[PATCH] swsusp: add locking to software_resume
[deliverable/linux.git] / kernel / power / swsusp.c
1 /*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file is to realize architecture-independent
5 * machine suspend feature using pretty near only high-level routines
6 *
7 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8 * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
9 *
10 * This file is released under the GPLv2.
11 *
12 * I'd like to thank the following people for their work:
13 *
14 * Pavel Machek <pavel@ucw.cz>:
15 * Modifications, defectiveness pointing, being with me at the very beginning,
16 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17 *
18 * Steve Doddi <dirk@loth.demon.co.uk>:
19 * Support the possibility of hardware state restoring.
20 *
21 * Raph <grey.havens@earthling.net>:
22 * Support for preserving states of network devices and virtual console
23 * (including X and svgatextmode)
24 *
25 * Kurt Garloff <garloff@suse.de>:
26 * Straightened the critical function in order to prevent compilers from
27 * playing tricks with local variables.
28 *
29 * Andreas Mohr <a.mohr@mailto.de>
30 *
31 * Alex Badea <vampire@go.ro>:
32 * Fixed runaway init
33 *
34 * Andreas Steinmetz <ast@domdv.de>:
35 * Added encrypted suspend option
36 *
37 * More state savers are welcome. Especially for the scsi layer...
38 *
39 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
40 */
41
42 #include <linux/module.h>
43 #include <linux/mm.h>
44 #include <linux/suspend.h>
45 #include <linux/smp_lock.h>
46 #include <linux/file.h>
47 #include <linux/utsname.h>
48 #include <linux/version.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51 #include <linux/bitops.h>
52 #include <linux/vt_kern.h>
53 #include <linux/kbd_kern.h>
54 #include <linux/keyboard.h>
55 #include <linux/spinlock.h>
56 #include <linux/genhd.h>
57 #include <linux/kernel.h>
58 #include <linux/major.h>
59 #include <linux/swap.h>
60 #include <linux/pm.h>
61 #include <linux/device.h>
62 #include <linux/buffer_head.h>
63 #include <linux/swapops.h>
64 #include <linux/bootmem.h>
65 #include <linux/syscalls.h>
66 #include <linux/console.h>
67 #include <linux/highmem.h>
68 #include <linux/bio.h>
69 #include <linux/mount.h>
70
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/pgtable.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76
77 #include <linux/random.h>
78 #include <linux/crypto.h>
79 #include <asm/scatterlist.h>
80
81 #include "power.h"
82
83 #define CIPHER "aes"
84 #define MAXKEY 32
85 #define MAXIV 32
86
87 /* References to section boundaries */
88 extern const void __nosave_begin, __nosave_end;
89
90 /* Variables to be preserved over suspend */
91 static int nr_copy_pages_check;
92
93 extern char resume_file[];
94
95 /* Local variables that should not be affected by save */
96 static unsigned int nr_copy_pages __nosavedata = 0;
97
98 /* Suspend pagedir is allocated before final copy, therefore it
99 must be freed after resume
100
101 Warning: this is evil. There are actually two pagedirs at time of
102 resume. One is "pagedir_save", which is empty frame allocated at
103 time of suspend, that must be freed. Second is "pagedir_nosave",
104 allocated at time of resume, that travels through memory not to
105 collide with anything.
106
107 Warning: this is even more evil than it seems. Pagedirs this file
108 talks about are completely different from page directories used by
109 MMU hardware.
110 */
111 suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
112 static suspend_pagedir_t *pagedir_save;
113
114 #define SWSUSP_SIG "S1SUSPEND"
115
116 static struct swsusp_header {
117 char reserved[PAGE_SIZE - 20 - MAXKEY - MAXIV - sizeof(swp_entry_t)];
118 u8 key_iv[MAXKEY+MAXIV];
119 swp_entry_t swsusp_info;
120 char orig_sig[10];
121 char sig[10];
122 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
123
124 static struct swsusp_info swsusp_info;
125
126 /*
127 * XXX: We try to keep some more pages free so that I/O operations succeed
128 * without paging. Might this be more?
129 */
130 #define PAGES_FOR_IO 512
131
132 /*
133 * Saving part...
