printk: report dropping of messages from logbuf
[deliverable/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48
49 #include <asm/uaccess.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53
54 #include "console_cmdline.h"
55 #include "braille.h"
56
57 /* printk's without a loglevel use this.. */
58 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
59
60 /* We show everything that is MORE important than this.. */
61 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
62 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
63
64 int console_printk[4] = {
65 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
66 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
67 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
68 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
69 };
70
71 /* Deferred messaged from sched code are marked by this special level */
72 #define SCHED_MESSAGE_LOGLEVEL -2
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 #ifdef CONFIG_LOCKDEP
91 static struct lockdep_map console_lock_dep_map = {
92 .name = "console_lock"
93 };
94 #endif
95
96 /*
97 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
98 * macros instead of functions so that _RET_IP_ contains useful information.
99 */
100 #define down_console_sem() do { \
101 down(&console_sem);\
102 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
103 } while (0)
104
105 static int __down_trylock_console_sem(unsigned long ip)
106 {
107 if (down_trylock(&console_sem))
108 return 1;
109 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
110 return 0;
111 }
112 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
113
114 #define up_console_sem() do { \
115 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
116 up(&console_sem);\
117 } while (0)
118
119 /*
120 * This is used for debugging the mess that is the VT code by
121 * keeping track if we have the console semaphore held. It's
122 * definitely not the perfect debug tool (we don't know if _WE_
123 * hold it are racing, but it helps tracking those weird code
124 * path in the console code where we end up in places I want
125 * locked without the console sempahore held
126 */
127 static int console_locked, console_suspended;
128
129 /*
130 * If exclusive_console is non-NULL then only this console is to be printed to.
131 */
132 static struct console *exclusive_console;
133
134 /*
135 * Array of consoles built from command line options (console=)
136 */
137
138 #define MAX_CMDLINECONSOLES 8
139
140 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
141
142 static int selected_console = -1;
143 static int preferred_console = -1;
144 int console_set_on_cmdline;
145 EXPORT_SYMBOL(console_set_on_cmdline);
146
147 /* Flag: console code may call schedule() */
148 static int console_may_schedule;
149
150 /*
151 * The printk log buffer consists of a chain of concatenated variable
152 * length records. Every record starts with a record header, containing
153 * the overall length of the record.
154 *
155 * The heads to the first and last entry in the buffer, as well as the
156 * sequence numbers of these both entries are maintained when messages
157 * are stored..
158 *
159 * If the heads indicate available messages, the length in the header
160 * tells the start next message. A length == 0 for the next message
161 * indicates a wrap-around to the beginning of the buffer.
162 *
163 * Every record carries the monotonic timestamp in microseconds, as well as
164 * the standard userspace syslog level and syslog facility. The usual
165 * kernel messages use LOG_KERN; userspace-injected messages always carry
166 * a matching syslog facility, by default LOG_USER. The origin of every
167 * message can be reliably determined that way.
168 *
169 * The human readable log message directly follows the message header. The
170 * length of the message text is stored in the header, the stored message
171 * is not terminated.
172 *
173 * Optionally, a message can carry a dictionary of properties (key/value pairs),
174 * to provide userspace with a machine-readable message context.
175 *
176 * Examples for well-defined, commonly used property names are:
177 * DEVICE=b12:8 device identifier
178 * b12:8 block dev_t
179 * c127:3 char dev_t
180 * n8 netdev ifindex
181 * +sound:card0 subsystem:devname
182 * SUBSYSTEM=pci driver-core subsystem name
183 *
184 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
185 * follows directly after a '=' character. Every property is terminated by
186 * a '\0' character. The last property is not terminated.
187 *
188 * Example of a message structure:
189 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
190 * 0008 34 00 record is 52 bytes long
191 * 000a 0b 00 text is 11 bytes long
192 * 000c 1f 00 dictionary is 23 bytes long
193 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
194 * 0010 69 74 27 73 20 61 20 6c "it's a l"
195 * 69 6e 65 "ine"
196 * 001b 44 45 56 49 43 "DEVIC"
197 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
198 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
199 * 67 "g"
200 * 0032 00 00 00 padding to next message header
201 *
202 * The 'struct printk_log' buffer header must never be directly exported to
203 * userspace, it is a kernel-private implementation detail that might
204 * need to be changed in the future, when the requirements change.
205 *
206 * /dev/kmsg exports the structured data in the following line format:
207 * "level,sequnum,timestamp;<message text>\n"
208 *
209 * The optional key/value pairs are attached as continuation lines starting
210 * with a space character and terminated by a newline. All possible
211 * non-prinatable characters are escaped in the "\xff" notation.
212 *
213 * Users of the export format should ignore possible additional values
214 * separated by ',', and find the message after the ';' character.
215 */
216
217 enum log_flags {
218 LOG_NOCONS = 1, /* already flushed, do not print to console */
219 LOG_NEWLINE = 2, /* text ended with a newline */
220 LOG_PREFIX = 4, /* text started with a prefix */
221 LOG_CONT = 8, /* text is a fragment of a continuation line */
222 };
223
224 struct printk_log {
225 u64 ts_nsec; /* timestamp in nanoseconds */
226 u16 len; /* length of entire record */
227 u16 text_len; /* length of text buffer */
228 u16 dict_len; /* length of dictionary buffer */
229 u8 facility; /* syslog facility */
230 u8 flags:5; /* internal record flags */
231 u8 level:3; /* syslog level */
232 };
233
234 /*
235 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
236 * within the scheduler's rq lock. It must be released before calling
237 * console_unlock() or anything else that might wake up a process.
238 */
239 static DEFINE_RAW_SPINLOCK(logbuf_lock);
240
241 #ifdef CONFIG_PRINTK
242 DECLARE_WAIT_QUEUE_HEAD(log_wait);
243 /* the next printk record to read by syslog(READ) or /proc/kmsg */
244 static u64 syslog_seq;
245 static u32 syslog_idx;
246 static enum log_flags syslog_prev;
247 static size_t syslog_partial;
248
249 /* index and sequence number of the first record stored in the buffer */
250 static u64 log_first_seq;
251 static u32 log_first_idx;
252
253 /* index and sequence number of the next record to store in the buffer */
254 static u64 log_next_seq;
255 static u32 log_next_idx;
256
257 /* the next printk record to write to the console */
258 static u64 console_seq;
259 static u32 console_idx;
260 static enum log_flags console_prev;
261
262 /* the next printk record to read after the last 'clear' command */
263 static u64 clear_seq;
264 static u32 clear_idx;
265
266 #define PREFIX_MAX 32
267 #define LOG_LINE_MAX 1024 - PREFIX_MAX
268
269 /* record buffer */
270 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
271 #define LOG_ALIGN 4
272 #else
273 #define LOG_ALIGN __alignof__(struct printk_log)
274 #endif
275 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
276 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
277 static char *log_buf = __log_buf;
278 static u32 log_buf_len = __LOG_BUF_LEN;
279
280 /* human readable text of the record */
281 static char *log_text(const struct printk_log *msg)
282 {
283 return (char *)msg + sizeof(struct printk_log);
284 }
285
286 /* optional key/value pair dictionary attached to the record */
287 static char *log_dict(const struct printk_log *msg)
288 {
289 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
290 }
291
292 /* get record by index; idx must point to valid msg */
293 static struct printk_log *log_from_idx(u32 idx)
294 {
295 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
296
297 /*
298 * A length == 0 record is the end of buffer marker. Wrap around and
299 * read the message at the start of the buffer.
300 */
301 if (!msg->len)
302 return (struct printk_log *)log_buf;
303 return msg;
304 }
305
306 /* get next record; idx must point to valid msg */
307 static u32 log_next(u32 idx)
308 {
309 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
310
311 /* length == 0 indicates the end of the buffer; wrap */
312 /*
313 * A length == 0 record is the end of buffer marker. Wrap around and
314 * read the message at the start of the buffer as *this* one, and
315 * return the one after that.
316 */
317 if (!msg->len) {
318 msg = (struct printk_log *)log_buf;
319 return msg->len;
320 }
321 return idx + msg->len;
322 }
323
324 /*
325 * Check whether there is enough free space for the given message.
326 *
327 * The same values of first_idx and next_idx mean that the buffer
328 * is either empty or full.
329 *
330 * If the buffer is empty, we must respect the position of the indexes.
331 * They cannot be reset to the beginning of the buffer.
332 */
333 static int logbuf_has_space(u32 msg_size, bool empty)
334 {
335 u32 free;
336
337 if (log_next_idx > log_first_idx || empty)
338 free = max(log_buf_len - log_next_idx, log_first_idx);
339 else
340 free = log_first_idx - log_next_idx;
341
342 /*
343 * We need space also for an empty header that signalizes wrapping
344 * of the buffer.
345 */
346 return free >= msg_size + sizeof(struct printk_log);
347 }
348
349 static int log_make_free_space(u32 msg_size)
350 {
351 while (log_first_seq < log_next_seq) {
352 if (logbuf_has_space(msg_size, false))
353 return 0;
354 /* drop old messages until we have enough continuous space */
355 log_first_idx = log_next(log_first_idx);
356 log_first_seq++;
357 }
358
359 /* sequence numbers are equal, so the log buffer is empty */
360 if (logbuf_has_space(msg_size, true))
361 return 0;
362
363 return -ENOMEM;
364 }
365
366 /* compute the message size including the padding bytes */
367 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
368 {
369 u32 size;
370
371 size = sizeof(struct printk_log) + text_len + dict_len;
372 *pad_len = (-size) & (LOG_ALIGN - 1);
373 size += *pad_len;
374
375 return size;
376 }
377
378 /*
379 * Define how much of the log buffer we could take at maximum. The value
380 * must be greater than two. Note that only half of the buffer is available
381 * when the index points to the middle.
382 */
383 #define MAX_LOG_TAKE_PART 4
384 static const char trunc_msg[] = "<truncated>";
385
386 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
387 u16 *dict_len, u32 *pad_len)
388 {
389 /*
390 * The message should not take the whole buffer. Otherwise, it might
391 * get removed too soon.
392 */
393 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
394 if (*text_len > max_text_len)
395 *text_len = max_text_len;
396 /* enable the warning message */
397 *trunc_msg_len = strlen(trunc_msg);
398 /* disable the "dict" completely */
399 *dict_len = 0;
400 /* compute the size again, count also the warning message */
401 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
402 }
403
404 /* insert record into the buffer, discard old ones, update heads */
405 static int log_store(int facility, int level,
406 enum log_flags flags, u64 ts_nsec,
407 const char *dict, u16 dict_len,
408 const char *text, u16 text_len)
409 {
410 struct printk_log *msg;
411 u32 size, pad_len;
412 u16 trunc_msg_len = 0;
413
414 /* number of '\0' padding bytes to next message */
415 size = msg_used_size(text_len, dict_len, &pad_len);
416
417 if (log_make_free_space(size)) {
418 /* truncate the message if it is too long for empty buffer */
419 size = truncate_msg(&text_len, &trunc_msg_len,
420 &dict_len, &pad_len);
421 /* survive when the log buffer is too small for trunc_msg */
422 if (log_make_free_space(size))
423 return 0;
424 }
425
426 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
427 /*
428 * This message + an additional empty header does not fit
429 * at the end of the buffer. Add an empty header with len == 0
430 * to signify a wrap around.
