Merge tag 'cpumask-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
49
50 #include <asm/uaccess.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54
55 #include "console_cmdline.h"
56 #include "braille.h"
57
58 int console_printk[4] = {
59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
63 };
64
65 /*
66 * Low level drivers may need that to know if they can schedule in
67 * their unblank() callback or not. So let's export it.
68 */
69 int oops_in_progress;
70 EXPORT_SYMBOL(oops_in_progress);
71
72 /*
73 * console_sem protects the console_drivers list, and also
74 * provides serialisation for access to the entire console
75 * driver system.
76 */
77 static DEFINE_SEMAPHORE(console_sem);
78 struct console *console_drivers;
79 EXPORT_SYMBOL_GPL(console_drivers);
80
81 #ifdef CONFIG_LOCKDEP
82 static struct lockdep_map console_lock_dep_map = {
83 .name = "console_lock"
84 };
85 #endif
86
87 /*
88 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
89 * macros instead of functions so that _RET_IP_ contains useful information.
90 */
91 #define down_console_sem() do { \
92 down(&console_sem);\
93 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
94 } while (0)
95
96 static int __down_trylock_console_sem(unsigned long ip)
97 {
98 if (down_trylock(&console_sem))
99 return 1;
100 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
101 return 0;
102 }
103 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
104
105 #define up_console_sem() do { \
106 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
107 up(&console_sem);\
108 } while (0)
109
110 /*
111 * This is used for debugging the mess that is the VT code by
112 * keeping track if we have the console semaphore held. It's
113 * definitely not the perfect debug tool (we don't know if _WE_
114 * hold it and are racing, but it helps tracking those weird code
115 * paths in the console code where we end up in places I want
116 * locked without the console sempahore held).
117 */
118 static int console_locked, console_suspended;
119
120 /*
121 * If exclusive_console is non-NULL then only this console is to be printed to.
122 */
123 static struct console *exclusive_console;
124
125 /*
126 * Array of consoles built from command line options (console=)
127 */
128
129 #define MAX_CMDLINECONSOLES 8
130
131 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
132
133 static int selected_console = -1;
134 static int preferred_console = -1;
135 int console_set_on_cmdline;
136 EXPORT_SYMBOL(console_set_on_cmdline);
137
138 /* Flag: console code may call schedule() */
139 static int console_may_schedule;
140
141 /*
142 * The printk log buffer consists of a chain of concatenated variable
143 * length records. Every record starts with a record header, containing
144 * the overall length of the record.
145 *
146 * The heads to the first and last entry in the buffer, as well as the
147 * sequence numbers of these entries are maintained when messages are
148 * stored.
149 *
150 * If the heads indicate available messages, the length in the header
151 * tells the start next message. A length == 0 for the next message
152 * indicates a wrap-around to the beginning of the buffer.
153 *
154 * Every record carries the monotonic timestamp in microseconds, as well as
155 * the standard userspace syslog level and syslog facility. The usual
156 * kernel messages use LOG_KERN; userspace-injected messages always carry
157 * a matching syslog facility, by default LOG_USER. The origin of every
158 * message can be reliably determined that way.
159 *
160 * The human readable log message directly follows the message header. The
161 * length of the message text is stored in the header, the stored message
162 * is not terminated.
163 *
164 * Optionally, a message can carry a dictionary of properties (key/value pairs),
165 * to provide userspace with a machine-readable message context.
166 *
167 * Examples for well-defined, commonly used property names are:
168 * DEVICE=b12:8 device identifier
169 * b12:8 block dev_t
170 * c127:3 char dev_t
171 * n8 netdev ifindex
172 * +sound:card0 subsystem:devname
173 * SUBSYSTEM=pci driver-core subsystem name
174 *
175 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
176 * follows directly after a '=' character. Every property is terminated by
177 * a '\0' character. The last property is not terminated.
178 *
179 * Example of a message structure:
180 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
181 * 0008 34 00 record is 52 bytes long
182 * 000a 0b 00 text is 11 bytes long
183 * 000c 1f 00 dictionary is 23 bytes long
184 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
185 * 0010 69 74 27 73 20 61 20 6c "it's a l"
186 * 69 6e 65 "ine"
187 * 001b 44 45 56 49 43 "DEVIC"
188 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
189 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
190 * 67 "g"
191 * 0032 00 00 00 padding to next message header
192 *
193 * The 'struct printk_log' buffer header must never be directly exported to
194 * userspace, it is a kernel-private implementation detail that might
195 * need to be changed in the future, when the requirements change.
196 *
197 * /dev/kmsg exports the structured data in the following line format:
198 * "level,sequnum,timestamp;<message text>\n"
199 *
200 * The optional key/value pairs are attached as continuation lines starting
201 * with a space character and terminated by a newline. All possible
202 * non-prinatable characters are escaped in the "\xff" notation.
203 *
204 * Users of the export format should ignore possible additional values
205 * separated by ',', and find the message after the ';' character.
206 */
207
208 enum log_flags {
209 LOG_NOCONS = 1, /* already flushed, do not print to console */
210 LOG_NEWLINE = 2, /* text ended with a newline */
211 LOG_PREFIX = 4, /* text started with a prefix */
212 LOG_CONT = 8, /* text is a fragment of a continuation line */
213 };
214
215 struct printk_log {
216 u64 ts_nsec; /* timestamp in nanoseconds */
217 u16 len; /* length of entire record */
218 u16 text_len; /* length of text buffer */
219 u16 dict_len; /* length of dictionary buffer */
220 u8 facility; /* syslog facility */
221 u8 flags:5; /* internal record flags */
222 u8 level:3; /* syslog level */
223 };
224
225 /*
226 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
227 * within the scheduler's rq lock. It must be released before calling
228 * console_unlock() or anything else that might wake up a process.
229 */
230 static DEFINE_RAW_SPINLOCK(logbuf_lock);
231
232 #ifdef CONFIG_PRINTK
233 DECLARE_WAIT_QUEUE_HEAD(log_wait);
234 /* the next printk record to read by syslog(READ) or /proc/kmsg */
235 static u64 syslog_seq;
236 static u32 syslog_idx;
237 static enum log_flags syslog_prev;
238 static size_t syslog_partial;
239
240 /* index and sequence number of the first record stored in the buffer */
241 static u64 log_first_seq;
242 static u32 log_first_idx;
243
244 /* index and sequence number of the next record to store in the buffer */
245 static u64 log_next_seq;
246 static u32 log_next_idx;
247
248 /* the next printk record to write to the console */
249 static u64 console_seq;
250 static u32 console_idx;
251 static enum log_flags console_prev;
252
253 /* the next printk record to read after the last 'clear' command */
254 static u64 clear_seq;
255 static u32 clear_idx;
256
257 #define PREFIX_MAX 32
258 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
259
260 /* record buffer */
261 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
262 #define LOG_ALIGN 4
263 #else
264 #define LOG_ALIGN __alignof__(struct printk_log)
265 #endif
266 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
267 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
268 static char *log_buf = __log_buf;
269 static u32 log_buf_len = __LOG_BUF_LEN;
270
271 /* Return log buffer address */
272 char *log_buf_addr_get(void)
273 {
274 return log_buf;
275 }
276
277 /* Return log buffer size */
278 u32 log_buf_len_get(void)
279 {
280 return log_buf_len;
281 }
282
283 /* human readable text of the record */
284 static char *log_text(const struct printk_log *msg)
285 {
286 return (char *)msg + sizeof(struct printk_log);
287 }
288
289 /* optional key/value pair dictionary attached to the record */
290 static char *log_dict(const struct printk_log *msg)
291 {
292 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
293 }
294
295 /* get record by index; idx must point to valid msg */
296 static struct printk_log *log_from_idx(u32 idx)
297 {
298 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
299
300 /*
301 * A length == 0 record is the end of buffer marker. Wrap around and
302 * read the message at the start of the buffer.
303 */
304 if (!msg->len)
305 return (struct printk_log *)log_buf;
306 return msg;
307 }
308
309 /* get next record; idx must point to valid msg */
310 static u32 log_next(u32 idx)
311 {
312 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
313
314 /* length == 0 indicates the end of the buffer; wrap */
315 /*
316 * A length == 0 record is the end of buffer marker. Wrap around and
317 * read the message at the start of the buffer as *this* one, and
318 * return the one after that.
319 */
320 if (!msg->len) {
321 msg = (struct printk_log *)log_buf;
322 return msg->len;
323 }
324 return idx + msg->len;
325 }
326
327 /*
328 * Check whether there is enough free space for the given message.
329 *
330 * The same values of first_idx and next_idx mean that the buffer
331 * is either empty or full.
332 *
333 * If the buffer is empty, we must respect the position of the indexes.
334 * They cannot be reset to the beginning of the buffer.
335 */
336 static int logbuf_has_space(u32 msg_size, bool empty)
337 {
338 u32 free;
339
340 if (log_next_idx > log_first_idx || empty)
341 free = max(log_buf_len - log_next_idx, log_first_idx);
342 else
343 free = log_first_idx - log_next_idx;
344
345 /*
346 * We need space also for an empty header that signalizes wrapping
347 * of the buffer.
348 */
349 return free >= msg_size + sizeof(struct printk_log);
350 }
351
352 static int log_make_free_space(u32 msg_size)
353 {
354 while (log_first_seq < log_next_seq) {
355 if (logbuf_has_space(msg_size, false))
356 return 0;
357 /* drop old messages until we have enough contiguous space */
358 log_first_idx = log_next(log_first_idx);
359 log_first_seq++;
360 }
361
362 /* sequence numbers are equal, so the log buffer is empty */
363 if (logbuf_has_space(msg_size, true))
364 return 0;
365
366 return -ENOMEM;
367 }
368
369 /* compute the message size including the padding bytes */
370 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
371 {
372 u32 size;
373
374 size = sizeof(struct printk_log) + text_len + dict_len;
375 *pad_len = (-size) & (LOG_ALIGN - 1);
376 size += *pad_len;
377
378 return size;
379 }
380
381 /*
382 * Define how much of the log buffer we could take at maximum. The value
383 * must be greater than two. Note that only half of the buffer is available
384 * when the index points to the middle.
385 */
386 #define MAX_LOG_TAKE_PART 4
387 static const char trunc_msg[] = "<truncated>";
388
389 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
390 u16 *dict_len, u32 *pad_len)
391 {
392 /*
393 * The message should not take the whole buffer. Otherwise, it might
394 * get removed too soon.
395 */
396 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
397 if (*text_len > max_text_len)
398 *text_len = max_text_len;
399 /* enable the warning message */
400 *trunc_msg_len = strlen(trunc_msg);
401 /* disable the "dict" completely */
402 *dict_len = 0;
403 /* compute the size again, count also the warning message */
404 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
405 }
406
407 /* insert record into the buffer, discard old ones, update heads */
408 static int log_store(int facility, int level,
409 enum log_flags flags, u64 ts_nsec,
410 const char *dict, u16 dict_len,
411 const char *text, u16 text_len)
412 {
413 struct printk_log *msg;
414 u32 size, pad_len;
415 u16 trunc_msg_len = 0;
416
417 /* number of '\0' padding bytes to next message */
418 size = msg_used_size(text_len, dict_len, &pad_len);
419
420 if (log_make_free_space(size)) {
421 /* truncate the message if it is too long for empty buffer */
422 size = truncate_msg(&text_len, &trunc_msg_len,
423 &dict_len, &pad_len);
424 /* survive when the log buffer is too small for trunc_msg */
425 if (log_make_free_space(size))
426 return 0;
427 }
428
429 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
430 /*
431 * This message + an additional empty header does not fit
432 * at the end of the buffer. Add an empty header with len == 0
433 * to signify a wrap around.
