printk: enable interrupts before calling console_trylock_for_printk()
[deliverable/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 #include <linux/ctype.h>
49
50 #include <asm/uaccess.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54
55 #include "console_cmdline.h"
56 #include "braille.h"
57
58 int console_printk[4] = {
59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
63 };
64
65 /* Deferred messaged from sched code are marked by this special level */
66 #define SCHED_MESSAGE_LOGLEVEL -2
67
68 /*
69 * Low level drivers may need that to know if they can schedule in
70 * their unblank() callback or not. So let's export it.
71 */
72 int oops_in_progress;
73 EXPORT_SYMBOL(oops_in_progress);
74
75 /*
76 * console_sem protects the console_drivers list, and also
77 * provides serialisation for access to the entire console
78 * driver system.
79 */
80 static DEFINE_SEMAPHORE(console_sem);
81 struct console *console_drivers;
82 EXPORT_SYMBOL_GPL(console_drivers);
83
84 #ifdef CONFIG_LOCKDEP
85 static struct lockdep_map console_lock_dep_map = {
86 .name = "console_lock"
87 };
88 #endif
89
90 /*
91 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
92 * macros instead of functions so that _RET_IP_ contains useful information.
93 */
94 #define down_console_sem() do { \
95 down(&console_sem);\
96 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
97 } while (0)
98
99 static int __down_trylock_console_sem(unsigned long ip)
100 {
101 if (down_trylock(&console_sem))
102 return 1;
103 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
104 return 0;
105 }
106 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
107
108 #define up_console_sem() do { \
109 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
110 up(&console_sem);\
111 } while (0)
112
113 /*
114 * This is used for debugging the mess that is the VT code by
115 * keeping track if we have the console semaphore held. It's
116 * definitely not the perfect debug tool (we don't know if _WE_
117 * hold it and are racing, but it helps tracking those weird code
118 * paths in the console code where we end up in places I want
119 * locked without the console sempahore held).
120 */
121 static int console_locked, console_suspended;
122
123 /*
124 * If exclusive_console is non-NULL then only this console is to be printed to.
125 */
126 static struct console *exclusive_console;
127
128 /*
129 * Array of consoles built from command line options (console=)
130 */
131
132 #define MAX_CMDLINECONSOLES 8
133
134 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
135
136 static int selected_console = -1;
137 static int preferred_console = -1;
138 int console_set_on_cmdline;
139 EXPORT_SYMBOL(console_set_on_cmdline);
140
141 /* Flag: console code may call schedule() */
142 static int console_may_schedule;
143
144 /*
145 * The printk log buffer consists of a chain of concatenated variable
146 * length records. Every record starts with a record header, containing
147 * the overall length of the record.
148 *
149 * The heads to the first and last entry in the buffer, as well as the
150 * sequence numbers of these entries are maintained when messages are
151 * stored.
152 *
153 * If the heads indicate available messages, the length in the header
154 * tells the start next message. A length == 0 for the next message
155 * indicates a wrap-around to the beginning of the buffer.
156 *
157 * Every record carries the monotonic timestamp in microseconds, as well as
158 * the standard userspace syslog level and syslog facility. The usual
159 * kernel messages use LOG_KERN; userspace-injected messages always carry
160 * a matching syslog facility, by default LOG_USER. The origin of every
161 * message can be reliably determined that way.
162 *
163 * The human readable log message directly follows the message header. The
164 * length of the message text is stored in the header, the stored message
165 * is not terminated.
166 *
167 * Optionally, a message can carry a dictionary of properties (key/value pairs),
168 * to provide userspace with a machine-readable message context.
169 *
170 * Examples for well-defined, commonly used property names are:
171 * DEVICE=b12:8 device identifier
172 * b12:8 block dev_t
173 * c127:3 char dev_t
174 * n8 netdev ifindex
175 * +sound:card0 subsystem:devname
176 * SUBSYSTEM=pci driver-core subsystem name
177 *
178 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
179 * follows directly after a '=' character. Every property is terminated by
180 * a '\0' character. The last property is not terminated.
181 *
182 * Example of a message structure:
183 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
184 * 0008 34 00 record is 52 bytes long
185 * 000a 0b 00 text is 11 bytes long
186 * 000c 1f 00 dictionary is 23 bytes long
187 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
188 * 0010 69 74 27 73 20 61 20 6c "it's a l"
189 * 69 6e 65 "ine"
190 * 001b 44 45 56 49 43 "DEVIC"
191 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
192 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
193 * 67 "g"
194 * 0032 00 00 00 padding to next message header
195 *
196 * The 'struct printk_log' buffer header must never be directly exported to
197 * userspace, it is a kernel-private implementation detail that might
198 * need to be changed in the future, when the requirements change.
199 *
200 * /dev/kmsg exports the structured data in the following line format:
201 * "level,sequnum,timestamp;<message text>\n"
202 *
203 * The optional key/value pairs are attached as continuation lines starting
204 * with a space character and terminated by a newline. All possible
205 * non-prinatable characters are escaped in the "\xff" notation.
206 *
207 * Users of the export format should ignore possible additional values
208 * separated by ',', and find the message after the ';' character.
209 */
210
211 enum log_flags {
212 LOG_NOCONS = 1, /* already flushed, do not print to console */
213 LOG_NEWLINE = 2, /* text ended with a newline */
214 LOG_PREFIX = 4, /* text started with a prefix */
215 LOG_CONT = 8, /* text is a fragment of a continuation line */
216 };
217
218 struct printk_log {
219 u64 ts_nsec; /* timestamp in nanoseconds */
220 u16 len; /* length of entire record */
221 u16 text_len; /* length of text buffer */
222 u16 dict_len; /* length of dictionary buffer */
223 u8 facility; /* syslog facility */
224 u8 flags:5; /* internal record flags */
225 u8 level:3; /* syslog level */
226 };
227
228 /*
229 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
230 * within the scheduler's rq lock. It must be released before calling
231 * console_unlock() or anything else that might wake up a process.
232 */
233 static DEFINE_RAW_SPINLOCK(logbuf_lock);
234
235 #ifdef CONFIG_PRINTK
236 DECLARE_WAIT_QUEUE_HEAD(log_wait);
237 /* the next printk record to read by syslog(READ) or /proc/kmsg */
238 static u64 syslog_seq;
239 static u32 syslog_idx;
240 static enum log_flags syslog_prev;
241 static size_t syslog_partial;
242
243 /* index and sequence number of the first record stored in the buffer */
244 static u64 log_first_seq;
245 static u32 log_first_idx;
246
247 /* index and sequence number of the next record to store in the buffer */
248 static u64 log_next_seq;
249 static u32 log_next_idx;
250
251 /* the next printk record to write to the console */
252 static u64 console_seq;
253 static u32 console_idx;
254 static enum log_flags console_prev;
255
256 /* the next printk record to read after the last 'clear' command */
257 static u64 clear_seq;
258 static u32 clear_idx;
259
260 #define PREFIX_MAX 32
261 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
262
263 /* record buffer */
264 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
265 #define LOG_ALIGN 4
266 #else
267 #define LOG_ALIGN __alignof__(struct printk_log)
268 #endif
269 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
270 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
271 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
272 static char *log_buf = __log_buf;
273 static u32 log_buf_len = __LOG_BUF_LEN;
274
275 /* human readable text of the record */
276 static char *log_text(const struct printk_log *msg)
277 {
278 return (char *)msg + sizeof(struct printk_log);
279 }
280
281 /* optional key/value pair dictionary attached to the record */
282 static char *log_dict(const struct printk_log *msg)
283 {
284 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
285 }
286
287 /* get record by index; idx must point to valid msg */
288 static struct printk_log *log_from_idx(u32 idx)
289 {
290 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
291
292 /*
293 * A length == 0 record is the end of buffer marker. Wrap around and
294 * read the message at the start of the buffer.
295 */
296 if (!msg->len)
297 return (struct printk_log *)log_buf;
298 return msg;
299 }
300
301 /* get next record; idx must point to valid msg */
302 static u32 log_next(u32 idx)
303 {
304 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
305
306 /* length == 0 indicates the end of the buffer; wrap */
307 /*
308 * A length == 0 record is the end of buffer marker. Wrap around and
309 * read the message at the start of the buffer as *this* one, and
310 * return the one after that.
311 */
312 if (!msg->len) {
313 msg = (struct printk_log *)log_buf;
314 return msg->len;
315 }
316 return idx + msg->len;
317 }
318
319 /*
320 * Check whether there is enough free space for the given message.
321 *
322 * The same values of first_idx and next_idx mean that the buffer
323 * is either empty or full.
324 *
325 * If the buffer is empty, we must respect the position of the indexes.
326 * They cannot be reset to the beginning of the buffer.
327 */
328 static int logbuf_has_space(u32 msg_size, bool empty)
329 {
330 u32 free;
331
332 if (log_next_idx > log_first_idx || empty)
333 free = max(log_buf_len - log_next_idx, log_first_idx);
334 else
335 free = log_first_idx - log_next_idx;
336
337 /*
338 * We need space also for an empty header that signalizes wrapping
339 * of the buffer.
340 */
341 return free >= msg_size + sizeof(struct printk_log);
342 }
343
344 static int log_make_free_space(u32 msg_size)
345 {
346 while (log_first_seq < log_next_seq) {
347 if (logbuf_has_space(msg_size, false))
348 return 0;
349 /* drop old messages until we have enough contiguous space */
350 log_first_idx = log_next(log_first_idx);
351 log_first_seq++;
352 }
353
354 /* sequence numbers are equal, so the log buffer is empty */
355 if (logbuf_has_space(msg_size, true))
356 return 0;
357
358 return -ENOMEM;
359 }
360
361 /* compute the message size including the padding bytes */
362 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
363 {
364 u32 size;
365
366 size = sizeof(struct printk_log) + text_len + dict_len;
367 *pad_len = (-size) & (LOG_ALIGN - 1);
368 size += *pad_len;
369
370 return size;
371 }
372
373 /*
374 * Define how much of the log buffer we could take at maximum. The value
375 * must be greater than two. Note that only half of the buffer is available
376 * when the index points to the middle.
377 */
378 #define MAX_LOG_TAKE_PART 4
379 static const char trunc_msg[] = "<truncated>";
380
381 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
382 u16 *dict_len, u32 *pad_len)
383 {
384 /*
385 * The message should not take the whole buffer. Otherwise, it might
386 * get removed too soon.
387 */
388 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
389 if (*text_len > max_text_len)
390 *text_len = max_text_len;
391 /* enable the warning message */
392 *trunc_msg_len = strlen(trunc_msg);
393 /* disable the "dict" completely */
394 *dict_len = 0;
395 /* compute the size again, count also the warning message */
396 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
397 }
398
399 /* insert record into the buffer, discard old ones, update heads */
400 static int log_store(int facility, int level,
401 enum log_flags flags, u64 ts_nsec,
402 const char *dict, u16 dict_len,
403 const char *text, u16 text_len)
404 {
405 struct printk_log *msg;
406 u32 size, pad_len;
407 u16 trunc_msg_len = 0;
408
409 /* number of '\0' padding bytes to next message */
410 size = msg_used_size(text_len, dict_len, &pad_len);
411
412 if (log_make_free_space(size)) {
413 /* truncate the message if it is too long for empty buffer */
414 size = truncate_msg(&text_len, &trunc_msg_len,
415 &dict_len, &pad_len);
416 /* survive when the log buffer is too small for trunc_msg */
417 if (log_make_free_space(size))
418 return 0;
419 }
420
421 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
422 /*
423 * This message + an additional empty header does not fit
424 * at the end of the buffer. Add an empty header with len == 0
425 * to signify a wrap around.