431 */
432 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
433 log_next_idx = 0;
434 }
435
436 /* fill message */
437 msg = (struct printk_log *)(log_buf + log_next_idx);
438 memcpy(log_text(msg), text, text_len);
439 msg->text_len = text_len;
440 if (trunc_msg_len) {
441 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
442 msg->text_len += trunc_msg_len;
443 }
444 memcpy(log_dict(msg), dict, dict_len);
445 msg->dict_len = dict_len;
446 msg->facility = facility;
447 msg->level = level & 7;
448 msg->flags = flags & 0x1f;
449 if (ts_nsec > 0)
450 msg->ts_nsec = ts_nsec;
451 else
452 msg->ts_nsec = local_clock();
453 memset(log_dict(msg) + dict_len, 0, pad_len);
454 msg->len = size;
455
456 /* insert message */
457 log_next_idx += msg->len;
458 log_next_seq++;
459
460 return msg->text_len;
461 }
462
463 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
464 int dmesg_restrict = 1;
465 #else
466 int dmesg_restrict;
467 #endif
468
469 static int syslog_action_restricted(int type)
470 {
471 if (dmesg_restrict)
472 return 1;
473 /*
474 * Unless restricted, we allow "read all" and "get buffer size"
475 * for everybody.
476 */
477 return type != SYSLOG_ACTION_READ_ALL &&
478 type != SYSLOG_ACTION_SIZE_BUFFER;
479 }
480
481 static int check_syslog_permissions(int type, bool from_file)
482 {
483 /*
484 * If this is from /proc/kmsg and we've already opened it, then we've
485 * already done the capabilities checks at open time.
486 */
487 if (from_file && type != SYSLOG_ACTION_OPEN)
488 return 0;
489
490 if (syslog_action_restricted(type)) {
491 if (capable(CAP_SYSLOG))
492 return 0;
493 /*
494 * For historical reasons, accept CAP_SYS_ADMIN too, with
495 * a warning.
496 */
497 if (capable(CAP_SYS_ADMIN)) {
498 pr_warn_once("%s (%d): Attempt to access syslog with "
499 "CAP_SYS_ADMIN but no CAP_SYSLOG "
500 "(deprecated).\n",
501 current->comm, task_pid_nr(current));
502 return 0;
503 }
504 return -EPERM;
505 }
506 return security_syslog(type);
507 }
508
509
510 /* /dev/kmsg - userspace message inject/listen interface */
511 struct devkmsg_user {
512 u64 seq;
513 u32 idx;
514 enum log_flags prev;
515 struct mutex lock;
516 char buf[8192];
517 };
518
519 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
520 unsigned long count, loff_t pos)
521 {
522 char *buf, *line;
523 int i;
524 int level = default_message_loglevel;
525 int facility = 1; /* LOG_USER */
526 size_t len = iov_length(iv, count);
527 ssize_t ret = len;
528
529 if (len > LOG_LINE_MAX)
530 return -EINVAL;
531 buf = kmalloc(len+1, GFP_KERNEL);
532 if (buf == NULL)
533 return -ENOMEM;
534
535 line = buf;
536 for (i = 0; i < count; i++) {
537 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
538 ret = -EFAULT;
539 goto out;
540 }
541 line += iv[i].iov_len;
542 }
543
544 /*
545 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
546 * the decimal value represents 32bit, the lower 3 bit are the log
547 * level, the rest are the log facility.
548 *
549 * If no prefix or no userspace facility is specified, we
550 * enforce LOG_USER, to be able to reliably distinguish
551 * kernel-generated messages from userspace-injected ones.
552 */
553 line = buf;
554 if (line[0] == '<') {
555 char *endp = NULL;
556
557 i = simple_strtoul(line+1, &endp, 10);
558 if (endp && endp[0] == '>') {
559 level = i & 7;
560 if (i >> 3)
561 facility = i >> 3;
562 endp++;
563 len -= endp - line;
564 line = endp;
565 }
566 }
567 line[len] = '\0';
568
569 printk_emit(facility, level, NULL, 0, "%s", line);
570 out:
571 kfree(buf);
572 return ret;
573 }
574
575 static ssize_t devkmsg_read(struct file *file, char __user *buf,
576 size_t count, loff_t *ppos)
577 {
578 struct devkmsg_user *user = file->private_data;
579 struct printk_log *msg;
580 u64 ts_usec;
581 size_t i;
582 char cont = '-';
583 size_t len;
584 ssize_t ret;
585
586 if (!user)
587 return -EBADF;
588
589 ret = mutex_lock_interruptible(&user->lock);
590 if (ret)
591 return ret;
592 raw_spin_lock_irq(&logbuf_lock);
593 while (user->seq == log_next_seq) {
594 if (file->f_flags & O_NONBLOCK) {
595 ret = -EAGAIN;
596 raw_spin_unlock_irq(&logbuf_lock);
597 goto out;
598 }
599
600 raw_spin_unlock_irq(&logbuf_lock);
601 ret = wait_event_interruptible(log_wait,
602 user->seq != log_next_seq);
603 if (ret)
604 goto out;
605 raw_spin_lock_irq(&logbuf_lock);
606 }
607
608 if (user->seq < log_first_seq) {
609 /* our last seen message is gone, return error and reset */
610 user->idx = log_first_idx;
611 user->seq = log_first_seq;
612 ret = -EPIPE;
613 raw_spin_unlock_irq(&logbuf_lock);
614 goto out;
615 }
616
617 msg = log_from_idx(user->idx);
618 ts_usec = msg->ts_nsec;
619 do_div(ts_usec, 1000);
620
621 /*
622 * If we couldn't merge continuation line fragments during the print,
623 * export the stored flags to allow an optional external merge of the
624 * records. Merging the records isn't always neccessarily correct, like
625 * when we hit a race during printing. In most cases though, it produces
626 * better readable output. 'c' in the record flags mark the first
627 * fragment of a line, '+' the following.
628 */
629 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
630 cont = 'c';
631 else if ((msg->flags & LOG_CONT) ||
632 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
633 cont = '+';
634
635 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
636 (msg->facility << 3) | msg->level,
637 user->seq, ts_usec, cont);
638 user->prev = msg->flags;
639
640 /* escape non-printable characters */
641 for (i = 0; i < msg->text_len; i++) {
642 unsigned char c = log_text(msg)[i];
643
644 if (c < ' ' || c >= 127 || c == '\\')
645 len += sprintf(user->buf + len, "\\x%02x", c);
646 else
647 user->buf[len++] = c;
648 }
649 user->buf[len++] = '\n';
650
651 if (msg->dict_len) {
652 bool line = true;
653
654 for (i = 0; i < msg->dict_len; i++) {
655 unsigned char c = log_dict(msg)[i];
656
657 if (line) {
658 user->buf[len++] = ' ';
659 line = false;
660 }
661
662 if (c == '\0') {
663 user->buf[len++] = '\n';
664 line = true;
665 continue;
666 }
667
668 if (c < ' ' || c >= 127 || c == '\\') {
669 len += sprintf(user->buf + len, "\\x%02x", c);
670 continue;
671 }
672
673 user->buf[len++] = c;
674 }
675 user->buf[len++] = '\n';
676 }
677
678 user->idx = log_next(user->idx);
679 user->seq++;
680 raw_spin_unlock_irq(&logbuf_lock);
681
682 if (len > count) {
683 ret = -EINVAL;
684 goto out;
685 }
686
687 if (copy_to_user(buf, user->buf, len)) {
688 ret = -EFAULT;
689 goto out;
690 }
691 ret = len;
692 out:
693 mutex_unlock(&user->lock);
694 return ret;
695 }
696
697 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
698 {
699 struct devkmsg_user *user = file->private_data;
700 loff_t ret = 0;
701
702 if (!user)
703 return -EBADF;
704 if (offset)
705 return -ESPIPE;
706
707 raw_spin_lock_irq(&logbuf_lock);
708 switch (whence) {
709 case SEEK_SET:
710 /* the first record */
711 user->idx = log_first_idx;
712 user->seq = log_first_seq;
713 break;
714 case SEEK_DATA:
715 /*
716 * The first record after the last SYSLOG_ACTION_CLEAR,
717 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
718 * changes no global state, and does not clear anything.
719 */
720 user->idx = clear_idx;
721 user->seq = clear_seq;
722 break;
723 case SEEK_END:
724 /* after the last record */
725 user->idx = log_next_idx;
726 user->seq = log_next_seq;
727 break;
728 default:
729 ret = -EINVAL;
730 }
731 raw_spin_unlock_irq(&logbuf_lock);
732 return ret;
733 }
734
735 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
736 {
737 struct devkmsg_user *user = file->private_data;
738 int ret = 0;
739
740 if (!user)
741 return POLLERR|POLLNVAL;
742
743 poll_wait(file, &log_wait, wait);
744
745 raw_spin_lock_irq(&logbuf_lock);
746 if (user->seq < log_next_seq) {
747 /* return error when data has vanished underneath us */
748 if (user->seq < log_first_seq)
749 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
750 else
751 ret = POLLIN|POLLRDNORM;
752 }
753 raw_spin_unlock_irq(&logbuf_lock);
754
755 return ret;
756 }
757
758 static int devkmsg_open(struct inode *inode, struct file *file)
759 {
760 struct devkmsg_user *user;
761 int err;
762
763 /* write-only does not need any file context */
764 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
765 return 0;
766
767 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
768 SYSLOG_FROM_READER);
769 if (err)
770 return err;
771
772 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
773 if (!user)
774 return -ENOMEM;
775
776 mutex_init(&user->lock);
777
778 raw_spin_lock_irq(&logbuf_lock);
779 user->idx = log_first_idx;
780 user->seq = log_first_seq;
781 raw_spin_unlock_irq(&logbuf_lock);
782
783 file->private_data = user;
784 return 0;
785 }
786
787 static int devkmsg_release(struct inode *inode, struct file *file)
788 {
789 struct devkmsg_user *user = file->private_data;
790
791 if (!user)
792 return 0;
793
794 mutex_destroy(&user->lock);
795 kfree(user);
796 return 0;
797 }
798
799 const struct file_operations kmsg_fops = {
800 .open = devkmsg_open,
801 .read = devkmsg_read,
802 .aio_write = devkmsg_writev,
803 .llseek = devkmsg_llseek,
804 .poll = devkmsg_poll,
805 .release = devkmsg_release,
806 };
807
808 #ifdef CONFIG_KEXEC
809 /*
810 * This appends the listed symbols to /proc/vmcore
811 *
812 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
813 * obtain access to symbols that are otherwise very difficult to locate. These
814 * symbols are specifically used so that utilities can access and extract the
815 * dmesg log from a vmcore file after a crash.
816 */
817 void log_buf_kexec_setup(void)
818 {
819 VMCOREINFO_SYMBOL(log_buf);
820 VMCOREINFO_SYMBOL(log_buf_len);
821 VMCOREINFO_SYMBOL(log_first_idx);
822 VMCOREINFO_SYMBOL(log_next_idx);
823 /*
824 * Export struct printk_log size and field offsets. User space tools can
825 * parse it and detect any changes to structure down the line.