434 */
435 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
436 log_next_idx = 0;
437 }
438
439 /* fill message */
440 msg = (struct printk_log *)(log_buf + log_next_idx);
441 memcpy(log_text(msg), text, text_len);
442 msg->text_len = text_len;
443 if (trunc_msg_len) {
444 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
445 msg->text_len += trunc_msg_len;
446 }
447 memcpy(log_dict(msg), dict, dict_len);
448 msg->dict_len = dict_len;
449 msg->facility = facility;
450 msg->level = level & 7;
451 msg->flags = flags & 0x1f;
452 if (ts_nsec > 0)
453 msg->ts_nsec = ts_nsec;
454 else
455 msg->ts_nsec = local_clock();
456 memset(log_dict(msg) + dict_len, 0, pad_len);
457 msg->len = size;
458
459 /* insert message */
460 log_next_idx += msg->len;
461 log_next_seq++;
462
463 return msg->text_len;
464 }
465
466 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
467
468 static int syslog_action_restricted(int type)
469 {
470 if (dmesg_restrict)
471 return 1;
472 /*
473 * Unless restricted, we allow "read all" and "get buffer size"
474 * for everybody.
475 */
476 return type != SYSLOG_ACTION_READ_ALL &&
477 type != SYSLOG_ACTION_SIZE_BUFFER;
478 }
479
480 int check_syslog_permissions(int type, bool from_file)
481 {
482 /*
483 * If this is from /proc/kmsg and we've already opened it, then we've
484 * already done the capabilities checks at open time.
485 */
486 if (from_file && type != SYSLOG_ACTION_OPEN)
487 return 0;
488
489 if (syslog_action_restricted(type)) {
490 if (capable(CAP_SYSLOG))
491 return 0;
492 /*
493 * For historical reasons, accept CAP_SYS_ADMIN too, with
494 * a warning.
495 */
496 if (capable(CAP_SYS_ADMIN)) {
497 pr_warn_once("%s (%d): Attempt to access syslog with "
498 "CAP_SYS_ADMIN but no CAP_SYSLOG "
499 "(deprecated).\n",
500 current->comm, task_pid_nr(current));
501 return 0;
502 }
503 return -EPERM;
504 }
505 return security_syslog(type);
506 }
507
508
509 /* /dev/kmsg - userspace message inject/listen interface */
510 struct devkmsg_user {
511 u64 seq;
512 u32 idx;
513 enum log_flags prev;
514 struct mutex lock;
515 char buf[8192];
516 };
517
518 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
519 {
520 char *buf, *line;
521 int i;
522 int level = default_message_loglevel;
523 int facility = 1; /* LOG_USER */
524 size_t len = iov_iter_count(from);
525 ssize_t ret = len;
526
527 if (len > LOG_LINE_MAX)
528 return -EINVAL;
529 buf = kmalloc(len+1, GFP_KERNEL);
530 if (buf == NULL)
531 return -ENOMEM;
532
533 buf[len] = '\0';
534 if (copy_from_iter(buf, len, from) != len) {
535 kfree(buf);
536 return -EFAULT;
537 }
538
539 /*
540 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
541 * the decimal value represents 32bit, the lower 3 bit are the log
542 * level, the rest are the log facility.
543 *
544 * If no prefix or no userspace facility is specified, we
545 * enforce LOG_USER, to be able to reliably distinguish
546 * kernel-generated messages from userspace-injected ones.
547 */
548 line = buf;
549 if (line[0] == '<') {
550 char *endp = NULL;
551
552 i = simple_strtoul(line+1, &endp, 10);
553 if (endp && endp[0] == '>') {
554 level = i & 7;
555 if (i >> 3)
556 facility = i >> 3;
557 endp++;
558 len -= endp - line;
559 line = endp;
560 }
561 }
562
563 printk_emit(facility, level, NULL, 0, "%s", line);
564 kfree(buf);
565 return ret;
566 }
567
568 static ssize_t devkmsg_read(struct file *file, char __user *buf,
569 size_t count, loff_t *ppos)
570 {
571 struct devkmsg_user *user = file->private_data;
572 struct printk_log *msg;
573 u64 ts_usec;
574 size_t i;
575 char cont = '-';
576 size_t len;
577 ssize_t ret;
578
579 if (!user)
580 return -EBADF;
581
582 ret = mutex_lock_interruptible(&user->lock);
583 if (ret)
584 return ret;
585 raw_spin_lock_irq(&logbuf_lock);
586 while (user->seq == log_next_seq) {
587 if (file->f_flags & O_NONBLOCK) {
588 ret = -EAGAIN;
589 raw_spin_unlock_irq(&logbuf_lock);
590 goto out;
591 }
592
593 raw_spin_unlock_irq(&logbuf_lock);
594 ret = wait_event_interruptible(log_wait,
595 user->seq != log_next_seq);
596 if (ret)
597 goto out;
598 raw_spin_lock_irq(&logbuf_lock);
599 }
600
601 if (user->seq < log_first_seq) {
602 /* our last seen message is gone, return error and reset */
603 user->idx = log_first_idx;
604 user->seq = log_first_seq;
605 ret = -EPIPE;
606 raw_spin_unlock_irq(&logbuf_lock);
607 goto out;
608 }
609
610 msg = log_from_idx(user->idx);
611 ts_usec = msg->ts_nsec;
612 do_div(ts_usec, 1000);
613
614 /*
615 * If we couldn't merge continuation line fragments during the print,
616 * export the stored flags to allow an optional external merge of the
617 * records. Merging the records isn't always neccessarily correct, like
618 * when we hit a race during printing. In most cases though, it produces
619 * better readable output. 'c' in the record flags mark the first
620 * fragment of a line, '+' the following.
621 */
622 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
623 cont = 'c';
624 else if ((msg->flags & LOG_CONT) ||
625 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
626 cont = '+';
627
628 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
629 (msg->facility << 3) | msg->level,
630 user->seq, ts_usec, cont);
631 user->prev = msg->flags;
632
633 /* escape non-printable characters */
634 for (i = 0; i < msg->text_len; i++) {
635 unsigned char c = log_text(msg)[i];
636
637 if (c < ' ' || c >= 127 || c == '\\')
638 len += sprintf(user->buf + len, "\\x%02x", c);
639 else
640 user->buf[len++] = c;
641 }
642 user->buf[len++] = '\n';
643
644 if (msg->dict_len) {
645 bool line = true;
646
647 for (i = 0; i < msg->dict_len; i++) {
648 unsigned char c = log_dict(msg)[i];
649
650 if (line) {
651 user->buf[len++] = ' ';
652 line = false;
653 }
654
655 if (c == '\0') {
656 user->buf[len++] = '\n';
657 line = true;
658 continue;
659 }
660
661 if (c < ' ' || c >= 127 || c == '\\') {
662 len += sprintf(user->buf + len, "\\x%02x", c);
663 continue;
664 }
665
666 user->buf[len++] = c;
667 }
668 user->buf[len++] = '\n';
669 }
670
671 user->idx = log_next(user->idx);
672 user->seq++;
673 raw_spin_unlock_irq(&logbuf_lock);
674
675 if (len > count) {
676 ret = -EINVAL;
677 goto out;
678 }
679
680 if (copy_to_user(buf, user->buf, len)) {
681 ret = -EFAULT;
682 goto out;
683 }
684 ret = len;
685 out:
686 mutex_unlock(&user->lock);
687 return ret;
688 }
689
690 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
691 {
692 struct devkmsg_user *user = file->private_data;
693 loff_t ret = 0;
694
695 if (!user)
696 return -EBADF;
697 if (offset)
698 return -ESPIPE;
699
700 raw_spin_lock_irq(&logbuf_lock);
701 switch (whence) {
702 case SEEK_SET:
703 /* the first record */
704 user->idx = log_first_idx;
705 user->seq = log_first_seq;
706 break;
707 case SEEK_DATA:
708 /*
709 * The first record after the last SYSLOG_ACTION_CLEAR,
710 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
711 * changes no global state, and does not clear anything.
712 */
713 user->idx = clear_idx;
714 user->seq = clear_seq;
715 break;
716 case SEEK_END:
717 /* after the last record */
718 user->idx = log_next_idx;
719 user->seq = log_next_seq;
720 break;
721 default:
722 ret = -EINVAL;
723 }
724 raw_spin_unlock_irq(&logbuf_lock);
725 return ret;
726 }
727
728 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
729 {
730 struct devkmsg_user *user = file->private_data;
731 int ret = 0;
732
733 if (!user)
734 return POLLERR|POLLNVAL;
735
736 poll_wait(file, &log_wait, wait);
737
738 raw_spin_lock_irq(&logbuf_lock);
739 if (user->seq < log_next_seq) {
740 /* return error when data has vanished underneath us */
741 if (user->seq < log_first_seq)
742 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
743 else
744 ret = POLLIN|POLLRDNORM;
745 }
746 raw_spin_unlock_irq(&logbuf_lock);
747
748 return ret;
749 }
750
751 static int devkmsg_open(struct inode *inode, struct file *file)
752 {
753 struct devkmsg_user *user;
754 int err;
755
756 /* write-only does not need any file context */
757 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
758 return 0;
759
760 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
761 SYSLOG_FROM_READER);
762 if (err)
763 return err;
764
765 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
766 if (!user)
767 return -ENOMEM;
768
769 mutex_init(&user->lock);
770
771 raw_spin_lock_irq(&logbuf_lock);
772 user->idx = log_first_idx;
773 user->seq = log_first_seq;
774 raw_spin_unlock_irq(&logbuf_lock);
775
776 file->private_data = user;
777 return 0;
778 }
779
780 static int devkmsg_release(struct inode *inode, struct file *file)
781 {
782 struct devkmsg_user *user = file->private_data;
783
784 if (!user)
785 return 0;
786
787 mutex_destroy(&user->lock);
788 kfree(user);
789 return 0;
790 }
791
792 const struct file_operations kmsg_fops = {
793 .open = devkmsg_open,
794 .read = devkmsg_read,
795 .write_iter = devkmsg_write,
796 .llseek = devkmsg_llseek,
797 .poll = devkmsg_poll,
798 .release = devkmsg_release,
799 };
800
801 #ifdef CONFIG_KEXEC
802 /*
803 * This appends the listed symbols to /proc/vmcore
804 *
805 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
806 * obtain access to symbols that are otherwise very difficult to locate. These
807 * symbols are specifically used so that utilities can access and extract the
808 * dmesg log from a vmcore file after a crash.
809 */
810 void log_buf_kexec_setup(void)
811 {
812 VMCOREINFO_SYMBOL(log_buf);
813 VMCOREINFO_SYMBOL(log_buf_len);
814 VMCOREINFO_SYMBOL(log_first_idx);
815 VMCOREINFO_SYMBOL(log_next_idx);
816 /*
817 * Export struct printk_log size and field offsets. User space tools can
818 * parse it and detect any changes to structure down the line.
