ioat: fix tasklet tear down
[deliverable/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48
49 #include <asm/uaccess.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53
54 #include "console_cmdline.h"
55 #include "braille.h"
56
57 /* printk's without a loglevel use this.. */
58 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
59
60 /* We show everything that is MORE important than this.. */
61 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
62 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
63
64 int console_printk[4] = {
65 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
66 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
67 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
68 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
69 };
70
71 /*
72 * Low level drivers may need that to know if they can schedule in
73 * their unblank() callback or not. So let's export it.
74 */
75 int oops_in_progress;
76 EXPORT_SYMBOL(oops_in_progress);
77
78 /*
79 * console_sem protects the console_drivers list, and also
80 * provides serialisation for access to the entire console
81 * driver system.
82 */
83 static DEFINE_SEMAPHORE(console_sem);
84 struct console *console_drivers;
85 EXPORT_SYMBOL_GPL(console_drivers);
86
87 #ifdef CONFIG_LOCKDEP
88 static struct lockdep_map console_lock_dep_map = {
89 .name = "console_lock"
90 };
91 #endif
92
93 /*
94 * This is used for debugging the mess that is the VT code by
95 * keeping track if we have the console semaphore held. It's
96 * definitely not the perfect debug tool (we don't know if _WE_
97 * hold it are racing, but it helps tracking those weird code
98 * path in the console code where we end up in places I want
99 * locked without the console sempahore held
100 */
101 static int console_locked, console_suspended;
102
103 /*
104 * If exclusive_console is non-NULL then only this console is to be printed to.
105 */
106 static struct console *exclusive_console;
107
108 /*
109 * Array of consoles built from command line options (console=)
110 */
111
112 #define MAX_CMDLINECONSOLES 8
113
114 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
115
116 static int selected_console = -1;
117 static int preferred_console = -1;
118 int console_set_on_cmdline;
119 EXPORT_SYMBOL(console_set_on_cmdline);
120
121 /* Flag: console code may call schedule() */
122 static int console_may_schedule;
123
124 /*
125 * The printk log buffer consists of a chain of concatenated variable
126 * length records. Every record starts with a record header, containing
127 * the overall length of the record.
128 *
129 * The heads to the first and last entry in the buffer, as well as the
130 * sequence numbers of these both entries are maintained when messages
131 * are stored..
132 *
133 * If the heads indicate available messages, the length in the header
134 * tells the start next message. A length == 0 for the next message
135 * indicates a wrap-around to the beginning of the buffer.
136 *
137 * Every record carries the monotonic timestamp in microseconds, as well as
138 * the standard userspace syslog level and syslog facility. The usual
139 * kernel messages use LOG_KERN; userspace-injected messages always carry
140 * a matching syslog facility, by default LOG_USER. The origin of every
141 * message can be reliably determined that way.
142 *
143 * The human readable log message directly follows the message header. The
144 * length of the message text is stored in the header, the stored message
145 * is not terminated.
146 *
147 * Optionally, a message can carry a dictionary of properties (key/value pairs),
148 * to provide userspace with a machine-readable message context.
149 *
150 * Examples for well-defined, commonly used property names are:
151 * DEVICE=b12:8 device identifier
152 * b12:8 block dev_t
153 * c127:3 char dev_t
154 * n8 netdev ifindex
155 * +sound:card0 subsystem:devname
156 * SUBSYSTEM=pci driver-core subsystem name
157 *
158 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
159 * follows directly after a '=' character. Every property is terminated by
160 * a '\0' character. The last property is not terminated.
161 *
162 * Example of a message structure:
163 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
164 * 0008 34 00 record is 52 bytes long
165 * 000a 0b 00 text is 11 bytes long
166 * 000c 1f 00 dictionary is 23 bytes long
167 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
168 * 0010 69 74 27 73 20 61 20 6c "it's a l"
169 * 69 6e 65 "ine"
170 * 001b 44 45 56 49 43 "DEVIC"
171 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
172 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
173 * 67 "g"
174 * 0032 00 00 00 padding to next message header
175 *
176 * The 'struct printk_log' buffer header must never be directly exported to
177 * userspace, it is a kernel-private implementation detail that might
178 * need to be changed in the future, when the requirements change.
179 *
180 * /dev/kmsg exports the structured data in the following line format:
181 * "level,sequnum,timestamp;<message text>\n"
182 *
183 * The optional key/value pairs are attached as continuation lines starting
184 * with a space character and terminated by a newline. All possible
185 * non-prinatable characters are escaped in the "\xff" notation.
186 *
187 * Users of the export format should ignore possible additional values
188 * separated by ',', and find the message after the ';' character.
189 */
190
191 enum log_flags {
192 LOG_NOCONS = 1, /* already flushed, do not print to console */
193 LOG_NEWLINE = 2, /* text ended with a newline */
194 LOG_PREFIX = 4, /* text started with a prefix */
195 LOG_CONT = 8, /* text is a fragment of a continuation line */
196 };
197
198 struct printk_log {
199 u64 ts_nsec; /* timestamp in nanoseconds */
200 u16 len; /* length of entire record */
201 u16 text_len; /* length of text buffer */
202 u16 dict_len; /* length of dictionary buffer */
203 u8 facility; /* syslog facility */
204 u8 flags:5; /* internal record flags */
205 u8 level:3; /* syslog level */
206 };
207
208 /*
209 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
210 * used in interesting ways to provide interlocking in console_unlock();
211 */
212 static DEFINE_RAW_SPINLOCK(logbuf_lock);
213
214 #ifdef CONFIG_PRINTK
215 DECLARE_WAIT_QUEUE_HEAD(log_wait);
216 /* the next printk record to read by syslog(READ) or /proc/kmsg */
217 static u64 syslog_seq;
218 static u32 syslog_idx;
219 static enum log_flags syslog_prev;
220 static size_t syslog_partial;
221
222 /* index and sequence number of the first record stored in the buffer */
223 static u64 log_first_seq;
224 static u32 log_first_idx;
225
226 /* index and sequence number of the next record to store in the buffer */
227 static u64 log_next_seq;
228 static u32 log_next_idx;
229
230 /* the next printk record to write to the console */
231 static u64 console_seq;
232 static u32 console_idx;
233 static enum log_flags console_prev;
234
235 /* the next printk record to read after the last 'clear' command */
236 static u64 clear_seq;
237 static u32 clear_idx;
238
239 #define PREFIX_MAX 32
240 #define LOG_LINE_MAX 1024 - PREFIX_MAX
241
242 /* record buffer */
243 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
244 #define LOG_ALIGN 4
245 #else
246 #define LOG_ALIGN __alignof__(struct printk_log)
247 #endif
248 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
249 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
250 static char *log_buf = __log_buf;
251 static u32 log_buf_len = __LOG_BUF_LEN;
252
253 /* cpu currently holding logbuf_lock */
254 static volatile unsigned int logbuf_cpu = UINT_MAX;
255
256 /* human readable text of the record */
257 static char *log_text(const struct printk_log *msg)
258 {
259 return (char *)msg + sizeof(struct printk_log);
260 }
261
262 /* optional key/value pair dictionary attached to the record */
263 static char *log_dict(const struct printk_log *msg)
264 {
265 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
266 }
267
268 /* get record by index; idx must point to valid msg */
269 static struct printk_log *log_from_idx(u32 idx)
270 {
271 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
272
273 /*
274 * A length == 0 record is the end of buffer marker. Wrap around and
275 * read the message at the start of the buffer.
276 */
277 if (!msg->len)
278 return (struct printk_log *)log_buf;
279 return msg;
280 }
281
282 /* get next record; idx must point to valid msg */
283 static u32 log_next(u32 idx)
284 {
285 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
286
287 /* length == 0 indicates the end of the buffer; wrap */
288 /*
289 * A length == 0 record is the end of buffer marker. Wrap around and
290 * read the message at the start of the buffer as *this* one, and
291 * return the one after that.
292 */
293 if (!msg->len) {
294 msg = (struct printk_log *)log_buf;
295 return msg->len;
296 }
297 return idx + msg->len;
298 }
299
300 /* insert record into the buffer, discard old ones, update heads */
301 static void log_store(int facility, int level,
302 enum log_flags flags, u64 ts_nsec,
303 const char *dict, u16 dict_len,
304 const char *text, u16 text_len)
305 {
306 struct printk_log *msg;
307 u32 size, pad_len;
308
309 /* number of '\0' padding bytes to next message */
310 size = sizeof(struct printk_log) + text_len + dict_len;
311 pad_len = (-size) & (LOG_ALIGN - 1);
312 size += pad_len;
313
314 while (log_first_seq < log_next_seq) {
315 u32 free;
316
317 if (log_next_idx > log_first_idx)
318 free = max(log_buf_len - log_next_idx, log_first_idx);
319 else
320 free = log_first_idx - log_next_idx;
321
322 if (free > size + sizeof(struct printk_log))
323 break;
324
325 /* drop old messages until we have enough contiuous space */
326 log_first_idx = log_next(log_first_idx);
327 log_first_seq++;
328 }
329
330 if (log_next_idx + size + sizeof(struct printk_log) >= log_buf_len) {
331 /*
332 * This message + an additional empty header does not fit
333 * at the end of the buffer. Add an empty header with len == 0
334 * to signify a wrap around.
335 */
336 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
337 log_next_idx = 0;
338 }
339
340 /* fill message */
341 msg = (struct printk_log *)(log_buf + log_next_idx);
342 memcpy(log_text(msg), text, text_len);
343 msg->text_len = text_len;
344 memcpy(log_dict(msg), dict, dict_len);
345 msg->dict_len = dict_len;
346 msg->facility = facility;
347 msg->level = level & 7;
348 msg->flags = flags & 0x1f;
349 if (ts_nsec > 0)
350 msg->ts_nsec = ts_nsec;
351 else
352 msg->ts_nsec = local_clock();
353 memset(log_dict(msg) + dict_len, 0, pad_len);
354 msg->len = sizeof(struct printk_log) + text_len + dict_len + pad_len;
355
356 /* insert message */
357 log_next_idx += msg->len;
358 log_next_seq++;
359 }
360
361 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
362 int dmesg_restrict = 1;
363 #else
364 int dmesg_restrict;
365 #endif
366
367 static int syslog_action_restricted(int type)
368 {
369 if (dmesg_restrict)
370 return 1;
371 /*
372 * Unless restricted, we allow "read all" and "get buffer size"
373 * for everybody.
374 */
375 return type != SYSLOG_ACTION_READ_ALL &&
376 type != SYSLOG_ACTION_SIZE_BUFFER;
377 }
378
379 static int check_syslog_permissions(int type, bool from_file)
380 {
381 /*
382 * If this is from /proc/kmsg and we've already opened it, then we've
383 * already done the capabilities checks at open time.