826 */
827 VMCOREINFO_STRUCT_SIZE(printk_log);
828 VMCOREINFO_OFFSET(printk_log, ts_nsec);
829 VMCOREINFO_OFFSET(printk_log, len);
830 VMCOREINFO_OFFSET(printk_log, text_len);
831 VMCOREINFO_OFFSET(printk_log, dict_len);
832 }
833 #endif
834
835 /* requested log_buf_len from kernel cmdline */
836 static unsigned long __initdata new_log_buf_len;
837
838 /* save requested log_buf_len since it's too early to process it */
839 static int __init log_buf_len_setup(char *str)
840 {
841 unsigned size = memparse(str, &str);
842
843 if (size)
844 size = roundup_pow_of_two(size);
845 if (size > log_buf_len)
846 new_log_buf_len = size;
847
848 return 0;
849 }
850 early_param("log_buf_len", log_buf_len_setup);
851
852 void __init setup_log_buf(int early)
853 {
854 unsigned long flags;
855 char *new_log_buf;
856 int free;
857
858 if (!new_log_buf_len)
859 return;
860
861 if (early) {
862 new_log_buf =
863 memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
864 } else {
865 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
866 }
867
868 if (unlikely(!new_log_buf)) {
869 pr_err("log_buf_len: %ld bytes not available\n",
870 new_log_buf_len);
871 return;
872 }
873
874 raw_spin_lock_irqsave(&logbuf_lock, flags);
875 log_buf_len = new_log_buf_len;
876 log_buf = new_log_buf;
877 new_log_buf_len = 0;
878 free = __LOG_BUF_LEN - log_next_idx;
879 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
880 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
881
882 pr_info("log_buf_len: %d\n", log_buf_len);
883 pr_info("early log buf free: %d(%d%%)\n",
884 free, (free * 100) / __LOG_BUF_LEN);
885 }
886
887 static bool __read_mostly ignore_loglevel;
888
889 static int __init ignore_loglevel_setup(char *str)
890 {
891 ignore_loglevel = 1;
892 pr_info("debug: ignoring loglevel setting.\n");
893
894 return 0;
895 }
896
897 early_param("ignore_loglevel", ignore_loglevel_setup);
898 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
899 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
900 "print all kernel messages to the console.");
901
902 #ifdef CONFIG_BOOT_PRINTK_DELAY
903
904 static int boot_delay; /* msecs delay after each printk during bootup */
905 static unsigned long long loops_per_msec; /* based on boot_delay */
906
907 static int __init boot_delay_setup(char *str)
908 {
909 unsigned long lpj;
910
911 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
912 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
913
914 get_option(&str, &boot_delay);
915 if (boot_delay > 10 * 1000)
916 boot_delay = 0;
917
918 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
919 "HZ: %d, loops_per_msec: %llu\n",
920 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
921 return 0;
922 }
923 early_param("boot_delay", boot_delay_setup);
924
925 static void boot_delay_msec(int level)
926 {
927 unsigned long long k;
928 unsigned long timeout;
929
930 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
931 || (level >= console_loglevel && !ignore_loglevel)) {
932 return;
933 }
934
935 k = (unsigned long long)loops_per_msec * boot_delay;
936
937 timeout = jiffies + msecs_to_jiffies(boot_delay);
938 while (k) {
939 k--;
940 cpu_relax();
941 /*
942 * use (volatile) jiffies to prevent
943 * compiler reduction; loop termination via jiffies
944 * is secondary and may or may not happen.
945 */
946 if (time_after(jiffies, timeout))
947 break;
948 touch_nmi_watchdog();
949 }
950 }
951 #else
952 static inline void boot_delay_msec(int level)
953 {
954 }
955 #endif
956
957 #if defined(CONFIG_PRINTK_TIME)
958 static bool printk_time = 1;
959 #else
960 static bool printk_time;
961 #endif
962 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
963
964 static size_t print_time(u64 ts, char *buf)
965 {
966 unsigned long rem_nsec;
967
968 if (!printk_time)
969 return 0;
970
971 rem_nsec = do_div(ts, 1000000000);
972
973 if (!buf)
974 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
975
976 return sprintf(buf, "[%5lu.%06lu] ",
977 (unsigned long)ts, rem_nsec / 1000);
978 }
979
980 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
981 {
982 size_t len = 0;
983 unsigned int prefix = (msg->facility << 3) | msg->level;
984
985 if (syslog) {
986 if (buf) {
987 len += sprintf(buf, "<%u>", prefix);
988 } else {
989 len += 3;
990 if (prefix > 999)
991 len += 3;
992 else if (prefix > 99)
993 len += 2;
994 else if (prefix > 9)
995 len++;
996 }
997 }
998
999 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1000 return len;
1001 }
1002
1003 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1004 bool syslog, char *buf, size_t size)
1005 {
1006 const char *text = log_text(msg);
1007 size_t text_size = msg->text_len;
1008 bool prefix = true;
1009 bool newline = true;
1010 size_t len = 0;
1011
1012 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1013 prefix = false;
1014
1015 if (msg->flags & LOG_CONT) {
1016 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1017 prefix = false;
1018
1019 if (!(msg->flags & LOG_NEWLINE))
1020 newline = false;
1021 }
1022
1023 do {
1024 const char *next = memchr(text, '\n', text_size);
1025 size_t text_len;
1026
1027 if (next) {
1028 text_len = next - text;
1029 next++;
1030 text_size -= next - text;
1031 } else {
1032 text_len = text_size;
1033 }
1034
1035 if (buf) {
1036 if (print_prefix(msg, syslog, NULL) +
1037 text_len + 1 >= size - len)
1038 break;
1039
1040 if (prefix)
1041 len += print_prefix(msg, syslog, buf + len);
1042 memcpy(buf + len, text, text_len);
1043 len += text_len;
1044 if (next || newline)
1045 buf[len++] = '\n';
1046 } else {
1047 /* SYSLOG_ACTION_* buffer size only calculation */
1048 if (prefix)
1049 len += print_prefix(msg, syslog, NULL);
1050 len += text_len;
1051 if (next || newline)
1052 len++;
1053 }
1054
1055 prefix = true;
1056 text = next;
1057 } while (text);
1058
1059 return len;
1060 }
1061
1062 static int syslog_print(char __user *buf, int size)
1063 {
1064 char *text;
1065 struct printk_log *msg;
1066 int len = 0;
1067
1068 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1069 if (!text)
1070 return -ENOMEM;
1071
1072 while (size > 0) {
1073 size_t n;
1074 size_t skip;
1075
1076 raw_spin_lock_irq(&logbuf_lock);
1077 if (syslog_seq < log_first_seq) {
1078 /* messages are gone, move to first one */
1079 syslog_seq = log_first_seq;
1080 syslog_idx = log_first_idx;
1081 syslog_prev = 0;
1082 syslog_partial = 0;
1083 }
1084 if (syslog_seq == log_next_seq) {
1085 raw_spin_unlock_irq(&logbuf_lock);
1086 break;
1087 }
1088
1089 skip = syslog_partial;
1090 msg = log_from_idx(syslog_idx);
1091 n = msg_print_text(msg, syslog_prev, true, text,
1092 LOG_LINE_MAX + PREFIX_MAX);
1093 if (n - syslog_partial <= size) {
1094 /* message fits into buffer, move forward */
1095 syslog_idx = log_next(syslog_idx);
1096 syslog_seq++;
1097 syslog_prev = msg->flags;
1098 n -= syslog_partial;
1099 syslog_partial = 0;
1100 } else if (!len){
1101 /* partial read(), remember position */
1102 n = size;
1103 syslog_partial += n;
1104 } else
1105 n = 0;
1106 raw_spin_unlock_irq(&logbuf_lock);
1107
1108 if (!n)
1109 break;
1110
1111 if (copy_to_user(buf, text + skip, n)) {
1112 if (!len)
1113 len = -EFAULT;
1114 break;
1115 }
1116
1117 len += n;
1118 size -= n;
1119 buf += n;
1120 }
1121
1122 kfree(text);
1123 return len;
1124 }
1125
1126 static int syslog_print_all(char __user *buf, int size, bool clear)
1127 {
1128 char *text;
1129 int len = 0;
1130
1131 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1132 if (!text)
1133 return -ENOMEM;
1134
1135 raw_spin_lock_irq(&logbuf_lock);
1136 if (buf) {
1137 u64 next_seq;
1138 u64 seq;
1139 u32 idx;
1140 enum log_flags prev;
1141
1142 if (clear_seq < log_first_seq) {
1143 /* messages are gone, move to first available one */
1144 clear_seq = log_first_seq;
1145 clear_idx = log_first_idx;
1146 }
1147
1148 /*
1149 * Find first record that fits, including all following records,
1150 * into the user-provided buffer for this dump.