819 */
820 VMCOREINFO_STRUCT_SIZE(printk_log);
821 VMCOREINFO_OFFSET(printk_log, ts_nsec);
822 VMCOREINFO_OFFSET(printk_log, len);
823 VMCOREINFO_OFFSET(printk_log, text_len);
824 VMCOREINFO_OFFSET(printk_log, dict_len);
825 }
826 #endif
827
828 /* requested log_buf_len from kernel cmdline */
829 static unsigned long __initdata new_log_buf_len;
830
831 /* we practice scaling the ring buffer by powers of 2 */
832 static void __init log_buf_len_update(unsigned size)
833 {
834 if (size)
835 size = roundup_pow_of_two(size);
836 if (size > log_buf_len)
837 new_log_buf_len = size;
838 }
839
840 /* save requested log_buf_len since it's too early to process it */
841 static int __init log_buf_len_setup(char *str)
842 {
843 unsigned size = memparse(str, &str);
844
845 log_buf_len_update(size);
846
847 return 0;
848 }
849 early_param("log_buf_len", log_buf_len_setup);
850
851 #ifdef CONFIG_SMP
852 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
853
854 static void __init log_buf_add_cpu(void)
855 {
856 unsigned int cpu_extra;
857
858 /*
859 * archs should set up cpu_possible_bits properly with
860 * set_cpu_possible() after setup_arch() but just in
861 * case lets ensure this is valid.
862 */
863 if (num_possible_cpus() == 1)
864 return;
865
866 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
867
868 /* by default this will only continue through for large > 64 CPUs */
869 if (cpu_extra <= __LOG_BUF_LEN / 2)
870 return;
871
872 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
873 __LOG_CPU_MAX_BUF_LEN);
874 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
875 cpu_extra);
876 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
877
878 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
879 }
880 #else /* !CONFIG_SMP */
881 static inline void log_buf_add_cpu(void) {}
882 #endif /* CONFIG_SMP */
883
884 void __init setup_log_buf(int early)
885 {
886 unsigned long flags;
887 char *new_log_buf;
888 int free;
889
890 if (log_buf != __log_buf)
891 return;
892
893 if (!early && !new_log_buf_len)
894 log_buf_add_cpu();
895
896 if (!new_log_buf_len)
897 return;
898
899 if (early) {
900 new_log_buf =
901 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
902 } else {
903 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
904 LOG_ALIGN);
905 }
906
907 if (unlikely(!new_log_buf)) {
908 pr_err("log_buf_len: %ld bytes not available\n",
909 new_log_buf_len);
910 return;
911 }
912
913 raw_spin_lock_irqsave(&logbuf_lock, flags);
914 log_buf_len = new_log_buf_len;
915 log_buf = new_log_buf;
916 new_log_buf_len = 0;
917 free = __LOG_BUF_LEN - log_next_idx;
918 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
919 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
920
921 pr_info("log_buf_len: %d bytes\n", log_buf_len);
922 pr_info("early log buf free: %d(%d%%)\n",
923 free, (free * 100) / __LOG_BUF_LEN);
924 }
925
926 static bool __read_mostly ignore_loglevel;
927
928 static int __init ignore_loglevel_setup(char *str)
929 {
930 ignore_loglevel = true;
931 pr_info("debug: ignoring loglevel setting.\n");
932
933 return 0;
934 }
935
936 early_param("ignore_loglevel", ignore_loglevel_setup);
937 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
938 MODULE_PARM_DESC(ignore_loglevel,
939 "ignore loglevel setting (prints all kernel messages to the console)");
940
941 #ifdef CONFIG_BOOT_PRINTK_DELAY
942
943 static int boot_delay; /* msecs delay after each printk during bootup */
944 static unsigned long long loops_per_msec; /* based on boot_delay */
945
946 static int __init boot_delay_setup(char *str)
947 {
948 unsigned long lpj;
949
950 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
951 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
952
953 get_option(&str, &boot_delay);
954 if (boot_delay > 10 * 1000)
955 boot_delay = 0;
956
957 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
958 "HZ: %d, loops_per_msec: %llu\n",
959 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
960 return 0;
961 }
962 early_param("boot_delay", boot_delay_setup);
963
964 static void boot_delay_msec(int level)
965 {
966 unsigned long long k;
967 unsigned long timeout;
968
969 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
970 || (level >= console_loglevel && !ignore_loglevel)) {
971 return;
972 }
973
974 k = (unsigned long long)loops_per_msec * boot_delay;
975
976 timeout = jiffies + msecs_to_jiffies(boot_delay);
977 while (k) {
978 k--;
979 cpu_relax();
980 /*
981 * use (volatile) jiffies to prevent
982 * compiler reduction; loop termination via jiffies
983 * is secondary and may or may not happen.
984 */
985 if (time_after(jiffies, timeout))
986 break;
987 touch_nmi_watchdog();
988 }
989 }
990 #else
991 static inline void boot_delay_msec(int level)
992 {
993 }
994 #endif
995
996 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
997 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
998
999 static size_t print_time(u64 ts, char *buf)
1000 {
1001 unsigned long rem_nsec;
1002
1003 if (!printk_time)
1004 return 0;
1005
1006 rem_nsec = do_div(ts, 1000000000);
1007
1008 if (!buf)
1009 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1010
1011 return sprintf(buf, "[%5lu.%06lu] ",
1012 (unsigned long)ts, rem_nsec / 1000);
1013 }
1014
1015 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1016 {
1017 size_t len = 0;
1018 unsigned int prefix = (msg->facility << 3) | msg->level;
1019
1020 if (syslog) {
1021 if (buf) {
1022 len += sprintf(buf, "<%u>", prefix);
1023 } else {
1024 len += 3;
1025 if (prefix > 999)
1026 len += 3;
1027 else if (prefix > 99)
1028 len += 2;
1029 else if (prefix > 9)
1030 len++;
1031 }
1032 }
1033
1034 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1035 return len;
1036 }
1037
1038 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1039 bool syslog, char *buf, size_t size)
1040 {
1041 const char *text = log_text(msg);
1042 size_t text_size = msg->text_len;
1043 bool prefix = true;
1044 bool newline = true;
1045 size_t len = 0;
1046
1047 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1048 prefix = false;
1049
1050 if (msg->flags & LOG_CONT) {
1051 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1052 prefix = false;
1053
1054 if (!(msg->flags & LOG_NEWLINE))
1055 newline = false;
1056 }
1057
1058 do {
1059 const char *next = memchr(text, '\n', text_size);
1060 size_t text_len;
1061
1062 if (next) {
1063 text_len = next - text;
1064 next++;
1065 text_size -= next - text;
1066 } else {
1067 text_len = text_size;
1068 }
1069
1070 if (buf) {
1071 if (print_prefix(msg, syslog, NULL) +
1072 text_len + 1 >= size - len)
1073 break;
1074
1075 if (prefix)
1076 len += print_prefix(msg, syslog, buf + len);
1077 memcpy(buf + len, text, text_len);
1078 len += text_len;
1079 if (next || newline)
1080 buf[len++] = '\n';
1081 } else {
1082 /* SYSLOG_ACTION_* buffer size only calculation */
1083 if (prefix)
1084 len += print_prefix(msg, syslog, NULL);
1085 len += text_len;
1086 if (next || newline)
1087 len++;
1088 }
1089
1090 prefix = true;
1091 text = next;
1092 } while (text);
1093
1094 return len;
1095 }
1096
1097 static int syslog_print(char __user *buf, int size)
1098 {
1099 char *text;
1100 struct printk_log *msg;
1101 int len = 0;
1102
1103 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1104 if (!text)
1105 return -ENOMEM;
1106
1107 while (size > 0) {
1108 size_t n;
1109 size_t skip;
1110
1111 raw_spin_lock_irq(&logbuf_lock);
1112 if (syslog_seq < log_first_seq) {
1113 /* messages are gone, move to first one */
1114 syslog_seq = log_first_seq;
1115 syslog_idx = log_first_idx;
1116 syslog_prev = 0;
1117 syslog_partial = 0;
1118 }
1119 if (syslog_seq == log_next_seq) {
1120 raw_spin_unlock_irq(&logbuf_lock);
1121 break;
1122 }
1123
1124 skip = syslog_partial;
1125 msg = log_from_idx(syslog_idx);
1126 n = msg_print_text(msg, syslog_prev, true, text,
1127 LOG_LINE_MAX + PREFIX_MAX);
1128 if (n - syslog_partial <= size) {
1129 /* message fits into buffer, move forward */
1130 syslog_idx = log_next(syslog_idx);
1131 syslog_seq++;
1132 syslog_prev = msg->flags;
1133 n -= syslog_partial;
1134 syslog_partial = 0;
1135 } else if (!len){
1136 /* partial read(), remember position */
1137 n = size;
1138 syslog_partial += n;
1139 } else
1140 n = 0;
1141 raw_spin_unlock_irq(&logbuf_lock);
1142
1143 if (!n)
1144 break;
1145
1146 if (copy_to_user(buf, text + skip, n)) {
1147 if (!len)
1148 len = -EFAULT;
1149 break;
1150 }
1151
1152 len += n;
1153 size -= n;
1154 buf += n;
1155 }
1156
1157 kfree(text);
1158 return len;
1159 }
1160
1161 static int syslog_print_all(char __user *buf, int size, bool clear)
1162 {
1163 char *text;
1164 int len = 0;
1165
1166 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1167 if (!text)
1168 return -ENOMEM;
1169
1170 raw_spin_lock_irq(&logbuf_lock);
1171 if (buf) {
1172 u64 next_seq;
1173 u64 seq;
1174 u32 idx;
1175 enum log_flags prev;
1176
1177 if (clear_seq < log_first_seq) {
1178 /* messages are gone, move to first available one */
1179 clear_seq = log_first_seq;
1180 clear_idx = log_first_idx;
1181 }
1182
1183 /*
1184 * Find first record that fits, including all following records,
1185 * into the user-provided buffer for this dump.