134 */
135
136 /* We memorize in swapfile_used what swap devices are used for suspension */
137 #define SWAPFILE_UNUSED 0
138 #define SWAPFILE_SUSPEND 1 /* This is the suspending device */
139 #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
140
141 static unsigned short swapfile_used[MAX_SWAPFILES];
142 static unsigned short root_swap;
143
144 static int write_page(unsigned long addr, swp_entry_t * loc);
145 static int bio_read_page(pgoff_t page_off, void * page);
146
147 static u8 key_iv[MAXKEY+MAXIV];
148
149 #ifdef CONFIG_SWSUSP_ENCRYPT
150
151 static int crypto_init(int mode, void **mem)
152 {
153 int error = 0;
154 int len;
155 char *modemsg;
156 struct crypto_tfm *tfm;
157
158 modemsg = mode ? "suspend not possible" : "resume not possible";
159
160 tfm = crypto_alloc_tfm(CIPHER, CRYPTO_TFM_MODE_CBC);
161 if(!tfm) {
162 printk(KERN_ERR "swsusp: no tfm, %s\n", modemsg);
163 error = -EINVAL;
164 goto out;
165 }
166
167 if(MAXKEY < crypto_tfm_alg_min_keysize(tfm)) {
168 printk(KERN_ERR "swsusp: key buffer too small, %s\n", modemsg);
169 error = -ENOKEY;
170 goto fail;
171 }
172
173 if (mode)
174 get_random_bytes(key_iv, MAXKEY+MAXIV);
175
176 len = crypto_tfm_alg_max_keysize(tfm);
177 if (len > MAXKEY)
178 len = MAXKEY;
179
180 if (crypto_cipher_setkey(tfm, key_iv, len)) {
181 printk(KERN_ERR "swsusp: key setup failure, %s\n", modemsg);
182 error = -EKEYREJECTED;
183 goto fail;
184 }
185
186 len = crypto_tfm_alg_ivsize(tfm);
187
188 if (MAXIV < len) {
189 printk(KERN_ERR "swsusp: iv buffer too small, %s\n", modemsg);
190 error = -EOVERFLOW;
191 goto fail;
192 }
193
194 crypto_cipher_set_iv(tfm, key_iv+MAXKEY, len);
195
196 *mem=(void *)tfm;
197
198 goto out;
199
200 fail: crypto_free_tfm(tfm);
201 out: return error;
202 }
203
204 static __inline__ void crypto_exit(void *mem)
205 {
206 crypto_free_tfm((struct crypto_tfm *)mem);
207 }
208
209 static __inline__ int crypto_write(struct pbe *p, void *mem)
210 {
211 int error = 0;
212 struct scatterlist src, dst;
213
214 src.page = virt_to_page(p->address);
215 src.offset = 0;
216 src.length = PAGE_SIZE;
217 dst.page = virt_to_page((void *)&swsusp_header);
218 dst.offset = 0;
219 dst.length = PAGE_SIZE;
220
221 error = crypto_cipher_encrypt((struct crypto_tfm *)mem, &dst, &src,
222 PAGE_SIZE);
223
224 if (!error)
225 error = write_page((unsigned long)&swsusp_header,
226 &(p->swap_address));
227 return error;
228 }
229
230 static __inline__ int crypto_read(struct pbe *p, void *mem)
231 {
232 int error = 0;
233 struct scatterlist src, dst;
234
235 error = bio_read_page(swp_offset(p->swap_address), (void *)p->address);
236 if (!error) {
237 src.offset = 0;
238 src.length = PAGE_SIZE;
239 dst.offset = 0;
240 dst.length = PAGE_SIZE;
241 src.page = dst.page = virt_to_page((void *)p->address);
242
243 error = crypto_cipher_decrypt((struct crypto_tfm *)mem, &dst,
244 &src, PAGE_SIZE);
245 }
246 return error;
247 }
248 #else
249 static __inline__ int crypto_init(int mode, void *mem)
250 {
251 return 0;
252 }
253
254 static __inline__ void crypto_exit(void *mem)
255 {
256 }
257
258 static __inline__ int crypto_write(struct pbe *p, void *mem)
259 {
260 return write_page(p->address, &(p->swap_address));
261 }
262
263 static __inline__ int crypto_read(struct pbe *p, void *mem)
264 {
265 return bio_read_page(swp_offset(p->swap_address), (void *)p->address);
266 }
267 #endif
268
269 static int mark_swapfiles(swp_entry_t prev)
270 {
271 int error;
272
273 rw_swap_page_sync(READ,
274 swp_entry(root_swap, 0),
275 virt_to_page((unsigned long)&swsusp_header));
276 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
277 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
278 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
279 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
280 memcpy(swsusp_header.key_iv, key_iv, MAXKEY+MAXIV);
281 swsusp_header.swsusp_info = prev;
282 error = rw_swap_page_sync(WRITE,
283 swp_entry(root_swap, 0),
284 virt_to_page((unsigned long)
285 &swsusp_header));
286 } else {
287 pr_debug("swsusp: Partition is not swap space.\n");
288 error = -ENODEV;
289 }
290 return error;
291 }
292
293 /*
294 * Check whether the swap device is the specified resume
295 * device, irrespective of whether they are specified by
296 * identical names.
297 *
298 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
299 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
300 * and they'll be considered the same device. This is *necessary* for
301 * devfs, since the resume code can only recognize the form /dev/hda4,
302 * but the suspend code would see the long name.)
303 */
304 static int is_resume_device(const struct swap_info_struct *swap_info)
305 {
306 struct file *file = swap_info->swap_file;
307 struct inode *inode = file->f_dentry->d_inode;
308
309 return S_ISBLK(inode->i_mode) &&
310 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
311 }
312
313 static int swsusp_swap_check(void) /* This is called before saving image */
314 {
315 int i, len;
316
317 len=strlen(resume_file);
318 root_swap = 0xFFFF;
319
320 spin_lock(&swap_lock);
321 for (i=0; i<MAX_SWAPFILES; i++) {
322 if (!(swap_info[i].flags & SWP_WRITEOK)) {
323 swapfile_used[i]=SWAPFILE_UNUSED;
324 } else {
325 if (!len) {
326 printk(KERN_WARNING "resume= option should be used to set suspend device" );
327 if (root_swap == 0xFFFF) {
328 swapfile_used[i] = SWAPFILE_SUSPEND;
329 root_swap = i;
330 } else
331 swapfile_used[i] = SWAPFILE_IGNORED;
332 } else {
333 /* we ignore all swap devices that are not the resume_file */
334 if (is_resume_device(&swap_info[i])) {
335 swapfile_used[i] = SWAPFILE_SUSPEND;
336 root_swap = i;
337 } else {
338 swapfile_used[i] = SWAPFILE_IGNORED;
339 }
340 }
341 }
342 }
343 spin_unlock(&swap_lock);
344 return (root_swap != 0xffff) ? 0 : -ENODEV;
345 }
346
347 /**
348 * This is called after saving image so modification
349 * will be lost after resume... and that's what we want.