1151 */
1152 seq = clear_seq;
1153 idx = clear_idx;
1154 prev = 0;
1155 while (seq < log_next_seq) {
1156 struct printk_log *msg = log_from_idx(idx);
1157
1158 len += msg_print_text(msg, prev, true, NULL, 0);
1159 prev = msg->flags;
1160 idx = log_next(idx);
1161 seq++;
1162 }
1163
1164 /* move first record forward until length fits into the buffer */
1165 seq = clear_seq;
1166 idx = clear_idx;
1167 prev = 0;
1168 while (len > size && seq < log_next_seq) {
1169 struct printk_log *msg = log_from_idx(idx);
1170
1171 len -= msg_print_text(msg, prev, true, NULL, 0);
1172 prev = msg->flags;
1173 idx = log_next(idx);
1174 seq++;
1175 }
1176
1177 /* last message fitting into this dump */
1178 next_seq = log_next_seq;
1179
1180 len = 0;
1181 while (len >= 0 && seq < next_seq) {
1182 struct printk_log *msg = log_from_idx(idx);
1183 int textlen;
1184
1185 textlen = msg_print_text(msg, prev, true, text,
1186 LOG_LINE_MAX + PREFIX_MAX);
1187 if (textlen < 0) {
1188 len = textlen;
1189 break;
1190 }
1191 idx = log_next(idx);
1192 seq++;
1193 prev = msg->flags;
1194
1195 raw_spin_unlock_irq(&logbuf_lock);
1196 if (copy_to_user(buf + len, text, textlen))
1197 len = -EFAULT;
1198 else
1199 len += textlen;
1200 raw_spin_lock_irq(&logbuf_lock);
1201
1202 if (seq < log_first_seq) {
1203 /* messages are gone, move to next one */
1204 seq = log_first_seq;
1205 idx = log_first_idx;
1206 prev = 0;
1207 }
1208 }
1209 }
1210
1211 if (clear) {
1212 clear_seq = log_next_seq;
1213 clear_idx = log_next_idx;
1214 }
1215 raw_spin_unlock_irq(&logbuf_lock);
1216
1217 kfree(text);
1218 return len;
1219 }
1220
1221 int do_syslog(int type, char __user *buf, int len, bool from_file)
1222 {
1223 bool clear = false;
1224 static int saved_console_loglevel = -1;
1225 int error;
1226
1227 error = check_syslog_permissions(type, from_file);
1228 if (error)
1229 goto out;
1230
1231 error = security_syslog(type);
1232 if (error)
1233 return error;
1234
1235 switch (type) {
1236 case SYSLOG_ACTION_CLOSE: /* Close log */
1237 break;
1238 case SYSLOG_ACTION_OPEN: /* Open log */
1239 break;
1240 case SYSLOG_ACTION_READ: /* Read from log */
1241 error = -EINVAL;
1242 if (!buf || len < 0)
1243 goto out;
1244 error = 0;
1245 if (!len)
1246 goto out;
1247 if (!access_ok(VERIFY_WRITE, buf, len)) {
1248 error = -EFAULT;
1249 goto out;
1250 }
1251 error = wait_event_interruptible(log_wait,
1252 syslog_seq != log_next_seq);
1253 if (error)
1254 goto out;
1255 error = syslog_print(buf, len);
1256 break;
1257 /* Read/clear last kernel messages */
1258 case SYSLOG_ACTION_READ_CLEAR:
1259 clear = true;
1260 /* FALL THRU */
1261 /* Read last kernel messages */
1262 case SYSLOG_ACTION_READ_ALL:
1263 error = -EINVAL;
1264 if (!buf || len < 0)
1265 goto out;
1266 error = 0;
1267 if (!len)
1268 goto out;
1269 if (!access_ok(VERIFY_WRITE, buf, len)) {
1270 error = -EFAULT;
1271 goto out;
1272 }
1273 error = syslog_print_all(buf, len, clear);
1274 break;
1275 /* Clear ring buffer */
1276 case SYSLOG_ACTION_CLEAR:
1277 syslog_print_all(NULL, 0, true);
1278 break;
1279 /* Disable logging to console */
1280 case SYSLOG_ACTION_CONSOLE_OFF:
1281 if (saved_console_loglevel == -1)
1282 saved_console_loglevel = console_loglevel;
1283 console_loglevel = minimum_console_loglevel;
1284 break;
1285 /* Enable logging to console */
1286 case SYSLOG_ACTION_CONSOLE_ON:
1287 if (saved_console_loglevel != -1) {
1288 console_loglevel = saved_console_loglevel;
1289 saved_console_loglevel = -1;
1290 }
1291 break;
1292 /* Set level of messages printed to console */
1293 case SYSLOG_ACTION_CONSOLE_LEVEL:
1294 error = -EINVAL;
1295 if (len < 1 || len > 8)
1296 goto out;
1297 if (len < minimum_console_loglevel)
1298 len = minimum_console_loglevel;
1299 console_loglevel = len;
1300 /* Implicitly re-enable logging to console */
1301 saved_console_loglevel = -1;
1302 error = 0;
1303 break;
1304 /* Number of chars in the log buffer */
1305 case SYSLOG_ACTION_SIZE_UNREAD:
1306 raw_spin_lock_irq(&logbuf_lock);
1307 if (syslog_seq < log_first_seq) {
1308 /* messages are gone, move to first one */
1309 syslog_seq = log_first_seq;
1310 syslog_idx = log_first_idx;
1311 syslog_prev = 0;
1312 syslog_partial = 0;
1313 }
1314 if (from_file) {
1315 /*
1316 * Short-cut for poll(/"proc/kmsg") which simply checks
1317 * for pending data, not the size; return the count of
1318 * records, not the length.
1319 */
1320 error = log_next_idx - syslog_idx;
1321 } else {
1322 u64 seq = syslog_seq;
1323 u32 idx = syslog_idx;
1324 enum log_flags prev = syslog_prev;
1325
1326 error = 0;
1327 while (seq < log_next_seq) {
1328 struct printk_log *msg = log_from_idx(idx);
1329
1330 error += msg_print_text(msg, prev, true, NULL, 0);
1331 idx = log_next(idx);
1332 seq++;
1333 prev = msg->flags;
1334 }
1335 error -= syslog_partial;
1336 }
1337 raw_spin_unlock_irq(&logbuf_lock);
1338 break;
1339 /* Size of the log buffer */
1340 case SYSLOG_ACTION_SIZE_BUFFER:
1341 error = log_buf_len;
1342 break;
1343 default:
1344 error = -EINVAL;
1345 break;
1346 }
1347 out:
1348 return error;
1349 }
1350
1351 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1352 {
1353 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1354 }
1355
1356 /*
1357 * Call the console drivers, asking them to write out
1358 * log_buf[start] to log_buf[end - 1].
1359 * The console_lock must be held.
1360 */
1361 static void call_console_drivers(int level, const char *text, size_t len)
1362 {
1363 struct console *con;
1364
1365 trace_console(text, len);
1366
1367 if (level >= console_loglevel && !ignore_loglevel)
1368 return;
1369 if (!console_drivers)
1370 return;
1371
1372 for_each_console(con) {
1373 if (exclusive_console && con != exclusive_console)
1374 continue;
1375 if (!(con->flags & CON_ENABLED))
1376 continue;
1377 if (!con->write)
1378 continue;
1379 if (!cpu_online(smp_processor_id()) &&
1380 !(con->flags & CON_ANYTIME))
1381 continue;
1382 con->write(con, text, len);
1383 }
1384 }
1385
1386 /*
1387 * Zap console related locks when oopsing. Only zap at most once
1388 * every 10 seconds, to leave time for slow consoles to print a
1389 * full oops.
1390 */
1391 static void zap_locks(void)
1392 {
1393 static unsigned long oops_timestamp;
1394
1395 if (time_after_eq(jiffies, oops_timestamp) &&
1396 !time_after(jiffies, oops_timestamp + 30 * HZ))
1397 return;
1398
1399 oops_timestamp = jiffies;
1400
1401 debug_locks_off();
1402 /* If a crash is occurring, make sure we can't deadlock */
1403 raw_spin_lock_init(&logbuf_lock);
1404 /* And make sure that we print immediately */
1405 sema_init(&console_sem, 1);
1406 }
1407
1408 /*
1409 * Check if we have any console that is capable of printing while cpu is
1410 * booting or shutting down. Requires console_sem.
1411 */
1412 static int have_callable_console(void)
1413 {
1414 struct console *con;
1415
1416 for_each_console(con)
1417 if (con->flags & CON_ANYTIME)
1418 return 1;
1419
1420 return 0;
1421 }
1422
1423 /*
1424 * Can we actually use the console at this time on this cpu?
1425 *
1426 * Console drivers may assume that per-cpu resources have been allocated. So
1427 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1428 * call them until this CPU is officially up.
1429 */
1430 static inline int can_use_console(unsigned int cpu)
1431 {
1432 return cpu_online(cpu) || have_callable_console();
1433 }
1434
1435 /*
1436 * Try to get console ownership to actually show the kernel
1437 * messages from a 'printk'. Return true (and with the
1438 * console_lock held, and 'console_locked' set) if it
1439 * is successful, false otherwise.
1440 */
1441 static int console_trylock_for_printk(void)
1442 {
1443 unsigned int cpu = smp_processor_id();
1444
1445 if (!console_trylock())
1446 return 0;
1447 /*
1448 * If we can't use the console, we need to release the console
1449 * semaphore by hand to avoid flushing the buffer. We need to hold the
1450 * console semaphore in order to do this test safely.
1451 */
1452 if (!can_use_console(cpu)) {
1453 console_locked = 0;
1454 up_console_sem();
1455 return 0;
1456 }
1457 return 1;
1458 }
1459
1460 int printk_delay_msec __read_mostly;
1461
1462 static inline void printk_delay(void)
1463 {
1464 if (unlikely(printk_delay_msec)) {
1465 int m = printk_delay_msec;
1466
1467 while (m--) {
1468 mdelay(1);
1469 touch_nmi_watchdog();
1470 }
1471 }
1472 }
1473
1474 /*
1475 * Continuation lines are buffered, and not committed to the record buffer
1476 * until the line is complete, or a race forces it. The line fragments
1477 * though, are printed immediately to the consoles to ensure everything has
1478 * reached the console in case of a kernel crash.
1479 */
1480 static struct cont {
1481 char buf[LOG_LINE_MAX];
1482 size_t len; /* length == 0 means unused buffer */
1483 size_t cons; /* bytes written to console */
1484 struct task_struct *owner; /* task of first print*/
1485 u64 ts_nsec; /* time of first print */
1486 u8 level; /* log level of first message */
1487 u8 facility; /* log level of first message */
1488 enum log_flags flags; /* prefix, newline flags */
1489 bool flushed:1; /* buffer sealed and committed */
1490 } cont;
1491
1492 static void cont_flush(enum log_flags flags)
1493 {
1494 if (cont.flushed)
1495 return;
1496 if (cont.len == 0)
1497 return;
1498
1499 if (cont.cons) {
1500 /*
1501 * If a fragment of this line was directly flushed to the
1502 * console; wait for the console to pick up the rest of the
1503 * line. LOG_NOCONS suppresses a duplicated output.
1504 */
1505 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1506 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1507 cont.flags = flags;
1508 cont.flushed = true;
1509 } else {
1510 /*
1511 * If no fragment of this line ever reached the console,
1512 * just submit it to the store and free the buffer.
1513 */
1514 log_store(cont.facility, cont.level, flags, 0,
1515 NULL, 0, cont.buf, cont.len);
1516 cont.len = 0;
1517 }
1518 }
1519
1520 static bool cont_add(int facility, int level, const char *text, size_t len)
1521 {
1522 if (cont.len && cont.flushed)
1523 return false;
1524
1525 if (cont.len + len > sizeof(cont.buf)) {
1526 /* the line gets too long, split it up in separate records */
1527 cont_flush(LOG_CONT);
1528 return false;
1529 }
1530
1531 if (!cont.len) {
1532 cont.facility = facility;
1533 cont.level = level;
1534 cont.owner = current;
1535 cont.ts_nsec = local_clock();
1536 cont.flags = 0;
1537 cont.cons = 0;
1538 cont.flushed = false;
1539 }
1540
1541 memcpy(cont.buf + cont.len, text, len);
1542 cont.len += len;
1543
1544 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1545 cont_flush(LOG_CONT);
1546
1547 return true;
1548 }
1549
1550 static size_t cont_print_text(char *text, size_t size)
1551 {
1552 size_t textlen = 0;
1553 size_t len;
1554
1555 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1556 textlen += print_time(cont.ts_nsec, text);
1557 size -= textlen;
1558 }
1559
1560 len = cont.len - cont.cons;
1561 if (len > 0) {
1562 if (len+1 > size)
1563 len = size-1;
1564 memcpy(text + textlen, cont.buf + cont.cons, len);
1565 textlen += len;
1566 cont.cons = cont.len;
1567 }
1568
1569 if (cont.flushed) {
1570 if (cont.flags & LOG_NEWLINE)
1571 text[textlen++] = '\n';
1572 /* got everything, release buffer */
1573 cont.len = 0;
1574 }
1575 return textlen;
1576 }
1577
1578 asmlinkage int vprintk_emit(int facility, int level,
1579 const char *dict, size_t dictlen,
1580 const char *fmt, va_list args)
1581 {
1582 static int recursion_bug;
1583 static char textbuf[LOG_LINE_MAX];
1584 char *text = textbuf;
1585 size_t text_len = 0;
1586 enum log_flags lflags = 0;
1587 unsigned long flags;
1588 int this_cpu;
1589 int printed_len = 0;
1590 bool in_sched = false;
1591 /* cpu currently holding logbuf_lock in this function */
1592 static volatile unsigned int logbuf_cpu = UINT_MAX;
1593
1594 if (level == SCHED_MESSAGE_LOGLEVEL) {
1595 level = -1;
1596 in_sched = true;
1597 }
1598
1599 boot_delay_msec(level);
1600 printk_delay();
1601
1602 /* This stops the holder of console_sem just where we want him */
1603 local_irq_save(flags);
1604 this_cpu = smp_processor_id();
1605
1606 /*
1607 * Ouch, printk recursed into itself!
