printk: check CON_ENABLED in have_callable_console()
[deliverable/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
49
50 #include <asm/uaccess.h>
51 #include <asm-generic/sections.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/printk.h>
55
56 #include "console_cmdline.h"
57 #include "braille.h"
58
59 int console_printk[4] = {
60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
64 };
65
66 /*
67 * Low level drivers may need that to know if they can schedule in
68 * their unblank() callback or not. So let's export it.
69 */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72
73 /*
74 * console_sem protects the console_drivers list, and also
75 * provides serialisation for access to the entire console
76 * driver system.
77 */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 .name = "console_lock"
85 };
86 #endif
87
88 /*
89 * Number of registered extended console drivers.
90 *
91 * If extended consoles are present, in-kernel cont reassembly is disabled
92 * and each fragment is stored as a separate log entry with proper
93 * continuation flag so that every emitted message has full metadata. This
94 * doesn't change the result for regular consoles or /proc/kmsg. For
95 * /dev/kmsg, as long as the reader concatenates messages according to
96 * consecutive continuation flags, the end result should be the same too.
97 */
98 static int nr_ext_console_drivers;
99
100 /*
101 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
102 * macros instead of functions so that _RET_IP_ contains useful information.
103 */
104 #define down_console_sem() do { \
105 down(&console_sem);\
106 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
107 } while (0)
108
109 static int __down_trylock_console_sem(unsigned long ip)
110 {
111 if (down_trylock(&console_sem))
112 return 1;
113 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
114 return 0;
115 }
116 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
117
118 #define up_console_sem() do { \
119 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
120 up(&console_sem);\
121 } while (0)
122
123 /*
124 * This is used for debugging the mess that is the VT code by
125 * keeping track if we have the console semaphore held. It's
126 * definitely not the perfect debug tool (we don't know if _WE_
127 * hold it and are racing, but it helps tracking those weird code
128 * paths in the console code where we end up in places I want
129 * locked without the console sempahore held).
130 */
131 static int console_locked, console_suspended;
132
133 /*
134 * If exclusive_console is non-NULL then only this console is to be printed to.
135 */
136 static struct console *exclusive_console;
137
138 /*
139 * Array of consoles built from command line options (console=)
140 */
141
142 #define MAX_CMDLINECONSOLES 8
143
144 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
145
146 static int selected_console = -1;
147 static int preferred_console = -1;
148 int console_set_on_cmdline;
149 EXPORT_SYMBOL(console_set_on_cmdline);
150
151 /* Flag: console code may call schedule() */
152 static int console_may_schedule;
153
154 /*
155 * The printk log buffer consists of a chain of concatenated variable
156 * length records. Every record starts with a record header, containing
157 * the overall length of the record.
158 *
159 * The heads to the first and last entry in the buffer, as well as the
160 * sequence numbers of these entries are maintained when messages are
161 * stored.
162 *
163 * If the heads indicate available messages, the length in the header
164 * tells the start next message. A length == 0 for the next message
165 * indicates a wrap-around to the beginning of the buffer.
166 *
167 * Every record carries the monotonic timestamp in microseconds, as well as
168 * the standard userspace syslog level and syslog facility. The usual
169 * kernel messages use LOG_KERN; userspace-injected messages always carry
170 * a matching syslog facility, by default LOG_USER. The origin of every
171 * message can be reliably determined that way.
172 *
173 * The human readable log message directly follows the message header. The
174 * length of the message text is stored in the header, the stored message
175 * is not terminated.
176 *
177 * Optionally, a message can carry a dictionary of properties (key/value pairs),
178 * to provide userspace with a machine-readable message context.
179 *
180 * Examples for well-defined, commonly used property names are:
181 * DEVICE=b12:8 device identifier
182 * b12:8 block dev_t
183 * c127:3 char dev_t
184 * n8 netdev ifindex
185 * +sound:card0 subsystem:devname
186 * SUBSYSTEM=pci driver-core subsystem name
187 *
188 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
189 * follows directly after a '=' character. Every property is terminated by
190 * a '\0' character. The last property is not terminated.
191 *
192 * Example of a message structure:
193 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
194 * 0008 34 00 record is 52 bytes long
195 * 000a 0b 00 text is 11 bytes long
196 * 000c 1f 00 dictionary is 23 bytes long
197 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
198 * 0010 69 74 27 73 20 61 20 6c "it's a l"
199 * 69 6e 65 "ine"
200 * 001b 44 45 56 49 43 "DEVIC"
201 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
202 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
203 * 67 "g"
204 * 0032 00 00 00 padding to next message header
205 *
206 * The 'struct printk_log' buffer header must never be directly exported to
207 * userspace, it is a kernel-private implementation detail that might
208 * need to be changed in the future, when the requirements change.