384 */
385 if (from_file && type != SYSLOG_ACTION_OPEN)
386 return 0;
387
388 if (syslog_action_restricted(type)) {
389 if (capable(CAP_SYSLOG))
390 return 0;
391 /*
392 * For historical reasons, accept CAP_SYS_ADMIN too, with
393 * a warning.
394 */
395 if (capable(CAP_SYS_ADMIN)) {
396 pr_warn_once("%s (%d): Attempt to access syslog with "
397 "CAP_SYS_ADMIN but no CAP_SYSLOG "
398 "(deprecated).\n",
399 current->comm, task_pid_nr(current));
400 return 0;
401 }
402 return -EPERM;
403 }
404 return security_syslog(type);
405 }
406
407
408 /* /dev/kmsg - userspace message inject/listen interface */
409 struct devkmsg_user {
410 u64 seq;
411 u32 idx;
412 enum log_flags prev;
413 struct mutex lock;
414 char buf[8192];
415 };
416
417 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
418 unsigned long count, loff_t pos)
419 {
420 char *buf, *line;
421 int i;
422 int level = default_message_loglevel;
423 int facility = 1; /* LOG_USER */
424 size_t len = iov_length(iv, count);
425 ssize_t ret = len;
426
427 if (len > LOG_LINE_MAX)
428 return -EINVAL;
429 buf = kmalloc(len+1, GFP_KERNEL);
430 if (buf == NULL)
431 return -ENOMEM;
432
433 line = buf;
434 for (i = 0; i < count; i++) {
435 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
436 ret = -EFAULT;
437 goto out;
438 }
439 line += iv[i].iov_len;
440 }
441
442 /*
443 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
444 * the decimal value represents 32bit, the lower 3 bit are the log
445 * level, the rest are the log facility.
446 *
447 * If no prefix or no userspace facility is specified, we
448 * enforce LOG_USER, to be able to reliably distinguish
449 * kernel-generated messages from userspace-injected ones.
450 */
451 line = buf;
452 if (line[0] == '<') {
453 char *endp = NULL;
454
455 i = simple_strtoul(line+1, &endp, 10);
456 if (endp && endp[0] == '>') {
457 level = i & 7;
458 if (i >> 3)
459 facility = i >> 3;
460 endp++;
461 len -= endp - line;
462 line = endp;
463 }
464 }
465 line[len] = '\0';
466
467 printk_emit(facility, level, NULL, 0, "%s", line);
468 out:
469 kfree(buf);
470 return ret;
471 }
472
473 static ssize_t devkmsg_read(struct file *file, char __user *buf,
474 size_t count, loff_t *ppos)
475 {
476 struct devkmsg_user *user = file->private_data;
477 struct printk_log *msg;
478 u64 ts_usec;
479 size_t i;
480 char cont = '-';
481 size_t len;
482 ssize_t ret;
483
484 if (!user)
485 return -EBADF;
486
487 ret = mutex_lock_interruptible(&user->lock);
488 if (ret)
489 return ret;
490 raw_spin_lock_irq(&logbuf_lock);
491 while (user->seq == log_next_seq) {
492 if (file->f_flags & O_NONBLOCK) {
493 ret = -EAGAIN;
494 raw_spin_unlock_irq(&logbuf_lock);
495 goto out;
496 }
497
498 raw_spin_unlock_irq(&logbuf_lock);
499 ret = wait_event_interruptible(log_wait,
500 user->seq != log_next_seq);
501 if (ret)
502 goto out;
503 raw_spin_lock_irq(&logbuf_lock);
504 }
505
506 if (user->seq < log_first_seq) {
507 /* our last seen message is gone, return error and reset */
508 user->idx = log_first_idx;
509 user->seq = log_first_seq;
510 ret = -EPIPE;
511 raw_spin_unlock_irq(&logbuf_lock);
512 goto out;
513 }
514
515 msg = log_from_idx(user->idx);
516 ts_usec = msg->ts_nsec;
517 do_div(ts_usec, 1000);
518
519 /*
520 * If we couldn't merge continuation line fragments during the print,
521 * export the stored flags to allow an optional external merge of the
522 * records. Merging the records isn't always neccessarily correct, like
523 * when we hit a race during printing. In most cases though, it produces
524 * better readable output. 'c' in the record flags mark the first
525 * fragment of a line, '+' the following.
526 */
527 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
528 cont = 'c';
529 else if ((msg->flags & LOG_CONT) ||
530 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
531 cont = '+';
532
533 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
534 (msg->facility << 3) | msg->level,
535 user->seq, ts_usec, cont);
536 user->prev = msg->flags;
537
538 /* escape non-printable characters */
539 for (i = 0; i < msg->text_len; i++) {
540 unsigned char c = log_text(msg)[i];
541
542 if (c < ' ' || c >= 127 || c == '\\')
543 len += sprintf(user->buf + len, "\\x%02x", c);
544 else
545 user->buf[len++] = c;
546 }
547 user->buf[len++] = '\n';
548
549 if (msg->dict_len) {
550 bool line = true;
551
552 for (i = 0; i < msg->dict_len; i++) {
553 unsigned char c = log_dict(msg)[i];
554
555 if (line) {
556 user->buf[len++] = ' ';
557 line = false;
558 }
559
560 if (c == '\0') {
561 user->buf[len++] = '\n';
562 line = true;
563 continue;
564 }
565
566 if (c < ' ' || c >= 127 || c == '\\') {
567 len += sprintf(user->buf + len, "\\x%02x", c);
568 continue;
569 }
570
571 user->buf[len++] = c;
572 }
573 user->buf[len++] = '\n';
574 }
575
576 user->idx = log_next(user->idx);
577 user->seq++;
578 raw_spin_unlock_irq(&logbuf_lock);
579
580 if (len > count) {
581 ret = -EINVAL;
582 goto out;
583 }
584
585 if (copy_to_user(buf, user->buf, len)) {
586 ret = -EFAULT;
587 goto out;
588 }
589 ret = len;
590 out:
591 mutex_unlock(&user->lock);
592 return ret;
593 }
594
595 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
596 {
597 struct devkmsg_user *user = file->private_data;
598 loff_t ret = 0;
599
600 if (!user)
601 return -EBADF;
602 if (offset)
603 return -ESPIPE;
604
605 raw_spin_lock_irq(&logbuf_lock);
606 switch (whence) {
607 case SEEK_SET:
608 /* the first record */
609 user->idx = log_first_idx;
610 user->seq = log_first_seq;
611 break;
612 case SEEK_DATA:
613 /*
614 * The first record after the last SYSLOG_ACTION_CLEAR,
615 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
616 * changes no global state, and does not clear anything.
617 */
618 user->idx = clear_idx;
619 user->seq = clear_seq;
620 break;
621 case SEEK_END:
622 /* after the last record */
623 user->idx = log_next_idx;
624 user->seq = log_next_seq;
625 break;
626 default:
627 ret = -EINVAL;
628 }
629 raw_spin_unlock_irq(&logbuf_lock);
630 return ret;
631 }
632
633 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
634 {
635 struct devkmsg_user *user = file->private_data;
636 int ret = 0;
637
638 if (!user)
639 return POLLERR|POLLNVAL;
640
641 poll_wait(file, &log_wait, wait);
642
643 raw_spin_lock_irq(&logbuf_lock);
644 if (user->seq < log_next_seq) {
645 /* return error when data has vanished underneath us */
646 if (user->seq < log_first_seq)
647 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
648 else
649 ret = POLLIN|POLLRDNORM;
650 }
651 raw_spin_unlock_irq(&logbuf_lock);
652
653 return ret;
654 }
655
656 static int devkmsg_open(struct inode *inode, struct file *file)
657 {
658 struct devkmsg_user *user;
659 int err;
660
661 /* write-only does not need any file context */
662 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
663 return 0;
664
665 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
666 SYSLOG_FROM_READER);
667 if (err)
668 return err;
669
670 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
671 if (!user)
672 return -ENOMEM;
673
674 mutex_init(&user->lock);
675
676 raw_spin_lock_irq(&logbuf_lock);
677 user->idx = log_first_idx;
678 user->seq = log_first_seq;
679 raw_spin_unlock_irq(&logbuf_lock);
680
681 file->private_data = user;
682 return 0;
683 }
684
685 static int devkmsg_release(struct inode *inode, struct file *file)
686 {
687 struct devkmsg_user *user = file->private_data;
688
689 if (!user)
690 return 0;
691
692 mutex_destroy(&user->lock);
693 kfree(user);
694 return 0;
695 }
696
697 const struct file_operations kmsg_fops = {
698 .open = devkmsg_open,
699 .read = devkmsg_read,
700 .aio_write = devkmsg_writev,
701 .llseek = devkmsg_llseek,
702 .poll = devkmsg_poll,
703 .release = devkmsg_release,
704 };
705
706 #ifdef CONFIG_KEXEC
707 /*
708 * This appends the listed symbols to /proc/vmcore
709 *
710 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
711 * obtain access to symbols that are otherwise very difficult to locate. These
712 * symbols are specifically used so that utilities can access and extract the
713 * dmesg log from a vmcore file after a crash.
714 */
715 void log_buf_kexec_setup(void)
716 {
717 VMCOREINFO_SYMBOL(log_buf);
718 VMCOREINFO_SYMBOL(log_buf_len);
719 VMCOREINFO_SYMBOL(log_first_idx);
720 VMCOREINFO_SYMBOL(log_next_idx);
721 /*
722 * Export struct printk_log size and field offsets. User space tools can
723 * parse it and detect any changes to structure down the line.