1608 */
1609 if (unlikely(logbuf_cpu == this_cpu)) {
1610 /*
1611 * If a crash is occurring during printk() on this CPU,
1612 * then try to get the crash message out but make sure
1613 * we can't deadlock. Otherwise just return to avoid the
1614 * recursion and return - but flag the recursion so that
1615 * it can be printed at the next appropriate moment:
1616 */
1617 if (!oops_in_progress && !lockdep_recursing(current)) {
1618 recursion_bug = 1;
1619 local_irq_restore(flags);
1620 return 0;
1621 }
1622 zap_locks();
1623 }
1624
1625 lockdep_off();
1626 raw_spin_lock(&logbuf_lock);
1627 logbuf_cpu = this_cpu;
1628
1629 if (recursion_bug) {
1630 static const char recursion_msg[] =
1631 "BUG: recent printk recursion!";
1632
1633 recursion_bug = 0;
1634 text_len = strlen(recursion_msg);
1635 /* emit KERN_CRIT message */
1636 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1637 NULL, 0, recursion_msg, text_len);
1638 }
1639
1640 /*
1641 * The printf needs to come first; we need the syslog
1642 * prefix which might be passed-in as a parameter.
1643 */
1644 if (in_sched)
1645 text_len = scnprintf(text, sizeof(textbuf),
1646 KERN_WARNING "[sched_delayed] ");
1647
1648 text_len += vscnprintf(text + text_len,
1649 sizeof(textbuf) - text_len, fmt, args);
1650
1651 /* mark and strip a trailing newline */
1652 if (text_len && text[text_len-1] == '\n') {
1653 text_len--;
1654 lflags |= LOG_NEWLINE;
1655 }
1656
1657 /* strip kernel syslog prefix and extract log level or control flags */
1658 if (facility == 0) {
1659 int kern_level = printk_get_level(text);
1660
1661 if (kern_level) {
1662 const char *end_of_header = printk_skip_level(text);
1663 switch (kern_level) {
1664 case '0' ... '7':
1665 if (level == -1)
1666 level = kern_level - '0';
1667 case 'd': /* KERN_DEFAULT */
1668 lflags |= LOG_PREFIX;
1669 }
1670 /*
1671 * No need to check length here because vscnprintf
1672 * put '\0' at the end of the string. Only valid and
1673 * newly printed level is detected.
1674 */
1675 text_len -= end_of_header - text;
1676 text = (char *)end_of_header;
1677 }
1678 }
1679
1680 if (level == -1)
1681 level = default_message_loglevel;
1682
1683 if (dict)
1684 lflags |= LOG_PREFIX|LOG_NEWLINE;
1685
1686 if (!(lflags & LOG_NEWLINE)) {
1687 /*
1688 * Flush the conflicting buffer. An earlier newline was missing,
1689 * or another task also prints continuation lines.
1690 */
1691 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1692 cont_flush(LOG_NEWLINE);
1693
1694 /* buffer line if possible, otherwise store it right away */
1695 if (cont_add(facility, level, text, text_len))
1696 printed_len += text_len;
1697 else
1698 printed_len += log_store(facility, level,
1699 lflags | LOG_CONT, 0,
1700 dict, dictlen, text, text_len);
1701 } else {
1702 bool stored = false;
1703
1704 /*
1705 * If an earlier newline was missing and it was the same task,
1706 * either merge it with the current buffer and flush, or if
1707 * there was a race with interrupts (prefix == true) then just
1708 * flush it out and store this line separately.
1709 * If the preceding printk was from a different task and missed
1710 * a newline, flush and append the newline.
1711 */
1712 if (cont.len) {
1713 if (cont.owner == current && !(lflags & LOG_PREFIX))
1714 stored = cont_add(facility, level, text,
1715 text_len);
1716 cont_flush(LOG_NEWLINE);
1717 }
1718
1719 if (stored)
1720 printed_len += text_len;
1721 else
1722 printed_len += log_store(facility, level, lflags, 0,
1723 dict, dictlen, text, text_len);
1724 }
1725
1726 logbuf_cpu = UINT_MAX;
1727 raw_spin_unlock(&logbuf_lock);
1728 lockdep_on();
1729 local_irq_restore(flags);
1730
1731 /* If called from the scheduler, we can not call up(). */
1732 if (in_sched)
1733 return printed_len;
1734
1735 /*
1736 * Disable preemption to avoid being preempted while holding
1737 * console_sem which would prevent anyone from printing to console
1738 */
1739 preempt_disable();
1740 /*
1741 * Try to acquire and then immediately release the console semaphore.
1742 * The release will print out buffers and wake up /dev/kmsg and syslog()
1743 * users.
1744 */
1745 if (console_trylock_for_printk())
1746 console_unlock();
1747 preempt_enable();
1748
1749 return printed_len;
1750 }
1751 EXPORT_SYMBOL(vprintk_emit);
1752
1753 asmlinkage int vprintk(const char *fmt, va_list args)
1754 {
1755 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1756 }
1757 EXPORT_SYMBOL(vprintk);
1758
1759 asmlinkage int printk_emit(int facility, int level,
1760 const char *dict, size_t dictlen,
1761 const char *fmt, ...)
1762 {
1763 va_list args;
1764 int r;
1765
1766 va_start(args, fmt);
1767 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1768 va_end(args);
1769
1770 return r;
1771 }
1772 EXPORT_SYMBOL(printk_emit);
1773
1774 /**
1775 * printk - print a kernel message
1776 * @fmt: format string
1777 *
1778 * This is printk(). It can be called from any context. We want it to work.
1779 *
1780 * We try to grab the console_lock. If we succeed, it's easy - we log the
1781 * output and call the console drivers. If we fail to get the semaphore, we
1782 * place the output into the log buffer and return. The current holder of
1783 * the console_sem will notice the new output in console_unlock(); and will
1784 * send it to the consoles before releasing the lock.
1785 *
1786 * One effect of this deferred printing is that code which calls printk() and
1787 * then changes console_loglevel may break. This is because console_loglevel
1788 * is inspected when the actual printing occurs.
1789 *
1790 * See also:
1791 * printf(3)
1792 *
1793 * See the vsnprintf() documentation for format string extensions over C99.
1794 */
1795 asmlinkage __visible int printk(const char *fmt, ...)
1796 {
1797 va_list args;
1798 int r;
1799
1800 #ifdef CONFIG_KGDB_KDB
1801 if (unlikely(kdb_trap_printk)) {
1802 va_start(args, fmt);
1803 r = vkdb_printf(fmt, args);
1804 va_end(args);
1805 return r;
1806 }
1807 #endif
1808 va_start(args, fmt);
1809 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1810 va_end(args);
1811
1812 return r;
1813 }
1814 EXPORT_SYMBOL(printk);
1815
1816 #else /* CONFIG_PRINTK */
1817
1818 #define LOG_LINE_MAX 0
1819 #define PREFIX_MAX 0
1820 #define LOG_LINE_MAX 0
1821 static u64 syslog_seq;
1822 static u32 syslog_idx;
1823 static u64 console_seq;
1824 static u32 console_idx;
1825 static enum log_flags syslog_prev;
1826 static u64 log_first_seq;
1827 static u32 log_first_idx;
1828 static u64 log_next_seq;
1829 static enum log_flags console_prev;
1830 static struct cont {
1831 size_t len;
1832 size_t cons;
1833 u8 level;
1834 bool flushed:1;
1835 } cont;
1836 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1837 static u32 log_next(u32 idx) { return 0; }
1838 static void call_console_drivers(int level, const char *text, size_t len) {}
1839 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1840 bool syslog, char *buf, size_t size) { return 0; }
1841 static size_t cont_print_text(char *text, size_t size) { return 0; }
1842
1843 #endif /* CONFIG_PRINTK */
1844
1845 #ifdef CONFIG_EARLY_PRINTK
1846 struct console *early_console;
1847
1848 void early_vprintk(const char *fmt, va_list ap)
1849 {
1850 if (early_console) {
1851 char buf[512];
1852 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1853
1854 early_console->write(early_console, buf, n);
1855 }
1856 }
1857
1858 asmlinkage __visible void early_printk(const char *fmt, ...)
1859 {
1860 va_list ap;
1861
1862 va_start(ap, fmt);
1863 early_vprintk(fmt, ap);
1864 va_end(ap);
1865 }
1866 #endif
1867
1868 static int __add_preferred_console(char *name, int idx, char *options,
1869 char *brl_options)
1870 {
1871 struct console_cmdline *c;
1872 int i;
1873
1874 /*
1875 * See if this tty is not yet registered, and
1876 * if we have a slot free.
1877 */
1878 for (i = 0, c = console_cmdline;
1879 i < MAX_CMDLINECONSOLES && c->name[0];
1880 i++, c++) {
1881 if (strcmp(c->name, name) == 0 && c->index == idx) {
1882 if (!brl_options)
1883 selected_console = i;
1884 return 0;
1885 }
1886 }
1887 if (i == MAX_CMDLINECONSOLES)
1888 return -E2BIG;
1889 if (!brl_options)
1890 selected_console = i;
1891 strlcpy(c->name, name, sizeof(c->name));
1892 c->options = options;
1893 braille_set_options(c, brl_options);
1894
1895 c->index = idx;
1896 return 0;
1897 }
1898 /*
1899 * Set up a list of consoles. Called from init/main.c
1900 */
1901 static int __init console_setup(char *str)
1902 {
1903 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1904 char *s, *options, *brl_options = NULL;
1905 int idx;
1906
1907 if (_braille_console_setup(&str, &brl_options))
1908 return 1;
1909
1910 /*
1911 * Decode str into name, index, options.
1912 */
1913 if (str[0] >= '0' && str[0] <= '9') {
1914 strcpy(buf, "ttyS");
1915 strncpy(buf + 4, str, sizeof(buf) - 5);
1916 } else {
1917 strncpy(buf, str, sizeof(buf) - 1);
1918 }
1919 buf[sizeof(buf) - 1] = 0;
1920 if ((options = strchr(str, ',')) != NULL)
1921 *(options++) = 0;
1922 #ifdef __sparc__
1923 if (!strcmp(str, "ttya"))
1924 strcpy(buf, "ttyS0");
1925 if (!strcmp(str, "ttyb"))
1926 strcpy(buf, "ttyS1");
1927 #endif
1928 for (s = buf; *s; s++)
1929 if ((*s >= '0' && *s <= '9') || *s == ',')
1930 break;
1931 idx = simple_strtoul(s, NULL, 10);
1932 *s = 0;
1933
1934 __add_preferred_console(buf, idx, options, brl_options);
1935 console_set_on_cmdline = 1;
1936 return 1;
1937 }
1938 __setup("console=", console_setup);
1939
1940 /**
1941 * add_preferred_console - add a device to the list of preferred consoles.