1186 */
1187 seq = clear_seq;
1188 idx = clear_idx;
1189 prev = 0;
1190 while (seq < log_next_seq) {
1191 struct printk_log *msg = log_from_idx(idx);
1192
1193 len += msg_print_text(msg, prev, true, NULL, 0);
1194 prev = msg->flags;
1195 idx = log_next(idx);
1196 seq++;
1197 }
1198
1199 /* move first record forward until length fits into the buffer */
1200 seq = clear_seq;
1201 idx = clear_idx;
1202 prev = 0;
1203 while (len > size && seq < log_next_seq) {
1204 struct printk_log *msg = log_from_idx(idx);
1205
1206 len -= msg_print_text(msg, prev, true, NULL, 0);
1207 prev = msg->flags;
1208 idx = log_next(idx);
1209 seq++;
1210 }
1211
1212 /* last message fitting into this dump */
1213 next_seq = log_next_seq;
1214
1215 len = 0;
1216 while (len >= 0 && seq < next_seq) {
1217 struct printk_log *msg = log_from_idx(idx);
1218 int textlen;
1219
1220 textlen = msg_print_text(msg, prev, true, text,
1221 LOG_LINE_MAX + PREFIX_MAX);
1222 if (textlen < 0) {
1223 len = textlen;
1224 break;
1225 }
1226 idx = log_next(idx);
1227 seq++;
1228 prev = msg->flags;
1229
1230 raw_spin_unlock_irq(&logbuf_lock);
1231 if (copy_to_user(buf + len, text, textlen))
1232 len = -EFAULT;
1233 else
1234 len += textlen;
1235 raw_spin_lock_irq(&logbuf_lock);
1236
1237 if (seq < log_first_seq) {
1238 /* messages are gone, move to next one */
1239 seq = log_first_seq;
1240 idx = log_first_idx;
1241 prev = 0;
1242 }
1243 }
1244 }
1245
1246 if (clear) {
1247 clear_seq = log_next_seq;
1248 clear_idx = log_next_idx;
1249 }
1250 raw_spin_unlock_irq(&logbuf_lock);
1251
1252 kfree(text);
1253 return len;
1254 }
1255
1256 int do_syslog(int type, char __user *buf, int len, bool from_file)
1257 {
1258 bool clear = false;
1259 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1260 int error;
1261
1262 error = check_syslog_permissions(type, from_file);
1263 if (error)
1264 goto out;
1265
1266 error = security_syslog(type);
1267 if (error)
1268 return error;
1269
1270 switch (type) {
1271 case SYSLOG_ACTION_CLOSE: /* Close log */
1272 break;
1273 case SYSLOG_ACTION_OPEN: /* Open log */
1274 break;
1275 case SYSLOG_ACTION_READ: /* Read from log */
1276 error = -EINVAL;
1277 if (!buf || len < 0)
1278 goto out;
1279 error = 0;
1280 if (!len)
1281 goto out;
1282 if (!access_ok(VERIFY_WRITE, buf, len)) {
1283 error = -EFAULT;
1284 goto out;
1285 }
1286 error = wait_event_interruptible(log_wait,
1287 syslog_seq != log_next_seq);
1288 if (error)
1289 goto out;
1290 error = syslog_print(buf, len);
1291 break;
1292 /* Read/clear last kernel messages */
1293 case SYSLOG_ACTION_READ_CLEAR:
1294 clear = true;
1295 /* FALL THRU */
1296 /* Read last kernel messages */
1297 case SYSLOG_ACTION_READ_ALL:
1298 error = -EINVAL;
1299 if (!buf || len < 0)
1300 goto out;
1301 error = 0;
1302 if (!len)
1303 goto out;
1304 if (!access_ok(VERIFY_WRITE, buf, len)) {
1305 error = -EFAULT;
1306 goto out;
1307 }
1308 error = syslog_print_all(buf, len, clear);
1309 break;
1310 /* Clear ring buffer */
1311 case SYSLOG_ACTION_CLEAR:
1312 syslog_print_all(NULL, 0, true);
1313 break;
1314 /* Disable logging to console */
1315 case SYSLOG_ACTION_CONSOLE_OFF:
1316 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1317 saved_console_loglevel = console_loglevel;
1318 console_loglevel = minimum_console_loglevel;
1319 break;
1320 /* Enable logging to console */
1321 case SYSLOG_ACTION_CONSOLE_ON:
1322 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1323 console_loglevel = saved_console_loglevel;
1324 saved_console_loglevel = LOGLEVEL_DEFAULT;
1325 }
1326 break;
1327 /* Set level of messages printed to console */
1328 case SYSLOG_ACTION_CONSOLE_LEVEL:
1329 error = -EINVAL;
1330 if (len < 1 || len > 8)
1331 goto out;
1332 if (len < minimum_console_loglevel)
1333 len = minimum_console_loglevel;
1334 console_loglevel = len;
1335 /* Implicitly re-enable logging to console */
1336 saved_console_loglevel = LOGLEVEL_DEFAULT;
1337 error = 0;
1338 break;
1339 /* Number of chars in the log buffer */
1340 case SYSLOG_ACTION_SIZE_UNREAD:
1341 raw_spin_lock_irq(&logbuf_lock);
1342 if (syslog_seq < log_first_seq) {
1343 /* messages are gone, move to first one */
1344 syslog_seq = log_first_seq;
1345 syslog_idx = log_first_idx;
1346 syslog_prev = 0;
1347 syslog_partial = 0;
1348 }
1349 if (from_file) {
1350 /*
1351 * Short-cut for poll(/"proc/kmsg") which simply checks
1352 * for pending data, not the size; return the count of
1353 * records, not the length.
1354 */
1355 error = log_next_seq - syslog_seq;
1356 } else {
1357 u64 seq = syslog_seq;
1358 u32 idx = syslog_idx;
1359 enum log_flags prev = syslog_prev;
1360
1361 error = 0;
1362 while (seq < log_next_seq) {
1363 struct printk_log *msg = log_from_idx(idx);
1364
1365 error += msg_print_text(msg, prev, true, NULL, 0);
1366 idx = log_next(idx);
1367 seq++;
1368 prev = msg->flags;
1369 }
1370 error -= syslog_partial;
1371 }
1372 raw_spin_unlock_irq(&logbuf_lock);
1373 break;
1374 /* Size of the log buffer */
1375 case SYSLOG_ACTION_SIZE_BUFFER:
1376 error = log_buf_len;
1377 break;
1378 default:
1379 error = -EINVAL;
1380 break;
1381 }
1382 out:
1383 return error;
1384 }
1385
1386 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1387 {
1388 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1389 }
1390
1391 /*
1392 * Call the console drivers, asking them to write out
1393 * log_buf[start] to log_buf[end - 1].
1394 * The console_lock must be held.
1395 */
1396 static void call_console_drivers(int level, const char *text, size_t len)
1397 {
1398 struct console *con;
1399
1400 trace_console(text, len);
1401
1402 if (level >= console_loglevel && !ignore_loglevel)
1403 return;
1404 if (!console_drivers)
1405 return;
1406
1407 for_each_console(con) {
1408 if (exclusive_console && con != exclusive_console)
1409 continue;
1410 if (!(con->flags & CON_ENABLED))
1411 continue;
1412 if (!con->write)
1413 continue;
1414 if (!cpu_online(smp_processor_id()) &&
1415 !(con->flags & CON_ANYTIME))
1416 continue;
1417 con->write(con, text, len);
1418 }
1419 }
1420
1421 /*
1422 * Zap console related locks when oopsing.
1423 * To leave time for slow consoles to print a full oops,
1424 * only zap at most once every 30 seconds.
1425 */
1426 static void zap_locks(void)
1427 {
1428 static unsigned long oops_timestamp;
1429
1430 if (time_after_eq(jiffies, oops_timestamp) &&
1431 !time_after(jiffies, oops_timestamp + 30 * HZ))
1432 return;
1433
1434 oops_timestamp = jiffies;
1435
1436 debug_locks_off();
1437 /* If a crash is occurring, make sure we can't deadlock */
1438 raw_spin_lock_init(&logbuf_lock);
1439 /* And make sure that we print immediately */
1440 sema_init(&console_sem, 1);
1441 }
1442
1443 /*
1444 * Check if we have any console that is capable of printing while cpu is
1445 * booting or shutting down. Requires console_sem.
1446 */
1447 static int have_callable_console(void)
1448 {
1449 struct console *con;
1450
1451 for_each_console(con)
1452 if (con->flags & CON_ANYTIME)
1453 return 1;
1454
1455 return 0;
1456 }
1457
1458 /*
1459 * Can we actually use the console at this time on this cpu?
1460 *
1461 * Console drivers may assume that per-cpu resources have been allocated. So
1462 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1463 * call them until this CPU is officially up.
1464 */
1465 static inline int can_use_console(unsigned int cpu)
1466 {
1467 return cpu_online(cpu) || have_callable_console();
1468 }
1469
1470 /*
1471 * Try to get console ownership to actually show the kernel
1472 * messages from a 'printk'. Return true (and with the
1473 * console_lock held, and 'console_locked' set) if it
1474 * is successful, false otherwise.
1475 */
1476 static int console_trylock_for_printk(void)
1477 {
1478 unsigned int cpu = smp_processor_id();
1479
1480 if (!console_trylock())
1481 return 0;
1482 /*
1483 * If we can't use the console, we need to release the console
1484 * semaphore by hand to avoid flushing the buffer. We need to hold the
1485 * console semaphore in order to do this test safely.
1486 */
1487 if (!can_use_console(cpu)) {
1488 console_locked = 0;
1489 up_console_sem();
1490 return 0;
1491 }
1492 return 1;
1493 }
1494
1495 int printk_delay_msec __read_mostly;
1496
1497 static inline void printk_delay(void)
1498 {
1499 if (unlikely(printk_delay_msec)) {
1500 int m = printk_delay_msec;
1501
1502 while (m--) {
1503 mdelay(1);
1504 touch_nmi_watchdog();
1505 }
1506 }
1507 }
1508
1509 /*
1510 * Continuation lines are buffered, and not committed to the record buffer
1511 * until the line is complete, or a race forces it. The line fragments
1512 * though, are printed immediately to the consoles to ensure everything has
1513 * reached the console in case of a kernel crash.
1514 */
1515 static struct cont {
1516 char buf[LOG_LINE_MAX];
1517 size_t len; /* length == 0 means unused buffer */
1518 size_t cons; /* bytes written to console */
1519 struct task_struct *owner; /* task of first print*/
1520 u64 ts_nsec; /* time of first print */
1521 u8 level; /* log level of first message */
1522 u8 facility; /* log facility of first message */
1523 enum log_flags flags; /* prefix, newline flags */
1524 bool flushed:1; /* buffer sealed and committed */
1525 } cont;
1526
1527 static void cont_flush(enum log_flags flags)
1528 {
1529 if (cont.flushed)
1530 return;
1531 if (cont.len == 0)
1532 return;
1533
1534 if (cont.cons) {
1535 /*
1536 * If a fragment of this line was directly flushed to the
1537 * console; wait for the console to pick up the rest of the
1538 * line. LOG_NOCONS suppresses a duplicated output.
1539 */
1540 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1541 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1542 cont.flags = flags;
1543 cont.flushed = true;
1544 } else {
1545 /*
1546 * If no fragment of this line ever reached the console,
1547 * just submit it to the store and free the buffer.
1548 */
1549 log_store(cont.facility, cont.level, flags, 0,
1550 NULL, 0, cont.buf, cont.len);
1551 cont.len = 0;
1552 }
1553 }
1554
1555 static bool cont_add(int facility, int level, const char *text, size_t len)
1556 {
1557 if (cont.len && cont.flushed)
1558 return false;
1559
1560 if (cont.len + len > sizeof(cont.buf)) {
1561 /* the line gets too long, split it up in separate records */
1562 cont_flush(LOG_CONT);
1563 return false;
1564 }
1565
1566 if (!cont.len) {
1567 cont.facility = facility;
1568 cont.level = level;
1569 cont.owner = current;
1570 cont.ts_nsec = local_clock();
1571 cont.flags = 0;
1572 cont.cons = 0;
1573 cont.flushed = false;
1574 }
1575
1576 memcpy(cont.buf + cont.len, text, len);
1577 cont.len += len;
1578
1579 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1580 cont_flush(LOG_CONT);
1581
1582 return true;
1583 }
1584
1585 static size_t cont_print_text(char *text, size_t size)
1586 {
1587 size_t textlen = 0;
1588 size_t len;
1589
1590 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1591 textlen += print_time(cont.ts_nsec, text);
1592 size -= textlen;
1593 }
1594
1595 len = cont.len - cont.cons;
1596 if (len > 0) {
1597 if (len+1 > size)
1598 len = size-1;
1599 memcpy(text + textlen, cont.buf + cont.cons, len);
1600 textlen += len;
1601 cont.cons = cont.len;
1602 }
1603
1604 if (cont.flushed) {
1605 if (cont.flags & LOG_NEWLINE)
1606 text[textlen++] = '\n';
1607 /* got everything, release buffer */
1608 cont.len = 0;
1609 }
1610 return textlen;
1611 }
1612
1613 asmlinkage int vprintk_emit(int facility, int level,
1614 const char *dict, size_t dictlen,
1615 const char *fmt, va_list args)
1616 {
1617 static int recursion_bug;
1618 static char textbuf[LOG_LINE_MAX];
1619 char *text = textbuf;
1620 size_t text_len = 0;
1621 enum log_flags lflags = 0;
1622 unsigned long flags;
1623 int this_cpu;
1624 int printed_len = 0;
1625 bool in_sched = false;
1626 /* cpu currently holding logbuf_lock in this function */
1627 static unsigned int logbuf_cpu = UINT_MAX;
1628
1629 if (level == LOGLEVEL_SCHED) {
1630 level = LOGLEVEL_DEFAULT;
1631 in_sched = true;
1632 }
1633
1634 boot_delay_msec(level);
1635 printk_delay();
1636
1637 /* This stops the holder of console_sem just where we want him */
1638 local_irq_save(flags);
1639 this_cpu = smp_processor_id();
1640
1641 /*
1642 * Ouch, printk recursed into itself!