350 * we make the device unusable. A new call to
351 * lock_swapdevices can unlock the devices.
352 */
353 static void lock_swapdevices(void)
354 {
355 int i;
356
357 spin_lock(&swap_lock);
358 for (i = 0; i< MAX_SWAPFILES; i++)
359 if (swapfile_used[i] == SWAPFILE_IGNORED) {
360 swap_info[i].flags ^= SWP_WRITEOK;
361 }
362 spin_unlock(&swap_lock);
363 }
364
365 /**
366 * write_swap_page - Write one page to a fresh swap location.
367 * @addr: Address we're writing.
368 * @loc: Place to store the entry we used.
369 *
370 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
371 * errors. That is an artifact left over from swsusp. It did not
372 * check the return of rw_swap_page_sync() at all, since most pages
373 * written back to swap would return -EIO.
374 * This is a partial improvement, since we will at least return other
375 * errors, though we need to eventually fix the damn code.
376 */
377 static int write_page(unsigned long addr, swp_entry_t * loc)
378 {
379 swp_entry_t entry;
380 int error = 0;
381
382 entry = get_swap_page();
383 if (swp_offset(entry) &&
384 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
385 error = rw_swap_page_sync(WRITE, entry,
386 virt_to_page(addr));
387 if (error == -EIO)
388 error = 0;
389 if (!error)
390 *loc = entry;
391 } else
392 error = -ENOSPC;
393 return error;
394 }
395
396 /**
397 * data_free - Free the swap entries used by the saved image.
398 *
399 * Walk the list of used swap entries and free each one.
400 * This is only used for cleanup when suspend fails.
401 */
402 static void data_free(void)
403 {
404 swp_entry_t entry;
405 int i;
406
407 for (i = 0; i < nr_copy_pages; i++) {
408 entry = (pagedir_nosave + i)->swap_address;
409 if (entry.val)
410 swap_free(entry);
411 else
412 break;
413 (pagedir_nosave + i)->swap_address = (swp_entry_t){0};
414 }
415 }
416
417 /**
418 * data_write - Write saved image to swap.
419 *
420 * Walk the list of pages in the image and sync each one to swap.
421 */
422 static int data_write(void)
423 {
424 int error = 0, i = 0;
425 unsigned int mod = nr_copy_pages / 100;
426 struct pbe *p;
427 void *tfm;
428
429 if ((error = crypto_init(1, &tfm)))
430 return error;
431
432 if (!mod)
433 mod = 1;
434
435 printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
436 for_each_pbe (p, pagedir_nosave) {
437 if (!(i%mod))
438 printk( "\b\b\b\b%3d%%", i / mod );
439 if ((error = crypto_write(p, tfm))) {
440 crypto_exit(tfm);
441 return error;
442 }
443 i++;
444 }
445 printk("\b\b\b\bdone\n");
446 crypto_exit(tfm);
447 return error;
448 }
449
450 static void dump_info(void)
451 {
452 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
453 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
454 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
455 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
456 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
457 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
458 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
459 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
460 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
461 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
462 pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
463 }
464
465 static void init_header(void)
466 {
467 memset(&swsusp_info, 0, sizeof(swsusp_info));
468 swsusp_info.version_code = LINUX_VERSION_CODE;
469 swsusp_info.num_physpages = num_physpages;
470 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
471
472 swsusp_info.suspend_pagedir = pagedir_nosave;
473 swsusp_info.cpus = num_online_cpus();
474 swsusp_info.image_pages = nr_copy_pages;
475 }
476
477 static int close_swap(void)
478 {
479 swp_entry_t entry;
480 int error;
481
482 dump_info();
483 error = write_page((unsigned long)&swsusp_info, &entry);
484 if (!error) {
485 printk( "S" );
486 error = mark_swapfiles(entry);
487 printk( "|\n" );
488 }
489 return error;
490 }
491
492 /**
493 * free_pagedir_entries - Free pages used by the page directory.
494 *
495 * This is used during suspend for error recovery.
496 */
497
498 static void free_pagedir_entries(void)
499 {
500 int i;
501
502 for (i = 0; i < swsusp_info.pagedir_pages; i++)
503 swap_free(swsusp_info.pagedir[i]);
504 }
505
506
507 /**
508 * write_pagedir - Write the array of pages holding the page directory.
509 * @last: Last swap entry we write (needed for header).
510 */
511
512 static int write_pagedir(void)
513 {
514 int error = 0;
515 unsigned n = 0;
516 struct pbe * pbe;
517
518 printk( "Writing pagedir...");
519 for_each_pb_page (pbe, pagedir_nosave) {
520 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
521 return error;
522 }
523
524 swsusp_info.pagedir_pages = n;
525 printk("done (%u pages)\n", n);
526 return error;
527 }
528
529 /**
530 * write_suspend_image - Write entire image and metadata.