426 */
427 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
428 log_next_idx = 0;
429 }
430
431 /* fill message */
432 msg = (struct printk_log *)(log_buf + log_next_idx);
433 memcpy(log_text(msg), text, text_len);
434 msg->text_len = text_len;
435 if (trunc_msg_len) {
436 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
437 msg->text_len += trunc_msg_len;
438 }
439 memcpy(log_dict(msg), dict, dict_len);
440 msg->dict_len = dict_len;
441 msg->facility = facility;
442 msg->level = level & 7;
443 msg->flags = flags & 0x1f;
444 if (ts_nsec > 0)
445 msg->ts_nsec = ts_nsec;
446 else
447 msg->ts_nsec = local_clock();
448 memset(log_dict(msg) + dict_len, 0, pad_len);
449 msg->len = size;
450
451 /* insert message */
452 log_next_idx += msg->len;
453 log_next_seq++;
454
455 return msg->text_len;
456 }
457
458 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
459
460 static int syslog_action_restricted(int type)
461 {
462 if (dmesg_restrict)
463 return 1;
464 /*
465 * Unless restricted, we allow "read all" and "get buffer size"
466 * for everybody.
467 */
468 return type != SYSLOG_ACTION_READ_ALL &&
469 type != SYSLOG_ACTION_SIZE_BUFFER;
470 }
471
472 static int check_syslog_permissions(int type, bool from_file)
473 {
474 /*
475 * If this is from /proc/kmsg and we've already opened it, then we've
476 * already done the capabilities checks at open time.
477 */
478 if (from_file && type != SYSLOG_ACTION_OPEN)
479 return 0;
480
481 if (syslog_action_restricted(type)) {
482 if (capable(CAP_SYSLOG))
483 return 0;
484 /*
485 * For historical reasons, accept CAP_SYS_ADMIN too, with
486 * a warning.
487 */
488 if (capable(CAP_SYS_ADMIN)) {
489 pr_warn_once("%s (%d): Attempt to access syslog with "
490 "CAP_SYS_ADMIN but no CAP_SYSLOG "
491 "(deprecated).\n",
492 current->comm, task_pid_nr(current));
493 return 0;
494 }
495 return -EPERM;
496 }
497 return security_syslog(type);
498 }
499
500
501 /* /dev/kmsg - userspace message inject/listen interface */
502 struct devkmsg_user {
503 u64 seq;
504 u32 idx;
505 enum log_flags prev;
506 struct mutex lock;
507 char buf[8192];
508 };
509
510 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
511 unsigned long count, loff_t pos)
512 {
513 char *buf, *line;
514 int i;
515 int level = default_message_loglevel;
516 int facility = 1; /* LOG_USER */
517 size_t len = iov_length(iv, count);
518 ssize_t ret = len;
519
520 if (len > LOG_LINE_MAX)
521 return -EINVAL;
522 buf = kmalloc(len+1, GFP_KERNEL);
523 if (buf == NULL)
524 return -ENOMEM;
525
526 line = buf;
527 for (i = 0; i < count; i++) {
528 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
529 ret = -EFAULT;
530 goto out;
531 }
532 line += iv[i].iov_len;
533 }
534
535 /*
536 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
537 * the decimal value represents 32bit, the lower 3 bit are the log
538 * level, the rest are the log facility.
539 *
540 * If no prefix or no userspace facility is specified, we
541 * enforce LOG_USER, to be able to reliably distinguish
542 * kernel-generated messages from userspace-injected ones.
543 */
544 line = buf;
545 if (line[0] == '<') {
546 char *endp = NULL;
547
548 i = simple_strtoul(line+1, &endp, 10);
549 if (endp && endp[0] == '>') {
550 level = i & 7;
551 if (i >> 3)
552 facility = i >> 3;
553 endp++;
554 len -= endp - line;
555 line = endp;
556 }
557 }
558 line[len] = '\0';
559
560 printk_emit(facility, level, NULL, 0, "%s", line);
561 out:
562 kfree(buf);
563 return ret;
564 }
565
566 static ssize_t devkmsg_read(struct file *file, char __user *buf,
567 size_t count, loff_t *ppos)
568 {
569 struct devkmsg_user *user = file->private_data;
570 struct printk_log *msg;
571 u64 ts_usec;
572 size_t i;
573 char cont = '-';
574 size_t len;
575 ssize_t ret;
576
577 if (!user)
578 return -EBADF;
579
580 ret = mutex_lock_interruptible(&user->lock);
581 if (ret)
582 return ret;
583 raw_spin_lock_irq(&logbuf_lock);
584 while (user->seq == log_next_seq) {
585 if (file->f_flags & O_NONBLOCK) {
586 ret = -EAGAIN;
587 raw_spin_unlock_irq(&logbuf_lock);
588 goto out;
589 }
590
591 raw_spin_unlock_irq(&logbuf_lock);
592 ret = wait_event_interruptible(log_wait,
593 user->seq != log_next_seq);
594 if (ret)
595 goto out;
596 raw_spin_lock_irq(&logbuf_lock);
597 }
598
599 if (user->seq < log_first_seq) {
600 /* our last seen message is gone, return error and reset */
601 user->idx = log_first_idx;
602 user->seq = log_first_seq;
603 ret = -EPIPE;
604 raw_spin_unlock_irq(&logbuf_lock);
605 goto out;
606 }
607
608 msg = log_from_idx(user->idx);
609 ts_usec = msg->ts_nsec;
610 do_div(ts_usec, 1000);
611
612 /*
613 * If we couldn't merge continuation line fragments during the print,
614 * export the stored flags to allow an optional external merge of the
615 * records. Merging the records isn't always neccessarily correct, like
616 * when we hit a race during printing. In most cases though, it produces
617 * better readable output. 'c' in the record flags mark the first
618 * fragment of a line, '+' the following.
619 */
620 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
621 cont = 'c';
622 else if ((msg->flags & LOG_CONT) ||
623 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
624 cont = '+';
625
626 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
627 (msg->facility << 3) | msg->level,
628 user->seq, ts_usec, cont);
629 user->prev = msg->flags;
630
631 /* escape non-printable characters */
632 for (i = 0; i < msg->text_len; i++) {
633 unsigned char c = log_text(msg)[i];
634
635 if (c < ' ' || c >= 127 || c == '\\')
636 len += sprintf(user->buf + len, "\\x%02x", c);
637 else
638 user->buf[len++] = c;
639 }
640 user->buf[len++] = '\n';
641
642 if (msg->dict_len) {
643 bool line = true;
644
645 for (i = 0; i < msg->dict_len; i++) {
646 unsigned char c = log_dict(msg)[i];
647
648 if (line) {
649 user->buf[len++] = ' ';
650 line = false;
651 }
652
653 if (c == '\0') {
654 user->buf[len++] = '\n';
655 line = true;
656 continue;
657 }
658
659 if (c < ' ' || c >= 127 || c == '\\') {
660 len += sprintf(user->buf + len, "\\x%02x", c);
661 continue;
662 }
663
664 user->buf[len++] = c;
665 }
666 user->buf[len++] = '\n';
667 }
668
669 user->idx = log_next(user->idx);
670 user->seq++;
671 raw_spin_unlock_irq(&logbuf_lock);
672
673 if (len > count) {
674 ret = -EINVAL;
675 goto out;
676 }
677
678 if (copy_to_user(buf, user->buf, len)) {
679 ret = -EFAULT;
680 goto out;
681 }
682 ret = len;
683 out:
684 mutex_unlock(&user->lock);
685 return ret;
686 }
687
688 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
689 {
690 struct devkmsg_user *user = file->private_data;
691 loff_t ret = 0;
692
693 if (!user)
694 return -EBADF;
695 if (offset)
696 return -ESPIPE;
697
698 raw_spin_lock_irq(&logbuf_lock);
699 switch (whence) {
700 case SEEK_SET:
701 /* the first record */
702 user->idx = log_first_idx;
703 user->seq = log_first_seq;
704 break;
705 case SEEK_DATA:
706 /*
707 * The first record after the last SYSLOG_ACTION_CLEAR,
708 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
709 * changes no global state, and does not clear anything.
710 */
711 user->idx = clear_idx;
712 user->seq = clear_seq;
713 break;
714 case SEEK_END:
715 /* after the last record */
716 user->idx = log_next_idx;
717 user->seq = log_next_seq;
718 break;
719 default:
720 ret = -EINVAL;
721 }
722 raw_spin_unlock_irq(&logbuf_lock);
723 return ret;
724 }
725
726 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
727 {
728 struct devkmsg_user *user = file->private_data;
729 int ret = 0;
730
731 if (!user)
732 return POLLERR|POLLNVAL;
733
734 poll_wait(file, &log_wait, wait);
735
736 raw_spin_lock_irq(&logbuf_lock);
737 if (user->seq < log_next_seq) {
738 /* return error when data has vanished underneath us */
739 if (user->seq < log_first_seq)
740 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
741 else
742 ret = POLLIN|POLLRDNORM;
743 }
744 raw_spin_unlock_irq(&logbuf_lock);
745
746 return ret;
747 }
748
749 static int devkmsg_open(struct inode *inode, struct file *file)
750 {
751 struct devkmsg_user *user;
752 int err;
753
754 /* write-only does not need any file context */
755 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
756 return 0;
757
758 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
759 SYSLOG_FROM_READER);
760 if (err)
761 return err;
762
763 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
764 if (!user)
765 return -ENOMEM;
766
767 mutex_init(&user->lock);
768
769 raw_spin_lock_irq(&logbuf_lock);
770 user->idx = log_first_idx;
771 user->seq = log_first_seq;
772 raw_spin_unlock_irq(&logbuf_lock);
773
774 file->private_data = user;
775 return 0;
776 }
777
778 static int devkmsg_release(struct inode *inode, struct file *file)
779 {
780 struct devkmsg_user *user = file->private_data;
781
782 if (!user)
783 return 0;
784
785 mutex_destroy(&user->lock);
786 kfree(user);
787 return 0;
788 }
789
790 const struct file_operations kmsg_fops = {
791 .open = devkmsg_open,
792 .read = devkmsg_read,
793 .aio_write = devkmsg_writev,
794 .llseek = devkmsg_llseek,
795 .poll = devkmsg_poll,
796 .release = devkmsg_release,
797 };
798
799 #ifdef CONFIG_KEXEC
800 /*
801 * This appends the listed symbols to /proc/vmcore
802 *
803 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
804 * obtain access to symbols that are otherwise very difficult to locate. These
805 * symbols are specifically used so that utilities can access and extract the
806 * dmesg log from a vmcore file after a crash.
807 */
808 void log_buf_kexec_setup(void)
809 {
810 VMCOREINFO_SYMBOL(log_buf);
811 VMCOREINFO_SYMBOL(log_buf_len);
812 VMCOREINFO_SYMBOL(log_first_idx);
813 VMCOREINFO_SYMBOL(log_next_idx);
814 /*
815 * Export struct printk_log size and field offsets. User space tools can
816 * parse it and detect any changes to structure down the line.