724 */
725 VMCOREINFO_STRUCT_SIZE(printk_log);
726 VMCOREINFO_OFFSET(printk_log, ts_nsec);
727 VMCOREINFO_OFFSET(printk_log, len);
728 VMCOREINFO_OFFSET(printk_log, text_len);
729 VMCOREINFO_OFFSET(printk_log, dict_len);
730 }
731 #endif
732
733 /* requested log_buf_len from kernel cmdline */
734 static unsigned long __initdata new_log_buf_len;
735
736 /* save requested log_buf_len since it's too early to process it */
737 static int __init log_buf_len_setup(char *str)
738 {
739 unsigned size = memparse(str, &str);
740
741 if (size)
742 size = roundup_pow_of_two(size);
743 if (size > log_buf_len)
744 new_log_buf_len = size;
745
746 return 0;
747 }
748 early_param("log_buf_len", log_buf_len_setup);
749
750 void __init setup_log_buf(int early)
751 {
752 unsigned long flags;
753 char *new_log_buf;
754 int free;
755
756 if (!new_log_buf_len)
757 return;
758
759 if (early) {
760 new_log_buf =
761 memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
762 } else {
763 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
764 }
765
766 if (unlikely(!new_log_buf)) {
767 pr_err("log_buf_len: %ld bytes not available\n",
768 new_log_buf_len);
769 return;
770 }
771
772 raw_spin_lock_irqsave(&logbuf_lock, flags);
773 log_buf_len = new_log_buf_len;
774 log_buf = new_log_buf;
775 new_log_buf_len = 0;
776 free = __LOG_BUF_LEN - log_next_idx;
777 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
778 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
779
780 pr_info("log_buf_len: %d\n", log_buf_len);
781 pr_info("early log buf free: %d(%d%%)\n",
782 free, (free * 100) / __LOG_BUF_LEN);
783 }
784
785 static bool __read_mostly ignore_loglevel;
786
787 static int __init ignore_loglevel_setup(char *str)
788 {
789 ignore_loglevel = 1;
790 pr_info("debug: ignoring loglevel setting.\n");
791
792 return 0;
793 }
794
795 early_param("ignore_loglevel", ignore_loglevel_setup);
796 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
797 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
798 "print all kernel messages to the console.");
799
800 #ifdef CONFIG_BOOT_PRINTK_DELAY
801
802 static int boot_delay; /* msecs delay after each printk during bootup */
803 static unsigned long long loops_per_msec; /* based on boot_delay */
804
805 static int __init boot_delay_setup(char *str)
806 {
807 unsigned long lpj;
808
809 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
810 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
811
812 get_option(&str, &boot_delay);
813 if (boot_delay > 10 * 1000)
814 boot_delay = 0;
815
816 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
817 "HZ: %d, loops_per_msec: %llu\n",
818 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
819 return 0;
820 }
821 early_param("boot_delay", boot_delay_setup);
822
823 static void boot_delay_msec(int level)
824 {
825 unsigned long long k;
826 unsigned long timeout;
827
828 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
829 || (level >= console_loglevel && !ignore_loglevel)) {
830 return;
831 }
832
833 k = (unsigned long long)loops_per_msec * boot_delay;
834
835 timeout = jiffies + msecs_to_jiffies(boot_delay);
836 while (k) {
837 k--;
838 cpu_relax();
839 /*
840 * use (volatile) jiffies to prevent
841 * compiler reduction; loop termination via jiffies
842 * is secondary and may or may not happen.
843 */
844 if (time_after(jiffies, timeout))
845 break;
846 touch_nmi_watchdog();
847 }
848 }
849 #else
850 static inline void boot_delay_msec(int level)
851 {
852 }
853 #endif
854
855 #if defined(CONFIG_PRINTK_TIME)
856 static bool printk_time = 1;
857 #else
858 static bool printk_time;
859 #endif
860 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
861
862 static size_t print_time(u64 ts, char *buf)
863 {
864 unsigned long rem_nsec;
865
866 if (!printk_time)
867 return 0;
868
869 rem_nsec = do_div(ts, 1000000000);
870
871 if (!buf)
872 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
873
874 return sprintf(buf, "[%5lu.%06lu] ",
875 (unsigned long)ts, rem_nsec / 1000);
876 }
877
878 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
879 {
880 size_t len = 0;
881 unsigned int prefix = (msg->facility << 3) | msg->level;
882
883 if (syslog) {
884 if (buf) {
885 len += sprintf(buf, "<%u>", prefix);
886 } else {
887 len += 3;
888 if (prefix > 999)
889 len += 3;
890 else if (prefix > 99)
891 len += 2;
892 else if (prefix > 9)
893 len++;
894 }
895 }
896
897 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
898 return len;
899 }
900
901 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
902 bool syslog, char *buf, size_t size)
903 {
904 const char *text = log_text(msg);
905 size_t text_size = msg->text_len;
906 bool prefix = true;
907 bool newline = true;
908 size_t len = 0;
909
910 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
911 prefix = false;
912
913 if (msg->flags & LOG_CONT) {
914 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
915 prefix = false;
916
917 if (!(msg->flags & LOG_NEWLINE))
918 newline = false;
919 }
920
921 do {
922 const char *next = memchr(text, '\n', text_size);
923 size_t text_len;
924
925 if (next) {
926 text_len = next - text;
927 next++;
928 text_size -= next - text;
929 } else {
930 text_len = text_size;
931 }
932
933 if (buf) {
934 if (print_prefix(msg, syslog, NULL) +
935 text_len + 1 >= size - len)
936 break;
937
938 if (prefix)
939 len += print_prefix(msg, syslog, buf + len);
940 memcpy(buf + len, text, text_len);
941 len += text_len;
942 if (next || newline)
943 buf[len++] = '\n';
944 } else {
945 /* SYSLOG_ACTION_* buffer size only calculation */
946 if (prefix)
947 len += print_prefix(msg, syslog, NULL);
948 len += text_len;
949 if (next || newline)
950 len++;
951 }
952
953 prefix = true;
954 text = next;
955 } while (text);
956
957 return len;
958 }
959
960 static int syslog_print(char __user *buf, int size)
961 {
962 char *text;
963 struct printk_log *msg;
964 int len = 0;
965
966 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
967 if (!text)
968 return -ENOMEM;
969
970 while (size > 0) {
971 size_t n;
972 size_t skip;
973
974 raw_spin_lock_irq(&logbuf_lock);
975 if (syslog_seq < log_first_seq) {
976 /* messages are gone, move to first one */
977 syslog_seq = log_first_seq;
978 syslog_idx = log_first_idx;
979 syslog_prev = 0;
980 syslog_partial = 0;
981 }
982 if (syslog_seq == log_next_seq) {
983 raw_spin_unlock_irq(&logbuf_lock);
984 break;
985 }
986
987 skip = syslog_partial;
988 msg = log_from_idx(syslog_idx);
989 n = msg_print_text(msg, syslog_prev, true, text,
990 LOG_LINE_MAX + PREFIX_MAX);
991 if (n - syslog_partial <= size) {
992 /* message fits into buffer, move forward */
993 syslog_idx = log_next(syslog_idx);
994 syslog_seq++;
995 syslog_prev = msg->flags;
996 n -= syslog_partial;
997 syslog_partial = 0;
998 } else if (!len){
999 /* partial read(), remember position */
1000 n = size;
1001 syslog_partial += n;
1002 } else
1003 n = 0;
1004 raw_spin_unlock_irq(&logbuf_lock);
1005
1006 if (!n)
1007 break;
1008
1009 if (copy_to_user(buf, text + skip, n)) {
1010 if (!len)
1011 len = -EFAULT;
1012 break;
1013 }
1014
1015 len += n;
1016 size -= n;
1017 buf += n;
1018 }
1019
1020 kfree(text);
1021 return len;
1022 }
1023
1024 static int syslog_print_all(char __user *buf, int size, bool clear)
1025 {
1026 char *text;
1027 int len = 0;
1028
1029 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1030 if (!text)
1031 return -ENOMEM;
1032
1033 raw_spin_lock_irq(&logbuf_lock);
1034 if (buf) {
1035 u64 next_seq;
1036 u64 seq;
1037 u32 idx;
1038 enum log_flags prev;
1039
1040 if (clear_seq < log_first_seq) {
1041 /* messages are gone, move to first available one */
1042 clear_seq = log_first_seq;
1043 clear_idx = log_first_idx;
1044 }
1045
1046 /*
1047 * Find first record that fits, including all following records,
1048 * into the user-provided buffer for this dump.
1049 */
1050 seq = clear_seq;
1051 idx = clear_idx;
1052 prev = 0;
1053 while (seq < log_next_seq) {
1054 struct printk_log *msg = log_from_idx(idx);
1055
1056 len += msg_print_text(msg, prev, true, NULL, 0);
1057 prev = msg->flags;
1058 idx = log_next(idx);
1059 seq++;
1060 }
1061
1062 /* move first record forward until length fits into the buffer */
1063 seq = clear_seq;
1064 idx = clear_idx;
1065 prev = 0;
1066 while (len > size && seq < log_next_seq) {
1067 struct printk_log *msg = log_from_idx(idx);
1068
1069 len -= msg_print_text(msg, prev, true, NULL, 0);
1070 prev = msg->flags;
1071 idx = log_next(idx);
1072 seq++;
1073 }
1074
1075 /* last message fitting into this dump */
1076 next_seq = log_next_seq;
1077
1078 len = 0;
1079 prev = 0;
1080 while (len >= 0 && seq < next_seq) {
1081 struct printk_log *msg = log_from_idx(idx);
1082 int textlen;
1083
1084 textlen = msg_print_text(msg, prev, true, text,
1085 LOG_LINE_MAX + PREFIX_MAX);
1086 if (textlen < 0) {
1087 len = textlen;
1088 break;
1089 }
1090 idx = log_next(idx);
1091 seq++;
1092 prev = msg->flags;
1093
1094 raw_spin_unlock_irq(&logbuf_lock);
1095 if (copy_to_user(buf + len, text, textlen))
1096 len = -EFAULT;
1097 else
1098 len += textlen;
1099 raw_spin_lock_irq(&logbuf_lock);
1100
1101 if (seq < log_first_seq) {
1102 /* messages are gone, move to next one */
1103 seq = log_first_seq;
1104 idx = log_first_idx;
1105 prev = 0;
1106 }
1107 }
1108 }
1109
1110 if (clear) {
1111 clear_seq = log_next_seq;
1112 clear_idx = log_next_idx;
1113 }
1114 raw_spin_unlock_irq(&logbuf_lock);
1115
1116 kfree(text);
1117 return len;
1118 }
1119
1120 int do_syslog(int type, char __user *buf, int len, bool from_file)
1121 {
1122 bool clear = false;
1123 static int saved_console_loglevel = -1;
1124 int error;
1125
1126 error = check_syslog_permissions(type, from_file);
1127 if (error)
1128 goto out;
1129
1130 error = security_syslog(type);
1131 if (error)
1132 return error;
1133
1134 switch (type) {
1135 case SYSLOG_ACTION_CLOSE: /* Close log */
1136 break;
1137 case SYSLOG_ACTION_OPEN: /* Open log */
1138 break;
1139 case SYSLOG_ACTION_READ: /* Read from log */
1140 error = -EINVAL;
1141 if (!buf || len < 0)
1142 goto out;
1143 error = 0;
1144 if (!len)
1145 goto out;
1146 if (!access_ok(VERIFY_WRITE, buf, len)) {
1147 error = -EFAULT;
1148 goto out;
1149 }
1150 error = wait_event_interruptible(log_wait,
1151 syslog_seq != log_next_seq);
1152 if (error)
1153 goto out;
1154 error = syslog_print(buf, len);
1155 break;
1156 /* Read/clear last kernel messages */
1157 case SYSLOG_ACTION_READ_CLEAR:
1158 clear = true;
1159 /* FALL THRU */
1160 /* Read last kernel messages */
1161 case SYSLOG_ACTION_READ_ALL:
1162 error = -EINVAL;
1163 if (!buf || len < 0)
1164 goto out;
1165 error = 0;
1166 if (!len)
1167 goto out;
1168 if (!access_ok(VERIFY_WRITE, buf, len)) {
1169 error = -EFAULT;
1170 goto out;
1171 }
1172 error = syslog_print_all(buf, len, clear);
1173 break;
1174 /* Clear ring buffer */
1175 case SYSLOG_ACTION_CLEAR:
1176 syslog_print_all(NULL, 0, true);
1177 break;
1178 /* Disable logging to console */
1179 case SYSLOG_ACTION_CONSOLE_OFF:
1180 if (saved_console_loglevel == -1)
1181 saved_console_loglevel = console_loglevel;
1182 console_loglevel = minimum_console_loglevel;
1183 break;
1184 /* Enable logging to console */
1185 case SYSLOG_ACTION_CONSOLE_ON:
1186 if (saved_console_loglevel != -1) {
1187 console_loglevel = saved_console_loglevel;
1188 saved_console_loglevel = -1;
1189 }
1190 break;
1191 /* Set level of messages printed to console */
1192 case SYSLOG_ACTION_CONSOLE_LEVEL:
1193 error = -EINVAL;
1194 if (len < 1 || len > 8)
1195 goto out;
1196 if (len < minimum_console_loglevel)
1197 len = minimum_console_loglevel;
1198 console_loglevel = len;
1199 /* Implicitly re-enable logging to console */
1200 saved_console_loglevel = -1;
1201 error = 0;
1202 break;
1203 /* Number of chars in the log buffer */
1204 case SYSLOG_ACTION_SIZE_UNREAD:
1205 raw_spin_lock_irq(&logbuf_lock);
1206 if (syslog_seq < log_first_seq) {
1207 /* messages are gone, move to first one */
1208 syslog_seq = log_first_seq;
1209 syslog_idx = log_first_idx;
1210 syslog_prev = 0;
1211 syslog_partial = 0;
1212 }
1213 if (from_file) {
1214 /*
1215 * Short-cut for poll(/"proc/kmsg") which simply checks
1216 * for pending data, not the size; return the count of
1217 * records, not the length.