1942 * @name: device name
1943 * @idx: device index
1944 * @options: options for this console
1945 *
1946 * The last preferred console added will be used for kernel messages
1947 * and stdin/out/err for init. Normally this is used by console_setup
1948 * above to handle user-supplied console arguments; however it can also
1949 * be used by arch-specific code either to override the user or more
1950 * commonly to provide a default console (ie from PROM variables) when
1951 * the user has not supplied one.
1952 */
1953 int add_preferred_console(char *name, int idx, char *options)
1954 {
1955 return __add_preferred_console(name, idx, options, NULL);
1956 }
1957
1958 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1959 {
1960 struct console_cmdline *c;
1961 int i;
1962
1963 for (i = 0, c = console_cmdline;
1964 i < MAX_CMDLINECONSOLES && c->name[0];
1965 i++, c++)
1966 if (strcmp(c->name, name) == 0 && c->index == idx) {
1967 strlcpy(c->name, name_new, sizeof(c->name));
1968 c->name[sizeof(c->name) - 1] = 0;
1969 c->options = options;
1970 c->index = idx_new;
1971 return i;
1972 }
1973 /* not found */
1974 return -1;
1975 }
1976
1977 bool console_suspend_enabled = 1;
1978 EXPORT_SYMBOL(console_suspend_enabled);
1979
1980 static int __init console_suspend_disable(char *str)
1981 {
1982 console_suspend_enabled = 0;
1983 return 1;
1984 }
1985 __setup("no_console_suspend", console_suspend_disable);
1986 module_param_named(console_suspend, console_suspend_enabled,
1987 bool, S_IRUGO | S_IWUSR);
1988 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1989 " and hibernate operations");
1990
1991 /**
1992 * suspend_console - suspend the console subsystem
1993 *
1994 * This disables printk() while we go into suspend states
1995 */
1996 void suspend_console(void)
1997 {
1998 if (!console_suspend_enabled)
1999 return;
2000 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2001 console_lock();
2002 console_suspended = 1;
2003 up_console_sem();
2004 }
2005
2006 void resume_console(void)
2007 {
2008 if (!console_suspend_enabled)
2009 return;
2010 down_console_sem();
2011 console_suspended = 0;
2012 console_unlock();
2013 }
2014
2015 /**
2016 * console_cpu_notify - print deferred console messages after CPU hotplug
2017 * @self: notifier struct
2018 * @action: CPU hotplug event
2019 * @hcpu: unused
2020 *
2021 * If printk() is called from a CPU that is not online yet, the messages
2022 * will be spooled but will not show up on the console. This function is
2023 * called when a new CPU comes online (or fails to come up), and ensures
2024 * that any such output gets printed.
2025 */
2026 static int console_cpu_notify(struct notifier_block *self,
2027 unsigned long action, void *hcpu)
2028 {
2029 switch (action) {
2030 case CPU_ONLINE:
2031 case CPU_DEAD:
2032 case CPU_DOWN_FAILED:
2033 case CPU_UP_CANCELED:
2034 console_lock();
2035 console_unlock();
2036 }
2037 return NOTIFY_OK;
2038 }
2039
2040 /**
2041 * console_lock - lock the console system for exclusive use.
2042 *
2043 * Acquires a lock which guarantees that the caller has
2044 * exclusive access to the console system and the console_drivers list.
2045 *
2046 * Can sleep, returns nothing.
2047 */
2048 void console_lock(void)
2049 {
2050 might_sleep();
2051
2052 down_console_sem();
2053 if (console_suspended)
2054 return;
2055 console_locked = 1;
2056 console_may_schedule = 1;
2057 }
2058 EXPORT_SYMBOL(console_lock);
2059
2060 /**
2061 * console_trylock - try to lock the console system for exclusive use.
2062 *
2063 * Tried to acquire a lock which guarantees that the caller has
2064 * exclusive access to the console system and the console_drivers list.
2065 *
2066 * returns 1 on success, and 0 on failure to acquire the lock.
2067 */
2068 int console_trylock(void)
2069 {
2070 if (down_trylock_console_sem())
2071 return 0;
2072 if (console_suspended) {
2073 up_console_sem();
2074 return 0;
2075 }
2076 console_locked = 1;
2077 console_may_schedule = 0;
2078 return 1;
2079 }
2080 EXPORT_SYMBOL(console_trylock);
2081
2082 int is_console_locked(void)
2083 {
2084 return console_locked;
2085 }
2086
2087 static void console_cont_flush(char *text, size_t size)
2088 {
2089 unsigned long flags;
2090 size_t len;
2091
2092 raw_spin_lock_irqsave(&logbuf_lock, flags);
2093
2094 if (!cont.len)
2095 goto out;
2096
2097 /*
2098 * We still queue earlier records, likely because the console was
2099 * busy. The earlier ones need to be printed before this one, we
2100 * did not flush any fragment so far, so just let it queue up.
2101 */
2102 if (console_seq < log_next_seq && !cont.cons)
2103 goto out;
2104
2105 len = cont_print_text(text, size);
2106 raw_spin_unlock(&logbuf_lock);
2107 stop_critical_timings();
2108 call_console_drivers(cont.level, text, len);
2109 start_critical_timings();
2110 local_irq_restore(flags);
2111 return;
2112 out:
2113 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2114 }
2115
2116 /**
2117 * console_unlock - unlock the console system
2118 *
2119 * Releases the console_lock which the caller holds on the console system
2120 * and the console driver list.
2121 *
2122 * While the console_lock was held, console output may have been buffered
2123 * by printk(). If this is the case, console_unlock(); emits
2124 * the output prior to releasing the lock.
2125 *
2126 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2127 *
2128 * console_unlock(); may be called from any context.
2129 */
2130 void console_unlock(void)
2131 {
2132 static char text[LOG_LINE_MAX + PREFIX_MAX];
2133 static u64 seen_seq;
2134 unsigned long flags;
2135 bool wake_klogd = false;
2136 bool retry;
2137
2138 if (console_suspended) {
2139 up_console_sem();
2140 return;
2141 }
2142
2143 console_may_schedule = 0;
2144
2145 /* flush buffered message fragment immediately to console */
2146 console_cont_flush(text, sizeof(text));
2147 again:
2148 for (;;) {
2149 struct printk_log *msg;
2150 size_t len;
2151 int level;
2152
2153 raw_spin_lock_irqsave(&logbuf_lock, flags);
2154 if (seen_seq != log_next_seq) {
2155 wake_klogd = true;
2156 seen_seq = log_next_seq;
2157 }
2158
2159 if (console_seq < log_first_seq) {
2160 len = sprintf(text, "** %u printk messages dropped ** ",
2161 (unsigned)(log_first_seq - console_seq));
2162
2163 /* messages are gone, move to first one */
2164 console_seq = log_first_seq;
2165 console_idx = log_first_idx;
2166 console_prev = 0;
2167 } else {
2168 len = 0;
2169 }
2170 skip:
2171 if (console_seq == log_next_seq)
2172 break;
2173
2174 msg = log_from_idx(console_idx);
2175 if (msg->flags & LOG_NOCONS) {
2176 /*
2177 * Skip record we have buffered and already printed
2178 * directly to the console when we received it.
2179 */
2180 console_idx = log_next(console_idx);
2181 console_seq++;
2182 /*
2183 * We will get here again when we register a new
2184 * CON_PRINTBUFFER console. Clear the flag so we
2185 * will properly dump everything later.
2186 */
2187 msg->flags &= ~LOG_NOCONS;
2188 console_prev = msg->flags;
2189 goto skip;
2190 }
2191
2192 level = msg->level;
2193 len += msg_print_text(msg, console_prev, false,
2194 text + len, sizeof(text) - len);
2195 console_idx = log_next(console_idx);
2196 console_seq++;
2197 console_prev = msg->flags;
2198 raw_spin_unlock(&logbuf_lock);
2199
2200 stop_critical_timings(); /* don't trace print latency */
2201 call_console_drivers(level, text, len);
2202 start_critical_timings();
2203 local_irq_restore(flags);
2204 }
2205 console_locked = 0;
2206
2207 /* Release the exclusive_console once it is used */
2208 if (unlikely(exclusive_console))
2209 exclusive_console = NULL;
2210
2211 raw_spin_unlock(&logbuf_lock);
2212
2213 up_console_sem();
2214
2215 /*
2216 * Someone could have filled up the buffer again, so re-check if there's
2217 * something to flush. In case we cannot trylock the console_sem again,
2218 * there's a new owner and the console_unlock() from them will do the
2219 * flush, no worries.
2220 */
2221 raw_spin_lock(&logbuf_lock);
2222 retry = console_seq != log_next_seq;
2223 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2224
2225 if (retry && console_trylock())
2226 goto again;
2227
2228 if (wake_klogd)
2229 wake_up_klogd();
2230 }
2231 EXPORT_SYMBOL(console_unlock);
2232
2233 /**
2234 * console_conditional_schedule - yield the CPU if required
2235 *
2236 * If the console code is currently allowed to sleep, and
2237 * if this CPU should yield the CPU to another task, do
2238 * so here.
2239 *
2240 * Must be called within console_lock();.
2241 */
2242 void __sched console_conditional_schedule(void)
2243 {
2244 if (console_may_schedule)
2245 cond_resched();
2246 }
2247 EXPORT_SYMBOL(console_conditional_schedule);
2248
2249 void console_unblank(void)
2250 {
2251 struct console *c;
2252
2253 /*
2254 * console_unblank can no longer be called in interrupt context unless
2255 * oops_in_progress is set to 1..
2256 */
2257 if (oops_in_progress) {
2258 if (down_trylock_console_sem() != 0)
2259 return;
2260 } else
2261 console_lock();
2262
2263 console_locked = 1;
2264 console_may_schedule = 0;
2265 for_each_console(c)
2266 if ((c->flags & CON_ENABLED) && c->unblank)
2267 c->unblank();
2268 console_unlock();
2269 }
2270
2271 /*
2272 * Return the console tty driver structure and its associated index
2273 */
2274 struct tty_driver *console_device(int *index)
2275 {
2276 struct console *c;
2277 struct tty_driver *driver = NULL;
2278
2279 console_lock();
2280 for_each_console(c) {
2281 if (!c->device)
2282 continue;
2283 driver = c->device(c, index);
2284 if (driver)
2285 break;
2286 }
2287 console_unlock();
2288 return driver;
2289 }
2290
2291 /*
2292 * Prevent further output on the passed console device so that (for example)
2293 * serial drivers can disable console output before suspending a port, and can
2294 * re-enable output afterwards.