817 */
818 VMCOREINFO_STRUCT_SIZE(printk_log);
819 VMCOREINFO_OFFSET(printk_log, ts_nsec);
820 VMCOREINFO_OFFSET(printk_log, len);
821 VMCOREINFO_OFFSET(printk_log, text_len);
822 VMCOREINFO_OFFSET(printk_log, dict_len);
823 }
824 #endif
825
826 /* requested log_buf_len from kernel cmdline */
827 static unsigned long __initdata new_log_buf_len;
828
829 /* we practice scaling the ring buffer by powers of 2 */
830 static void __init log_buf_len_update(unsigned size)
831 {
832 if (size)
833 size = roundup_pow_of_two(size);
834 if (size > log_buf_len)
835 new_log_buf_len = size;
836 }
837
838 /* save requested log_buf_len since it's too early to process it */
839 static int __init log_buf_len_setup(char *str)
840 {
841 unsigned size = memparse(str, &str);
842
843 log_buf_len_update(size);
844
845 return 0;
846 }
847 early_param("log_buf_len", log_buf_len_setup);
848
849 static void __init log_buf_add_cpu(void)
850 {
851 unsigned int cpu_extra;
852
853 /*
854 * archs should set up cpu_possible_bits properly with
855 * set_cpu_possible() after setup_arch() but just in
856 * case lets ensure this is valid.
857 */
858 if (num_possible_cpus() == 1)
859 return;
860
861 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
862
863 /* by default this will only continue through for large > 64 CPUs */
864 if (cpu_extra <= __LOG_BUF_LEN / 2)
865 return;
866
867 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
868 __LOG_CPU_MAX_BUF_LEN);
869 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
870 cpu_extra);
871 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
872
873 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
874 }
875
876 void __init setup_log_buf(int early)
877 {
878 unsigned long flags;
879 char *new_log_buf;
880 int free;
881
882 if (log_buf != __log_buf)
883 return;
884
885 if (!early && !new_log_buf_len)
886 log_buf_add_cpu();
887
888 if (!new_log_buf_len)
889 return;
890
891 if (early) {
892 new_log_buf =
893 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
894 } else {
895 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
896 LOG_ALIGN);
897 }
898
899 if (unlikely(!new_log_buf)) {
900 pr_err("log_buf_len: %ld bytes not available\n",
901 new_log_buf_len);
902 return;
903 }
904
905 raw_spin_lock_irqsave(&logbuf_lock, flags);
906 log_buf_len = new_log_buf_len;
907 log_buf = new_log_buf;
908 new_log_buf_len = 0;
909 free = __LOG_BUF_LEN - log_next_idx;
910 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
911 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
912
913 pr_info("log_buf_len: %d bytes\n", log_buf_len);
914 pr_info("early log buf free: %d(%d%%)\n",
915 free, (free * 100) / __LOG_BUF_LEN);
916 }
917
918 static bool __read_mostly ignore_loglevel;
919
920 static int __init ignore_loglevel_setup(char *str)
921 {
922 ignore_loglevel = 1;
923 pr_info("debug: ignoring loglevel setting.\n");
924
925 return 0;
926 }
927
928 early_param("ignore_loglevel", ignore_loglevel_setup);
929 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
930 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
931 "print all kernel messages to the console.");
932
933 #ifdef CONFIG_BOOT_PRINTK_DELAY
934
935 static int boot_delay; /* msecs delay after each printk during bootup */
936 static unsigned long long loops_per_msec; /* based on boot_delay */
937
938 static int __init boot_delay_setup(char *str)
939 {
940 unsigned long lpj;
941
942 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
943 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
944
945 get_option(&str, &boot_delay);
946 if (boot_delay > 10 * 1000)
947 boot_delay = 0;
948
949 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
950 "HZ: %d, loops_per_msec: %llu\n",
951 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
952 return 0;
953 }
954 early_param("boot_delay", boot_delay_setup);
955
956 static void boot_delay_msec(int level)
957 {
958 unsigned long long k;
959 unsigned long timeout;
960
961 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
962 || (level >= console_loglevel && !ignore_loglevel)) {
963 return;
964 }
965
966 k = (unsigned long long)loops_per_msec * boot_delay;
967
968 timeout = jiffies + msecs_to_jiffies(boot_delay);
969 while (k) {
970 k--;
971 cpu_relax();
972 /*
973 * use (volatile) jiffies to prevent
974 * compiler reduction; loop termination via jiffies
975 * is secondary and may or may not happen.
976 */
977 if (time_after(jiffies, timeout))
978 break;
979 touch_nmi_watchdog();
980 }
981 }
982 #else
983 static inline void boot_delay_msec(int level)
984 {
985 }
986 #endif
987
988 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
989 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
990
991 static size_t print_time(u64 ts, char *buf)
992 {
993 unsigned long rem_nsec;
994
995 if (!printk_time)
996 return 0;
997
998 rem_nsec = do_div(ts, 1000000000);
999
1000 if (!buf)
1001 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1002
1003 return sprintf(buf, "[%5lu.%06lu] ",
1004 (unsigned long)ts, rem_nsec / 1000);
1005 }
1006
1007 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1008 {
1009 size_t len = 0;
1010 unsigned int prefix = (msg->facility << 3) | msg->level;
1011
1012 if (syslog) {
1013 if (buf) {
1014 len += sprintf(buf, "<%u>", prefix);
1015 } else {
1016 len += 3;
1017 if (prefix > 999)
1018 len += 3;
1019 else if (prefix > 99)
1020 len += 2;
1021 else if (prefix > 9)
1022 len++;
1023 }
1024 }
1025
1026 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1027 return len;
1028 }
1029
1030 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1031 bool syslog, char *buf, size_t size)
1032 {
1033 const char *text = log_text(msg);
1034 size_t text_size = msg->text_len;
1035 bool prefix = true;
1036 bool newline = true;
1037 size_t len = 0;
1038
1039 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1040 prefix = false;
1041
1042 if (msg->flags & LOG_CONT) {
1043 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1044 prefix = false;
1045
1046 if (!(msg->flags & LOG_NEWLINE))
1047 newline = false;
1048 }
1049
1050 do {
1051 const char *next = memchr(text, '\n', text_size);
1052 size_t text_len;
1053
1054 if (next) {
1055 text_len = next - text;
1056 next++;
1057 text_size -= next - text;
1058 } else {
1059 text_len = text_size;
1060 }
1061
1062 if (buf) {
1063 if (print_prefix(msg, syslog, NULL) +
1064 text_len + 1 >= size - len)
1065 break;
1066
1067 if (prefix)
1068 len += print_prefix(msg, syslog, buf + len);
1069 memcpy(buf + len, text, text_len);
1070 len += text_len;
1071 if (next || newline)
1072 buf[len++] = '\n';
1073 } else {
1074 /* SYSLOG_ACTION_* buffer size only calculation */
1075 if (prefix)
1076 len += print_prefix(msg, syslog, NULL);
1077 len += text_len;
1078 if (next || newline)
1079 len++;
1080 }
1081
1082 prefix = true;
1083 text = next;
1084 } while (text);
1085
1086 return len;
1087 }
1088
1089 static int syslog_print(char __user *buf, int size)
1090 {
1091 char *text;
1092 struct printk_log *msg;
1093 int len = 0;
1094
1095 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1096 if (!text)
1097 return -ENOMEM;
1098
1099 while (size > 0) {
1100 size_t n;
1101 size_t skip;
1102
1103 raw_spin_lock_irq(&logbuf_lock);
1104 if (syslog_seq < log_first_seq) {
1105 /* messages are gone, move to first one */
1106 syslog_seq = log_first_seq;
1107 syslog_idx = log_first_idx;
1108 syslog_prev = 0;
1109 syslog_partial = 0;
1110 }
1111 if (syslog_seq == log_next_seq) {
1112 raw_spin_unlock_irq(&logbuf_lock);
1113 break;
1114 }
1115
1116 skip = syslog_partial;
1117 msg = log_from_idx(syslog_idx);
1118 n = msg_print_text(msg, syslog_prev, true, text,
1119 LOG_LINE_MAX + PREFIX_MAX);
1120 if (n - syslog_partial <= size) {
1121 /* message fits into buffer, move forward */
1122 syslog_idx = log_next(syslog_idx);
1123 syslog_seq++;
1124 syslog_prev = msg->flags;
1125 n -= syslog_partial;
1126 syslog_partial = 0;
1127 } else if (!len){
1128 /* partial read(), remember position */
1129 n = size;
1130 syslog_partial += n;
1131 } else
1132 n = 0;
1133 raw_spin_unlock_irq(&logbuf_lock);
1134
1135 if (!n)
1136 break;
1137
1138 if (copy_to_user(buf, text + skip, n)) {
1139 if (!len)
1140 len = -EFAULT;
1141 break;
1142 }
1143
1144 len += n;
1145 size -= n;
1146 buf += n;
1147 }
1148
1149 kfree(text);
1150 return len;
1151 }
1152
1153 static int syslog_print_all(char __user *buf, int size, bool clear)
1154 {
1155 char *text;
1156 int len = 0;
1157
1158 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1159 if (!text)
1160 return -ENOMEM;
1161
1162 raw_spin_lock_irq(&logbuf_lock);
1163 if (buf) {
1164 u64 next_seq;
1165 u64 seq;
1166 u32 idx;
1167 enum log_flags prev;
1168
1169 if (clear_seq < log_first_seq) {
1170 /* messages are gone, move to first available one */
1171 clear_seq = log_first_seq;
1172 clear_idx = log_first_idx;
1173 }
1174
1175 /*
1176 * Find first record that fits, including all following records,
1177 * into the user-provided buffer for this dump.