1218 */
1219 error = log_next_idx - syslog_idx;
1220 } else {
1221 u64 seq = syslog_seq;
1222 u32 idx = syslog_idx;
1223 enum log_flags prev = syslog_prev;
1224
1225 error = 0;
1226 while (seq < log_next_seq) {
1227 struct printk_log *msg = log_from_idx(idx);
1228
1229 error += msg_print_text(msg, prev, true, NULL, 0);
1230 idx = log_next(idx);
1231 seq++;
1232 prev = msg->flags;
1233 }
1234 error -= syslog_partial;
1235 }
1236 raw_spin_unlock_irq(&logbuf_lock);
1237 break;
1238 /* Size of the log buffer */
1239 case SYSLOG_ACTION_SIZE_BUFFER:
1240 error = log_buf_len;
1241 break;
1242 default:
1243 error = -EINVAL;
1244 break;
1245 }
1246 out:
1247 return error;
1248 }
1249
1250 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1251 {
1252 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1253 }
1254
1255 /*
1256 * Call the console drivers, asking them to write out
1257 * log_buf[start] to log_buf[end - 1].
1258 * The console_lock must be held.
1259 */
1260 static void call_console_drivers(int level, const char *text, size_t len)
1261 {
1262 struct console *con;
1263
1264 trace_console(text, len);
1265
1266 if (level >= console_loglevel && !ignore_loglevel)
1267 return;
1268 if (!console_drivers)
1269 return;
1270
1271 for_each_console(con) {
1272 if (exclusive_console && con != exclusive_console)
1273 continue;
1274 if (!(con->flags & CON_ENABLED))
1275 continue;
1276 if (!con->write)
1277 continue;
1278 if (!cpu_online(smp_processor_id()) &&
1279 !(con->flags & CON_ANYTIME))
1280 continue;
1281 con->write(con, text, len);
1282 }
1283 }
1284
1285 /*
1286 * Zap console related locks when oopsing. Only zap at most once
1287 * every 10 seconds, to leave time for slow consoles to print a
1288 * full oops.
1289 */
1290 static void zap_locks(void)
1291 {
1292 static unsigned long oops_timestamp;
1293
1294 if (time_after_eq(jiffies, oops_timestamp) &&
1295 !time_after(jiffies, oops_timestamp + 30 * HZ))
1296 return;
1297
1298 oops_timestamp = jiffies;
1299
1300 debug_locks_off();
1301 /* If a crash is occurring, make sure we can't deadlock */
1302 raw_spin_lock_init(&logbuf_lock);
1303 /* And make sure that we print immediately */
1304 sema_init(&console_sem, 1);
1305 }
1306
1307 /* Check if we have any console registered that can be called early in boot. */
1308 static int have_callable_console(void)
1309 {
1310 struct console *con;
1311
1312 for_each_console(con)
1313 if (con->flags & CON_ANYTIME)
1314 return 1;
1315
1316 return 0;
1317 }
1318
1319 /*
1320 * Can we actually use the console at this time on this cpu?
1321 *
1322 * Console drivers may assume that per-cpu resources have
1323 * been allocated. So unless they're explicitly marked as
1324 * being able to cope (CON_ANYTIME) don't call them until
1325 * this CPU is officially up.
1326 */
1327 static inline int can_use_console(unsigned int cpu)
1328 {
1329 return cpu_online(cpu) || have_callable_console();
1330 }
1331
1332 /*
1333 * Try to get console ownership to actually show the kernel
1334 * messages from a 'printk'. Return true (and with the
1335 * console_lock held, and 'console_locked' set) if it
1336 * is successful, false otherwise.
1337 *
1338 * This gets called with the 'logbuf_lock' spinlock held and
1339 * interrupts disabled. It should return with 'lockbuf_lock'
1340 * released but interrupts still disabled.
1341 */
1342 static int console_trylock_for_printk(unsigned int cpu)
1343 __releases(&logbuf_lock)
1344 {
1345 int retval = 0, wake = 0;
1346
1347 if (console_trylock()) {
1348 retval = 1;
1349
1350 /*
1351 * If we can't use the console, we need to release
1352 * the console semaphore by hand to avoid flushing
1353 * the buffer. We need to hold the console semaphore
1354 * in order to do this test safely.
1355 */
1356 if (!can_use_console(cpu)) {
1357 console_locked = 0;
1358 wake = 1;
1359 retval = 0;
1360 }
1361 }
1362 logbuf_cpu = UINT_MAX;
1363 raw_spin_unlock(&logbuf_lock);
1364 if (wake)
1365 up(&console_sem);
1366 return retval;
1367 }
1368
1369 int printk_delay_msec __read_mostly;
1370
1371 static inline void printk_delay(void)
1372 {
1373 if (unlikely(printk_delay_msec)) {
1374 int m = printk_delay_msec;
1375
1376 while (m--) {
1377 mdelay(1);
1378 touch_nmi_watchdog();
1379 }
1380 }
1381 }
1382
1383 /*
1384 * Continuation lines are buffered, and not committed to the record buffer
1385 * until the line is complete, or a race forces it. The line fragments
1386 * though, are printed immediately to the consoles to ensure everything has
1387 * reached the console in case of a kernel crash.
1388 */
1389 static struct cont {
1390 char buf[LOG_LINE_MAX];
1391 size_t len; /* length == 0 means unused buffer */
1392 size_t cons; /* bytes written to console */
1393 struct task_struct *owner; /* task of first print*/
1394 u64 ts_nsec; /* time of first print */
1395 u8 level; /* log level of first message */
1396 u8 facility; /* log level of first message */
1397 enum log_flags flags; /* prefix, newline flags */
1398 bool flushed:1; /* buffer sealed and committed */
1399 } cont;
1400
1401 static void cont_flush(enum log_flags flags)
1402 {
1403 if (cont.flushed)
1404 return;
1405 if (cont.len == 0)
1406 return;
1407
1408 if (cont.cons) {
1409 /*
1410 * If a fragment of this line was directly flushed to the
1411 * console; wait for the console to pick up the rest of the
1412 * line. LOG_NOCONS suppresses a duplicated output.
1413 */
1414 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1415 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1416 cont.flags = flags;
1417 cont.flushed = true;
1418 } else {
1419 /*
1420 * If no fragment of this line ever reached the console,
1421 * just submit it to the store and free the buffer.
1422 */
1423 log_store(cont.facility, cont.level, flags, 0,
1424 NULL, 0, cont.buf, cont.len);
1425 cont.len = 0;
1426 }
1427 }
1428
1429 static bool cont_add(int facility, int level, const char *text, size_t len)
1430 {
1431 if (cont.len && cont.flushed)
1432 return false;
1433
1434 if (cont.len + len > sizeof(cont.buf)) {
1435 /* the line gets too long, split it up in separate records */
1436 cont_flush(LOG_CONT);
1437 return false;
1438 }
1439
1440 if (!cont.len) {
1441 cont.facility = facility;
1442 cont.level = level;
1443 cont.owner = current;
1444 cont.ts_nsec = local_clock();
1445 cont.flags = 0;
1446 cont.cons = 0;
1447 cont.flushed = false;
1448 }
1449
1450 memcpy(cont.buf + cont.len, text, len);
1451 cont.len += len;
1452
1453 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1454 cont_flush(LOG_CONT);
1455
1456 return true;
1457 }
1458
1459 static size_t cont_print_text(char *text, size_t size)
1460 {
1461 size_t textlen = 0;
1462 size_t len;
1463
1464 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1465 textlen += print_time(cont.ts_nsec, text);
1466 size -= textlen;
1467 }
1468
1469 len = cont.len - cont.cons;
1470 if (len > 0) {
1471 if (len+1 > size)
1472 len = size-1;
1473 memcpy(text + textlen, cont.buf + cont.cons, len);
1474 textlen += len;
1475 cont.cons = cont.len;
1476 }
1477
1478 if (cont.flushed) {
1479 if (cont.flags & LOG_NEWLINE)
1480 text[textlen++] = '\n';
1481 /* got everything, release buffer */
1482 cont.len = 0;
1483 }
1484 return textlen;
1485 }
1486
1487 asmlinkage int vprintk_emit(int facility, int level,
1488 const char *dict, size_t dictlen,
1489 const char *fmt, va_list args)
1490 {
1491 static int recursion_bug;
1492 static char textbuf[LOG_LINE_MAX];
1493 char *text = textbuf;
1494 size_t text_len;
1495 enum log_flags lflags = 0;
1496 unsigned long flags;
1497 int this_cpu;
1498 int printed_len = 0;
1499
1500 boot_delay_msec(level);
1501 printk_delay();
1502
1503 /* This stops the holder of console_sem just where we want him */
1504 local_irq_save(flags);
1505 this_cpu = smp_processor_id();
1506
1507 /*
1508 * Ouch, printk recursed into itself!