2295 */
2296 void console_stop(struct console *console)
2297 {
2298 console_lock();
2299 console->flags &= ~CON_ENABLED;
2300 console_unlock();
2301 }
2302 EXPORT_SYMBOL(console_stop);
2303
2304 void console_start(struct console *console)
2305 {
2306 console_lock();
2307 console->flags |= CON_ENABLED;
2308 console_unlock();
2309 }
2310 EXPORT_SYMBOL(console_start);
2311
2312 static int __read_mostly keep_bootcon;
2313
2314 static int __init keep_bootcon_setup(char *str)
2315 {
2316 keep_bootcon = 1;
2317 pr_info("debug: skip boot console de-registration.\n");
2318
2319 return 0;
2320 }
2321
2322 early_param("keep_bootcon", keep_bootcon_setup);
2323
2324 /*
2325 * The console driver calls this routine during kernel initialization
2326 * to register the console printing procedure with printk() and to
2327 * print any messages that were printed by the kernel before the
2328 * console driver was initialized.
2329 *
2330 * This can happen pretty early during the boot process (because of
2331 * early_printk) - sometimes before setup_arch() completes - be careful
2332 * of what kernel features are used - they may not be initialised yet.
2333 *
2334 * There are two types of consoles - bootconsoles (early_printk) and
2335 * "real" consoles (everything which is not a bootconsole) which are
2336 * handled differently.
2337 * - Any number of bootconsoles can be registered at any time.
2338 * - As soon as a "real" console is registered, all bootconsoles
2339 * will be unregistered automatically.
2340 * - Once a "real" console is registered, any attempt to register a
2341 * bootconsoles will be rejected
2342 */
2343 void register_console(struct console *newcon)
2344 {
2345 int i;
2346 unsigned long flags;
2347 struct console *bcon = NULL;
2348 struct console_cmdline *c;
2349
2350 if (console_drivers)
2351 for_each_console(bcon)
2352 if (WARN(bcon == newcon,
2353 "console '%s%d' already registered\n",
2354 bcon->name, bcon->index))
2355 return;
2356
2357 /*
2358 * before we register a new CON_BOOT console, make sure we don't
2359 * already have a valid console
2360 */
2361 if (console_drivers && newcon->flags & CON_BOOT) {
2362 /* find the last or real console */
2363 for_each_console(bcon) {
2364 if (!(bcon->flags & CON_BOOT)) {
2365 pr_info("Too late to register bootconsole %s%d\n",
2366 newcon->name, newcon->index);
2367 return;
2368 }
2369 }
2370 }
2371
2372 if (console_drivers && console_drivers->flags & CON_BOOT)
2373 bcon = console_drivers;
2374
2375 if (preferred_console < 0 || bcon || !console_drivers)
2376 preferred_console = selected_console;
2377
2378 if (newcon->early_setup)
2379 newcon->early_setup();
2380
2381 /*
2382 * See if we want to use this console driver. If we
2383 * didn't select a console we take the first one
2384 * that registers here.
2385 */
2386 if (preferred_console < 0) {
2387 if (newcon->index < 0)
2388 newcon->index = 0;
2389 if (newcon->setup == NULL ||
2390 newcon->setup(newcon, NULL) == 0) {
2391 newcon->flags |= CON_ENABLED;
2392 if (newcon->device) {
2393 newcon->flags |= CON_CONSDEV;
2394 preferred_console = 0;
2395 }
2396 }
2397 }
2398
2399 /*
2400 * See if this console matches one we selected on
2401 * the command line.
2402 */
2403 for (i = 0, c = console_cmdline;
2404 i < MAX_CMDLINECONSOLES && c->name[0];
2405 i++, c++) {
2406 if (strcmp(c->name, newcon->name) != 0)
2407 continue;
2408 if (newcon->index >= 0 &&
2409 newcon->index != c->index)
2410 continue;
2411 if (newcon->index < 0)
2412 newcon->index = c->index;
2413
2414 if (_braille_register_console(newcon, c))
2415 return;
2416
2417 if (newcon->setup &&
2418 newcon->setup(newcon, console_cmdline[i].options) != 0)
2419 break;
2420 newcon->flags |= CON_ENABLED;
2421 newcon->index = c->index;
2422 if (i == selected_console) {
2423 newcon->flags |= CON_CONSDEV;
2424 preferred_console = selected_console;
2425 }
2426 break;
2427 }
2428
2429 if (!(newcon->flags & CON_ENABLED))
2430 return;
2431
2432 /*
2433 * If we have a bootconsole, and are switching to a real console,
2434 * don't print everything out again, since when the boot console, and
2435 * the real console are the same physical device, it's annoying to
2436 * see the beginning boot messages twice
2437 */
2438 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2439 newcon->flags &= ~CON_PRINTBUFFER;
2440
2441 /*
2442 * Put this console in the list - keep the
2443 * preferred driver at the head of the list.
2444 */
2445 console_lock();
2446 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2447 newcon->next = console_drivers;
2448 console_drivers = newcon;
2449 if (newcon->next)
2450 newcon->next->flags &= ~CON_CONSDEV;
2451 } else {
2452 newcon->next = console_drivers->next;
2453 console_drivers->next = newcon;
2454 }
2455 if (newcon->flags & CON_PRINTBUFFER) {
2456 /*
2457 * console_unlock(); will print out the buffered messages
2458 * for us.
2459 */
2460 raw_spin_lock_irqsave(&logbuf_lock, flags);
2461 console_seq = syslog_seq;
2462 console_idx = syslog_idx;
2463 console_prev = syslog_prev;
2464 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2465 /*
2466 * We're about to replay the log buffer. Only do this to the
2467 * just-registered console to avoid excessive message spam to
2468 * the already-registered consoles.
2469 */
2470 exclusive_console = newcon;
2471 }
2472 console_unlock();
2473 console_sysfs_notify();
2474
2475 /*
2476 * By unregistering the bootconsoles after we enable the real console
2477 * we get the "console xxx enabled" message on all the consoles -
2478 * boot consoles, real consoles, etc - this is to ensure that end
2479 * users know there might be something in the kernel's log buffer that
2480 * went to the bootconsole (that they do not see on the real console)
2481 */
2482 pr_info("%sconsole [%s%d] enabled\n",
2483 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2484 newcon->name, newcon->index);
2485 if (bcon &&
2486 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2487 !keep_bootcon) {
2488 /* We need to iterate through all boot consoles, to make
2489 * sure we print everything out, before we unregister them.
2490 */
2491 for_each_console(bcon)
2492 if (bcon->flags & CON_BOOT)
2493 unregister_console(bcon);
2494 }
2495 }
2496 EXPORT_SYMBOL(register_console);
2497
2498 int unregister_console(struct console *console)
2499 {
2500 struct console *a, *b;
2501 int res;
2502
2503 pr_info("%sconsole [%s%d] disabled\n",
2504 (console->flags & CON_BOOT) ? "boot" : "" ,
2505 console->name, console->index);
2506
2507 res = _braille_unregister_console(console);
2508 if (res)
2509 return res;
2510
2511 res = 1;
2512 console_lock();
2513 if (console_drivers == console) {
2514 console_drivers=console->next;
2515 res = 0;
2516 } else if (console_drivers) {
2517 for (a=console_drivers->next, b=console_drivers ;
2518 a; b=a, a=b->next) {
2519 if (a == console) {
2520 b->next = a->next;
2521 res = 0;
2522 break;
2523 }
2524 }
2525 }
2526
2527 /*
2528 * If this isn't the last console and it has CON_CONSDEV set, we
2529 * need to set it on the next preferred console.
2530 */
2531 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2532 console_drivers->flags |= CON_CONSDEV;
2533
2534 console->flags &= ~CON_ENABLED;
2535 console_unlock();
2536 console_sysfs_notify();
2537 return res;
2538 }
2539 EXPORT_SYMBOL(unregister_console);
2540
2541 static int __init printk_late_init(void)
2542 {
2543 struct console *con;
2544
2545 for_each_console(con) {
2546 if (!keep_bootcon && con->flags & CON_BOOT) {
2547 unregister_console(con);
2548 }
2549 }
2550 hotcpu_notifier(console_cpu_notify, 0);
2551 return 0;
2552 }
2553 late_initcall(printk_late_init);
2554
2555 #if defined CONFIG_PRINTK
2556 /*
2557 * Delayed printk version, for scheduler-internal messages:
2558 */
2559 #define PRINTK_PENDING_WAKEUP 0x01
2560 #define PRINTK_PENDING_OUTPUT 0x02
2561
2562 static DEFINE_PER_CPU(int, printk_pending);
2563
2564 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2565 {
2566 int pending = __this_cpu_xchg(printk_pending, 0);
2567
2568 if (pending & PRINTK_PENDING_OUTPUT) {
2569 /* If trylock fails, someone else is doing the printing */
2570 if (console_trylock())
2571 console_unlock();
2572 }
2573
2574 if (pending & PRINTK_PENDING_WAKEUP)
2575 wake_up_interruptible(&log_wait);
2576 }
2577
2578 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2579 .func = wake_up_klogd_work_func,
2580 .flags = IRQ_WORK_LAZY,
2581 };
2582
2583 void wake_up_klogd(void)
2584 {
2585 preempt_disable();
2586 if (waitqueue_active(&log_wait)) {
2587 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2588 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2589 }
2590 preempt_enable();
2591 }
2592
2593 int printk_deferred(const char *fmt, ...)
2594 {
2595 va_list args;
2596 int r;
2597
2598 preempt_disable();
2599 va_start(args, fmt);
2600 r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args);
2601 va_end(args);
2602
2603 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2604 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2605 preempt_enable();
2606
2607 return r;
2608 }
2609
2610 /*
2611 * printk rate limiting, lifted from the networking subsystem.
2612 *
2613 * This enforces a rate limit: not more than 10 kernel messages
2614 * every 5s to make a denial-of-service attack impossible.
2615 */
2616 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2617
2618 int __printk_ratelimit(const char *func)
2619 {
2620 return ___ratelimit(&printk_ratelimit_state, func);
2621 }
2622 EXPORT_SYMBOL(__printk_ratelimit);
2623
2624 /**
2625 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2626 * @caller_jiffies: pointer to caller's state
2627 * @interval_msecs: minimum interval between prints
2628 *
2629 * printk_timed_ratelimit() returns true if more than @interval_msecs
2630 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2631 * returned true.
2632 */
2633 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2634 unsigned int interval_msecs)
2635 {
2636 if (*caller_jiffies == 0
2637 || !time_in_range(jiffies, *caller_jiffies,
2638 *caller_jiffies
2639 + msecs_to_jiffies(interval_msecs))) {
2640 *caller_jiffies = jiffies;
2641 return true;
2642 }
2643 return false;
2644 }
2645 EXPORT_SYMBOL(printk_timed_ratelimit);
2646
2647 static DEFINE_SPINLOCK(dump_list_lock);
2648 static LIST_HEAD(dump_list);
2649
2650 /**
2651 * kmsg_dump_register - register a kernel log dumper.