1178 */
1179 seq = clear_seq;
1180 idx = clear_idx;
1181 prev = 0;
1182 while (seq < log_next_seq) {
1183 struct printk_log *msg = log_from_idx(idx);
1184
1185 len += msg_print_text(msg, prev, true, NULL, 0);
1186 prev = msg->flags;
1187 idx = log_next(idx);
1188 seq++;
1189 }
1190
1191 /* move first record forward until length fits into the buffer */
1192 seq = clear_seq;
1193 idx = clear_idx;
1194 prev = 0;
1195 while (len > size && seq < log_next_seq) {
1196 struct printk_log *msg = log_from_idx(idx);
1197
1198 len -= msg_print_text(msg, prev, true, NULL, 0);
1199 prev = msg->flags;
1200 idx = log_next(idx);
1201 seq++;
1202 }
1203
1204 /* last message fitting into this dump */
1205 next_seq = log_next_seq;
1206
1207 len = 0;
1208 while (len >= 0 && seq < next_seq) {
1209 struct printk_log *msg = log_from_idx(idx);
1210 int textlen;
1211
1212 textlen = msg_print_text(msg, prev, true, text,
1213 LOG_LINE_MAX + PREFIX_MAX);
1214 if (textlen < 0) {
1215 len = textlen;
1216 break;
1217 }
1218 idx = log_next(idx);
1219 seq++;
1220 prev = msg->flags;
1221
1222 raw_spin_unlock_irq(&logbuf_lock);
1223 if (copy_to_user(buf + len, text, textlen))
1224 len = -EFAULT;
1225 else
1226 len += textlen;
1227 raw_spin_lock_irq(&logbuf_lock);
1228
1229 if (seq < log_first_seq) {
1230 /* messages are gone, move to next one */
1231 seq = log_first_seq;
1232 idx = log_first_idx;
1233 prev = 0;
1234 }
1235 }
1236 }
1237
1238 if (clear) {
1239 clear_seq = log_next_seq;
1240 clear_idx = log_next_idx;
1241 }
1242 raw_spin_unlock_irq(&logbuf_lock);
1243
1244 kfree(text);
1245 return len;
1246 }
1247
1248 int do_syslog(int type, char __user *buf, int len, bool from_file)
1249 {
1250 bool clear = false;
1251 static int saved_console_loglevel = -1;
1252 int error;
1253
1254 error = check_syslog_permissions(type, from_file);
1255 if (error)
1256 goto out;
1257
1258 error = security_syslog(type);
1259 if (error)
1260 return error;
1261
1262 switch (type) {
1263 case SYSLOG_ACTION_CLOSE: /* Close log */
1264 break;
1265 case SYSLOG_ACTION_OPEN: /* Open log */
1266 break;
1267 case SYSLOG_ACTION_READ: /* Read from log */
1268 error = -EINVAL;
1269 if (!buf || len < 0)
1270 goto out;
1271 error = 0;
1272 if (!len)
1273 goto out;
1274 if (!access_ok(VERIFY_WRITE, buf, len)) {
1275 error = -EFAULT;
1276 goto out;
1277 }
1278 error = wait_event_interruptible(log_wait,
1279 syslog_seq != log_next_seq);
1280 if (error)
1281 goto out;
1282 error = syslog_print(buf, len);
1283 break;
1284 /* Read/clear last kernel messages */
1285 case SYSLOG_ACTION_READ_CLEAR:
1286 clear = true;
1287 /* FALL THRU */
1288 /* Read last kernel messages */
1289 case SYSLOG_ACTION_READ_ALL:
1290 error = -EINVAL;
1291 if (!buf || len < 0)
1292 goto out;
1293 error = 0;
1294 if (!len)
1295 goto out;
1296 if (!access_ok(VERIFY_WRITE, buf, len)) {
1297 error = -EFAULT;
1298 goto out;
1299 }
1300 error = syslog_print_all(buf, len, clear);
1301 break;
1302 /* Clear ring buffer */
1303 case SYSLOG_ACTION_CLEAR:
1304 syslog_print_all(NULL, 0, true);
1305 break;
1306 /* Disable logging to console */
1307 case SYSLOG_ACTION_CONSOLE_OFF:
1308 if (saved_console_loglevel == -1)
1309 saved_console_loglevel = console_loglevel;
1310 console_loglevel = minimum_console_loglevel;
1311 break;
1312 /* Enable logging to console */
1313 case SYSLOG_ACTION_CONSOLE_ON:
1314 if (saved_console_loglevel != -1) {
1315 console_loglevel = saved_console_loglevel;
1316 saved_console_loglevel = -1;
1317 }
1318 break;
1319 /* Set level of messages printed to console */
1320 case SYSLOG_ACTION_CONSOLE_LEVEL:
1321 error = -EINVAL;
1322 if (len < 1 || len > 8)
1323 goto out;
1324 if (len < minimum_console_loglevel)
1325 len = minimum_console_loglevel;
1326 console_loglevel = len;
1327 /* Implicitly re-enable logging to console */
1328 saved_console_loglevel = -1;
1329 error = 0;
1330 break;
1331 /* Number of chars in the log buffer */
1332 case SYSLOG_ACTION_SIZE_UNREAD:
1333 raw_spin_lock_irq(&logbuf_lock);
1334 if (syslog_seq < log_first_seq) {
1335 /* messages are gone, move to first one */
1336 syslog_seq = log_first_seq;
1337 syslog_idx = log_first_idx;
1338 syslog_prev = 0;
1339 syslog_partial = 0;
1340 }
1341 if (from_file) {
1342 /*
1343 * Short-cut for poll(/"proc/kmsg") which simply checks
1344 * for pending data, not the size; return the count of
1345 * records, not the length.
1346 */
1347 error = log_next_seq - syslog_seq;
1348 } else {
1349 u64 seq = syslog_seq;
1350 u32 idx = syslog_idx;
1351 enum log_flags prev = syslog_prev;
1352
1353 error = 0;
1354 while (seq < log_next_seq) {
1355 struct printk_log *msg = log_from_idx(idx);
1356
1357 error += msg_print_text(msg, prev, true, NULL, 0);
1358 idx = log_next(idx);
1359 seq++;
1360 prev = msg->flags;
1361 }
1362 error -= syslog_partial;
1363 }
1364 raw_spin_unlock_irq(&logbuf_lock);
1365 break;
1366 /* Size of the log buffer */
1367 case SYSLOG_ACTION_SIZE_BUFFER:
1368 error = log_buf_len;
1369 break;
1370 default:
1371 error = -EINVAL;
1372 break;
1373 }
1374 out:
1375 return error;
1376 }
1377
1378 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1379 {
1380 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1381 }
1382
1383 /*
1384 * Call the console drivers, asking them to write out
1385 * log_buf[start] to log_buf[end - 1].
1386 * The console_lock must be held.
1387 */
1388 static void call_console_drivers(int level, const char *text, size_t len)
1389 {
1390 struct console *con;
1391
1392 trace_console(text, len);
1393
1394 if (level >= console_loglevel && !ignore_loglevel)
1395 return;
1396 if (!console_drivers)
1397 return;
1398
1399 for_each_console(con) {
1400 if (exclusive_console && con != exclusive_console)
1401 continue;
1402 if (!(con->flags & CON_ENABLED))
1403 continue;
1404 if (!con->write)
1405 continue;
1406 if (!cpu_online(smp_processor_id()) &&
1407 !(con->flags & CON_ANYTIME))
1408 continue;
1409 con->write(con, text, len);
1410 }
1411 }
1412
1413 /*
1414 * Zap console related locks when oopsing. Only zap at most once
1415 * every 10 seconds, to leave time for slow consoles to print a
1416 * full oops.
1417 */
1418 static void zap_locks(void)
1419 {
1420 static unsigned long oops_timestamp;
1421
1422 if (time_after_eq(jiffies, oops_timestamp) &&
1423 !time_after(jiffies, oops_timestamp + 30 * HZ))
1424 return;
1425
1426 oops_timestamp = jiffies;
1427
1428 debug_locks_off();
1429 /* If a crash is occurring, make sure we can't deadlock */
1430 raw_spin_lock_init(&logbuf_lock);
1431 /* And make sure that we print immediately */
1432 sema_init(&console_sem, 1);
1433 }
1434
1435 /*
1436 * Check if we have any console that is capable of printing while cpu is
1437 * booting or shutting down. Requires console_sem.
1438 */
1439 static int have_callable_console(void)
1440 {
1441 struct console *con;
1442
1443 for_each_console(con)
1444 if (con->flags & CON_ANYTIME)
1445 return 1;
1446
1447 return 0;
1448 }
1449
1450 /*
1451 * Can we actually use the console at this time on this cpu?
1452 *
1453 * Console drivers may assume that per-cpu resources have been allocated. So
1454 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1455 * call them until this CPU is officially up.
1456 */
1457 static inline int can_use_console(unsigned int cpu)
1458 {
1459 return cpu_online(cpu) || have_callable_console();
1460 }
1461
1462 /*
1463 * Try to get console ownership to actually show the kernel
1464 * messages from a 'printk'. Return true (and with the
1465 * console_lock held, and 'console_locked' set) if it
1466 * is successful, false otherwise.
1467 */
1468 static int console_trylock_for_printk(void)
1469 {
1470 unsigned int cpu = smp_processor_id();
1471
1472 if (!console_trylock())
1473 return 0;
1474 /*
1475 * If we can't use the console, we need to release the console
1476 * semaphore by hand to avoid flushing the buffer. We need to hold the
1477 * console semaphore in order to do this test safely.
1478 */
1479 if (!can_use_console(cpu)) {
1480 console_locked = 0;
1481 up_console_sem();
1482 return 0;
1483 }
1484 return 1;
1485 }
1486
1487 int printk_delay_msec __read_mostly;
1488
1489 static inline void printk_delay(void)
1490 {
1491 if (unlikely(printk_delay_msec)) {
1492 int m = printk_delay_msec;
1493
1494 while (m--) {
1495 mdelay(1);
1496 touch_nmi_watchdog();
1497 }
1498 }
1499 }
1500
1501 /*
1502 * Continuation lines are buffered, and not committed to the record buffer
1503 * until the line is complete, or a race forces it. The line fragments
1504 * though, are printed immediately to the consoles to ensure everything has
1505 * reached the console in case of a kernel crash.
1506 */
1507 static struct cont {
1508 char buf[LOG_LINE_MAX];
1509 size_t len; /* length == 0 means unused buffer */
1510 size_t cons; /* bytes written to console */
1511 struct task_struct *owner; /* task of first print*/
1512 u64 ts_nsec; /* time of first print */
1513 u8 level; /* log level of first message */
1514 u8 facility; /* log facility of first message */
1515 enum log_flags flags; /* prefix, newline flags */
1516 bool flushed:1; /* buffer sealed and committed */
1517 } cont;
1518
1519 static void cont_flush(enum log_flags flags)
1520 {
1521 if (cont.flushed)
1522 return;
1523 if (cont.len == 0)
1524 return;
1525
1526 if (cont.cons) {
1527 /*
1528 * If a fragment of this line was directly flushed to the
1529 * console; wait for the console to pick up the rest of the
1530 * line. LOG_NOCONS suppresses a duplicated output.
1531 */
1532 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1533 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1534 cont.flags = flags;
1535 cont.flushed = true;
1536 } else {
1537 /*
1538 * If no fragment of this line ever reached the console,
1539 * just submit it to the store and free the buffer.