1643 */
1644 if (unlikely(logbuf_cpu == this_cpu)) {
1645 /*
1646 * If a crash is occurring during printk() on this CPU,
1647 * then try to get the crash message out but make sure
1648 * we can't deadlock. Otherwise just return to avoid the
1649 * recursion and return - but flag the recursion so that
1650 * it can be printed at the next appropriate moment:
1651 */
1652 if (!oops_in_progress && !lockdep_recursing(current)) {
1653 recursion_bug = 1;
1654 local_irq_restore(flags);
1655 return 0;
1656 }
1657 zap_locks();
1658 }
1659
1660 lockdep_off();
1661 raw_spin_lock(&logbuf_lock);
1662 logbuf_cpu = this_cpu;
1663
1664 if (unlikely(recursion_bug)) {
1665 static const char recursion_msg[] =
1666 "BUG: recent printk recursion!";
1667
1668 recursion_bug = 0;
1669 /* emit KERN_CRIT message */
1670 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1671 NULL, 0, recursion_msg,
1672 strlen(recursion_msg));
1673 }
1674
1675 /*
1676 * The printf needs to come first; we need the syslog
1677 * prefix which might be passed-in as a parameter.
1678 */
1679 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1680
1681 /* mark and strip a trailing newline */
1682 if (text_len && text[text_len-1] == '\n') {
1683 text_len--;
1684 lflags |= LOG_NEWLINE;
1685 }
1686
1687 /* strip kernel syslog prefix and extract log level or control flags */
1688 if (facility == 0) {
1689 int kern_level = printk_get_level(text);
1690
1691 if (kern_level) {
1692 const char *end_of_header = printk_skip_level(text);
1693 switch (kern_level) {
1694 case '0' ... '7':
1695 if (level == LOGLEVEL_DEFAULT)
1696 level = kern_level - '0';
1697 /* fallthrough */
1698 case 'd': /* KERN_DEFAULT */
1699 lflags |= LOG_PREFIX;
1700 }
1701 /*
1702 * No need to check length here because vscnprintf
1703 * put '\0' at the end of the string. Only valid and
1704 * newly printed level is detected.
1705 */
1706 text_len -= end_of_header - text;
1707 text = (char *)end_of_header;
1708 }
1709 }
1710
1711 if (level == LOGLEVEL_DEFAULT)
1712 level = default_message_loglevel;
1713
1714 if (dict)
1715 lflags |= LOG_PREFIX|LOG_NEWLINE;
1716
1717 if (!(lflags & LOG_NEWLINE)) {
1718 /*
1719 * Flush the conflicting buffer. An earlier newline was missing,
1720 * or another task also prints continuation lines.
1721 */
1722 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1723 cont_flush(LOG_NEWLINE);
1724
1725 /* buffer line if possible, otherwise store it right away */
1726 if (cont_add(facility, level, text, text_len))
1727 printed_len += text_len;
1728 else
1729 printed_len += log_store(facility, level,
1730 lflags | LOG_CONT, 0,
1731 dict, dictlen, text, text_len);
1732 } else {
1733 bool stored = false;
1734
1735 /*
1736 * If an earlier newline was missing and it was the same task,
1737 * either merge it with the current buffer and flush, or if
1738 * there was a race with interrupts (prefix == true) then just
1739 * flush it out and store this line separately.
1740 * If the preceding printk was from a different task and missed
1741 * a newline, flush and append the newline.
1742 */
1743 if (cont.len) {
1744 if (cont.owner == current && !(lflags & LOG_PREFIX))
1745 stored = cont_add(facility, level, text,
1746 text_len);
1747 cont_flush(LOG_NEWLINE);
1748 }
1749
1750 if (stored)
1751 printed_len += text_len;
1752 else
1753 printed_len += log_store(facility, level, lflags, 0,
1754 dict, dictlen, text, text_len);
1755 }
1756
1757 logbuf_cpu = UINT_MAX;
1758 raw_spin_unlock(&logbuf_lock);
1759 lockdep_on();
1760 local_irq_restore(flags);
1761
1762 /* If called from the scheduler, we can not call up(). */
1763 if (!in_sched) {
1764 lockdep_off();
1765 /*
1766 * Disable preemption to avoid being preempted while holding
1767 * console_sem which would prevent anyone from printing to
1768 * console
1769 */
1770 preempt_disable();
1771
1772 /*
1773 * Try to acquire and then immediately release the console
1774 * semaphore. The release will print out buffers and wake up
1775 * /dev/kmsg and syslog() users.
1776 */
1777 if (console_trylock_for_printk())
1778 console_unlock();
1779 preempt_enable();
1780 lockdep_on();
1781 }
1782
1783 return printed_len;
1784 }
1785 EXPORT_SYMBOL(vprintk_emit);
1786
1787 asmlinkage int vprintk(const char *fmt, va_list args)
1788 {
1789 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1790 }
1791 EXPORT_SYMBOL(vprintk);
1792
1793 asmlinkage int printk_emit(int facility, int level,
1794 const char *dict, size_t dictlen,
1795 const char *fmt, ...)
1796 {
1797 va_list args;
1798 int r;
1799
1800 va_start(args, fmt);
1801 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1802 va_end(args);
1803
1804 return r;
1805 }
1806 EXPORT_SYMBOL(printk_emit);
1807
1808 int vprintk_default(const char *fmt, va_list args)
1809 {
1810 int r;
1811
1812 #ifdef CONFIG_KGDB_KDB
1813 if (unlikely(kdb_trap_printk)) {
1814 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1815 return r;
1816 }
1817 #endif
1818 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1819
1820 return r;
1821 }
1822 EXPORT_SYMBOL_GPL(vprintk_default);
1823
1824 /*
1825 * This allows printk to be diverted to another function per cpu.
1826 * This is useful for calling printk functions from within NMI
1827 * without worrying about race conditions that can lock up the
1828 * box.
1829 */
1830 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1831
1832 /**
1833 * printk - print a kernel message
1834 * @fmt: format string
1835 *
1836 * This is printk(). It can be called from any context. We want it to work.
1837 *
1838 * We try to grab the console_lock. If we succeed, it's easy - we log the
1839 * output and call the console drivers. If we fail to get the semaphore, we
1840 * place the output into the log buffer and return. The current holder of
1841 * the console_sem will notice the new output in console_unlock(); and will
1842 * send it to the consoles before releasing the lock.
1843 *
1844 * One effect of this deferred printing is that code which calls printk() and
1845 * then changes console_loglevel may break. This is because console_loglevel
1846 * is inspected when the actual printing occurs.
1847 *
1848 * See also:
1849 * printf(3)
1850 *
1851 * See the vsnprintf() documentation for format string extensions over C99.
1852 */
1853 asmlinkage __visible int printk(const char *fmt, ...)
1854 {
1855 printk_func_t vprintk_func;
1856 va_list args;
1857 int r;
1858
1859 va_start(args, fmt);
1860
1861 /*
1862 * If a caller overrides the per_cpu printk_func, then it needs
1863 * to disable preemption when calling printk(). Otherwise
1864 * the printk_func should be set to the default. No need to
1865 * disable preemption here.
1866 */
1867 vprintk_func = this_cpu_read(printk_func);
1868 r = vprintk_func(fmt, args);
1869
1870 va_end(args);
1871
1872 return r;
1873 }
1874 EXPORT_SYMBOL(printk);
1875
1876 #else /* CONFIG_PRINTK */
1877
1878 #define LOG_LINE_MAX 0
1879 #define PREFIX_MAX 0
1880
1881 static u64 syslog_seq;
1882 static u32 syslog_idx;
1883 static u64 console_seq;
1884 static u32 console_idx;
1885 static enum log_flags syslog_prev;
1886 static u64 log_first_seq;
1887 static u32 log_first_idx;
1888 static u64 log_next_seq;
1889 static enum log_flags console_prev;
1890 static struct cont {
1891 size_t len;
1892 size_t cons;
1893 u8 level;
1894 bool flushed:1;
1895 } cont;
1896 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1897 static u32 log_next(u32 idx) { return 0; }
1898 static void call_console_drivers(int level, const char *text, size_t len) {}
1899 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1900 bool syslog, char *buf, size_t size) { return 0; }
1901 static size_t cont_print_text(char *text, size_t size) { return 0; }
1902
1903 /* Still needs to be defined for users */
1904 DEFINE_PER_CPU(printk_func_t, printk_func);
1905
1906 #endif /* CONFIG_PRINTK */
1907
1908 #ifdef CONFIG_EARLY_PRINTK
1909 struct console *early_console;
1910
1911 asmlinkage __visible void early_printk(const char *fmt, ...)
1912 {
1913 va_list ap;
1914 char buf[512];
1915 int n;
1916
1917 if (!early_console)
1918 return;
1919
1920 va_start(ap, fmt);
1921 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1922 va_end(ap);
1923
1924 early_console->write(early_console, buf, n);
1925 }
1926 #endif
1927
1928 static int __add_preferred_console(char *name, int idx, char *options,
1929 char *brl_options)
1930 {
1931 struct console_cmdline *c;
1932 int i;
1933
1934 /*
1935 * See if this tty is not yet registered, and
1936 * if we have a slot free.
1937 */
1938 for (i = 0, c = console_cmdline;
1939 i < MAX_CMDLINECONSOLES && c->name[0];
1940 i++, c++) {
1941 if (strcmp(c->name, name) == 0 && c->index == idx) {
1942 if (!brl_options)
1943 selected_console = i;
1944 return 0;
1945 }
1946 }
1947 if (i == MAX_CMDLINECONSOLES)
1948 return -E2BIG;
1949 if (!brl_options)
1950 selected_console = i;
1951 strlcpy(c->name, name, sizeof(c->name));
1952 c->options = options;
1953 braille_set_options(c, brl_options);
1954
1955 c->index = idx;
1956 return 0;
1957 }
1958 /*
1959 * Set up a console. Called via do_early_param() in init/main.c
1960 * for each "console=" parameter in the boot command line.