1509 */
1510 if (unlikely(logbuf_cpu == this_cpu)) {
1511 /*
1512 * If a crash is occurring during printk() on this CPU,
1513 * then try to get the crash message out but make sure
1514 * we can't deadlock. Otherwise just return to avoid the
1515 * recursion and return - but flag the recursion so that
1516 * it can be printed at the next appropriate moment:
1517 */
1518 if (!oops_in_progress && !lockdep_recursing(current)) {
1519 recursion_bug = 1;
1520 goto out_restore_irqs;
1521 }
1522 zap_locks();
1523 }
1524
1525 lockdep_off();
1526 raw_spin_lock(&logbuf_lock);
1527 logbuf_cpu = this_cpu;
1528
1529 if (recursion_bug) {
1530 static const char recursion_msg[] =
1531 "BUG: recent printk recursion!";
1532
1533 recursion_bug = 0;
1534 printed_len += strlen(recursion_msg);
1535 /* emit KERN_CRIT message */
1536 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1537 NULL, 0, recursion_msg, printed_len);
1538 }
1539
1540 /*
1541 * The printf needs to come first; we need the syslog
1542 * prefix which might be passed-in as a parameter.
1543 */
1544 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1545
1546 /* mark and strip a trailing newline */
1547 if (text_len && text[text_len-1] == '\n') {
1548 text_len--;
1549 lflags |= LOG_NEWLINE;
1550 }
1551
1552 /* strip kernel syslog prefix and extract log level or control flags */
1553 if (facility == 0) {
1554 int kern_level = printk_get_level(text);
1555
1556 if (kern_level) {
1557 const char *end_of_header = printk_skip_level(text);
1558 switch (kern_level) {
1559 case '0' ... '7':
1560 if (level == -1)
1561 level = kern_level - '0';
1562 case 'd': /* KERN_DEFAULT */
1563 lflags |= LOG_PREFIX;
1564 case 'c': /* KERN_CONT */
1565 break;
1566 }
1567 text_len -= end_of_header - text;
1568 text = (char *)end_of_header;
1569 }
1570 }
1571
1572 if (level == -1)
1573 level = default_message_loglevel;
1574
1575 if (dict)
1576 lflags |= LOG_PREFIX|LOG_NEWLINE;
1577
1578 if (!(lflags & LOG_NEWLINE)) {
1579 /*
1580 * Flush the conflicting buffer. An earlier newline was missing,
1581 * or another task also prints continuation lines.
1582 */
1583 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1584 cont_flush(LOG_NEWLINE);
1585
1586 /* buffer line if possible, otherwise store it right away */
1587 if (!cont_add(facility, level, text, text_len))
1588 log_store(facility, level, lflags | LOG_CONT, 0,
1589 dict, dictlen, text, text_len);
1590 } else {
1591 bool stored = false;
1592
1593 /*
1594 * If an earlier newline was missing and it was the same task,
1595 * either merge it with the current buffer and flush, or if
1596 * there was a race with interrupts (prefix == true) then just
1597 * flush it out and store this line separately.
1598 * If the preceding printk was from a different task and missed
1599 * a newline, flush and append the newline.
1600 */
1601 if (cont.len) {
1602 if (cont.owner == current && !(lflags & LOG_PREFIX))
1603 stored = cont_add(facility, level, text,
1604 text_len);
1605 cont_flush(LOG_NEWLINE);
1606 }
1607
1608 if (!stored)
1609 log_store(facility, level, lflags, 0,
1610 dict, dictlen, text, text_len);
1611 }
1612 printed_len += text_len;
1613
1614 /*
1615 * Try to acquire and then immediately release the console semaphore.
1616 * The release will print out buffers and wake up /dev/kmsg and syslog()
1617 * users.
1618 *
1619 * The console_trylock_for_printk() function will release 'logbuf_lock'
1620 * regardless of whether it actually gets the console semaphore or not.
1621 */
1622 if (console_trylock_for_printk(this_cpu))
1623 console_unlock();
1624
1625 lockdep_on();
1626 out_restore_irqs:
1627 local_irq_restore(flags);
1628
1629 return printed_len;
1630 }
1631 EXPORT_SYMBOL(vprintk_emit);
1632
1633 asmlinkage int vprintk(const char *fmt, va_list args)
1634 {
1635 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1636 }
1637 EXPORT_SYMBOL(vprintk);
1638
1639 asmlinkage int printk_emit(int facility, int level,
1640 const char *dict, size_t dictlen,
1641 const char *fmt, ...)
1642 {
1643 va_list args;
1644 int r;
1645
1646 va_start(args, fmt);
1647 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1648 va_end(args);
1649
1650 return r;
1651 }
1652 EXPORT_SYMBOL(printk_emit);
1653
1654 /**
1655 * printk - print a kernel message
1656 * @fmt: format string
1657 *
1658 * This is printk(). It can be called from any context. We want it to work.
1659 *
1660 * We try to grab the console_lock. If we succeed, it's easy - we log the
1661 * output and call the console drivers. If we fail to get the semaphore, we
1662 * place the output into the log buffer and return. The current holder of
1663 * the console_sem will notice the new output in console_unlock(); and will
1664 * send it to the consoles before releasing the lock.
1665 *
1666 * One effect of this deferred printing is that code which calls printk() and
1667 * then changes console_loglevel may break. This is because console_loglevel
1668 * is inspected when the actual printing occurs.
1669 *
1670 * See also:
1671 * printf(3)
1672 *
1673 * See the vsnprintf() documentation for format string extensions over C99.
1674 */
1675 asmlinkage int printk(const char *fmt, ...)
1676 {
1677 va_list args;
1678 int r;
1679
1680 #ifdef CONFIG_KGDB_KDB
1681 if (unlikely(kdb_trap_printk)) {
1682 va_start(args, fmt);
1683 r = vkdb_printf(fmt, args);
1684 va_end(args);
1685 return r;
1686 }
1687 #endif
1688 va_start(args, fmt);
1689 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1690 va_end(args);
1691
1692 return r;
1693 }
1694 EXPORT_SYMBOL(printk);
1695
1696 #else /* CONFIG_PRINTK */
1697
1698 #define LOG_LINE_MAX 0
1699 #define PREFIX_MAX 0
1700 #define LOG_LINE_MAX 0
1701 static u64 syslog_seq;
1702 static u32 syslog_idx;
1703 static u64 console_seq;
1704 static u32 console_idx;
1705 static enum log_flags syslog_prev;
1706 static u64 log_first_seq;
1707 static u32 log_first_idx;
1708 static u64 log_next_seq;
1709 static enum log_flags console_prev;
1710 static struct cont {
1711 size_t len;
1712 size_t cons;
1713 u8 level;
1714 bool flushed:1;
1715 } cont;
1716 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1717 static u32 log_next(u32 idx) { return 0; }
1718 static void call_console_drivers(int level, const char *text, size_t len) {}
1719 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1720 bool syslog, char *buf, size_t size) { return 0; }
1721 static size_t cont_print_text(char *text, size_t size) { return 0; }
1722
1723 #endif /* CONFIG_PRINTK */
1724
1725 #ifdef CONFIG_EARLY_PRINTK
1726 struct console *early_console;
1727
1728 void early_vprintk(const char *fmt, va_list ap)
1729 {
1730 if (early_console) {
1731 char buf[512];
1732 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1733
1734 early_console->write(early_console, buf, n);
1735 }
1736 }
1737
1738 asmlinkage void early_printk(const char *fmt, ...)
1739 {
1740 va_list ap;
1741
1742 va_start(ap, fmt);
1743 early_vprintk(fmt, ap);
1744 va_end(ap);
1745 }
1746 #endif
1747
1748 static int __add_preferred_console(char *name, int idx, char *options,
1749 char *brl_options)
1750 {
1751 struct console_cmdline *c;
1752 int i;
1753
1754 /*
1755 * See if this tty is not yet registered, and
1756 * if we have a slot free.
1757 */
1758 for (i = 0, c = console_cmdline;
1759 i < MAX_CMDLINECONSOLES && c->name[0];
1760 i++, c++) {
1761 if (strcmp(c->name, name) == 0 && c->index == idx) {
1762 if (!brl_options)
1763 selected_console = i;
1764 return 0;
1765 }
1766 }
1767 if (i == MAX_CMDLINECONSOLES)
1768 return -E2BIG;
1769 if (!brl_options)
1770 selected_console = i;
1771 strlcpy(c->name, name, sizeof(c->name));
1772 c->options = options;
1773 braille_set_options(c, brl_options);
1774
1775 c->index = idx;
1776 return 0;
1777 }
1778 /*
1779 * Set up a list of consoles. Called from init/main.c
1780 */
1781 static int __init console_setup(char *str)
1782 {
1783 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1784 char *s, *options, *brl_options = NULL;
1785 int idx;
1786
1787 if (_braille_console_setup(&str, &brl_options))
1788 return 1;
1789
1790 /*
1791 * Decode str into name, index, options.
1792 */
1793 if (str[0] >= '0' && str[0] <= '9') {
1794 strcpy(buf, "ttyS");
1795 strncpy(buf + 4, str, sizeof(buf) - 5);
1796 } else {
1797 strncpy(buf, str, sizeof(buf) - 1);
1798 }
1799 buf[sizeof(buf) - 1] = 0;
1800 if ((options = strchr(str, ',')) != NULL)
1801 *(options++) = 0;
1802 #ifdef __sparc__
1803 if (!strcmp(str, "ttya"))
1804 strcpy(buf, "ttyS0");
1805 if (!strcmp(str, "ttyb"))
1806 strcpy(buf, "ttyS1");
1807 #endif
1808 for (s = buf; *s; s++)
1809 if ((*s >= '0' && *s <= '9') || *s == ',')
1810 break;
1811 idx = simple_strtoul(s, NULL, 10);
1812 *s = 0;
1813
1814 __add_preferred_console(buf, idx, options, brl_options);
1815 console_set_on_cmdline = 1;
1816 return 1;
1817 }
1818 __setup("console=", console_setup);
1819
1820 /**
1821 * add_preferred_console - add a device to the list of preferred consoles.
1822 * @name: device name
1823 * @idx: device index
1824 * @options: options for this console
1825 *
1826 * The last preferred console added will be used for kernel messages
1827 * and stdin/out/err for init. Normally this is used by console_setup
1828 * above to handle user-supplied console arguments; however it can also
1829 * be used by arch-specific code either to override the user or more
1830 * commonly to provide a default console (ie from PROM variables) when
1831 * the user has not supplied one.