2652 * @dumper: pointer to the kmsg_dumper structure
2653 *
2654 * Adds a kernel log dumper to the system. The dump callback in the
2655 * structure will be called when the kernel oopses or panics and must be
2656 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2657 */
2658 int kmsg_dump_register(struct kmsg_dumper *dumper)
2659 {
2660 unsigned long flags;
2661 int err = -EBUSY;
2662
2663 /* The dump callback needs to be set */
2664 if (!dumper->dump)
2665 return -EINVAL;
2666
2667 spin_lock_irqsave(&dump_list_lock, flags);
2668 /* Don't allow registering multiple times */
2669 if (!dumper->registered) {
2670 dumper->registered = 1;
2671 list_add_tail_rcu(&dumper->list, &dump_list);
2672 err = 0;
2673 }
2674 spin_unlock_irqrestore(&dump_list_lock, flags);
2675
2676 return err;
2677 }
2678 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2679
2680 /**
2681 * kmsg_dump_unregister - unregister a kmsg dumper.
2682 * @dumper: pointer to the kmsg_dumper structure
2683 *
2684 * Removes a dump device from the system. Returns zero on success and
2685 * %-EINVAL otherwise.
2686 */
2687 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2688 {
2689 unsigned long flags;
2690 int err = -EINVAL;
2691
2692 spin_lock_irqsave(&dump_list_lock, flags);
2693 if (dumper->registered) {
2694 dumper->registered = 0;
2695 list_del_rcu(&dumper->list);
2696 err = 0;
2697 }
2698 spin_unlock_irqrestore(&dump_list_lock, flags);
2699 synchronize_rcu();
2700
2701 return err;
2702 }
2703 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2704
2705 static bool always_kmsg_dump;
2706 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2707
2708 /**
2709 * kmsg_dump - dump kernel log to kernel message dumpers.
2710 * @reason: the reason (oops, panic etc) for dumping
2711 *
2712 * Call each of the registered dumper's dump() callback, which can
2713 * retrieve the kmsg records with kmsg_dump_get_line() or
2714 * kmsg_dump_get_buffer().
2715 */
2716 void kmsg_dump(enum kmsg_dump_reason reason)
2717 {
2718 struct kmsg_dumper *dumper;
2719 unsigned long flags;
2720
2721 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2722 return;
2723
2724 rcu_read_lock();
2725 list_for_each_entry_rcu(dumper, &dump_list, list) {
2726 if (dumper->max_reason && reason > dumper->max_reason)
2727 continue;
2728
2729 /* initialize iterator with data about the stored records */
2730 dumper->active = true;
2731
2732 raw_spin_lock_irqsave(&logbuf_lock, flags);
2733 dumper->cur_seq = clear_seq;
2734 dumper->cur_idx = clear_idx;
2735 dumper->next_seq = log_next_seq;
2736 dumper->next_idx = log_next_idx;
2737 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2738
2739 /* invoke dumper which will iterate over records */
2740 dumper->dump(dumper, reason);
2741
2742 /* reset iterator */
2743 dumper->active = false;
2744 }
2745 rcu_read_unlock();
2746 }
2747
2748 /**
2749 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2750 * @dumper: registered kmsg dumper
2751 * @syslog: include the "<4>" prefixes
2752 * @line: buffer to copy the line to
2753 * @size: maximum size of the buffer
2754 * @len: length of line placed into buffer
2755 *
2756 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2757 * record, and copy one record into the provided buffer.
2758 *
2759 * Consecutive calls will return the next available record moving
2760 * towards the end of the buffer with the youngest messages.
2761 *
2762 * A return value of FALSE indicates that there are no more records to
2763 * read.
2764 *
2765 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2766 */
2767 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2768 char *line, size_t size, size_t *len)
2769 {
2770 struct printk_log *msg;
2771 size_t l = 0;
2772 bool ret = false;
2773
2774 if (!dumper->active)
2775 goto out;
2776
2777 if (dumper->cur_seq < log_first_seq) {
2778 /* messages are gone, move to first available one */
2779 dumper->cur_seq = log_first_seq;
2780 dumper->cur_idx = log_first_idx;
2781 }
2782
2783 /* last entry */
2784 if (dumper->cur_seq >= log_next_seq)
2785 goto out;
2786
2787 msg = log_from_idx(dumper->cur_idx);
2788 l = msg_print_text(msg, 0, syslog, line, size);
2789
2790 dumper->cur_idx = log_next(dumper->cur_idx);
2791 dumper->cur_seq++;
2792 ret = true;
2793 out:
2794 if (len)
2795 *len = l;
2796 return ret;
2797 }
2798
2799 /**
2800 * kmsg_dump_get_line - retrieve one kmsg log line
2801 * @dumper: registered kmsg dumper
2802 * @syslog: include the "<4>" prefixes
2803 * @line: buffer to copy the line to
2804 * @size: maximum size of the buffer
2805 * @len: length of line placed into buffer
2806 *
2807 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2808 * record, and copy one record into the provided buffer.
2809 *
2810 * Consecutive calls will return the next available record moving
2811 * towards the end of the buffer with the youngest messages.
2812 *
2813 * A return value of FALSE indicates that there are no more records to
2814 * read.
2815 */
2816 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2817 char *line, size_t size, size_t *len)
2818 {
2819 unsigned long flags;
2820 bool ret;
2821
2822 raw_spin_lock_irqsave(&logbuf_lock, flags);
2823 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2824 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2825
2826 return ret;
2827 }
2828 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2829
2830 /**
2831 * kmsg_dump_get_buffer - copy kmsg log lines
2832 * @dumper: registered kmsg dumper
2833 * @syslog: include the "<4>" prefixes
2834 * @buf: buffer to copy the line to
2835 * @size: maximum size of the buffer
2836 * @len: length of line placed into buffer
2837 *
2838 * Start at the end of the kmsg buffer and fill the provided buffer
2839 * with as many of the the *youngest* kmsg records that fit into it.
2840 * If the buffer is large enough, all available kmsg records will be
2841 * copied with a single call.
2842 *
2843 * Consecutive calls will fill the buffer with the next block of
2844 * available older records, not including the earlier retrieved ones.
2845 *
2846 * A return value of FALSE indicates that there are no more records to
2847 * read.
2848 */
2849 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2850 char *buf, size_t size, size_t *len)
2851 {
2852 unsigned long flags;
2853 u64 seq;
2854 u32 idx;
2855 u64 next_seq;
2856 u32 next_idx;
2857 enum log_flags prev;
2858 size_t l = 0;
2859 bool ret = false;
2860
2861 if (!dumper->active)
2862 goto out;
2863
2864 raw_spin_lock_irqsave(&logbuf_lock, flags);
2865 if (dumper->cur_seq < log_first_seq) {
2866 /* messages are gone, move to first available one */
2867 dumper->cur_seq = log_first_seq;
2868 dumper->cur_idx = log_first_idx;
2869 }
2870
2871 /* last entry */
2872 if (dumper->cur_seq >= dumper->next_seq) {
2873 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2874 goto out;
2875 }
2876
2877 /* calculate length of entire buffer */
2878 seq = dumper->cur_seq;
2879 idx = dumper->cur_idx;
2880 prev = 0;
2881 while (seq < dumper->next_seq) {
2882 struct printk_log *msg = log_from_idx(idx);
2883
2884 l += msg_print_text(msg, prev, true, NULL, 0);
2885 idx = log_next(idx);
2886 seq++;
2887 prev = msg->flags;
2888 }
2889
2890 /* move first record forward until length fits into the buffer */
2891 seq = dumper->cur_seq;
2892 idx = dumper->cur_idx;
2893 prev = 0;
2894 while (l > size && seq < dumper->next_seq) {
2895 struct printk_log *msg = log_from_idx(idx);
2896
2897 l -= msg_print_text(msg, prev, true, NULL, 0);
2898 idx = log_next(idx);
2899 seq++;
2900 prev = msg->flags;
2901 }
2902
2903 /* last message in next interation */
2904 next_seq = seq;
2905 next_idx = idx;
2906
2907 l = 0;
2908 while (seq < dumper->next_seq) {
2909 struct printk_log *msg = log_from_idx(idx);
2910
2911 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2912 idx = log_next(idx);
2913 seq++;
2914 prev = msg->flags;
2915 }
2916
2917 dumper->next_seq = next_seq;
2918 dumper->next_idx = next_idx;
2919 ret = true;
2920 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2921 out:
2922 if (len)
2923 *len = l;
2924 return ret;
2925 }
2926 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2927
2928 /**
2929 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2930 * @dumper: registered kmsg dumper
2931 *
2932 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2933 * kmsg_dump_get_buffer() can be called again and used multiple
2934 * times within the same dumper.dump() callback.
2935 *
2936 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2937 */
2938 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2939 {
2940 dumper->cur_seq = clear_seq;
2941 dumper->cur_idx = clear_idx;
2942 dumper->next_seq = log_next_seq;
2943 dumper->next_idx = log_next_idx;
2944 }
2945
2946 /**
2947 * kmsg_dump_rewind - reset the interator
2948 * @dumper: registered kmsg dumper
2949 *
2950 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2951 * kmsg_dump_get_buffer() can be called again and used multiple
2952 * times within the same dumper.dump() callback.
2953 */
2954 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2955 {
2956 unsigned long flags;
2957
2958 raw_spin_lock_irqsave(&logbuf_lock, flags);
2959 kmsg_dump_rewind_nolock(dumper);
2960 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2961 }
2962 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2963
2964 static char dump_stack_arch_desc_str[128];
2965
2966 /**
2967 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2968 * @fmt: printf-style format string
2969 * @...: arguments for the format string
2970 *
2971 * The configured string will be printed right after utsname during task
2972 * dumps. Usually used to add arch-specific system identifiers. If an
2973 * arch wants to make use of such an ID string, it should initialize this
2974 * as soon as possible during boot.
2975 */
2976 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2977 {
2978 va_list args;
2979
2980 va_start(args, fmt);
2981 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2982 fmt, args);
2983 va_end(args);
2984 }
2985
2986 /**
2987 * dump_stack_print_info - print generic debug info for dump_stack()
2988 * @log_lvl: log level
2989 *
2990 * Arch-specific dump_stack() implementations can use this function to
2991 * print out the same debug information as the generic dump_stack().
2992 */
2993 void dump_stack_print_info(const char *log_lvl)
2994 {
2995 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2996 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2997 print_tainted(), init_utsname()->release,
2998 (int)strcspn(init_utsname()->version, " "),
2999 init_utsname()->version);
3000
3001 if (dump_stack_arch_desc_str[0] != '\0')
3002 printk("%sHardware name: %s\n",
3003 log_lvl, dump_stack_arch_desc_str);
3004
3005 print_worker_info(log_lvl, current);
3006 }
3007
3008 /**
3009 * show_regs_print_info - print generic debug info for show_regs()
3010 * @log_lvl: log level
3011 *
3012 * show_regs() implementations can use this function to print out generic
3013 * debug information.
3014 */
3015 void show_regs_print_info(const char *log_lvl)
3016 {
3017 dump_stack_print_info(log_lvl);
3018
3019 printk("%stask: %p ti: %p task.ti: %p\n",
3020 log_lvl, current, current_thread_info(),
3021 task_thread_info(current));
3022 }
3023
3024 #endif
This page took 0.091777 seconds and 5 git commands to generate.