1540 */
1541 log_store(cont.facility, cont.level, flags, 0,
1542 NULL, 0, cont.buf, cont.len);
1543 cont.len = 0;
1544 }
1545 }
1546
1547 static bool cont_add(int facility, int level, const char *text, size_t len)
1548 {
1549 if (cont.len && cont.flushed)
1550 return false;
1551
1552 if (cont.len + len > sizeof(cont.buf)) {
1553 /* the line gets too long, split it up in separate records */
1554 cont_flush(LOG_CONT);
1555 return false;
1556 }
1557
1558 if (!cont.len) {
1559 cont.facility = facility;
1560 cont.level = level;
1561 cont.owner = current;
1562 cont.ts_nsec = local_clock();
1563 cont.flags = 0;
1564 cont.cons = 0;
1565 cont.flushed = false;
1566 }
1567
1568 memcpy(cont.buf + cont.len, text, len);
1569 cont.len += len;
1570
1571 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1572 cont_flush(LOG_CONT);
1573
1574 return true;
1575 }
1576
1577 static size_t cont_print_text(char *text, size_t size)
1578 {
1579 size_t textlen = 0;
1580 size_t len;
1581
1582 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1583 textlen += print_time(cont.ts_nsec, text);
1584 size -= textlen;
1585 }
1586
1587 len = cont.len - cont.cons;
1588 if (len > 0) {
1589 if (len+1 > size)
1590 len = size-1;
1591 memcpy(text + textlen, cont.buf + cont.cons, len);
1592 textlen += len;
1593 cont.cons = cont.len;
1594 }
1595
1596 if (cont.flushed) {
1597 if (cont.flags & LOG_NEWLINE)
1598 text[textlen++] = '\n';
1599 /* got everything, release buffer */
1600 cont.len = 0;
1601 }
1602 return textlen;
1603 }
1604
1605 asmlinkage int vprintk_emit(int facility, int level,
1606 const char *dict, size_t dictlen,
1607 const char *fmt, va_list args)
1608 {
1609 static int recursion_bug;
1610 static char textbuf[LOG_LINE_MAX];
1611 char *text = textbuf;
1612 size_t text_len = 0;
1613 enum log_flags lflags = 0;
1614 unsigned long flags;
1615 int this_cpu;
1616 int printed_len = 0;
1617 bool in_sched = false;
1618 /* cpu currently holding logbuf_lock in this function */
1619 static volatile unsigned int logbuf_cpu = UINT_MAX;
1620
1621 if (level == SCHED_MESSAGE_LOGLEVEL) {
1622 level = -1;
1623 in_sched = true;
1624 }
1625
1626 boot_delay_msec(level);
1627 printk_delay();
1628
1629 /* This stops the holder of console_sem just where we want him */
1630 local_irq_save(flags);
1631 this_cpu = smp_processor_id();
1632
1633 /*
1634 * Ouch, printk recursed into itself!
1635 */
1636 if (unlikely(logbuf_cpu == this_cpu)) {
1637 /*
1638 * If a crash is occurring during printk() on this CPU,
1639 * then try to get the crash message out but make sure
1640 * we can't deadlock. Otherwise just return to avoid the
1641 * recursion and return - but flag the recursion so that
1642 * it can be printed at the next appropriate moment:
1643 */
1644 if (!oops_in_progress && !lockdep_recursing(current)) {
1645 recursion_bug = 1;
1646 local_irq_restore(flags);
1647 return 0;
1648 }
1649 zap_locks();
1650 }
1651
1652 lockdep_off();
1653 raw_spin_lock(&logbuf_lock);
1654 logbuf_cpu = this_cpu;
1655
1656 if (recursion_bug) {
1657 static const char recursion_msg[] =
1658 "BUG: recent printk recursion!";
1659
1660 recursion_bug = 0;
1661 text_len = strlen(recursion_msg);
1662 /* emit KERN_CRIT message */
1663 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1664 NULL, 0, recursion_msg, text_len);
1665 }
1666
1667 /*
1668 * The printf needs to come first; we need the syslog
1669 * prefix which might be passed-in as a parameter.
1670 */
1671 if (in_sched)
1672 text_len = scnprintf(text, sizeof(textbuf),
1673 KERN_WARNING "[sched_delayed] ");
1674
1675 text_len += vscnprintf(text + text_len,
1676 sizeof(textbuf) - text_len, fmt, args);
1677
1678 /* mark and strip a trailing newline */
1679 if (text_len && text[text_len-1] == '\n') {
1680 text_len--;
1681 lflags |= LOG_NEWLINE;
1682 }
1683
1684 /* strip kernel syslog prefix and extract log level or control flags */
1685 if (facility == 0) {
1686 int kern_level = printk_get_level(text);
1687
1688 if (kern_level) {
1689 const char *end_of_header = printk_skip_level(text);
1690 switch (kern_level) {
1691 case '0' ... '7':
1692 if (level == -1)
1693 level = kern_level - '0';
1694 case 'd': /* KERN_DEFAULT */
1695 lflags |= LOG_PREFIX;
1696 }
1697 /*
1698 * No need to check length here because vscnprintf
1699 * put '\0' at the end of the string. Only valid and
1700 * newly printed level is detected.
1701 */
1702 text_len -= end_of_header - text;
1703 text = (char *)end_of_header;
1704 }
1705 }
1706
1707 if (level == -1)
1708 level = default_message_loglevel;
1709
1710 if (dict)
1711 lflags |= LOG_PREFIX|LOG_NEWLINE;
1712
1713 if (!(lflags & LOG_NEWLINE)) {
1714 /*
1715 * Flush the conflicting buffer. An earlier newline was missing,
1716 * or another task also prints continuation lines.
1717 */
1718 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1719 cont_flush(LOG_NEWLINE);
1720
1721 /* buffer line if possible, otherwise store it right away */
1722 if (cont_add(facility, level, text, text_len))
1723 printed_len += text_len;
1724 else
1725 printed_len += log_store(facility, level,
1726 lflags | LOG_CONT, 0,
1727 dict, dictlen, text, text_len);
1728 } else {
1729 bool stored = false;
1730
1731 /*
1732 * If an earlier newline was missing and it was the same task,
1733 * either merge it with the current buffer and flush, or if
1734 * there was a race with interrupts (prefix == true) then just
1735 * flush it out and store this line separately.
1736 * If the preceding printk was from a different task and missed
1737 * a newline, flush and append the newline.
1738 */
1739 if (cont.len) {
1740 if (cont.owner == current && !(lflags & LOG_PREFIX))
1741 stored = cont_add(facility, level, text,
1742 text_len);
1743 cont_flush(LOG_NEWLINE);
1744 }
1745
1746 if (stored)
1747 printed_len += text_len;
1748 else
1749 printed_len += log_store(facility, level, lflags, 0,
1750 dict, dictlen, text, text_len);
1751 }
1752
1753 logbuf_cpu = UINT_MAX;
1754 raw_spin_unlock(&logbuf_lock);
1755 lockdep_on();
1756 local_irq_restore(flags);
1757
1758 /* If called from the scheduler, we can not call up(). */
1759 if (!in_sched) {
1760 lockdep_off();
1761 /*
1762 * Disable preemption to avoid being preempted while holding
1763 * console_sem which would prevent anyone from printing to
1764 * console
1765 */
1766 preempt_disable();
1767
1768 /*
1769 * Try to acquire and then immediately release the console
1770 * semaphore. The release will print out buffers and wake up
1771 * /dev/kmsg and syslog() users.
1772 */
1773 if (console_trylock_for_printk())
1774 console_unlock();
1775 preempt_enable();
1776 lockdep_on();
1777 }
1778
1779 return printed_len;
1780 }
1781 EXPORT_SYMBOL(vprintk_emit);
1782
1783 asmlinkage int vprintk(const char *fmt, va_list args)
1784 {
1785 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1786 }
1787 EXPORT_SYMBOL(vprintk);
1788
1789 asmlinkage int printk_emit(int facility, int level,
1790 const char *dict, size_t dictlen,
1791 const char *fmt, ...)
1792 {
1793 va_list args;
1794 int r;
1795
1796 va_start(args, fmt);
1797 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1798 va_end(args);
1799
1800 return r;
1801 }
1802 EXPORT_SYMBOL(printk_emit);
1803
1804 /**
1805 * printk - print a kernel message
1806 * @fmt: format string
1807 *
1808 * This is printk(). It can be called from any context. We want it to work.
1809 *
1810 * We try to grab the console_lock. If we succeed, it's easy - we log the
1811 * output and call the console drivers. If we fail to get the semaphore, we
1812 * place the output into the log buffer and return. The current holder of
1813 * the console_sem will notice the new output in console_unlock(); and will
1814 * send it to the consoles before releasing the lock.
1815 *
1816 * One effect of this deferred printing is that code which calls printk() and
1817 * then changes console_loglevel may break. This is because console_loglevel
1818 * is inspected when the actual printing occurs.
1819 *
1820 * See also:
1821 * printf(3)
1822 *
1823 * See the vsnprintf() documentation for format string extensions over C99.
1824 */
1825 asmlinkage __visible int printk(const char *fmt, ...)
1826 {
1827 va_list args;
1828 int r;
1829
1830 #ifdef CONFIG_KGDB_KDB
1831 if (unlikely(kdb_trap_printk)) {
1832 va_start(args, fmt);
1833 r = vkdb_printf(fmt, args);
1834 va_end(args);
1835 return r;
1836 }
1837 #endif
1838 va_start(args, fmt);
1839 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1840 va_end(args);
1841
1842 return r;
1843 }
1844 EXPORT_SYMBOL(printk);
1845
1846 #else /* CONFIG_PRINTK */
1847
1848 #define LOG_LINE_MAX 0
1849 #define PREFIX_MAX 0
1850
1851 static u64 syslog_seq;
1852 static u32 syslog_idx;
1853 static u64 console_seq;
1854 static u32 console_idx;
1855 static enum log_flags syslog_prev;
1856 static u64 log_first_seq;
1857 static u32 log_first_idx;
1858 static u64 log_next_seq;
1859 static enum log_flags console_prev;
1860 static struct cont {
1861 size_t len;
1862 size_t cons;
1863 u8 level;
1864 bool flushed:1;
1865 } cont;
1866 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1867 static u32 log_next(u32 idx) { return 0; }
1868 static void call_console_drivers(int level, const char *text, size_t len) {}
1869 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1870 bool syslog, char *buf, size_t size) { return 0; }
1871 static size_t cont_print_text(char *text, size_t size) { return 0; }
1872
1873 #endif /* CONFIG_PRINTK */
1874
1875 #ifdef CONFIG_EARLY_PRINTK
1876 struct console *early_console;
1877
1878 void early_vprintk(const char *fmt, va_list ap)
1879 {
1880 if (early_console) {
1881 char buf[512];
1882 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1883
1884 early_console->write(early_console, buf, n);
1885 }
1886 }
1887
1888 asmlinkage __visible void early_printk(const char *fmt, ...)
1889 {
1890 va_list ap;
1891
1892 va_start(ap, fmt);
1893 early_vprintk(fmt, ap);
1894 va_end(ap);
1895 }
1896 #endif
1897
1898 static int __add_preferred_console(char *name, int idx, char *options,
1899 char *brl_options)
1900 {
1901 struct console_cmdline *c;
1902 int i;
1903
1904 /*
1905 * See if this tty is not yet registered, and
1906 * if we have a slot free.
1907 */
1908 for (i = 0, c = console_cmdline;
1909 i < MAX_CMDLINECONSOLES && c->name[0];
1910 i++, c++) {
1911 if (strcmp(c->name, name) == 0 && c->index == idx) {
1912 if (!brl_options)
1913 selected_console = i;
1914 return 0;
1915 }
1916 }
1917 if (i == MAX_CMDLINECONSOLES)
1918 return -E2BIG;
1919 if (!brl_options)
1920 selected_console = i;
1921 strlcpy(c->name, name, sizeof(c->name));
1922 c->options = options;
1923 braille_set_options(c, brl_options);
1924
1925 c->index = idx;
1926 return 0;
1927 }
1928 /*
1929 * Set up a console. Called via do_early_param() in init/main.c
1930 * for each "console=" parameter in the boot command line.
1931 */
1932 static int __init console_setup(char *str)
1933 {
1934 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1935 char *s, *options, *brl_options = NULL;
1936 int idx;
1937
1938 if (_braille_console_setup(&str, &brl_options))
1939 return 1;
1940
1941 /*
1942 * Decode str into name, index, options.