1832 */
1833 int add_preferred_console(char *name, int idx, char *options)
1834 {
1835 return __add_preferred_console(name, idx, options, NULL);
1836 }
1837
1838 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1839 {
1840 struct console_cmdline *c;
1841 int i;
1842
1843 for (i = 0, c = console_cmdline;
1844 i < MAX_CMDLINECONSOLES && c->name[0];
1845 i++, c++)
1846 if (strcmp(c->name, name) == 0 && c->index == idx) {
1847 strlcpy(c->name, name_new, sizeof(c->name));
1848 c->name[sizeof(c->name) - 1] = 0;
1849 c->options = options;
1850 c->index = idx_new;
1851 return i;
1852 }
1853 /* not found */
1854 return -1;
1855 }
1856
1857 bool console_suspend_enabled = 1;
1858 EXPORT_SYMBOL(console_suspend_enabled);
1859
1860 static int __init console_suspend_disable(char *str)
1861 {
1862 console_suspend_enabled = 0;
1863 return 1;
1864 }
1865 __setup("no_console_suspend", console_suspend_disable);
1866 module_param_named(console_suspend, console_suspend_enabled,
1867 bool, S_IRUGO | S_IWUSR);
1868 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1869 " and hibernate operations");
1870
1871 /**
1872 * suspend_console - suspend the console subsystem
1873 *
1874 * This disables printk() while we go into suspend states
1875 */
1876 void suspend_console(void)
1877 {
1878 if (!console_suspend_enabled)
1879 return;
1880 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1881 console_lock();
1882 console_suspended = 1;
1883 up(&console_sem);
1884 }
1885
1886 void resume_console(void)
1887 {
1888 if (!console_suspend_enabled)
1889 return;
1890 down(&console_sem);
1891 console_suspended = 0;
1892 console_unlock();
1893 }
1894
1895 /**
1896 * console_cpu_notify - print deferred console messages after CPU hotplug
1897 * @self: notifier struct
1898 * @action: CPU hotplug event
1899 * @hcpu: unused
1900 *
1901 * If printk() is called from a CPU that is not online yet, the messages
1902 * will be spooled but will not show up on the console. This function is
1903 * called when a new CPU comes online (or fails to come up), and ensures
1904 * that any such output gets printed.
1905 */
1906 static int console_cpu_notify(struct notifier_block *self,
1907 unsigned long action, void *hcpu)
1908 {
1909 switch (action) {
1910 case CPU_ONLINE:
1911 case CPU_DEAD:
1912 case CPU_DOWN_FAILED:
1913 case CPU_UP_CANCELED:
1914 console_lock();
1915 console_unlock();
1916 }
1917 return NOTIFY_OK;
1918 }
1919
1920 /**
1921 * console_lock - lock the console system for exclusive use.
1922 *
1923 * Acquires a lock which guarantees that the caller has
1924 * exclusive access to the console system and the console_drivers list.
1925 *
1926 * Can sleep, returns nothing.
1927 */
1928 void console_lock(void)
1929 {
1930 might_sleep();
1931
1932 down(&console_sem);
1933 if (console_suspended)
1934 return;
1935 console_locked = 1;
1936 console_may_schedule = 1;
1937 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1938 }
1939 EXPORT_SYMBOL(console_lock);
1940
1941 /**
1942 * console_trylock - try to lock the console system for exclusive use.
1943 *
1944 * Tried to acquire a lock which guarantees that the caller has
1945 * exclusive access to the console system and the console_drivers list.
1946 *
1947 * returns 1 on success, and 0 on failure to acquire the lock.
1948 */
1949 int console_trylock(void)
1950 {
1951 if (down_trylock(&console_sem))
1952 return 0;
1953 if (console_suspended) {
1954 up(&console_sem);
1955 return 0;
1956 }
1957 console_locked = 1;
1958 console_may_schedule = 0;
1959 mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1960 return 1;
1961 }
1962 EXPORT_SYMBOL(console_trylock);
1963
1964 int is_console_locked(void)
1965 {
1966 return console_locked;
1967 }
1968
1969 static void console_cont_flush(char *text, size_t size)
1970 {
1971 unsigned long flags;
1972 size_t len;
1973
1974 raw_spin_lock_irqsave(&logbuf_lock, flags);
1975
1976 if (!cont.len)
1977 goto out;
1978
1979 /*
1980 * We still queue earlier records, likely because the console was
1981 * busy. The earlier ones need to be printed before this one, we
1982 * did not flush any fragment so far, so just let it queue up.
1983 */
1984 if (console_seq < log_next_seq && !cont.cons)
1985 goto out;
1986
1987 len = cont_print_text(text, size);
1988 raw_spin_unlock(&logbuf_lock);
1989 stop_critical_timings();
1990 call_console_drivers(cont.level, text, len);
1991 start_critical_timings();
1992 local_irq_restore(flags);
1993 return;
1994 out:
1995 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1996 }
1997
1998 /**
1999 * console_unlock - unlock the console system
2000 *
2001 * Releases the console_lock which the caller holds on the console system
2002 * and the console driver list.
2003 *
2004 * While the console_lock was held, console output may have been buffered
2005 * by printk(). If this is the case, console_unlock(); emits
2006 * the output prior to releasing the lock.
2007 *
2008 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2009 *
2010 * console_unlock(); may be called from any context.
2011 */
2012 void console_unlock(void)
2013 {
2014 static char text[LOG_LINE_MAX + PREFIX_MAX];
2015 static u64 seen_seq;
2016 unsigned long flags;
2017 bool wake_klogd = false;
2018 bool retry;
2019
2020 if (console_suspended) {
2021 up(&console_sem);
2022 return;
2023 }
2024
2025 console_may_schedule = 0;
2026
2027 /* flush buffered message fragment immediately to console */
2028 console_cont_flush(text, sizeof(text));
2029 again:
2030 for (;;) {
2031 struct printk_log *msg;
2032 size_t len;
2033 int level;
2034
2035 raw_spin_lock_irqsave(&logbuf_lock, flags);
2036 if (seen_seq != log_next_seq) {
2037 wake_klogd = true;
2038 seen_seq = log_next_seq;
2039 }
2040
2041 if (console_seq < log_first_seq) {
2042 /* messages are gone, move to first one */
2043 console_seq = log_first_seq;
2044 console_idx = log_first_idx;
2045 console_prev = 0;
2046 }
2047 skip:
2048 if (console_seq == log_next_seq)
2049 break;
2050
2051 msg = log_from_idx(console_idx);
2052 if (msg->flags & LOG_NOCONS) {
2053 /*
2054 * Skip record we have buffered and already printed
2055 * directly to the console when we received it.
2056 */
2057 console_idx = log_next(console_idx);
2058 console_seq++;
2059 /*
2060 * We will get here again when we register a new
2061 * CON_PRINTBUFFER console. Clear the flag so we
2062 * will properly dump everything later.
2063 */
2064 msg->flags &= ~LOG_NOCONS;
2065 console_prev = msg->flags;
2066 goto skip;
2067 }
2068
2069 level = msg->level;
2070 len = msg_print_text(msg, console_prev, false,
2071 text, sizeof(text));
2072 console_idx = log_next(console_idx);
2073 console_seq++;
2074 console_prev = msg->flags;
2075 raw_spin_unlock(&logbuf_lock);
2076
2077 stop_critical_timings(); /* don't trace print latency */
2078 call_console_drivers(level, text, len);
2079 start_critical_timings();
2080 local_irq_restore(flags);
2081 }
2082 console_locked = 0;
2083 mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2084
2085 /* Release the exclusive_console once it is used */
2086 if (unlikely(exclusive_console))
2087 exclusive_console = NULL;
2088
2089 raw_spin_unlock(&logbuf_lock);
2090
2091 up(&console_sem);
2092
2093 /*
2094 * Someone could have filled up the buffer again, so re-check if there's
2095 * something to flush. In case we cannot trylock the console_sem again,
2096 * there's a new owner and the console_unlock() from them will do the
2097 * flush, no worries.
2098 */
2099 raw_spin_lock(&logbuf_lock);
2100 retry = console_seq != log_next_seq;
2101 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2102
2103 if (retry && console_trylock())
2104 goto again;
2105
2106 if (wake_klogd)
2107 wake_up_klogd();
2108 }
2109 EXPORT_SYMBOL(console_unlock);
2110
2111 /**
2112 * console_conditional_schedule - yield the CPU if required
2113 *
2114 * If the console code is currently allowed to sleep, and
2115 * if this CPU should yield the CPU to another task, do
2116 * so here.
2117 *
2118 * Must be called within console_lock();.
2119 */
2120 void __sched console_conditional_schedule(void)
2121 {
2122 if (console_may_schedule)
2123 cond_resched();
2124 }
2125 EXPORT_SYMBOL(console_conditional_schedule);
2126
2127 void console_unblank(void)
2128 {
2129 struct console *c;
2130
2131 /*
2132 * console_unblank can no longer be called in interrupt context unless
2133 * oops_in_progress is set to 1..
2134 */
2135 if (oops_in_progress) {
2136 if (down_trylock(&console_sem) != 0)
2137 return;
2138 } else
2139 console_lock();
2140
2141 console_locked = 1;
2142 console_may_schedule = 0;
2143 for_each_console(c)
2144 if ((c->flags & CON_ENABLED) && c->unblank)
2145 c->unblank();
2146 console_unlock();
2147 }
2148
2149 /*
2150 * Return the console tty driver structure and its associated index
2151 */
2152 struct tty_driver *console_device(int *index)
2153 {
2154 struct console *c;
2155 struct tty_driver *driver = NULL;
2156
2157 console_lock();
2158 for_each_console(c) {
2159 if (!c->device)
2160 continue;
2161 driver = c->device(c, index);
2162 if (driver)
2163 break;
2164 }
2165 console_unlock();
2166 return driver;
2167 }
2168
2169 /*
2170 * Prevent further output on the passed console device so that (for example)
2171 * serial drivers can disable console output before suspending a port, and can
2172 * re-enable output afterwards.
2173 */
2174 void console_stop(struct console *console)
2175 {
2176 console_lock();
2177 console->flags &= ~CON_ENABLED;
2178 console_unlock();
2179 }
2180 EXPORT_SYMBOL(console_stop);
2181
2182 void console_start(struct console *console)
2183 {
2184 console_lock();
2185 console->flags |= CON_ENABLED;
2186 console_unlock();
2187 }
2188 EXPORT_SYMBOL(console_start);
2189
2190 static int __read_mostly keep_bootcon;
2191
2192 static int __init keep_bootcon_setup(char *str)
2193 {
2194 keep_bootcon = 1;
2195 pr_info("debug: skip boot console de-registration.\n");
2196
2197 return 0;
2198 }
2199
2200 early_param("keep_bootcon", keep_bootcon_setup);
2201
2202 /*
2203 * The console driver calls this routine during kernel initialization
2204 * to register the console printing procedure with printk() and to
2205 * print any messages that were printed by the kernel before the
2206 * console driver was initialized.