531 *
532 */
533
534 static int write_suspend_image(void)
535 {
536 int error;
537
538 init_header();
539 if ((error = data_write()))
540 goto FreeData;
541
542 if ((error = write_pagedir()))
543 goto FreePagedir;
544
545 if ((error = close_swap()))
546 goto FreePagedir;
547 Done:
548 memset(key_iv, 0, MAXKEY+MAXIV);
549 return error;
550 FreePagedir:
551 free_pagedir_entries();
552 FreeData:
553 data_free();
554 goto Done;
555 }
556
557
558 #ifdef CONFIG_HIGHMEM
559 struct highmem_page {
560 char *data;
561 struct page *page;
562 struct highmem_page *next;
563 };
564
565 static struct highmem_page *highmem_copy;
566
567 static int save_highmem_zone(struct zone *zone)
568 {
569 unsigned long zone_pfn;
570 mark_free_pages(zone);
571 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
572 struct page *page;
573 struct highmem_page *save;
574 void *kaddr;
575 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
576
577 if (!(pfn%1000))
578 printk(".");
579 if (!pfn_valid(pfn))
580 continue;
581 page = pfn_to_page(pfn);
582 /*
583 * This condition results from rvmalloc() sans vmalloc_32()
584 * and architectural memory reservations. This should be
585 * corrected eventually when the cases giving rise to this
586 * are better understood.
587 */
588 if (PageReserved(page)) {
589 printk("highmem reserved page?!\n");
590 continue;
591 }
592 BUG_ON(PageNosave(page));
593 if (PageNosaveFree(page))
594 continue;
595 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
596 if (!save)
597 return -ENOMEM;
598 save->next = highmem_copy;
599 save->page = page;
600 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
601 if (!save->data) {
602 kfree(save);
603 return -ENOMEM;
604 }
605 kaddr = kmap_atomic(page, KM_USER0);
606 memcpy(save->data, kaddr, PAGE_SIZE);
607 kunmap_atomic(kaddr, KM_USER0);
608 highmem_copy = save;
609 }
610 return 0;
611 }
612 #endif /* CONFIG_HIGHMEM */
613
614
615 static int save_highmem(void)
616 {
617 #ifdef CONFIG_HIGHMEM
618 struct zone *zone;
619 int res = 0;
620
621 pr_debug("swsusp: Saving Highmem\n");
622 for_each_zone (zone) {
623 if (is_highmem(zone))
624 res = save_highmem_zone(zone);
625 if (res)
626 return res;
627 }
628 #endif
629 return 0;
630 }
631
632 static int restore_highmem(void)
633 {
634 #ifdef CONFIG_HIGHMEM
635 printk("swsusp: Restoring Highmem\n");
636 while (highmem_copy) {
637 struct highmem_page *save = highmem_copy;
638 void *kaddr;
639 highmem_copy = save->next;
640
641 kaddr = kmap_atomic(save->page, KM_USER0);
642 memcpy(kaddr, save->data, PAGE_SIZE);
643 kunmap_atomic(kaddr, KM_USER0);
644 free_page((long) save->data);
645 kfree(save);
646 }
647 #endif
648 return 0;
649 }
650
651
652 static int pfn_is_nosave(unsigned long pfn)
653 {
654 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
655 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
656 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
657 }
658
659 /**
660 * saveable - Determine whether a page should be cloned or not.
661 * @pfn: The page
662 *
663 * We save a page if it's Reserved, and not in the range of pages
664 * statically defined as 'unsaveable', or if it isn't reserved, and
665 * isn't part of a free chunk of pages.
666 */
667
668 static int saveable(struct zone * zone, unsigned long * zone_pfn)
669 {
670 unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
671 struct page * page;
672
673 if (!pfn_valid(pfn))
674 return 0;
675
676 page = pfn_to_page(pfn);
677 BUG_ON(PageReserved(page) && PageNosave(page));
678 if (PageNosave(page))
679 return 0;
680 if (PageReserved(page) && pfn_is_nosave(pfn)) {
681 pr_debug("[nosave pfn 0x%lx]", pfn);
682 return 0;
683 }
684 if (PageNosaveFree(page))
685 return 0;
686
687 return 1;
688 }
689
690 static void count_data_pages(void)
691 {
692 struct zone *zone;
693 unsigned long zone_pfn;
694
695 nr_copy_pages = 0;
696
697 for_each_zone (zone) {
698 if (is_highmem(zone))
699 continue;
700 mark_free_pages(zone);
701 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
702 nr_copy_pages += saveable(zone, &zone_pfn);
703 }
704 }
705
706
707 static void copy_data_pages(void)
708 {
709 struct zone *zone;
710 unsigned long zone_pfn;
711 struct pbe * pbe = pagedir_nosave;
712
713 pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
714 for_each_zone (zone) {
715 if (is_highmem(zone))
716 continue;
717 mark_free_pages(zone);
718 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
719 if (saveable(zone, &zone_pfn)) {
720 struct page * page;
721 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
722 BUG_ON(!pbe);
723 pbe->orig_address = (long) page_address(page);
724 /* copy_page is not usable for copying task structs. */
725 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
726 pbe = pbe->next;
727 }
728 }
729 }
730 BUG_ON(pbe);
731 }
732
733
734 /**
735 * calc_nr - Determine the number of pages needed for a pbe list.