209 *
210 * /dev/kmsg exports the structured data in the following line format:
211 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
212 *
213 * Users of the export format should ignore possible additional values
214 * separated by ',', and find the message after the ';' character.
215 *
216 * The optional key/value pairs are attached as continuation lines starting
217 * with a space character and terminated by a newline. All possible
218 * non-prinatable characters are escaped in the "\xff" notation.
219 */
220
221 enum log_flags {
222 LOG_NOCONS = 1, /* already flushed, do not print to console */
223 LOG_NEWLINE = 2, /* text ended with a newline */
224 LOG_PREFIX = 4, /* text started with a prefix */
225 LOG_CONT = 8, /* text is a fragment of a continuation line */
226 };
227
228 struct printk_log {
229 u64 ts_nsec; /* timestamp in nanoseconds */
230 u16 len; /* length of entire record */
231 u16 text_len; /* length of text buffer */
232 u16 dict_len; /* length of dictionary buffer */
233 u8 facility; /* syslog facility */
234 u8 flags:5; /* internal record flags */
235 u8 level:3; /* syslog level */
236 }
237 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
238 __packed __aligned(4)
239 #endif
240 ;
241
242 /*
243 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
244 * within the scheduler's rq lock. It must be released before calling
245 * console_unlock() or anything else that might wake up a process.
246 */
247 static DEFINE_RAW_SPINLOCK(logbuf_lock);
248
249 #ifdef CONFIG_PRINTK
250 DECLARE_WAIT_QUEUE_HEAD(log_wait);
251 /* the next printk record to read by syslog(READ) or /proc/kmsg */
252 static u64 syslog_seq;
253 static u32 syslog_idx;
254 static enum log_flags syslog_prev;
255 static size_t syslog_partial;
256
257 /* index and sequence number of the first record stored in the buffer */
258 static u64 log_first_seq;
259 static u32 log_first_idx;
260
261 /* index and sequence number of the next record to store in the buffer */
262 static u64 log_next_seq;
263 static u32 log_next_idx;
264
265 /* the next printk record to write to the console */
266 static u64 console_seq;
267 static u32 console_idx;
268 static enum log_flags console_prev;
269
270 /* the next printk record to read after the last 'clear' command */
271 static u64 clear_seq;
272 static u32 clear_idx;
273
274 #define PREFIX_MAX 32
275 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
276
277 #define LOG_LEVEL(v) ((v) & 0x07)
278 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
279
280 /* record buffer */
281 #define LOG_ALIGN __alignof__(struct printk_log)
282 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
283 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
284 static char *log_buf = __log_buf;
285 static u32 log_buf_len = __LOG_BUF_LEN;
286
287 /* Return log buffer address */
288 char *log_buf_addr_get(void)
289 {
290 return log_buf;
291 }
292
293 /* Return log buffer size */
294 u32 log_buf_len_get(void)
295 {
296 return log_buf_len;
297 }
298
299 /* human readable text of the record */
300 static char *log_text(const struct printk_log *msg)
301 {
302 return (char *)msg + sizeof(struct printk_log);
303 }
304
305 /* optional key/value pair dictionary attached to the record */
306 static char *log_dict(const struct printk_log *msg)
307 {
308 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
309 }
310
311 /* get record by index; idx must point to valid msg */
312 static struct printk_log *log_from_idx(u32 idx)
313 {
314 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
315
316 /*
317 * A length == 0 record is the end of buffer marker. Wrap around and
318 * read the message at the start of the buffer.
319 */
320 if (!msg->len)
321 return (struct printk_log *)log_buf;
322 return msg;
323 }
324
325 /* get next record; idx must point to valid msg */
326 static u32 log_next(u32 idx)
327 {
328 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
329
330 /* length == 0 indicates the end of the buffer; wrap */
331 /*
332 * A length == 0 record is the end of buffer marker. Wrap around and
333 * read the message at the start of the buffer as *this* one, and
334 * return the one after that.
335 */
336 if (!msg->len) {
337 msg = (struct printk_log *)log_buf;
338 return msg->len;
339 }
340 return idx + msg->len;
341 }
342
343 /*
344 * Check whether there is enough free space for the given message.
345 *
346 * The same values of first_idx and next_idx mean that the buffer
347 * is either empty or full.
348 *
349 * If the buffer is empty, we must respect the position of the indexes.
350 * They cannot be reset to the beginning of the buffer.