1961 */
1962 static int __init console_setup(char *str)
1963 {
1964 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1965 char *s, *options, *brl_options = NULL;
1966 int idx;
1967
1968 if (_braille_console_setup(&str, &brl_options))
1969 return 1;
1970
1971 /*
1972 * Decode str into name, index, options.
1973 */
1974 if (str[0] >= '0' && str[0] <= '9') {
1975 strcpy(buf, "ttyS");
1976 strncpy(buf + 4, str, sizeof(buf) - 5);
1977 } else {
1978 strncpy(buf, str, sizeof(buf) - 1);
1979 }
1980 buf[sizeof(buf) - 1] = 0;
1981 options = strchr(str, ',');
1982 if (options)
1983 *(options++) = 0;
1984 #ifdef __sparc__
1985 if (!strcmp(str, "ttya"))
1986 strcpy(buf, "ttyS0");
1987 if (!strcmp(str, "ttyb"))
1988 strcpy(buf, "ttyS1");
1989 #endif
1990 for (s = buf; *s; s++)
1991 if (isdigit(*s) || *s == ',')
1992 break;
1993 idx = simple_strtoul(s, NULL, 10);
1994 *s = 0;
1995
1996 __add_preferred_console(buf, idx, options, brl_options);
1997 console_set_on_cmdline = 1;
1998 return 1;
1999 }
2000 __setup("console=", console_setup);
2001
2002 /**
2003 * add_preferred_console - add a device to the list of preferred consoles.
2004 * @name: device name
2005 * @idx: device index
2006 * @options: options for this console
2007 *
2008 * The last preferred console added will be used for kernel messages
2009 * and stdin/out/err for init. Normally this is used by console_setup
2010 * above to handle user-supplied console arguments; however it can also
2011 * be used by arch-specific code either to override the user or more
2012 * commonly to provide a default console (ie from PROM variables) when
2013 * the user has not supplied one.
2014 */
2015 int add_preferred_console(char *name, int idx, char *options)
2016 {
2017 return __add_preferred_console(name, idx, options, NULL);
2018 }
2019
2020 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
2021 {
2022 struct console_cmdline *c;
2023 int i;
2024
2025 for (i = 0, c = console_cmdline;
2026 i < MAX_CMDLINECONSOLES && c->name[0];
2027 i++, c++)
2028 if (strcmp(c->name, name) == 0 && c->index == idx) {
2029 strlcpy(c->name, name_new, sizeof(c->name));
2030 c->options = options;
2031 c->index = idx_new;
2032 return i;
2033 }
2034 /* not found */
2035 return -1;
2036 }
2037
2038 bool console_suspend_enabled = true;
2039 EXPORT_SYMBOL(console_suspend_enabled);
2040
2041 static int __init console_suspend_disable(char *str)
2042 {
2043 console_suspend_enabled = false;
2044 return 1;
2045 }
2046 __setup("no_console_suspend", console_suspend_disable);
2047 module_param_named(console_suspend, console_suspend_enabled,
2048 bool, S_IRUGO | S_IWUSR);
2049 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2050 " and hibernate operations");
2051
2052 /**
2053 * suspend_console - suspend the console subsystem
2054 *
2055 * This disables printk() while we go into suspend states
2056 */
2057 void suspend_console(void)
2058 {
2059 if (!console_suspend_enabled)
2060 return;
2061 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2062 console_lock();
2063 console_suspended = 1;
2064 up_console_sem();
2065 }
2066
2067 void resume_console(void)
2068 {
2069 if (!console_suspend_enabled)
2070 return;
2071 down_console_sem();
2072 console_suspended = 0;
2073 console_unlock();
2074 }
2075
2076 /**
2077 * console_cpu_notify - print deferred console messages after CPU hotplug
2078 * @self: notifier struct
2079 * @action: CPU hotplug event
2080 * @hcpu: unused
2081 *
2082 * If printk() is called from a CPU that is not online yet, the messages
2083 * will be spooled but will not show up on the console. This function is
2084 * called when a new CPU comes online (or fails to come up), and ensures
2085 * that any such output gets printed.
2086 */
2087 static int console_cpu_notify(struct notifier_block *self,
2088 unsigned long action, void *hcpu)
2089 {
2090 switch (action) {
2091 case CPU_ONLINE:
2092 case CPU_DEAD:
2093 case CPU_DOWN_FAILED:
2094 case CPU_UP_CANCELED:
2095 console_lock();
2096 console_unlock();
2097 }
2098 return NOTIFY_OK;
2099 }
2100
2101 /**
2102 * console_lock - lock the console system for exclusive use.
2103 *
2104 * Acquires a lock which guarantees that the caller has
2105 * exclusive access to the console system and the console_drivers list.
2106 *
2107 * Can sleep, returns nothing.
2108 */
2109 void console_lock(void)
2110 {
2111 might_sleep();
2112
2113 down_console_sem();
2114 if (console_suspended)
2115 return;
2116 console_locked = 1;
2117 console_may_schedule = 1;
2118 }
2119 EXPORT_SYMBOL(console_lock);
2120
2121 /**
2122 * console_trylock - try to lock the console system for exclusive use.
2123 *
2124 * Try to acquire a lock which guarantees that the caller has exclusive
2125 * access to the console system and the console_drivers list.
2126 *
2127 * returns 1 on success, and 0 on failure to acquire the lock.
2128 */
2129 int console_trylock(void)
2130 {
2131 if (down_trylock_console_sem())
2132 return 0;
2133 if (console_suspended) {
2134 up_console_sem();
2135 return 0;
2136 }
2137 console_locked = 1;
2138 console_may_schedule = 0;
2139 return 1;
2140 }
2141 EXPORT_SYMBOL(console_trylock);
2142
2143 int is_console_locked(void)
2144 {
2145 return console_locked;
2146 }
2147
2148 static void console_cont_flush(char *text, size_t size)
2149 {
2150 unsigned long flags;
2151 size_t len;
2152
2153 raw_spin_lock_irqsave(&logbuf_lock, flags);
2154
2155 if (!cont.len)
2156 goto out;
2157
2158 /*
2159 * We still queue earlier records, likely because the console was
2160 * busy. The earlier ones need to be printed before this one, we
2161 * did not flush any fragment so far, so just let it queue up.
2162 */
2163 if (console_seq < log_next_seq && !cont.cons)
2164 goto out;
2165
2166 len = cont_print_text(text, size);
2167 raw_spin_unlock(&logbuf_lock);
2168 stop_critical_timings();
2169 call_console_drivers(cont.level, text, len);
2170 start_critical_timings();
2171 local_irq_restore(flags);
2172 return;
2173 out:
2174 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2175 }
2176
2177 /**
2178 * console_unlock - unlock the console system
2179 *
2180 * Releases the console_lock which the caller holds on the console system
2181 * and the console driver list.
2182 *
2183 * While the console_lock was held, console output may have been buffered
2184 * by printk(). If this is the case, console_unlock(); emits
2185 * the output prior to releasing the lock.
2186 *
2187 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2188 *
2189 * console_unlock(); may be called from any context.
2190 */
2191 void console_unlock(void)
2192 {
2193 static char text[LOG_LINE_MAX + PREFIX_MAX];
2194 static u64 seen_seq;
2195 unsigned long flags;
2196 bool wake_klogd = false;
2197 bool retry;
2198
2199 if (console_suspended) {
2200 up_console_sem();
2201 return;
2202 }
2203
2204 console_may_schedule = 0;
2205
2206 /* flush buffered message fragment immediately to console */
2207 console_cont_flush(text, sizeof(text));
2208 again:
2209 for (;;) {
2210 struct printk_log *msg;
2211 size_t len;
2212 int level;
2213
2214 raw_spin_lock_irqsave(&logbuf_lock, flags);
2215 if (seen_seq != log_next_seq) {
2216 wake_klogd = true;
2217 seen_seq = log_next_seq;
2218 }
2219
2220 if (console_seq < log_first_seq) {
2221 len = sprintf(text, "** %u printk messages dropped ** ",
2222 (unsigned)(log_first_seq - console_seq));
2223
2224 /* messages are gone, move to first one */
2225 console_seq = log_first_seq;
2226 console_idx = log_first_idx;
2227 console_prev = 0;
2228 } else {
2229 len = 0;
2230 }
2231 skip:
2232 if (console_seq == log_next_seq)
2233 break;
2234
2235 msg = log_from_idx(console_idx);
2236 if (msg->flags & LOG_NOCONS) {
2237 /*
2238 * Skip record we have buffered and already printed
2239 * directly to the console when we received it.
2240 */
2241 console_idx = log_next(console_idx);
2242 console_seq++;
2243 /*
2244 * We will get here again when we register a new
2245 * CON_PRINTBUFFER console. Clear the flag so we
2246 * will properly dump everything later.
2247 */
2248 msg->flags &= ~LOG_NOCONS;
2249 console_prev = msg->flags;
2250 goto skip;
2251 }
2252
2253 level = msg->level;
2254 len += msg_print_text(msg, console_prev, false,
2255 text + len, sizeof(text) - len);
2256 console_idx = log_next(console_idx);
2257 console_seq++;
2258 console_prev = msg->flags;
2259 raw_spin_unlock(&logbuf_lock);
2260
2261 stop_critical_timings(); /* don't trace print latency */
2262 call_console_drivers(level, text, len);
2263 start_critical_timings();
2264 local_irq_restore(flags);
2265 }
2266 console_locked = 0;
2267
2268 /* Release the exclusive_console once it is used */
2269 if (unlikely(exclusive_console))
2270 exclusive_console = NULL;
2271
2272 raw_spin_unlock(&logbuf_lock);
2273
2274 up_console_sem();
2275
2276 /*
2277 * Someone could have filled up the buffer again, so re-check if there's
2278 * something to flush. In case we cannot trylock the console_sem again,
2279 * there's a new owner and the console_unlock() from them will do the
2280 * flush, no worries.
2281 */
2282 raw_spin_lock(&logbuf_lock);
2283 retry = console_seq != log_next_seq;
2284 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2285
2286 if (retry && console_trylock())
2287 goto again;
2288
2289 if (wake_klogd)
2290 wake_up_klogd();
2291 }
2292 EXPORT_SYMBOL(console_unlock);
2293
2294 /**
2295 * console_conditional_schedule - yield the CPU if required
2296 *
2297 * If the console code is currently allowed to sleep, and
2298 * if this CPU should yield the CPU to another task, do
2299 * so here.
2300 *
2301 * Must be called within console_lock();.
2302 */
2303 void __sched console_conditional_schedule(void)
2304 {
2305 if (console_may_schedule)
2306 cond_resched();
2307 }
2308 EXPORT_SYMBOL(console_conditional_schedule);
2309
2310 void console_unblank(void)
2311 {
2312 struct console *c;
2313
2314 /*
2315 * console_unblank can no longer be called in interrupt context unless
2316 * oops_in_progress is set to 1..
2317 */
2318 if (oops_in_progress) {
2319 if (down_trylock_console_sem() != 0)
2320 return;
2321 } else
2322 console_lock();
2323
2324 console_locked = 1;
2325 console_may_schedule = 0;
2326 for_each_console(c)
2327 if ((c->flags & CON_ENABLED) && c->unblank)
2328 c->unblank();
2329 console_unlock();
2330 }
2331
2332 /*
2333 * Return the console tty driver structure and its associated index
2334 */
2335 struct tty_driver *console_device(int *index)
2336 {
2337 struct console *c;
2338 struct tty_driver *driver = NULL;
2339
2340 console_lock();
2341 for_each_console(c) {
2342 if (!c->device)
2343 continue;
2344 driver = c->device(c, index);
2345 if (driver)
2346 break;
2347 }
2348 console_unlock();
2349 return driver;
2350 }
2351
2352 /*
2353 * Prevent further output on the passed console device so that (for example)
2354 * serial drivers can disable console output before suspending a port, and can
2355 * re-enable output afterwards.