2207 *
2208 * This can happen pretty early during the boot process (because of
2209 * early_printk) - sometimes before setup_arch() completes - be careful
2210 * of what kernel features are used - they may not be initialised yet.
2211 *
2212 * There are two types of consoles - bootconsoles (early_printk) and
2213 * "real" consoles (everything which is not a bootconsole) which are
2214 * handled differently.
2215 * - Any number of bootconsoles can be registered at any time.
2216 * - As soon as a "real" console is registered, all bootconsoles
2217 * will be unregistered automatically.
2218 * - Once a "real" console is registered, any attempt to register a
2219 * bootconsoles will be rejected
2220 */
2221 void register_console(struct console *newcon)
2222 {
2223 int i;
2224 unsigned long flags;
2225 struct console *bcon = NULL;
2226 struct console_cmdline *c;
2227
2228 if (console_drivers)
2229 for_each_console(bcon)
2230 if (WARN(bcon == newcon,
2231 "console '%s%d' already registered\n",
2232 bcon->name, bcon->index))
2233 return;
2234
2235 /*
2236 * before we register a new CON_BOOT console, make sure we don't
2237 * already have a valid console
2238 */
2239 if (console_drivers && newcon->flags & CON_BOOT) {
2240 /* find the last or real console */
2241 for_each_console(bcon) {
2242 if (!(bcon->flags & CON_BOOT)) {
2243 pr_info("Too late to register bootconsole %s%d\n",
2244 newcon->name, newcon->index);
2245 return;
2246 }
2247 }
2248 }
2249
2250 if (console_drivers && console_drivers->flags & CON_BOOT)
2251 bcon = console_drivers;
2252
2253 if (preferred_console < 0 || bcon || !console_drivers)
2254 preferred_console = selected_console;
2255
2256 if (newcon->early_setup)
2257 newcon->early_setup();
2258
2259 /*
2260 * See if we want to use this console driver. If we
2261 * didn't select a console we take the first one
2262 * that registers here.
2263 */
2264 if (preferred_console < 0) {
2265 if (newcon->index < 0)
2266 newcon->index = 0;
2267 if (newcon->setup == NULL ||
2268 newcon->setup(newcon, NULL) == 0) {
2269 newcon->flags |= CON_ENABLED;
2270 if (newcon->device) {
2271 newcon->flags |= CON_CONSDEV;
2272 preferred_console = 0;
2273 }
2274 }
2275 }
2276
2277 /*
2278 * See if this console matches one we selected on
2279 * the command line.
2280 */
2281 for (i = 0, c = console_cmdline;
2282 i < MAX_CMDLINECONSOLES && c->name[0];
2283 i++, c++) {
2284 if (strcmp(c->name, newcon->name) != 0)
2285 continue;
2286 if (newcon->index >= 0 &&
2287 newcon->index != c->index)
2288 continue;
2289 if (newcon->index < 0)
2290 newcon->index = c->index;
2291
2292 if (_braille_register_console(newcon, c))
2293 return;
2294
2295 if (newcon->setup &&
2296 newcon->setup(newcon, console_cmdline[i].options) != 0)
2297 break;
2298 newcon->flags |= CON_ENABLED;
2299 newcon->index = c->index;
2300 if (i == selected_console) {
2301 newcon->flags |= CON_CONSDEV;
2302 preferred_console = selected_console;
2303 }
2304 break;
2305 }
2306
2307 if (!(newcon->flags & CON_ENABLED))
2308 return;
2309
2310 /*
2311 * If we have a bootconsole, and are switching to a real console,
2312 * don't print everything out again, since when the boot console, and
2313 * the real console are the same physical device, it's annoying to
2314 * see the beginning boot messages twice
2315 */
2316 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2317 newcon->flags &= ~CON_PRINTBUFFER;
2318
2319 /*
2320 * Put this console in the list - keep the
2321 * preferred driver at the head of the list.
2322 */
2323 console_lock();
2324 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2325 newcon->next = console_drivers;
2326 console_drivers = newcon;
2327 if (newcon->next)
2328 newcon->next->flags &= ~CON_CONSDEV;
2329 } else {
2330 newcon->next = console_drivers->next;
2331 console_drivers->next = newcon;
2332 }
2333 if (newcon->flags & CON_PRINTBUFFER) {
2334 /*
2335 * console_unlock(); will print out the buffered messages
2336 * for us.
2337 */
2338 raw_spin_lock_irqsave(&logbuf_lock, flags);
2339 console_seq = syslog_seq;
2340 console_idx = syslog_idx;
2341 console_prev = syslog_prev;
2342 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2343 /*
2344 * We're about to replay the log buffer. Only do this to the
2345 * just-registered console to avoid excessive message spam to
2346 * the already-registered consoles.
2347 */
2348 exclusive_console = newcon;
2349 }
2350 console_unlock();
2351 console_sysfs_notify();
2352
2353 /*
2354 * By unregistering the bootconsoles after we enable the real console
2355 * we get the "console xxx enabled" message on all the consoles -
2356 * boot consoles, real consoles, etc - this is to ensure that end
2357 * users know there might be something in the kernel's log buffer that
2358 * went to the bootconsole (that they do not see on the real console)
2359 */
2360 pr_info("%sconsole [%s%d] enabled\n",
2361 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2362 newcon->name, newcon->index);
2363 if (bcon &&
2364 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2365 !keep_bootcon) {
2366 /* We need to iterate through all boot consoles, to make
2367 * sure we print everything out, before we unregister them.
2368 */
2369 for_each_console(bcon)
2370 if (bcon->flags & CON_BOOT)
2371 unregister_console(bcon);
2372 }
2373 }
2374 EXPORT_SYMBOL(register_console);
2375
2376 int unregister_console(struct console *console)
2377 {
2378 struct console *a, *b;
2379 int res;
2380
2381 pr_info("%sconsole [%s%d] disabled\n",
2382 (console->flags & CON_BOOT) ? "boot" : "" ,
2383 console->name, console->index);
2384
2385 res = _braille_unregister_console(console);
2386 if (res)
2387 return res;
2388
2389 res = 1;
2390 console_lock();
2391 if (console_drivers == console) {
2392 console_drivers=console->next;
2393 res = 0;
2394 } else if (console_drivers) {
2395 for (a=console_drivers->next, b=console_drivers ;
2396 a; b=a, a=b->next) {
2397 if (a == console) {
2398 b->next = a->next;
2399 res = 0;
2400 break;
2401 }
2402 }
2403 }
2404
2405 /*
2406 * If this isn't the last console and it has CON_CONSDEV set, we
2407 * need to set it on the next preferred console.
2408 */
2409 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2410 console_drivers->flags |= CON_CONSDEV;
2411
2412 console_unlock();
2413 console_sysfs_notify();
2414 return res;
2415 }
2416 EXPORT_SYMBOL(unregister_console);
2417
2418 static int __init printk_late_init(void)
2419 {
2420 struct console *con;
2421
2422 for_each_console(con) {
2423 if (!keep_bootcon && con->flags & CON_BOOT) {
2424 unregister_console(con);
2425 }
2426 }
2427 hotcpu_notifier(console_cpu_notify, 0);
2428 return 0;
2429 }
2430 late_initcall(printk_late_init);
2431
2432 #if defined CONFIG_PRINTK
2433 /*
2434 * Delayed printk version, for scheduler-internal messages:
2435 */
2436 #define PRINTK_BUF_SIZE 512
2437
2438 #define PRINTK_PENDING_WAKEUP 0x01
2439 #define PRINTK_PENDING_SCHED 0x02
2440
2441 static DEFINE_PER_CPU(int, printk_pending);
2442 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2443
2444 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2445 {
2446 int pending = __this_cpu_xchg(printk_pending, 0);
2447
2448 if (pending & PRINTK_PENDING_SCHED) {
2449 char *buf = __get_cpu_var(printk_sched_buf);
2450 pr_warn("[sched_delayed] %s", buf);
2451 }
2452
2453 if (pending & PRINTK_PENDING_WAKEUP)
2454 wake_up_interruptible(&log_wait);
2455 }
2456
2457 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2458 .func = wake_up_klogd_work_func,
2459 .flags = IRQ_WORK_LAZY,
2460 };
2461
2462 void wake_up_klogd(void)
2463 {
2464 preempt_disable();
2465 if (waitqueue_active(&log_wait)) {
2466 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2467 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2468 }
2469 preempt_enable();
2470 }
2471
2472 int printk_sched(const char *fmt, ...)
2473 {
2474 unsigned long flags;
2475 va_list args;
2476 char *buf;
2477 int r;
2478
2479 local_irq_save(flags);
2480 buf = __get_cpu_var(printk_sched_buf);
2481
2482 va_start(args, fmt);
2483 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2484 va_end(args);
2485
2486 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2487 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2488 local_irq_restore(flags);
2489
2490 return r;
2491 }
2492
2493 /*
2494 * printk rate limiting, lifted from the networking subsystem.
2495 *
2496 * This enforces a rate limit: not more than 10 kernel messages
2497 * every 5s to make a denial-of-service attack impossible.
2498 */
2499 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2500
2501 int __printk_ratelimit(const char *func)
2502 {
2503 return ___ratelimit(&printk_ratelimit_state, func);
2504 }
2505 EXPORT_SYMBOL(__printk_ratelimit);
2506
2507 /**
2508 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2509 * @caller_jiffies: pointer to caller's state
2510 * @interval_msecs: minimum interval between prints
2511 *
2512 * printk_timed_ratelimit() returns true if more than @interval_msecs
2513 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2514 * returned true.
2515 */
2516 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2517 unsigned int interval_msecs)
2518 {
2519 if (*caller_jiffies == 0
2520 || !time_in_range(jiffies, *caller_jiffies,
2521 *caller_jiffies
2522 + msecs_to_jiffies(interval_msecs))) {
2523 *caller_jiffies = jiffies;
2524 return true;
2525 }
2526 return false;
2527 }
2528 EXPORT_SYMBOL(printk_timed_ratelimit);
2529
2530 static DEFINE_SPINLOCK(dump_list_lock);
2531 static LIST_HEAD(dump_list);
2532
2533 /**
2534 * kmsg_dump_register - register a kernel log dumper.
2535 * @dumper: pointer to the kmsg_dumper structure
2536 *
2537 * Adds a kernel log dumper to the system. The dump callback in the
2538 * structure will be called when the kernel oopses or panics and must be
2539 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2540 */
2541 int kmsg_dump_register(struct kmsg_dumper *dumper)
2542 {
2543 unsigned long flags;
2544 int err = -EBUSY;
2545
2546 /* The dump callback needs to be set */
2547 if (!dumper->dump)
2548 return -EINVAL;
2549
2550 spin_lock_irqsave(&dump_list_lock, flags);
2551 /* Don't allow registering multiple times */
2552 if (!dumper->registered) {
2553 dumper->registered = 1;
2554 list_add_tail_rcu(&dumper->list, &dump_list);
2555 err = 0;
2556 }
2557 spin_unlock_irqrestore(&dump_list_lock, flags);
2558
2559 return err;
2560 }
2561 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2562
2563 /**
2564 * kmsg_dump_unregister - unregister a kmsg dumper.