351 */
352 static int logbuf_has_space(u32 msg_size, bool empty)
353 {
354 u32 free;
355
356 if (log_next_idx > log_first_idx || empty)
357 free = max(log_buf_len - log_next_idx, log_first_idx);
358 else
359 free = log_first_idx - log_next_idx;
360
361 /*
362 * We need space also for an empty header that signalizes wrapping
363 * of the buffer.
364 */
365 return free >= msg_size + sizeof(struct printk_log);
366 }
367
368 static int log_make_free_space(u32 msg_size)
369 {
370 while (log_first_seq < log_next_seq) {
371 if (logbuf_has_space(msg_size, false))
372 return 0;
373 /* drop old messages until we have enough contiguous space */
374 log_first_idx = log_next(log_first_idx);
375 log_first_seq++;
376 }
377
378 /* sequence numbers are equal, so the log buffer is empty */
379 if (logbuf_has_space(msg_size, true))
380 return 0;
381
382 return -ENOMEM;
383 }
384
385 /* compute the message size including the padding bytes */
386 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
387 {
388 u32 size;
389
390 size = sizeof(struct printk_log) + text_len + dict_len;
391 *pad_len = (-size) & (LOG_ALIGN - 1);
392 size += *pad_len;
393
394 return size;
395 }
396
397 /*
398 * Define how much of the log buffer we could take at maximum. The value
399 * must be greater than two. Note that only half of the buffer is available
400 * when the index points to the middle.
401 */
402 #define MAX_LOG_TAKE_PART 4
403 static const char trunc_msg[] = "<truncated>";
404
405 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
406 u16 *dict_len, u32 *pad_len)
407 {
408 /*
409 * The message should not take the whole buffer. Otherwise, it might
410 * get removed too soon.
411 */
412 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
413 if (*text_len > max_text_len)
414 *text_len = max_text_len;
415 /* enable the warning message */
416 *trunc_msg_len = strlen(trunc_msg);
417 /* disable the "dict" completely */
418 *dict_len = 0;
419 /* compute the size again, count also the warning message */
420 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
421 }
422
423 /* insert record into the buffer, discard old ones, update heads */
424 static int log_store(int facility, int level,
425 enum log_flags flags, u64 ts_nsec,
426 const char *dict, u16 dict_len,
427 const char *text, u16 text_len)
428 {
429 struct printk_log *msg;
430 u32 size, pad_len;
431 u16 trunc_msg_len = 0;
432
433 /* number of '\0' padding bytes to next message */
434 size = msg_used_size(text_len, dict_len, &pad_len);
435
436 if (log_make_free_space(size)) {
437 /* truncate the message if it is too long for empty buffer */
438 size = truncate_msg(&text_len, &trunc_msg_len,
439 &dict_len, &pad_len);
440 /* survive when the log buffer is too small for trunc_msg */
441 if (log_make_free_space(size))
442 return 0;
443 }
444
445 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
446 /*
447 * This message + an additional empty header does not fit
448 * at the end of the buffer. Add an empty header with len == 0
449 * to signify a wrap around.
450 */
451 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
452 log_next_idx = 0;
453 }
454
455 /* fill message */
456 msg = (struct printk_log *)(log_buf + log_next_idx);
457 memcpy(log_text(msg), text, text_len);
458 msg->text_len = text_len;
459 if (trunc_msg_len) {
460 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
461 msg->text_len += trunc_msg_len;
462 }
463 memcpy(log_dict(msg), dict, dict_len);
464 msg->dict_len = dict_len;
465 msg->facility = facility;
466 msg->level = level & 7;
467 msg->flags = flags & 0x1f;
468 if (ts_nsec > 0)
469 msg->ts_nsec = ts_nsec;
470 else
471 msg->ts_nsec = local_clock();
472 memset(log_dict(msg) + dict_len, 0, pad_len);
473 msg->len = size;
474
475 /* insert message */
476 log_next_idx += msg->len;
477 log_next_seq++;
478
479 return msg->text_len;
480 }
481
482 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
483
484 static int syslog_action_restricted(int type)
485 {
486 if (dmesg_restrict)
487 return 1;
488 /*
489 * Unless restricted, we allow "read all" and "get buffer size"
490 * for everybody.
491 */
492 return type != SYSLOG_ACTION_READ_ALL &&
493 type != SYSLOG_ACTION_SIZE_BUFFER;
494 }
495
496 int check_syslog_permissions(int type, int source)
497 {
498 /*
499 * If this is from /proc/kmsg and we've already opened it, then we've
500 * already done the capabilities checks at open time.