2356 */
2357 void console_stop(struct console *console)
2358 {
2359 console_lock();
2360 console->flags &= ~CON_ENABLED;
2361 console_unlock();
2362 }
2363 EXPORT_SYMBOL(console_stop);
2364
2365 void console_start(struct console *console)
2366 {
2367 console_lock();
2368 console->flags |= CON_ENABLED;
2369 console_unlock();
2370 }
2371 EXPORT_SYMBOL(console_start);
2372
2373 static int __read_mostly keep_bootcon;
2374
2375 static int __init keep_bootcon_setup(char *str)
2376 {
2377 keep_bootcon = 1;
2378 pr_info("debug: skip boot console de-registration.\n");
2379
2380 return 0;
2381 }
2382
2383 early_param("keep_bootcon", keep_bootcon_setup);
2384
2385 /*
2386 * The console driver calls this routine during kernel initialization
2387 * to register the console printing procedure with printk() and to
2388 * print any messages that were printed by the kernel before the
2389 * console driver was initialized.
2390 *
2391 * This can happen pretty early during the boot process (because of
2392 * early_printk) - sometimes before setup_arch() completes - be careful
2393 * of what kernel features are used - they may not be initialised yet.
2394 *
2395 * There are two types of consoles - bootconsoles (early_printk) and
2396 * "real" consoles (everything which is not a bootconsole) which are
2397 * handled differently.
2398 * - Any number of bootconsoles can be registered at any time.
2399 * - As soon as a "real" console is registered, all bootconsoles
2400 * will be unregistered automatically.
2401 * - Once a "real" console is registered, any attempt to register a
2402 * bootconsoles will be rejected
2403 */
2404 void register_console(struct console *newcon)
2405 {
2406 int i;
2407 unsigned long flags;
2408 struct console *bcon = NULL;
2409 struct console_cmdline *c;
2410
2411 if (console_drivers)
2412 for_each_console(bcon)
2413 if (WARN(bcon == newcon,
2414 "console '%s%d' already registered\n",
2415 bcon->name, bcon->index))
2416 return;
2417
2418 /*
2419 * before we register a new CON_BOOT console, make sure we don't
2420 * already have a valid console
2421 */
2422 if (console_drivers && newcon->flags & CON_BOOT) {
2423 /* find the last or real console */
2424 for_each_console(bcon) {
2425 if (!(bcon->flags & CON_BOOT)) {
2426 pr_info("Too late to register bootconsole %s%d\n",
2427 newcon->name, newcon->index);
2428 return;
2429 }
2430 }
2431 }
2432
2433 if (console_drivers && console_drivers->flags & CON_BOOT)
2434 bcon = console_drivers;
2435
2436 if (preferred_console < 0 || bcon || !console_drivers)
2437 preferred_console = selected_console;
2438
2439 if (newcon->early_setup)
2440 newcon->early_setup();
2441
2442 /*
2443 * See if we want to use this console driver. If we
2444 * didn't select a console we take the first one
2445 * that registers here.
2446 */
2447 if (preferred_console < 0) {
2448 if (newcon->index < 0)
2449 newcon->index = 0;
2450 if (newcon->setup == NULL ||
2451 newcon->setup(newcon, NULL) == 0) {
2452 newcon->flags |= CON_ENABLED;
2453 if (newcon->device) {
2454 newcon->flags |= CON_CONSDEV;
2455 preferred_console = 0;
2456 }
2457 }
2458 }
2459
2460 /*
2461 * See if this console matches one we selected on
2462 * the command line.
2463 */
2464 for (i = 0, c = console_cmdline;
2465 i < MAX_CMDLINECONSOLES && c->name[0];
2466 i++, c++) {
2467 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2468 if (strcmp(c->name, newcon->name) != 0)
2469 continue;
2470 if (newcon->index >= 0 &&
2471 newcon->index != c->index)
2472 continue;
2473 if (newcon->index < 0)
2474 newcon->index = c->index;
2475
2476 if (_braille_register_console(newcon, c))
2477 return;
2478
2479 if (newcon->setup &&
2480 newcon->setup(newcon, console_cmdline[i].options) != 0)
2481 break;
2482 newcon->flags |= CON_ENABLED;
2483 newcon->index = c->index;
2484 if (i == selected_console) {
2485 newcon->flags |= CON_CONSDEV;
2486 preferred_console = selected_console;
2487 }
2488 break;
2489 }
2490
2491 if (!(newcon->flags & CON_ENABLED))
2492 return;
2493
2494 /*
2495 * If we have a bootconsole, and are switching to a real console,
2496 * don't print everything out again, since when the boot console, and
2497 * the real console are the same physical device, it's annoying to
2498 * see the beginning boot messages twice
2499 */
2500 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2501 newcon->flags &= ~CON_PRINTBUFFER;
2502
2503 /*
2504 * Put this console in the list - keep the
2505 * preferred driver at the head of the list.
2506 */
2507 console_lock();
2508 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2509 newcon->next = console_drivers;
2510 console_drivers = newcon;
2511 if (newcon->next)
2512 newcon->next->flags &= ~CON_CONSDEV;
2513 } else {
2514 newcon->next = console_drivers->next;
2515 console_drivers->next = newcon;
2516 }
2517 if (newcon->flags & CON_PRINTBUFFER) {
2518 /*
2519 * console_unlock(); will print out the buffered messages
2520 * for us.
2521 */
2522 raw_spin_lock_irqsave(&logbuf_lock, flags);
2523 console_seq = syslog_seq;
2524 console_idx = syslog_idx;
2525 console_prev = syslog_prev;
2526 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2527 /*
2528 * We're about to replay the log buffer. Only do this to the
2529 * just-registered console to avoid excessive message spam to
2530 * the already-registered consoles.
2531 */
2532 exclusive_console = newcon;
2533 }
2534 console_unlock();
2535 console_sysfs_notify();
2536
2537 /*
2538 * By unregistering the bootconsoles after we enable the real console
2539 * we get the "console xxx enabled" message on all the consoles -
2540 * boot consoles, real consoles, etc - this is to ensure that end
2541 * users know there might be something in the kernel's log buffer that
2542 * went to the bootconsole (that they do not see on the real console)
2543 */
2544 pr_info("%sconsole [%s%d] enabled\n",
2545 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2546 newcon->name, newcon->index);
2547 if (bcon &&
2548 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2549 !keep_bootcon) {
2550 /* We need to iterate through all boot consoles, to make
2551 * sure we print everything out, before we unregister them.
2552 */
2553 for_each_console(bcon)
2554 if (bcon->flags & CON_BOOT)
2555 unregister_console(bcon);
2556 }
2557 }
2558 EXPORT_SYMBOL(register_console);
2559
2560 int unregister_console(struct console *console)
2561 {
2562 struct console *a, *b;
2563 int res;
2564
2565 pr_info("%sconsole [%s%d] disabled\n",
2566 (console->flags & CON_BOOT) ? "boot" : "" ,
2567 console->name, console->index);
2568
2569 res = _braille_unregister_console(console);
2570 if (res)
2571 return res;
2572
2573 res = 1;
2574 console_lock();
2575 if (console_drivers == console) {
2576 console_drivers=console->next;
2577 res = 0;
2578 } else if (console_drivers) {
2579 for (a=console_drivers->next, b=console_drivers ;
2580 a; b=a, a=b->next) {
2581 if (a == console) {
2582 b->next = a->next;
2583 res = 0;
2584 break;
2585 }
2586 }
2587 }
2588
2589 /*
2590 * If this isn't the last console and it has CON_CONSDEV set, we
2591 * need to set it on the next preferred console.
2592 */
2593 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2594 console_drivers->flags |= CON_CONSDEV;
2595
2596 console->flags &= ~CON_ENABLED;
2597 console_unlock();
2598 console_sysfs_notify();
2599 return res;
2600 }
2601 EXPORT_SYMBOL(unregister_console);
2602
2603 static int __init printk_late_init(void)
2604 {
2605 struct console *con;
2606
2607 for_each_console(con) {
2608 if (!keep_bootcon && con->flags & CON_BOOT) {
2609 unregister_console(con);
2610 }
2611 }
2612 hotcpu_notifier(console_cpu_notify, 0);
2613 return 0;
2614 }
2615 late_initcall(printk_late_init);
2616
2617 #if defined CONFIG_PRINTK
2618 /*
2619 * Delayed printk version, for scheduler-internal messages:
2620 */
2621 #define PRINTK_PENDING_WAKEUP 0x01
2622 #define PRINTK_PENDING_OUTPUT 0x02
2623
2624 static DEFINE_PER_CPU(int, printk_pending);
2625
2626 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2627 {
2628 int pending = __this_cpu_xchg(printk_pending, 0);
2629
2630 if (pending & PRINTK_PENDING_OUTPUT) {
2631 /* If trylock fails, someone else is doing the printing */
2632 if (console_trylock())
2633 console_unlock();
2634 }
2635
2636 if (pending & PRINTK_PENDING_WAKEUP)
2637 wake_up_interruptible(&log_wait);
2638 }
2639
2640 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2641 .func = wake_up_klogd_work_func,
2642 .flags = IRQ_WORK_LAZY,
2643 };
2644
2645 void wake_up_klogd(void)
2646 {
2647 preempt_disable();
2648 if (waitqueue_active(&log_wait)) {
2649 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2650 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2651 }
2652 preempt_enable();
2653 }
2654
2655 int printk_deferred(const char *fmt, ...)
2656 {
2657 va_list args;
2658 int r;
2659
2660 preempt_disable();
2661 va_start(args, fmt);
2662 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2663 va_end(args);
2664
2665 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2666 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2667 preempt_enable();
2668
2669 return r;
2670 }
2671
2672 /*
2673 * printk rate limiting, lifted from the networking subsystem.
2674 *
2675 * This enforces a rate limit: not more than 10 kernel messages
2676 * every 5s to make a denial-of-service attack impossible.
2677 */
2678 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2679
2680 int __printk_ratelimit(const char *func)
2681 {
2682 return ___ratelimit(&printk_ratelimit_state, func);
2683 }
2684 EXPORT_SYMBOL(__printk_ratelimit);
2685
2686 /**
2687 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2688 * @caller_jiffies: pointer to caller's state
2689 * @interval_msecs: minimum interval between prints
2690 *
2691 * printk_timed_ratelimit() returns true if more than @interval_msecs
2692 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2693 * returned true.
2694 */
2695 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2696 unsigned int interval_msecs)
2697 {
2698 unsigned long elapsed = jiffies - *caller_jiffies;
2699
2700 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2701 return false;
2702
2703 *caller_jiffies = jiffies;
2704 return true;
2705 }
2706 EXPORT_SYMBOL(printk_timed_ratelimit);
2707
2708 static DEFINE_SPINLOCK(dump_list_lock);
2709 static LIST_HEAD(dump_list);
2710
2711 /**
2712 * kmsg_dump_register - register a kernel log dumper.