736 */
737
738 static int calc_nr(int nr_copy)
739 {
740 return nr_copy + (nr_copy+PBES_PER_PAGE-2)/(PBES_PER_PAGE-1);
741 }
742
743 /**
744 * free_pagedir - free pages allocated with alloc_pagedir()
745 */
746
747 static inline void free_pagedir(struct pbe *pblist)
748 {
749 struct pbe *pbe;
750
751 while (pblist) {
752 pbe = (pblist + PB_PAGE_SKIP)->next;
753 free_page((unsigned long)pblist);
754 pblist = pbe;
755 }
756 }
757
758 /**
759 * fill_pb_page - Create a list of PBEs on a given memory page
760 */
761
762 static inline void fill_pb_page(struct pbe *pbpage)
763 {
764 struct pbe *p;
765
766 p = pbpage;
767 pbpage += PB_PAGE_SKIP;
768 do
769 p->next = p + 1;
770 while (++p < pbpage);
771 }
772
773 /**
774 * create_pbe_list - Create a list of PBEs on top of a given chain
775 * of memory pages allocated with alloc_pagedir()
776 */
777
778 static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
779 {
780 struct pbe *pbpage, *p;
781 unsigned num = PBES_PER_PAGE;
782
783 for_each_pb_page (pbpage, pblist) {
784 if (num >= nr_pages)
785 break;
786
787 fill_pb_page(pbpage);
788 num += PBES_PER_PAGE;
789 }
790 if (pbpage) {
791 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
792 p->next = p + 1;
793 p->next = NULL;
794 }
795 pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
796 }
797
798 /**
799 * alloc_pagedir - Allocate the page directory.
800 *
801 * First, determine exactly how many pages we need and
802 * allocate them.
803 *
804 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
805 * struct pbe elements (pbes) and the last element in the page points
806 * to the next page.
807 *
808 * On each page we set up a list of struct_pbe elements.
809 */
810
811 static struct pbe * alloc_pagedir(unsigned nr_pages)
812 {
813 unsigned num;
814 struct pbe *pblist, *pbe;
815
816 if (!nr_pages)
817 return NULL;
818
819 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
820 pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
821 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
822 pbe = pbe->next, num += PBES_PER_PAGE) {
823 pbe += PB_PAGE_SKIP;
824 pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
825 }
826 if (!pbe) { /* get_zeroed_page() failed */
827 free_pagedir(pblist);
828 pblist = NULL;
829 }
830 return pblist;
831 }
832
833 /**
834 * free_image_pages - Free pages allocated for snapshot
835 */
836
837 static void free_image_pages(void)
838 {
839 struct pbe * p;
840
841 for_each_pbe (p, pagedir_save) {
842 if (p->address) {
843 ClearPageNosave(virt_to_page(p->address));
844 free_page(p->address);
845 p->address = 0;
846 }
847 }
848 }
849
850 /**
851 * alloc_image_pages - Allocate pages for the snapshot.
852 */
853
854 static int alloc_image_pages(void)
855 {
856 struct pbe * p;
857
858 for_each_pbe (p, pagedir_save) {
859 p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
860 if (!p->address)
861 return -ENOMEM;
862 SetPageNosave(virt_to_page(p->address));
863 }
864 return 0;
865 }
866
867 void swsusp_free(void)
868 {
869 BUG_ON(PageNosave(virt_to_page(pagedir_save)));
870 BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
871 free_image_pages();
872 free_pagedir(pagedir_save);
873 }
874
875
876 /**
877 * enough_free_mem - Make sure we enough free memory to snapshot.
878 *
879 * Returns TRUE or FALSE after checking the number of available
880 * free pages.
881 */
882
883 static int enough_free_mem(void)
884 {
885 if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
886 pr_debug("swsusp: Not enough free pages: Have %d\n",
887 nr_free_pages());
888 return 0;
889 }
890 return 1;
891 }
892
893
894 /**
895 * enough_swap - Make sure we have enough swap to save the image.
896 *
897 * Returns TRUE or FALSE after checking the total amount of swap
898 * space avaiable.
899 *
900 * FIXME: si_swapinfo(&i) returns all swap devices information.
901 * We should only consider resume_device.
902 */
903
904 static int enough_swap(void)
905 {
906 struct sysinfo i;
907
908 si_swapinfo(&i);
909 if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) {
910 pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
911 return 0;
912 }
913 return 1;
914 }
915
916 static int swsusp_alloc(void)
917 {
918 int error;
919
920 pagedir_nosave = NULL;
921 nr_copy_pages = calc_nr(nr_copy_pages);
922
923 pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
924 nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
925
926 if (!enough_free_mem())
927 return -ENOMEM;
928
929 if (!enough_swap())
930 return -ENOSPC;
931
932 if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
933 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
934 return -ENOMEM;
935 }
936 create_pbe_list(pagedir_save, nr_copy_pages);
937 pagedir_nosave = pagedir_save;
938 if ((error = alloc_image_pages())) {
939 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
940 swsusp_free();
941 return error;
942 }
943
944 nr_copy_pages_check = nr_copy_pages;
945 return 0;
946 }
947
948 static int suspend_prepare_image(void)
949 {
950 int error;
951
952 pr_debug("swsusp: critical section: \n");
953 if (save_highmem()) {
954 printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
955 restore_highmem();
956 return -ENOMEM;
957 }
958
959 drain_local_pages();
960 count_data_pages();
961 printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
962
963 error = swsusp_alloc();
964 if (error)
965 return error;
966
967 /* During allocating of suspend pagedir, new cold pages may appear.
968 * Kill them.
969 */
970 drain_local_pages();
971 copy_data_pages();
972
973 /*
974 * End of critical section. From now on, we can write to memory,
975 * but we should not touch disk. This specially means we must _not_
976 * touch swap space! Except we must write out our image of course.
977 */
978
979 printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
980 return 0;
981 }
982
983
984 /* It is important _NOT_ to umount filesystems at this point. We want
985 * them synced (in case something goes wrong) but we DO not want to mark
986 * filesystem clean: it is not. (And it does not matter, if we resume
987 * correctly, we'll mark system clean, anyway.)