1943 */
1944 if (str[0] >= '0' && str[0] <= '9') {
1945 strcpy(buf, "ttyS");
1946 strncpy(buf + 4, str, sizeof(buf) - 5);
1947 } else {
1948 strncpy(buf, str, sizeof(buf) - 1);
1949 }
1950 buf[sizeof(buf) - 1] = 0;
1951 options = strchr(str, ',');
1952 if (options)
1953 *(options++) = 0;
1954 #ifdef __sparc__
1955 if (!strcmp(str, "ttya"))
1956 strcpy(buf, "ttyS0");
1957 if (!strcmp(str, "ttyb"))
1958 strcpy(buf, "ttyS1");
1959 #endif
1960 for (s = buf; *s; s++)
1961 if (isdigit(*s) || *s == ',')
1962 break;
1963 idx = simple_strtoul(s, NULL, 10);
1964 *s = 0;
1965
1966 __add_preferred_console(buf, idx, options, brl_options);
1967 console_set_on_cmdline = 1;
1968 return 1;
1969 }
1970 __setup("console=", console_setup);
1971
1972 /**
1973 * add_preferred_console - add a device to the list of preferred consoles.
1974 * @name: device name
1975 * @idx: device index
1976 * @options: options for this console
1977 *
1978 * The last preferred console added will be used for kernel messages
1979 * and stdin/out/err for init. Normally this is used by console_setup
1980 * above to handle user-supplied console arguments; however it can also
1981 * be used by arch-specific code either to override the user or more
1982 * commonly to provide a default console (ie from PROM variables) when
1983 * the user has not supplied one.
1984 */
1985 int add_preferred_console(char *name, int idx, char *options)
1986 {
1987 return __add_preferred_console(name, idx, options, NULL);
1988 }
1989
1990 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1991 {
1992 struct console_cmdline *c;
1993 int i;
1994
1995 for (i = 0, c = console_cmdline;
1996 i < MAX_CMDLINECONSOLES && c->name[0];
1997 i++, c++)
1998 if (strcmp(c->name, name) == 0 && c->index == idx) {
1999 strlcpy(c->name, name_new, sizeof(c->name));
2000 c->options = options;
2001 c->index = idx_new;
2002 return i;
2003 }
2004 /* not found */
2005 return -1;
2006 }
2007
2008 bool console_suspend_enabled = 1;
2009 EXPORT_SYMBOL(console_suspend_enabled);
2010
2011 static int __init console_suspend_disable(char *str)
2012 {
2013 console_suspend_enabled = 0;
2014 return 1;
2015 }
2016 __setup("no_console_suspend", console_suspend_disable);
2017 module_param_named(console_suspend, console_suspend_enabled,
2018 bool, S_IRUGO | S_IWUSR);
2019 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2020 " and hibernate operations");
2021
2022 /**
2023 * suspend_console - suspend the console subsystem
2024 *
2025 * This disables printk() while we go into suspend states
2026 */
2027 void suspend_console(void)
2028 {
2029 if (!console_suspend_enabled)
2030 return;
2031 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2032 console_lock();
2033 console_suspended = 1;
2034 up_console_sem();
2035 }
2036
2037 void resume_console(void)
2038 {
2039 if (!console_suspend_enabled)
2040 return;
2041 down_console_sem();
2042 console_suspended = 0;
2043 console_unlock();
2044 }
2045
2046 /**
2047 * console_cpu_notify - print deferred console messages after CPU hotplug
2048 * @self: notifier struct
2049 * @action: CPU hotplug event
2050 * @hcpu: unused
2051 *
2052 * If printk() is called from a CPU that is not online yet, the messages
2053 * will be spooled but will not show up on the console. This function is
2054 * called when a new CPU comes online (or fails to come up), and ensures
2055 * that any such output gets printed.
2056 */
2057 static int console_cpu_notify(struct notifier_block *self,
2058 unsigned long action, void *hcpu)
2059 {
2060 switch (action) {
2061 case CPU_ONLINE:
2062 case CPU_DEAD:
2063 case CPU_DOWN_FAILED:
2064 case CPU_UP_CANCELED:
2065 console_lock();
2066 console_unlock();
2067 }
2068 return NOTIFY_OK;
2069 }
2070
2071 /**
2072 * console_lock - lock the console system for exclusive use.
2073 *
2074 * Acquires a lock which guarantees that the caller has
2075 * exclusive access to the console system and the console_drivers list.
2076 *
2077 * Can sleep, returns nothing.
2078 */
2079 void console_lock(void)
2080 {
2081 might_sleep();
2082
2083 down_console_sem();
2084 if (console_suspended)
2085 return;
2086 console_locked = 1;
2087 console_may_schedule = 1;
2088 }
2089 EXPORT_SYMBOL(console_lock);
2090
2091 /**
2092 * console_trylock - try to lock the console system for exclusive use.
2093 *
2094 * Try to acquire a lock which guarantees that the caller has exclusive
2095 * access to the console system and the console_drivers list.
2096 *
2097 * returns 1 on success, and 0 on failure to acquire the lock.
2098 */
2099 int console_trylock(void)
2100 {
2101 if (down_trylock_console_sem())
2102 return 0;
2103 if (console_suspended) {
2104 up_console_sem();
2105 return 0;
2106 }
2107 console_locked = 1;
2108 console_may_schedule = 0;
2109 return 1;
2110 }
2111 EXPORT_SYMBOL(console_trylock);
2112
2113 int is_console_locked(void)
2114 {
2115 return console_locked;
2116 }
2117
2118 static void console_cont_flush(char *text, size_t size)
2119 {
2120 unsigned long flags;
2121 size_t len;
2122
2123 raw_spin_lock_irqsave(&logbuf_lock, flags);
2124
2125 if (!cont.len)
2126 goto out;
2127
2128 /*
2129 * We still queue earlier records, likely because the console was
2130 * busy. The earlier ones need to be printed before this one, we
2131 * did not flush any fragment so far, so just let it queue up.
2132 */
2133 if (console_seq < log_next_seq && !cont.cons)
2134 goto out;
2135
2136 len = cont_print_text(text, size);
2137 raw_spin_unlock(&logbuf_lock);
2138 stop_critical_timings();
2139 call_console_drivers(cont.level, text, len);
2140 start_critical_timings();
2141 local_irq_restore(flags);
2142 return;
2143 out:
2144 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2145 }
2146
2147 /**
2148 * console_unlock - unlock the console system
2149 *
2150 * Releases the console_lock which the caller holds on the console system
2151 * and the console driver list.
2152 *
2153 * While the console_lock was held, console output may have been buffered
2154 * by printk(). If this is the case, console_unlock(); emits
2155 * the output prior to releasing the lock.
2156 *
2157 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2158 *
2159 * console_unlock(); may be called from any context.
2160 */
2161 void console_unlock(void)
2162 {
2163 static char text[LOG_LINE_MAX + PREFIX_MAX];
2164 static u64 seen_seq;
2165 unsigned long flags;
2166 bool wake_klogd = false;
2167 bool retry;
2168
2169 if (console_suspended) {
2170 up_console_sem();
2171 return;
2172 }
2173
2174 console_may_schedule = 0;
2175
2176 /* flush buffered message fragment immediately to console */
2177 console_cont_flush(text, sizeof(text));
2178 again:
2179 for (;;) {
2180 struct printk_log *msg;
2181 size_t len;
2182 int level;
2183
2184 raw_spin_lock_irqsave(&logbuf_lock, flags);
2185 if (seen_seq != log_next_seq) {
2186 wake_klogd = true;
2187 seen_seq = log_next_seq;
2188 }
2189
2190 if (console_seq < log_first_seq) {
2191 len = sprintf(text, "** %u printk messages dropped ** ",
2192 (unsigned)(log_first_seq - console_seq));
2193
2194 /* messages are gone, move to first one */
2195 console_seq = log_first_seq;
2196 console_idx = log_first_idx;
2197 console_prev = 0;
2198 } else {
2199 len = 0;
2200 }
2201 skip:
2202 if (console_seq == log_next_seq)
2203 break;
2204
2205 msg = log_from_idx(console_idx);
2206 if (msg->flags & LOG_NOCONS) {
2207 /*
2208 * Skip record we have buffered and already printed
2209 * directly to the console when we received it.
2210 */
2211 console_idx = log_next(console_idx);
2212 console_seq++;
2213 /*
2214 * We will get here again when we register a new
2215 * CON_PRINTBUFFER console. Clear the flag so we
2216 * will properly dump everything later.
2217 */
2218 msg->flags &= ~LOG_NOCONS;
2219 console_prev = msg->flags;
2220 goto skip;
2221 }
2222
2223 level = msg->level;
2224 len += msg_print_text(msg, console_prev, false,
2225 text + len, sizeof(text) - len);
2226 console_idx = log_next(console_idx);
2227 console_seq++;
2228 console_prev = msg->flags;
2229 raw_spin_unlock(&logbuf_lock);
2230
2231 stop_critical_timings(); /* don't trace print latency */
2232 call_console_drivers(level, text, len);
2233 start_critical_timings();
2234 local_irq_restore(flags);
2235 }
2236 console_locked = 0;
2237
2238 /* Release the exclusive_console once it is used */
2239 if (unlikely(exclusive_console))
2240 exclusive_console = NULL;
2241
2242 raw_spin_unlock(&logbuf_lock);
2243
2244 up_console_sem();
2245
2246 /*
2247 * Someone could have filled up the buffer again, so re-check if there's
2248 * something to flush. In case we cannot trylock the console_sem again,
2249 * there's a new owner and the console_unlock() from them will do the
2250 * flush, no worries.
2251 */
2252 raw_spin_lock(&logbuf_lock);
2253 retry = console_seq != log_next_seq;
2254 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2255
2256 if (retry && console_trylock())
2257 goto again;
2258
2259 if (wake_klogd)
2260 wake_up_klogd();
2261 }
2262 EXPORT_SYMBOL(console_unlock);
2263
2264 /**
2265 * console_conditional_schedule - yield the CPU if required
2266 *
2267 * If the console code is currently allowed to sleep, and
2268 * if this CPU should yield the CPU to another task, do
2269 * so here.
2270 *
2271 * Must be called within console_lock();.
2272 */
2273 void __sched console_conditional_schedule(void)
2274 {
2275 if (console_may_schedule)
2276 cond_resched();
2277 }
2278 EXPORT_SYMBOL(console_conditional_schedule);
2279
2280 void console_unblank(void)
2281 {
2282 struct console *c;
2283
2284 /*
2285 * console_unblank can no longer be called in interrupt context unless
2286 * oops_in_progress is set to 1..
2287 */
2288 if (oops_in_progress) {
2289 if (down_trylock_console_sem() != 0)
2290 return;
2291 } else
2292 console_lock();
2293
2294 console_locked = 1;
2295 console_may_schedule = 0;
2296 for_each_console(c)
2297 if ((c->flags & CON_ENABLED) && c->unblank)
2298 c->unblank();
2299 console_unlock();
2300 }
2301
2302 /*
2303 * Return the console tty driver structure and its associated index
2304 */
2305 struct tty_driver *console_device(int *index)
2306 {
2307 struct console *c;
2308 struct tty_driver *driver = NULL;
2309
2310 console_lock();
2311 for_each_console(c) {
2312 if (!c->device)
2313 continue;
2314 driver = c->device(c, index);
2315 if (driver)
2316 break;
2317 }
2318 console_unlock();
2319 return driver;
2320 }
2321
2322 /*
2323 * Prevent further output on the passed console device so that (for example)
2324 * serial drivers can disable console output before suspending a port, and can
2325 * re-enable output afterwards.