2713 * @dumper: pointer to the kmsg_dumper structure
2714 *
2715 * Adds a kernel log dumper to the system. The dump callback in the
2716 * structure will be called when the kernel oopses or panics and must be
2717 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2718 */
2719 int kmsg_dump_register(struct kmsg_dumper *dumper)
2720 {
2721 unsigned long flags;
2722 int err = -EBUSY;
2723
2724 /* The dump callback needs to be set */
2725 if (!dumper->dump)
2726 return -EINVAL;
2727
2728 spin_lock_irqsave(&dump_list_lock, flags);
2729 /* Don't allow registering multiple times */
2730 if (!dumper->registered) {
2731 dumper->registered = 1;
2732 list_add_tail_rcu(&dumper->list, &dump_list);
2733 err = 0;
2734 }
2735 spin_unlock_irqrestore(&dump_list_lock, flags);
2736
2737 return err;
2738 }
2739 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2740
2741 /**
2742 * kmsg_dump_unregister - unregister a kmsg dumper.
2743 * @dumper: pointer to the kmsg_dumper structure
2744 *
2745 * Removes a dump device from the system. Returns zero on success and
2746 * %-EINVAL otherwise.
2747 */
2748 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2749 {
2750 unsigned long flags;
2751 int err = -EINVAL;
2752
2753 spin_lock_irqsave(&dump_list_lock, flags);
2754 if (dumper->registered) {
2755 dumper->registered = 0;
2756 list_del_rcu(&dumper->list);
2757 err = 0;
2758 }
2759 spin_unlock_irqrestore(&dump_list_lock, flags);
2760 synchronize_rcu();
2761
2762 return err;
2763 }
2764 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2765
2766 static bool always_kmsg_dump;
2767 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2768
2769 /**
2770 * kmsg_dump - dump kernel log to kernel message dumpers.
2771 * @reason: the reason (oops, panic etc) for dumping
2772 *
2773 * Call each of the registered dumper's dump() callback, which can
2774 * retrieve the kmsg records with kmsg_dump_get_line() or
2775 * kmsg_dump_get_buffer().
2776 */
2777 void kmsg_dump(enum kmsg_dump_reason reason)
2778 {
2779 struct kmsg_dumper *dumper;
2780 unsigned long flags;
2781
2782 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2783 return;
2784
2785 rcu_read_lock();
2786 list_for_each_entry_rcu(dumper, &dump_list, list) {
2787 if (dumper->max_reason && reason > dumper->max_reason)
2788 continue;
2789
2790 /* initialize iterator with data about the stored records */
2791 dumper->active = true;
2792
2793 raw_spin_lock_irqsave(&logbuf_lock, flags);
2794 dumper->cur_seq = clear_seq;
2795 dumper->cur_idx = clear_idx;
2796 dumper->next_seq = log_next_seq;
2797 dumper->next_idx = log_next_idx;
2798 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2799
2800 /* invoke dumper which will iterate over records */
2801 dumper->dump(dumper, reason);
2802
2803 /* reset iterator */
2804 dumper->active = false;
2805 }
2806 rcu_read_unlock();
2807 }
2808
2809 /**
2810 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2811 * @dumper: registered kmsg dumper
2812 * @syslog: include the "<4>" prefixes
2813 * @line: buffer to copy the line to
2814 * @size: maximum size of the buffer
2815 * @len: length of line placed into buffer
2816 *
2817 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2818 * record, and copy one record into the provided buffer.
2819 *
2820 * Consecutive calls will return the next available record moving
2821 * towards the end of the buffer with the youngest messages.
2822 *
2823 * A return value of FALSE indicates that there are no more records to
2824 * read.
2825 *
2826 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2827 */
2828 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2829 char *line, size_t size, size_t *len)
2830 {
2831 struct printk_log *msg;
2832 size_t l = 0;
2833 bool ret = false;
2834
2835 if (!dumper->active)
2836 goto out;
2837
2838 if (dumper->cur_seq < log_first_seq) {
2839 /* messages are gone, move to first available one */
2840 dumper->cur_seq = log_first_seq;
2841 dumper->cur_idx = log_first_idx;
2842 }
2843
2844 /* last entry */
2845 if (dumper->cur_seq >= log_next_seq)
2846 goto out;
2847
2848 msg = log_from_idx(dumper->cur_idx);
2849 l = msg_print_text(msg, 0, syslog, line, size);
2850
2851 dumper->cur_idx = log_next(dumper->cur_idx);
2852 dumper->cur_seq++;
2853 ret = true;
2854 out:
2855 if (len)
2856 *len = l;
2857 return ret;
2858 }
2859
2860 /**
2861 * kmsg_dump_get_line - retrieve one kmsg log line
2862 * @dumper: registered kmsg dumper
2863 * @syslog: include the "<4>" prefixes
2864 * @line: buffer to copy the line to
2865 * @size: maximum size of the buffer
2866 * @len: length of line placed into buffer
2867 *
2868 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2869 * record, and copy one record into the provided buffer.
2870 *
2871 * Consecutive calls will return the next available record moving
2872 * towards the end of the buffer with the youngest messages.
2873 *
2874 * A return value of FALSE indicates that there are no more records to
2875 * read.
2876 */
2877 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2878 char *line, size_t size, size_t *len)
2879 {
2880 unsigned long flags;
2881 bool ret;
2882
2883 raw_spin_lock_irqsave(&logbuf_lock, flags);
2884 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2885 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2886
2887 return ret;
2888 }
2889 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2890
2891 /**
2892 * kmsg_dump_get_buffer - copy kmsg log lines
2893 * @dumper: registered kmsg dumper
2894 * @syslog: include the "<4>" prefixes
2895 * @buf: buffer to copy the line to
2896 * @size: maximum size of the buffer
2897 * @len: length of line placed into buffer
2898 *
2899 * Start at the end of the kmsg buffer and fill the provided buffer
2900 * with as many of the the *youngest* kmsg records that fit into it.
2901 * If the buffer is large enough, all available kmsg records will be
2902 * copied with a single call.
2903 *
2904 * Consecutive calls will fill the buffer with the next block of
2905 * available older records, not including the earlier retrieved ones.
2906 *
2907 * A return value of FALSE indicates that there are no more records to
2908 * read.
2909 */
2910 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2911 char *buf, size_t size, size_t *len)
2912 {
2913 unsigned long flags;
2914 u64 seq;
2915 u32 idx;
2916 u64 next_seq;
2917 u32 next_idx;
2918 enum log_flags prev;
2919 size_t l = 0;
2920 bool ret = false;
2921
2922 if (!dumper->active)
2923 goto out;
2924
2925 raw_spin_lock_irqsave(&logbuf_lock, flags);
2926 if (dumper->cur_seq < log_first_seq) {
2927 /* messages are gone, move to first available one */
2928 dumper->cur_seq = log_first_seq;
2929 dumper->cur_idx = log_first_idx;
2930 }
2931
2932 /* last entry */
2933 if (dumper->cur_seq >= dumper->next_seq) {
2934 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2935 goto out;
2936 }
2937
2938 /* calculate length of entire buffer */
2939 seq = dumper->cur_seq;
2940 idx = dumper->cur_idx;
2941 prev = 0;
2942 while (seq < dumper->next_seq) {
2943 struct printk_log *msg = log_from_idx(idx);
2944
2945 l += msg_print_text(msg, prev, true, NULL, 0);
2946 idx = log_next(idx);
2947 seq++;
2948 prev = msg->flags;
2949 }
2950
2951 /* move first record forward until length fits into the buffer */
2952 seq = dumper->cur_seq;
2953 idx = dumper->cur_idx;
2954 prev = 0;
2955 while (l > size && seq < dumper->next_seq) {
2956 struct printk_log *msg = log_from_idx(idx);
2957
2958 l -= msg_print_text(msg, prev, true, NULL, 0);
2959 idx = log_next(idx);
2960 seq++;
2961 prev = msg->flags;
2962 }
2963
2964 /* last message in next interation */
2965 next_seq = seq;
2966 next_idx = idx;
2967
2968 l = 0;
2969 while (seq < dumper->next_seq) {
2970 struct printk_log *msg = log_from_idx(idx);
2971
2972 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2973 idx = log_next(idx);
2974 seq++;
2975 prev = msg->flags;
2976 }
2977
2978 dumper->next_seq = next_seq;
2979 dumper->next_idx = next_idx;
2980 ret = true;
2981 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2982 out:
2983 if (len)
2984 *len = l;
2985 return ret;
2986 }
2987 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2988
2989 /**
2990 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2991 * @dumper: registered kmsg dumper
2992 *
2993 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2994 * kmsg_dump_get_buffer() can be called again and used multiple
2995 * times within the same dumper.dump() callback.
2996 *
2997 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2998 */
2999 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3000 {
3001 dumper->cur_seq = clear_seq;
3002 dumper->cur_idx = clear_idx;
3003 dumper->next_seq = log_next_seq;
3004 dumper->next_idx = log_next_idx;
3005 }
3006
3007 /**
3008 * kmsg_dump_rewind - reset the interator
3009 * @dumper: registered kmsg dumper
3010 *
3011 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3012 * kmsg_dump_get_buffer() can be called again and used multiple
3013 * times within the same dumper.dump() callback.
3014 */
3015 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3016 {
3017 unsigned long flags;
3018
3019 raw_spin_lock_irqsave(&logbuf_lock, flags);
3020 kmsg_dump_rewind_nolock(dumper);
3021 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3022 }
3023 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3024
3025 static char dump_stack_arch_desc_str[128];
3026
3027 /**
3028 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3029 * @fmt: printf-style format string
3030 * @...: arguments for the format string
3031 *
3032 * The configured string will be printed right after utsname during task
3033 * dumps. Usually used to add arch-specific system identifiers. If an
3034 * arch wants to make use of such an ID string, it should initialize this
3035 * as soon as possible during boot.
3036 */
3037 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3038 {
3039 va_list args;
3040
3041 va_start(args, fmt);
3042 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3043 fmt, args);
3044 va_end(args);
3045 }
3046
3047 /**
3048 * dump_stack_print_info - print generic debug info for dump_stack()
3049 * @log_lvl: log level
3050 *
3051 * Arch-specific dump_stack() implementations can use this function to
3052 * print out the same debug information as the generic dump_stack().
3053 */
3054 void dump_stack_print_info(const char *log_lvl)
3055 {
3056 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3057 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3058 print_tainted(), init_utsname()->release,
3059 (int)strcspn(init_utsname()->version, " "),
3060 init_utsname()->version);
3061
3062 if (dump_stack_arch_desc_str[0] != '\0')
3063 printk("%sHardware name: %s\n",
3064 log_lvl, dump_stack_arch_desc_str);
3065
3066 print_worker_info(log_lvl, current);
3067 }
3068
3069 /**
3070 * show_regs_print_info - print generic debug info for show_regs()
3071 * @log_lvl: log level
3072 *
3073 * show_regs() implementations can use this function to print out generic
3074 * debug information.
3075 */
3076 void show_regs_print_info(const char *log_lvl)
3077 {
3078 dump_stack_print_info(log_lvl);
3079
3080 printk("%stask: %p ti: %p task.ti: %p\n",
3081 log_lvl, current, current_thread_info(),
3082 task_thread_info(current));
3083 }
3084
3085 #endif
This page took 0.095673 seconds and 5 git commands to generate.