988 */
989 int swsusp_write(void)
990 {
991 int error;
992 device_resume();
993 lock_swapdevices();
994 error = write_suspend_image();
995 /* This will unlock ignored swap devices since writing is finished */
996 lock_swapdevices();
997 return error;
998
999 }
1000
1001
1002 extern asmlinkage int swsusp_arch_suspend(void);
1003 extern asmlinkage int swsusp_arch_resume(void);
1004
1005
1006 asmlinkage int swsusp_save(void)
1007 {
1008 return suspend_prepare_image();
1009 }
1010
1011 int swsusp_suspend(void)
1012 {
1013 int error;
1014 if ((error = arch_prepare_suspend()))
1015 return error;
1016 local_irq_disable();
1017 /* At this point, device_suspend() has been called, but *not*
1018 * device_power_down(). We *must* device_power_down() now.
1019 * Otherwise, drivers for some devices (e.g. interrupt controllers)
1020 * become desynchronized with the actual state of the hardware
1021 * at resume time, and evil weirdness ensues.
1022 */
1023 if ((error = device_power_down(PMSG_FREEZE))) {
1024 local_irq_enable();
1025 return error;
1026 }
1027
1028 if ((error = swsusp_swap_check())) {
1029 printk(KERN_ERR "swsusp: FATAL: cannot find swap device, try "
1030 "swapon -a!\n");
1031 local_irq_enable();
1032 return error;
1033 }
1034
1035 save_processor_state();
1036 if ((error = swsusp_arch_suspend()))
1037 printk("Error %d suspending\n", error);
1038 /* Restore control flow magically appears here */
1039 restore_processor_state();
1040 BUG_ON (nr_copy_pages_check != nr_copy_pages);
1041 restore_highmem();
1042 device_power_up();
1043 local_irq_enable();
1044 return error;
1045 }
1046
1047 int swsusp_resume(void)
1048 {
1049 int error;
1050 local_irq_disable();
1051 if (device_power_down(PMSG_FREEZE))
1052 printk(KERN_ERR "Some devices failed to power down, very bad\n");
1053 /* We'll ignore saved state, but this gets preempt count (etc) right */
1054 save_processor_state();
1055 error = swsusp_arch_resume();
1056 /* Code below is only ever reached in case of failure. Otherwise
1057 * execution continues at place where swsusp_arch_suspend was called
1058 */
1059 BUG_ON(!error);
1060 restore_processor_state();
1061 restore_highmem();
1062 device_power_up();
1063 local_irq_enable();
1064 return error;
1065 }
1066
1067 /**
1068 * On resume, for storing the PBE list and the image,
1069 * we can only use memory pages that do not conflict with the pages
1070 * which had been used before suspend.
1071 *
1072 * We don't know which pages are usable until we allocate them.
1073 *
1074 * Allocated but unusable (ie eaten) memory pages are linked together
1075 * to create a list, so that we can free them easily
1076 *
1077 * We could have used a type other than (void *)
1078 * for this purpose, but ...
1079 */
1080 static void **eaten_memory = NULL;
1081
1082 static inline void eat_page(void *page)
1083 {
1084 void **c;
1085
1086 c = eaten_memory;
1087 eaten_memory = page;
1088 *eaten_memory = c;
1089 }
1090
1091 static unsigned long get_usable_page(unsigned gfp_mask)
1092 {
1093 unsigned long m;
1094
1095 m = get_zeroed_page(gfp_mask);
1096 while (!PageNosaveFree(virt_to_page(m))) {
1097 eat_page((void *)m);
1098 m = get_zeroed_page(gfp_mask);
1099 if (!m)
1100 break;
1101 }
1102 return m;
1103 }
1104
1105 static void free_eaten_memory(void)
1106 {
1107 unsigned long m;
1108 void **c;
1109 int i = 0;
1110
1111 c = eaten_memory;
1112 while (c) {
1113 m = (unsigned long)c;
1114 c = *c;
1115 free_page(m);
1116 i++;
1117 }
1118 eaten_memory = NULL;
1119 pr_debug("swsusp: %d unused pages freed\n", i);
1120 }
1121
1122 /**
1123 * check_pagedir - We ensure here that pages that the PBEs point to
1124 * won't collide with pages where we're going to restore from the loaded
1125 * pages later
1126 */
1127
1128 static int check_pagedir(struct pbe *pblist)
1129 {
1130 struct pbe *p;
1131
1132 /* This is necessary, so that we can free allocated pages
1133 * in case of failure
1134 */
1135 for_each_pbe (p, pblist)
1136 p->address = 0UL;
1137
1138 for_each_pbe (p, pblist) {
1139 p->address = get_usable_page(GFP_ATOMIC);
1140 if (!p->address)
1141 return -ENOMEM;
1142 }
1143 return 0;
1144 }
1145
1146 /**
1147 * swsusp_pagedir_relocate - It is possible, that some memory pages
1148 * occupied by the list of PBEs collide with pages where we're going to
1149 * restore from the loaded pages later. We relocate them here.