2565 * @dumper: pointer to the kmsg_dumper structure
2566 *
2567 * Removes a dump device from the system. Returns zero on success and
2568 * %-EINVAL otherwise.
2569 */
2570 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2571 {
2572 unsigned long flags;
2573 int err = -EINVAL;
2574
2575 spin_lock_irqsave(&dump_list_lock, flags);
2576 if (dumper->registered) {
2577 dumper->registered = 0;
2578 list_del_rcu(&dumper->list);
2579 err = 0;
2580 }
2581 spin_unlock_irqrestore(&dump_list_lock, flags);
2582 synchronize_rcu();
2583
2584 return err;
2585 }
2586 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2587
2588 static bool always_kmsg_dump;
2589 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2590
2591 /**
2592 * kmsg_dump - dump kernel log to kernel message dumpers.
2593 * @reason: the reason (oops, panic etc) for dumping
2594 *
2595 * Call each of the registered dumper's dump() callback, which can
2596 * retrieve the kmsg records with kmsg_dump_get_line() or
2597 * kmsg_dump_get_buffer().
2598 */
2599 void kmsg_dump(enum kmsg_dump_reason reason)
2600 {
2601 struct kmsg_dumper *dumper;
2602 unsigned long flags;
2603
2604 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2605 return;
2606
2607 rcu_read_lock();
2608 list_for_each_entry_rcu(dumper, &dump_list, list) {
2609 if (dumper->max_reason && reason > dumper->max_reason)
2610 continue;
2611
2612 /* initialize iterator with data about the stored records */
2613 dumper->active = true;
2614
2615 raw_spin_lock_irqsave(&logbuf_lock, flags);
2616 dumper->cur_seq = clear_seq;
2617 dumper->cur_idx = clear_idx;
2618 dumper->next_seq = log_next_seq;
2619 dumper->next_idx = log_next_idx;
2620 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2621
2622 /* invoke dumper which will iterate over records */
2623 dumper->dump(dumper, reason);
2624
2625 /* reset iterator */
2626 dumper->active = false;
2627 }
2628 rcu_read_unlock();
2629 }
2630
2631 /**
2632 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2633 * @dumper: registered kmsg dumper
2634 * @syslog: include the "<4>" prefixes
2635 * @line: buffer to copy the line to
2636 * @size: maximum size of the buffer
2637 * @len: length of line placed into buffer
2638 *
2639 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2640 * record, and copy one record into the provided buffer.
2641 *
2642 * Consecutive calls will return the next available record moving
2643 * towards the end of the buffer with the youngest messages.
2644 *
2645 * A return value of FALSE indicates that there are no more records to
2646 * read.
2647 *
2648 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2649 */
2650 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2651 char *line, size_t size, size_t *len)
2652 {
2653 struct printk_log *msg;
2654 size_t l = 0;
2655 bool ret = false;
2656
2657 if (!dumper->active)
2658 goto out;
2659
2660 if (dumper->cur_seq < log_first_seq) {
2661 /* messages are gone, move to first available one */
2662 dumper->cur_seq = log_first_seq;
2663 dumper->cur_idx = log_first_idx;
2664 }
2665
2666 /* last entry */
2667 if (dumper->cur_seq >= log_next_seq)
2668 goto out;
2669
2670 msg = log_from_idx(dumper->cur_idx);
2671 l = msg_print_text(msg, 0, syslog, line, size);
2672
2673 dumper->cur_idx = log_next(dumper->cur_idx);
2674 dumper->cur_seq++;
2675 ret = true;
2676 out:
2677 if (len)
2678 *len = l;
2679 return ret;
2680 }
2681
2682 /**
2683 * kmsg_dump_get_line - retrieve one kmsg log line
2684 * @dumper: registered kmsg dumper
2685 * @syslog: include the "<4>" prefixes
2686 * @line: buffer to copy the line to
2687 * @size: maximum size of the buffer
2688 * @len: length of line placed into buffer
2689 *
2690 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2691 * record, and copy one record into the provided buffer.
2692 *
2693 * Consecutive calls will return the next available record moving
2694 * towards the end of the buffer with the youngest messages.
2695 *
2696 * A return value of FALSE indicates that there are no more records to
2697 * read.
2698 */
2699 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2700 char *line, size_t size, size_t *len)
2701 {
2702 unsigned long flags;
2703 bool ret;
2704
2705 raw_spin_lock_irqsave(&logbuf_lock, flags);
2706 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2707 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2708
2709 return ret;
2710 }
2711 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2712
2713 /**
2714 * kmsg_dump_get_buffer - copy kmsg log lines
2715 * @dumper: registered kmsg dumper
2716 * @syslog: include the "<4>" prefixes
2717 * @buf: buffer to copy the line to
2718 * @size: maximum size of the buffer
2719 * @len: length of line placed into buffer
2720 *
2721 * Start at the end of the kmsg buffer and fill the provided buffer
2722 * with as many of the the *youngest* kmsg records that fit into it.
2723 * If the buffer is large enough, all available kmsg records will be
2724 * copied with a single call.
2725 *
2726 * Consecutive calls will fill the buffer with the next block of
2727 * available older records, not including the earlier retrieved ones.
2728 *
2729 * A return value of FALSE indicates that there are no more records to
2730 * read.
2731 */
2732 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2733 char *buf, size_t size, size_t *len)
2734 {
2735 unsigned long flags;
2736 u64 seq;
2737 u32 idx;
2738 u64 next_seq;
2739 u32 next_idx;
2740 enum log_flags prev;
2741 size_t l = 0;
2742 bool ret = false;
2743
2744 if (!dumper->active)
2745 goto out;
2746
2747 raw_spin_lock_irqsave(&logbuf_lock, flags);
2748 if (dumper->cur_seq < log_first_seq) {
2749 /* messages are gone, move to first available one */
2750 dumper->cur_seq = log_first_seq;
2751 dumper->cur_idx = log_first_idx;
2752 }
2753
2754 /* last entry */
2755 if (dumper->cur_seq >= dumper->next_seq) {
2756 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2757 goto out;
2758 }
2759
2760 /* calculate length of entire buffer */
2761 seq = dumper->cur_seq;
2762 idx = dumper->cur_idx;
2763 prev = 0;
2764 while (seq < dumper->next_seq) {
2765 struct printk_log *msg = log_from_idx(idx);
2766
2767 l += msg_print_text(msg, prev, true, NULL, 0);
2768 idx = log_next(idx);
2769 seq++;
2770 prev = msg->flags;
2771 }
2772
2773 /* move first record forward until length fits into the buffer */
2774 seq = dumper->cur_seq;
2775 idx = dumper->cur_idx;
2776 prev = 0;
2777 while (l > size && seq < dumper->next_seq) {
2778 struct printk_log *msg = log_from_idx(idx);
2779
2780 l -= msg_print_text(msg, prev, true, NULL, 0);
2781 idx = log_next(idx);
2782 seq++;
2783 prev = msg->flags;
2784 }
2785
2786 /* last message in next interation */
2787 next_seq = seq;
2788 next_idx = idx;
2789
2790 l = 0;
2791 prev = 0;
2792 while (seq < dumper->next_seq) {
2793 struct printk_log *msg = log_from_idx(idx);
2794
2795 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2796 idx = log_next(idx);
2797 seq++;
2798 prev = msg->flags;
2799 }
2800
2801 dumper->next_seq = next_seq;
2802 dumper->next_idx = next_idx;
2803 ret = true;
2804 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2805 out:
2806 if (len)
2807 *len = l;
2808 return ret;
2809 }
2810 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2811
2812 /**
2813 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2814 * @dumper: registered kmsg dumper
2815 *
2816 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2817 * kmsg_dump_get_buffer() can be called again and used multiple
2818 * times within the same dumper.dump() callback.
2819 *
2820 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2821 */
2822 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2823 {
2824 dumper->cur_seq = clear_seq;
2825 dumper->cur_idx = clear_idx;
2826 dumper->next_seq = log_next_seq;
2827 dumper->next_idx = log_next_idx;
2828 }
2829
2830 /**
2831 * kmsg_dump_rewind - reset the interator
2832 * @dumper: registered kmsg dumper
2833 *
2834 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2835 * kmsg_dump_get_buffer() can be called again and used multiple
2836 * times within the same dumper.dump() callback.
2837 */
2838 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2839 {
2840 unsigned long flags;
2841
2842 raw_spin_lock_irqsave(&logbuf_lock, flags);
2843 kmsg_dump_rewind_nolock(dumper);
2844 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2845 }
2846 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2847
2848 static char dump_stack_arch_desc_str[128];
2849
2850 /**
2851 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2852 * @fmt: printf-style format string
2853 * @...: arguments for the format string
2854 *
2855 * The configured string will be printed right after utsname during task
2856 * dumps. Usually used to add arch-specific system identifiers. If an
2857 * arch wants to make use of such an ID string, it should initialize this
2858 * as soon as possible during boot.
2859 */
2860 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2861 {
2862 va_list args;
2863
2864 va_start(args, fmt);
2865 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2866 fmt, args);
2867 va_end(args);
2868 }
2869
2870 /**
2871 * dump_stack_print_info - print generic debug info for dump_stack()
2872 * @log_lvl: log level
2873 *
2874 * Arch-specific dump_stack() implementations can use this function to
2875 * print out the same debug information as the generic dump_stack().
2876 */
2877 void dump_stack_print_info(const char *log_lvl)
2878 {
2879 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2880 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2881 print_tainted(), init_utsname()->release,
2882 (int)strcspn(init_utsname()->version, " "),
2883 init_utsname()->version);
2884
2885 if (dump_stack_arch_desc_str[0] != '\0')
2886 printk("%sHardware name: %s\n",
2887 log_lvl, dump_stack_arch_desc_str);
2888
2889 print_worker_info(log_lvl, current);
2890 }
2891
2892 /**
2893 * show_regs_print_info - print generic debug info for show_regs()
2894 * @log_lvl: log level
2895 *
2896 * show_regs() implementations can use this function to print out generic
2897 * debug information.
2898 */
2899 void show_regs_print_info(const char *log_lvl)
2900 {
2901 dump_stack_print_info(log_lvl);
2902
2903 printk("%stask: %p ti: %p task.ti: %p\n",
2904 log_lvl, current, current_thread_info(),
2905 task_thread_info(current));
2906 }
2907
2908 #endif
This page took 0.121563 seconds and 5 git commands to generate.