2326 */
2327 void console_stop(struct console *console)
2328 {
2329 console_lock();
2330 console->flags &= ~CON_ENABLED;
2331 console_unlock();
2332 }
2333 EXPORT_SYMBOL(console_stop);
2334
2335 void console_start(struct console *console)
2336 {
2337 console_lock();
2338 console->flags |= CON_ENABLED;
2339 console_unlock();
2340 }
2341 EXPORT_SYMBOL(console_start);
2342
2343 static int __read_mostly keep_bootcon;
2344
2345 static int __init keep_bootcon_setup(char *str)
2346 {
2347 keep_bootcon = 1;
2348 pr_info("debug: skip boot console de-registration.\n");
2349
2350 return 0;
2351 }
2352
2353 early_param("keep_bootcon", keep_bootcon_setup);
2354
2355 /*
2356 * The console driver calls this routine during kernel initialization
2357 * to register the console printing procedure with printk() and to
2358 * print any messages that were printed by the kernel before the
2359 * console driver was initialized.
2360 *
2361 * This can happen pretty early during the boot process (because of
2362 * early_printk) - sometimes before setup_arch() completes - be careful
2363 * of what kernel features are used - they may not be initialised yet.
2364 *
2365 * There are two types of consoles - bootconsoles (early_printk) and
2366 * "real" consoles (everything which is not a bootconsole) which are
2367 * handled differently.
2368 * - Any number of bootconsoles can be registered at any time.
2369 * - As soon as a "real" console is registered, all bootconsoles
2370 * will be unregistered automatically.
2371 * - Once a "real" console is registered, any attempt to register a
2372 * bootconsoles will be rejected
2373 */
2374 void register_console(struct console *newcon)
2375 {
2376 int i;
2377 unsigned long flags;
2378 struct console *bcon = NULL;
2379 struct console_cmdline *c;
2380
2381 if (console_drivers)
2382 for_each_console(bcon)
2383 if (WARN(bcon == newcon,
2384 "console '%s%d' already registered\n",
2385 bcon->name, bcon->index))
2386 return;
2387
2388 /*
2389 * before we register a new CON_BOOT console, make sure we don't
2390 * already have a valid console
2391 */
2392 if (console_drivers && newcon->flags & CON_BOOT) {
2393 /* find the last or real console */
2394 for_each_console(bcon) {
2395 if (!(bcon->flags & CON_BOOT)) {
2396 pr_info("Too late to register bootconsole %s%d\n",
2397 newcon->name, newcon->index);
2398 return;
2399 }
2400 }
2401 }
2402
2403 if (console_drivers && console_drivers->flags & CON_BOOT)
2404 bcon = console_drivers;
2405
2406 if (preferred_console < 0 || bcon || !console_drivers)
2407 preferred_console = selected_console;
2408
2409 if (newcon->early_setup)
2410 newcon->early_setup();
2411
2412 /*
2413 * See if we want to use this console driver. If we
2414 * didn't select a console we take the first one
2415 * that registers here.
2416 */
2417 if (preferred_console < 0) {
2418 if (newcon->index < 0)
2419 newcon->index = 0;
2420 if (newcon->setup == NULL ||
2421 newcon->setup(newcon, NULL) == 0) {
2422 newcon->flags |= CON_ENABLED;
2423 if (newcon->device) {
2424 newcon->flags |= CON_CONSDEV;
2425 preferred_console = 0;
2426 }
2427 }
2428 }
2429
2430 /*
2431 * See if this console matches one we selected on
2432 * the command line.
2433 */
2434 for (i = 0, c = console_cmdline;
2435 i < MAX_CMDLINECONSOLES && c->name[0];
2436 i++, c++) {
2437 if (strcmp(c->name, newcon->name) != 0)
2438 continue;
2439 if (newcon->index >= 0 &&
2440 newcon->index != c->index)
2441 continue;
2442 if (newcon->index < 0)
2443 newcon->index = c->index;
2444
2445 if (_braille_register_console(newcon, c))
2446 return;
2447
2448 if (newcon->setup &&
2449 newcon->setup(newcon, console_cmdline[i].options) != 0)
2450 break;
2451 newcon->flags |= CON_ENABLED;
2452 newcon->index = c->index;
2453 if (i == selected_console) {
2454 newcon->flags |= CON_CONSDEV;
2455 preferred_console = selected_console;
2456 }
2457 break;
2458 }
2459
2460 if (!(newcon->flags & CON_ENABLED))
2461 return;
2462
2463 /*
2464 * If we have a bootconsole, and are switching to a real console,
2465 * don't print everything out again, since when the boot console, and
2466 * the real console are the same physical device, it's annoying to
2467 * see the beginning boot messages twice
2468 */
2469 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2470 newcon->flags &= ~CON_PRINTBUFFER;
2471
2472 /*
2473 * Put this console in the list - keep the
2474 * preferred driver at the head of the list.
2475 */
2476 console_lock();
2477 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2478 newcon->next = console_drivers;
2479 console_drivers = newcon;
2480 if (newcon->next)
2481 newcon->next->flags &= ~CON_CONSDEV;
2482 } else {
2483 newcon->next = console_drivers->next;
2484 console_drivers->next = newcon;
2485 }
2486 if (newcon->flags & CON_PRINTBUFFER) {
2487 /*
2488 * console_unlock(); will print out the buffered messages
2489 * for us.
2490 */
2491 raw_spin_lock_irqsave(&logbuf_lock, flags);
2492 console_seq = syslog_seq;
2493 console_idx = syslog_idx;
2494 console_prev = syslog_prev;
2495 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2496 /*
2497 * We're about to replay the log buffer. Only do this to the
2498 * just-registered console to avoid excessive message spam to
2499 * the already-registered consoles.
2500 */
2501 exclusive_console = newcon;
2502 }
2503 console_unlock();
2504 console_sysfs_notify();
2505
2506 /*
2507 * By unregistering the bootconsoles after we enable the real console
2508 * we get the "console xxx enabled" message on all the consoles -
2509 * boot consoles, real consoles, etc - this is to ensure that end
2510 * users know there might be something in the kernel's log buffer that
2511 * went to the bootconsole (that they do not see on the real console)
2512 */
2513 pr_info("%sconsole [%s%d] enabled\n",
2514 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2515 newcon->name, newcon->index);
2516 if (bcon &&
2517 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2518 !keep_bootcon) {
2519 /* We need to iterate through all boot consoles, to make
2520 * sure we print everything out, before we unregister them.
2521 */
2522 for_each_console(bcon)
2523 if (bcon->flags & CON_BOOT)
2524 unregister_console(bcon);
2525 }
2526 }
2527 EXPORT_SYMBOL(register_console);
2528
2529 int unregister_console(struct console *console)
2530 {
2531 struct console *a, *b;
2532 int res;
2533
2534 pr_info("%sconsole [%s%d] disabled\n",
2535 (console->flags & CON_BOOT) ? "boot" : "" ,
2536 console->name, console->index);
2537
2538 res = _braille_unregister_console(console);
2539 if (res)
2540 return res;
2541
2542 res = 1;
2543 console_lock();
2544 if (console_drivers == console) {
2545 console_drivers=console->next;
2546 res = 0;
2547 } else if (console_drivers) {
2548 for (a=console_drivers->next, b=console_drivers ;
2549 a; b=a, a=b->next) {
2550 if (a == console) {
2551 b->next = a->next;
2552 res = 0;
2553 break;
2554 }
2555 }
2556 }
2557
2558 /*
2559 * If this isn't the last console and it has CON_CONSDEV set, we
2560 * need to set it on the next preferred console.
2561 */
2562 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2563 console_drivers->flags |= CON_CONSDEV;
2564
2565 console->flags &= ~CON_ENABLED;
2566 console_unlock();
2567 console_sysfs_notify();
2568 return res;
2569 }
2570 EXPORT_SYMBOL(unregister_console);
2571
2572 static int __init printk_late_init(void)
2573 {
2574 struct console *con;
2575
2576 for_each_console(con) {
2577 if (!keep_bootcon && con->flags & CON_BOOT) {
2578 unregister_console(con);
2579 }
2580 }
2581 hotcpu_notifier(console_cpu_notify, 0);
2582 return 0;
2583 }
2584 late_initcall(printk_late_init);
2585
2586 #if defined CONFIG_PRINTK
2587 /*
2588 * Delayed printk version, for scheduler-internal messages:
2589 */
2590 #define PRINTK_PENDING_WAKEUP 0x01
2591 #define PRINTK_PENDING_OUTPUT 0x02
2592
2593 static DEFINE_PER_CPU(int, printk_pending);
2594
2595 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2596 {
2597 int pending = __this_cpu_xchg(printk_pending, 0);
2598
2599 if (pending & PRINTK_PENDING_OUTPUT) {
2600 /* If trylock fails, someone else is doing the printing */
2601 if (console_trylock())
2602 console_unlock();
2603 }
2604
2605 if (pending & PRINTK_PENDING_WAKEUP)
2606 wake_up_interruptible(&log_wait);
2607 }
2608
2609 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2610 .func = wake_up_klogd_work_func,
2611 .flags = IRQ_WORK_LAZY,
2612 };
2613
2614 void wake_up_klogd(void)
2615 {
2616 preempt_disable();
2617 if (waitqueue_active(&log_wait)) {
2618 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2619 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2620 }
2621 preempt_enable();
2622 }
2623
2624 int printk_deferred(const char *fmt, ...)
2625 {
2626 va_list args;
2627 int r;
2628
2629 preempt_disable();
2630 va_start(args, fmt);
2631 r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args);
2632 va_end(args);
2633
2634 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2635 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2636 preempt_enable();
2637
2638 return r;
2639 }
2640
2641 /*
2642 * printk rate limiting, lifted from the networking subsystem.
2643 *
2644 * This enforces a rate limit: not more than 10 kernel messages
2645 * every 5s to make a denial-of-service attack impossible.
2646 */
2647 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2648
2649 int __printk_ratelimit(const char *func)
2650 {
2651 return ___ratelimit(&printk_ratelimit_state, func);
2652 }
2653 EXPORT_SYMBOL(__printk_ratelimit);
2654
2655 /**
2656 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2657 * @caller_jiffies: pointer to caller's state
2658 * @interval_msecs: minimum interval between prints
2659 *
2660 * printk_timed_ratelimit() returns true if more than @interval_msecs
2661 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2662 * returned true.
2663 */
2664 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2665 unsigned int interval_msecs)
2666 {
2667 unsigned long elapsed = jiffies - *caller_jiffies;
2668
2669 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2670 return false;
2671
2672 *caller_jiffies = jiffies;
2673 return true;
2674 }
2675 EXPORT_SYMBOL(printk_timed_ratelimit);
2676
2677 static DEFINE_SPINLOCK(dump_list_lock);
2678 static LIST_HEAD(dump_list);
2679
2680 /**
2681 * kmsg_dump_register - register a kernel log dumper.
