signature found, resuming\n");
1452 } else {
1453 error = PTR_ERR(hib_resume_bdev);
1454 }
1455
1456 if (error)
1457 pr_debug("PM: Image not found (code %d)\n", error);
1458
1459 return error;
1460 }
1461
1462 /**
1463 * swsusp_close - close swap device.
1464 */
1465
1466 void swsusp_close(fmode_t mode)
1467 {
1468 if (IS_ERR(hib_resume_bdev)) {
1469 pr_debug("PM: Image device not initialised\n");
1470 return;
1471 }
1472
1473 blkdev_put(hib_resume_bdev, mode);
1474 }
1475
1476 /**
1477 * swsusp_unmark - Unmark swsusp signature in the resume device
1478 */
1479
1480 #ifdef CONFIG_SUSPEND
1481 int swsusp_unmark(void)
1482 {
1483 int error;
1484
1485 hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
1486 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1487 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1488 error = hib_bio_write_page(swsusp_resume_block,
1489 swsusp_header, NULL);
1490 } else {
1491 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1492 error = -ENODEV;
1493 }
1494
1495 /*
1496 * We just returned from suspend, we don't need the image any more.
1497 */
1498 free_all_swap_pages(root_swap);
1499
1500 return error;
1501 }
1502 #endif
1503
1504 static int swsusp_header_init(void)
1505 {
1506 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1507 if (!swsusp_header)
1508 panic("Could not allocate memory for swsusp_header\n");
1509 return 0;
1510 }
1511
1512 core_initcall(swsusp_header_init);
This page took 0.063484 seconds and 5 git commands to generate.