1150 */
1151
1152 static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
1153 {
1154 struct zone *zone;
1155 unsigned long zone_pfn;
1156 struct pbe *pbpage, *tail, *p;
1157 void *m;
1158 int rel = 0, error = 0;
1159
1160 if (!pblist) /* a sanity check */
1161 return NULL;
1162
1163 pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
1164 swsusp_info.pagedir_pages);
1165
1166 /* Set page flags */
1167
1168 for_each_zone (zone) {
1169 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
1170 SetPageNosaveFree(pfn_to_page(zone_pfn +
1171 zone->zone_start_pfn));
1172 }
1173
1174 /* Clear orig addresses */
1175
1176 for_each_pbe (p, pblist)
1177 ClearPageNosaveFree(virt_to_page(p->orig_address));
1178
1179 tail = pblist + PB_PAGE_SKIP;
1180
1181 /* Relocate colliding pages */
1182
1183 for_each_pb_page (pbpage, pblist) {
1184 if (!PageNosaveFree(virt_to_page((unsigned long)pbpage))) {
1185 m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
1186 if (!m) {
1187 error = -ENOMEM;
1188 break;
1189 }
1190 memcpy(m, (void *)pbpage, PAGE_SIZE);
1191 if (pbpage == pblist)
1192 pblist = (struct pbe *)m;
1193 else
1194 tail->next = (struct pbe *)m;
1195
1196 eat_page((void *)pbpage);
1197 pbpage = (struct pbe *)m;
1198
1199 /* We have to link the PBEs again */
1200
1201 for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
1202 if (p->next) /* needed to save the end */
1203 p->next = p + 1;
1204
1205 rel++;
1206 }
1207 tail = pbpage + PB_PAGE_SKIP;
1208 }
1209
1210 if (error) {
1211 printk("\nswsusp: Out of memory\n\n");
1212 free_pagedir(pblist);
1213 free_eaten_memory();
1214 pblist = NULL;
1215 }
1216 else
1217 printk("swsusp: Relocated %d pages\n", rel);
1218
1219 return pblist;
1220 }
1221
1222 /*
1223 * Using bio to read from swap.
1224 * This code requires a bit more work than just using buffer heads
1225 * but, it is the recommended way for 2.5/2.6.
1226 * The following are to signal the beginning and end of I/O. Bios
1227 * finish asynchronously, while we want them to happen synchronously.
1228 * A simple atomic_t, and a wait loop take care of this problem.
1229 */
1230
1231 static atomic_t io_done = ATOMIC_INIT(0);
1232
1233 static int end_io(struct bio * bio, unsigned int num, int err)
1234 {
1235 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1236 panic("I/O error reading memory image");
1237 atomic_set(&io_done, 0);
1238 return 0;
1239 }
1240
1241 static struct block_device * resume_bdev;
1242
1243 /**
1244 * submit - submit BIO request.
1245 * @rw: READ or WRITE.
1246 * @off physical offset of page.
1247 * @page: page we're reading or writing.
1248 *
1249 * Straight from the textbook - allocate and initialize the bio.
1250 * If we're writing, make sure the page is marked as dirty.
1251 * Then submit it and wait.
1252 */
1253
1254 static int submit(int rw, pgoff_t page_off, void * page)
1255 {
1256 int error = 0;
1257 struct bio * bio;
1258
1259 bio = bio_alloc(GFP_ATOMIC, 1);
1260 if (!bio)
1261 return -ENOMEM;
1262 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
1263 bio_get(bio);
1264 bio->bi_bdev = resume_bdev;
1265 bio->bi_end_io = end_io;
1266
1267 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
1268 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
1269 error = -EFAULT;
1270 goto Done;
1271 }
1272
1273 if (rw == WRITE)
1274 bio_set_pages_dirty(bio);
1275
1276 atomic_set(&io_done, 1);
1277 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
1278 while (atomic_read(&io_done))
1279 yield();
1280
1281 Done:
1282 bio_put(bio);
1283 return error;
1284 }
1285
1286 static int bio_read_page(pgoff_t page_off, void * page)
1287 {
1288 return submit(READ, page_off, page);
1289 }
1290
1291 static int bio_write_page(pgoff_t page_off, void * page)
1292 {
1293 return submit(WRITE, page_off, page);
1294 }
1295
1296 /*
1297 * Sanity check if this image makes sense with this kernel/swap context
1298 * I really don't think that it's foolproof but more than nothing..
1299 */
1300
1301 static const char * sanity_check(void)
1302 {
1303 dump_info();
1304 if (swsusp_info.version_code != LINUX_VERSION_CODE)
1305 return "kernel version";
1306 if (swsusp_info.num_physpages != num_physpages)
1307 return "memory size";
1308 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
1309 return "system type";
1310 if (strcmp(swsusp_info.uts.release,system_utsname.release))
1311 return "kernel release";
1312 if (strcmp(swsusp_info.uts.version,system_utsname.version))
1313 return "version";
1314 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
1315 return "machine";
1316 #if 0
1317 if(swsusp_info.cpus != num_online_cpus())
1318 return "number of cpus";
1319 #endif
1320 return NULL;
1321 }
1322
1323
1324 static int check_header(void)
1325 {
1326 const char * reason = NULL;
1327 int error;
1328
1329 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
1330 return error;
1331
1332 /* Is this same machine? */
1333 if ((reason = sanity_check())) {
1334 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
1335 return -EPERM;
1336 }
1337 nr_copy_pages = swsusp_info.image_pages;
1338 return error;
1339 }
1340
1341 static int check_sig(void)
1342 {
1343 int error;
1344
1345 memset(&swsusp_header, 0, sizeof(swsusp_header));
1346 if ((error = bio_read_page(0, &swsusp_header)))
1347 return error;
1348 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1349 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
1350 memcpy(key_iv, swsusp_header.key_iv, MAXKEY+MAXIV);
1351 memset(swsusp_header.key_iv, 0, MAXKEY+MAXIV);
1352
1353 /*
1354 * Reset swap signature now.