2682 * @dumper: pointer to the kmsg_dumper structure
2683 *
2684 * Adds a kernel log dumper to the system. The dump callback in the
2685 * structure will be called when the kernel oopses or panics and must be
2686 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2687 */
2688 int kmsg_dump_register(struct kmsg_dumper *dumper)
2689 {
2690 unsigned long flags;
2691 int err = -EBUSY;
2692
2693 /* The dump callback needs to be set */
2694 if (!dumper->dump)
2695 return -EINVAL;
2696
2697 spin_lock_irqsave(&dump_list_lock, flags);
2698 /* Don't allow registering multiple times */
2699 if (!dumper->registered) {
2700 dumper->registered = 1;
2701 list_add_tail_rcu(&dumper->list, &dump_list);
2702 err = 0;
2703 }
2704 spin_unlock_irqrestore(&dump_list_lock, flags);
2705
2706 return err;
2707 }
2708 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2709
2710 /**
2711 * kmsg_dump_unregister - unregister a kmsg dumper.
2712 * @dumper: pointer to the kmsg_dumper structure
2713 *
2714 * Removes a dump device from the system. Returns zero on success and
2715 * %-EINVAL otherwise.
2716 */
2717 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2718 {
2719 unsigned long flags;
2720 int err = -EINVAL;
2721
2722 spin_lock_irqsave(&dump_list_lock, flags);
2723 if (dumper->registered) {
2724 dumper->registered = 0;
2725 list_del_rcu(&dumper->list);
2726 err = 0;
2727 }
2728 spin_unlock_irqrestore(&dump_list_lock, flags);
2729 synchronize_rcu();
2730
2731 return err;
2732 }
2733 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2734
2735 static bool always_kmsg_dump;
2736 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2737
2738 /**
2739 * kmsg_dump - dump kernel log to kernel message dumpers.
2740 * @reason: the reason (oops, panic etc) for dumping
2741 *
2742 * Call each of the registered dumper's dump() callback, which can
2743 * retrieve the kmsg records with kmsg_dump_get_line() or
2744 * kmsg_dump_get_buffer().
2745 */
2746 void kmsg_dump(enum kmsg_dump_reason reason)
2747 {
2748 struct kmsg_dumper *dumper;
2749 unsigned long flags;
2750
2751 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2752 return;
2753
2754 rcu_read_lock();
2755 list_for_each_entry_rcu(dumper, &dump_list, list) {
2756 if (dumper->max_reason && reason > dumper->max_reason)
2757 continue;
2758
2759 /* initialize iterator with data about the stored records */
2760 dumper->active = true;
2761
2762 raw_spin_lock_irqsave(&logbuf_lock, flags);
2763 dumper->cur_seq = clear_seq;
2764 dumper->cur_idx = clear_idx;
2765 dumper->next_seq = log_next_seq;
2766 dumper->next_idx = log_next_idx;
2767 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2768
2769 /* invoke dumper which will iterate over records */
2770 dumper->dump(dumper, reason);
2771
2772 /* reset iterator */
2773 dumper->active = false;
2774 }
2775 rcu_read_unlock();
2776 }
2777
2778 /**
2779 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2780 * @dumper: registered kmsg dumper
2781 * @syslog: include the "<4>" prefixes
2782 * @line: buffer to copy the line to
2783 * @size: maximum size of the buffer
2784 * @len: length of line placed into buffer
2785 *
2786 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2787 * record, and copy one record into the provided buffer.
2788 *
2789 * Consecutive calls will return the next available record moving
2790 * towards the end of the buffer with the youngest messages.
2791 *
2792 * A return value of FALSE indicates that there are no more records to
2793 * read.
2794 *
2795 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2796 */
2797 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2798 char *line, size_t size, size_t *len)
2799 {
2800 struct printk_log *msg;
2801 size_t l = 0;
2802 bool ret = false;
2803
2804 if (!dumper->active)
2805 goto out;
2806
2807 if (dumper->cur_seq < log_first_seq) {
2808 /* messages are gone, move to first available one */
2809 dumper->cur_seq = log_first_seq;
2810 dumper->cur_idx = log_first_idx;
2811 }
2812
2813 /* last entry */
2814 if (dumper->cur_seq >= log_next_seq)
2815 goto out;
2816
2817 msg = log_from_idx(dumper->cur_idx);
2818 l = msg_print_text(msg, 0, syslog, line, size);
2819
2820 dumper->cur_idx = log_next(dumper->cur_idx);
2821 dumper->cur_seq++;
2822 ret = true;
2823 out:
2824 if (len)
2825 *len = l;
2826 return ret;
2827 }
2828
2829 /**
2830 * kmsg_dump_get_line - retrieve one kmsg log line
2831 * @dumper: registered kmsg dumper
2832 * @syslog: include the "<4>" prefixes
2833 * @line: buffer to copy the line to
2834 * @size: maximum size of the buffer
2835 * @len: length of line placed into buffer
2836 *
2837 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2838 * record, and copy one record into the provided buffer.
2839 *
2840 * Consecutive calls will return the next available record moving
2841 * towards the end of the buffer with the youngest messages.
2842 *
2843 * A return value of FALSE indicates that there are no more records to
2844 * read.
2845 */
2846 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2847 char *line, size_t size, size_t *len)
2848 {
2849 unsigned long flags;
2850 bool ret;
2851
2852 raw_spin_lock_irqsave(&logbuf_lock, flags);
2853 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2854 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2855
2856 return ret;
2857 }
2858 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2859
2860 /**
2861 * kmsg_dump_get_buffer - copy kmsg log lines
2862 * @dumper: registered kmsg dumper
2863 * @syslog: include the "<4>" prefixes
2864 * @buf: buffer to copy the line to
2865 * @size: maximum size of the buffer
2866 * @len: length of line placed into buffer
2867 *
2868 * Start at the end of the kmsg buffer and fill the provided buffer
2869 * with as many of the the *youngest* kmsg records that fit into it.
2870 * If the buffer is large enough, all available kmsg records will be
2871 * copied with a single call.
2872 *
2873 * Consecutive calls will fill the buffer with the next block of
2874 * available older records, not including the earlier retrieved ones.
2875 *
2876 * A return value of FALSE indicates that there are no more records to
2877 * read.
2878 */
2879 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2880 char *buf, size_t size, size_t *len)
2881 {
2882 unsigned long flags;
2883 u64 seq;
2884 u32 idx;
2885 u64 next_seq;
2886 u32 next_idx;
2887 enum log_flags prev;
2888 size_t l = 0;
2889 bool ret = false;
2890
2891 if (!dumper->active)
2892 goto out;
2893
2894 raw_spin_lock_irqsave(&logbuf_lock, flags);
2895 if (dumper->cur_seq < log_first_seq) {
2896 /* messages are gone, move to first available one */
2897 dumper->cur_seq = log_first_seq;
2898 dumper->cur_idx = log_first_idx;
2899 }
2900
2901 /* last entry */
2902 if (dumper->cur_seq >= dumper->next_seq) {
2903 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2904 goto out;
2905 }
2906
2907 /* calculate length of entire buffer */
2908 seq = dumper->cur_seq;
2909 idx = dumper->cur_idx;
2910 prev = 0;
2911 while (seq < dumper->next_seq) {
2912 struct printk_log *msg = log_from_idx(idx);
2913
2914 l += msg_print_text(msg, prev, true, NULL, 0);
2915 idx = log_next(idx);
2916 seq++;
2917 prev = msg->flags;
2918 }
2919
2920 /* move first record forward until length fits into the buffer */
2921 seq = dumper->cur_seq;
2922 idx = dumper->cur_idx;
2923 prev = 0;
2924 while (l > size && seq < dumper->next_seq) {
2925 struct printk_log *msg = log_from_idx(idx);
2926
2927 l -= msg_print_text(msg, prev, true, NULL, 0);
2928 idx = log_next(idx);
2929 seq++;
2930 prev = msg->flags;
2931 }
2932
2933 /* last message in next interation */
2934 next_seq = seq;
2935 next_idx = idx;
2936
2937 l = 0;
2938 while (seq < dumper->next_seq) {
2939 struct printk_log *msg = log_from_idx(idx);
2940
2941 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2942 idx = log_next(idx);
2943 seq++;
2944 prev = msg->flags;
2945 }
2946
2947 dumper->next_seq = next_seq;
2948 dumper->next_idx = next_idx;
2949 ret = true;
2950 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2951 out:
2952 if (len)
2953 *len = l;
2954 return ret;
2955 }
2956 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2957
2958 /**
2959 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2960 * @dumper: registered kmsg dumper
2961 *
2962 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2963 * kmsg_dump_get_buffer() can be called again and used multiple
2964 * times within the same dumper.dump() callback.
2965 *
2966 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2967 */
2968 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2969 {
2970 dumper->cur_seq = clear_seq;
2971 dumper->cur_idx = clear_idx;
2972 dumper->next_seq = log_next_seq;
2973 dumper->next_idx = log_next_idx;
2974 }
2975
2976 /**
2977 * kmsg_dump_rewind - reset the interator
2978 * @dumper: registered kmsg dumper
2979 *
2980 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2981 * kmsg_dump_get_buffer() can be called again and used multiple
2982 * times within the same dumper.dump() callback.
2983 */
2984 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2985 {
2986 unsigned long flags;
2987
2988 raw_spin_lock_irqsave(&logbuf_lock, flags);
2989 kmsg_dump_rewind_nolock(dumper);
2990 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2991 }
2992 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2993
2994 static char dump_stack_arch_desc_str[128];
2995
2996 /**
2997 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2998 * @fmt: printf-style format string
2999 * @...: arguments for the format string
3000 *
3001 * The configured string will be printed right after utsname during task
3002 * dumps. Usually used to add arch-specific system identifiers. If an
3003 * arch wants to make use of such an ID string, it should initialize this
3004 * as soon as possible during boot.
3005 */
3006 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3007 {
3008 va_list args;
3009
3010 va_start(args, fmt);
3011 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3012 fmt, args);
3013 va_end(args);
3014 }
3015
3016 /**
3017 * dump_stack_print_info - print generic debug info for dump_stack()
3018 * @log_lvl: log level
3019 *
3020 * Arch-specific dump_stack() implementations can use this function to
3021 * print out the same debug information as the generic dump_stack().
3022 */
3023 void dump_stack_print_info(const char *log_lvl)
3024 {
3025 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3026 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3027 print_tainted(), init_utsname()->release,
3028 (int)strcspn(init_utsname()->version, " "),
3029 init_utsname()->version);
3030
3031 if (dump_stack_arch_desc_str[0] != '\0')
3032 printk("%sHardware name: %s\n",
3033 log_lvl, dump_stack_arch_desc_str);
3034
3035 print_worker_info(log_lvl, current);
3036 }
3037
3038 /**
3039 * show_regs_print_info - print generic debug info for show_regs()
3040 * @log_lvl: log level
3041 *
3042 * show_regs() implementations can use this function to print out generic
3043 * debug information.
3044 */
3045 void show_regs_print_info(const char *log_lvl)
3046 {
3047 dump_stack_print_info(log_lvl);
3048
3049 printk("%stask: %p ti: %p task.ti: %p\n",
3050 log_lvl, current, current_thread_info(),
3051 task_thread_info(current));
3052 }
3053
3054 #endif
This page took 0.107683 seconds and 5 git commands to generate.