1355 */
1356 error = bio_write_page(0, &swsusp_header);
1357 } else {
1358 printk(KERN_ERR "swsusp: Suspend partition has wrong signature?\n");
1359 return -EINVAL;
1360 }
1361 if (!error)
1362 pr_debug("swsusp: Signature found, resuming\n");
1363 return error;
1364 }
1365
1366 /**
1367 * data_read - Read image pages from swap.
1368 *
1369 * You do not need to check for overlaps, check_pagedir()
1370 * already did that.
1371 */
1372
1373 static int data_read(struct pbe *pblist)
1374 {
1375 struct pbe * p;
1376 int error = 0;
1377 int i = 0;
1378 int mod = swsusp_info.image_pages / 100;
1379 void *tfm;
1380
1381 if ((error = crypto_init(0, &tfm)))
1382 return error;
1383
1384 if (!mod)
1385 mod = 1;
1386
1387 printk("swsusp: Reading image data (%lu pages): ",
1388 swsusp_info.image_pages);
1389
1390 for_each_pbe (p, pblist) {
1391 if (!(i % mod))
1392 printk("\b\b\b\b%3d%%", i / mod);
1393
1394 if ((error = crypto_read(p, tfm))) {
1395 crypto_exit(tfm);
1396 return error;
1397 }
1398
1399 i++;
1400 }
1401 printk("\b\b\b\bdone\n");
1402 crypto_exit(tfm);
1403 return error;
1404 }
1405
1406 /**
1407 * read_pagedir - Read page backup list pages from swap
1408 */
1409
1410 static int read_pagedir(struct pbe *pblist)
1411 {
1412 struct pbe *pbpage, *p;
1413 unsigned i = 0;
1414 int error;
1415
1416 if (!pblist)
1417 return -EFAULT;
1418
1419 printk("swsusp: Reading pagedir (%lu pages)\n",
1420 swsusp_info.pagedir_pages);
1421
1422 for_each_pb_page (pbpage, pblist) {
1423 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
1424
1425 error = -EFAULT;
1426 if (offset) {
1427 p = (pbpage + PB_PAGE_SKIP)->next;
1428 error = bio_read_page(offset, (void *)pbpage);
1429 (pbpage + PB_PAGE_SKIP)->next = p;
1430 }
1431 if (error)
1432 break;
1433 }
1434
1435 if (error)
1436 free_page((unsigned long)pblist);
1437
1438 BUG_ON(i != swsusp_info.pagedir_pages);
1439
1440 return error;
1441 }
1442
1443
1444 static int check_suspend_image(void)
1445 {
1446 int error = 0;
1447
1448 if ((error = check_sig()))
1449 return error;
1450
1451 if ((error = check_header()))
1452 return error;
1453
1454 return 0;
1455 }
1456
1457 static int read_suspend_image(void)
1458 {
1459 int error = 0;
1460 struct pbe *p;
1461
1462 if (!(p = alloc_pagedir(nr_copy_pages)))
1463 return -ENOMEM;
1464
1465 if ((error = read_pagedir(p)))
1466 return error;
1467
1468 create_pbe_list(p, nr_copy_pages);
1469
1470 if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1471 return -ENOMEM;
1472
1473 /* Allocate memory for the image and read the data from swap */
1474
1475 error = check_pagedir(pagedir_nosave);
1476 free_eaten_memory();
1477 if (!error)
1478 error = data_read(pagedir_nosave);
1479
1480 if (error) { /* We fail cleanly */
1481 for_each_pbe (p, pagedir_nosave)
1482 if (p->address) {
1483 free_page(p->address);
1484 p->address = 0UL;
1485 }
1486 free_pagedir(pagedir_nosave);
1487 }
1488 return error;
1489 }
1490
1491 /**
1492 * swsusp_check - Check for saved image in swap
1493 */
1494
1495 int swsusp_check(void)
1496 {
1497 int error;
1498
1499 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1500 if (!IS_ERR(resume_bdev)) {
1501 set_blocksize(resume_bdev, PAGE_SIZE);
1502 error = check_suspend_image();
1503 if (error)
1504 blkdev_put(resume_bdev);
1505 } else
1506 error = PTR_ERR(resume_bdev);
1507
1508 if (!error)
1509 pr_debug("swsusp: resume file found\n");
1510 else
1511 pr_debug("swsusp: Error %d check for resume file\n", error);
1512 return error;
1513 }
1514
1515 /**
1516 * swsusp_read - Read saved image from swap.
1517 */
1518
1519 int swsusp_read(void)
1520 {
1521 int error;
1522
1523 if (IS_ERR(resume_bdev)) {
1524 pr_debug("swsusp: block device not initialised\n");
1525 return PTR_ERR(resume_bdev);
1526 }
1527
1528 error = read_suspend_image();
1529 blkdev_put(resume_bdev);
1530 memset(key_iv, 0, MAXKEY+MAXIV);
1531
1532 if (!error)
1533 pr_debug("swsusp: Reading resume file was successful\n");
1534 else
1535 pr_debug("swsusp: Error %d resuming\n", error);
1536 return error;
1537 }
1538
1539 /**
1540 * swsusp_close - close swap device.
1541 */
1542
1543 void swsusp_close(void)
1544 {
1545 if (IS_ERR(resume_bdev)) {
1546 pr_debug("swsusp: block device not initialised\n");
1547 return;
1548 }
1549
1550 blkdev_put(resume_bdev);
1551 }
This page took 0.077768 seconds and 5 git commands to generate.