501 */
502 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
503 goto ok;
504
505 if (syslog_action_restricted(type)) {
506 if (capable(CAP_SYSLOG))
507 goto ok;
508 /*
509 * For historical reasons, accept CAP_SYS_ADMIN too, with
510 * a warning.
511 */
512 if (capable(CAP_SYS_ADMIN)) {
513 pr_warn_once("%s (%d): Attempt to access syslog with "
514 "CAP_SYS_ADMIN but no CAP_SYSLOG "
515 "(deprecated).\n",
516 current->comm, task_pid_nr(current));
517 goto ok;
518 }
519 return -EPERM;
520 }
521 ok:
522 return security_syslog(type);
523 }
524 EXPORT_SYMBOL_GPL(check_syslog_permissions);
525
526 static void append_char(char **pp, char *e, char c)
527 {
528 if (*pp < e)
529 *(*pp)++ = c;
530 }
531
532 static ssize_t msg_print_ext_header(char *buf, size_t size,
533 struct printk_log *msg, u64 seq,
534 enum log_flags prev_flags)
535 {
536 u64 ts_usec = msg->ts_nsec;
537 char cont = '-';
538
539 do_div(ts_usec, 1000);
540
541 /*
542 * If we couldn't merge continuation line fragments during the print,
543 * export the stored flags to allow an optional external merge of the
544 * records. Merging the records isn't always neccessarily correct, like
545 * when we hit a race during printing. In most cases though, it produces
546 * better readable output. 'c' in the record flags mark the first
547 * fragment of a line, '+' the following.
548 */
549 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
550 cont = 'c';
551 else if ((msg->flags & LOG_CONT) ||
552 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
553 cont = '+';
554
555 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
556 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
557 }
558
559 static ssize_t msg_print_ext_body(char *buf, size_t size,
560 char *dict, size_t dict_len,
561 char *text, size_t text_len)
562 {
563 char *p = buf, *e = buf + size;
564 size_t i;
565
566 /* escape non-printable characters */
567 for (i = 0; i < text_len; i++) {
568 unsigned char c = text[i];
569
570 if (c < ' ' || c >= 127 || c == '\\')
571 p += scnprintf(p, e - p, "\\x%02x", c);
572 else
573 append_char(&p, e, c);
574 }
575 append_char(&p, e, '\n');
576
577 if (dict_len) {
578 bool line = true;
579
580 for (i = 0; i < dict_len; i++) {
581 unsigned char c = dict[i];
582
583 if (line) {
584 append_char(&p, e, ' ');
585 line = false;
586 }
587
588 if (c == '\0') {
589 append_char(&p, e, '\n');
590 line = true;
591 continue;
592 }
593
594 if (c < ' ' || c >= 127 || c == '\\') {
595 p += scnprintf(p, e - p, "\\x%02x", c);
596 continue;
597 }
598
599 append_char(&p, e, c);
600 }
601 append_char(&p, e, '\n');
602 }
603
604 return p - buf;
605 }
606
607 /* /dev/kmsg - userspace message inject/listen interface */
608 struct devkmsg_user {
609 u64 seq;
610 u32 idx;
611 enum log_flags prev;
612 struct mutex lock;
613 char buf[CONSOLE_EXT_LOG_MAX];
614 };
615
616 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
617 {
618 char *buf, *line;
619 int level = default_message_loglevel;
620 int facility = 1; /* LOG_USER */
621 size_t len = iov_iter_count(from);
622 ssize_t ret = len;
623
624 if (len > LOG_LINE_MAX)
625 return -EINVAL;
626 buf = kmalloc(len+1, GFP_KERNEL);
627 if (buf == NULL)
628 return -ENOMEM;
629
630 buf[len] = '\0';
631 if (copy_from_iter(buf, len, from) != len) {
632 kfree(buf);
633 return -EFAULT;
634 }
635
636 /*
637 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
638 * the decimal value represents 32bit, the lower 3 bit are the log
639 * level, the rest are the log facility.
640 *
641 * If no prefix or no userspace facility is specified, we
642 * enforce LOG_USER, to be able to reliably distinguish
643 * kernel-generated messages from userspace-injected ones.
644 */
645 line = buf;
646 if (line[0] == '<') {
647 char *endp = NULL;
648 unsigned int u;
649
650 u = simple_strtoul(line + 1, &endp, 10);
651 if (endp && endp[0] == '>') {
652 level = LOG_LEVEL(u);
653 if (LOG_FACILITY(u) != 0)
654 facility = LOG_FACILITY(u);
655 endp++;
656 len -= endp - line;
657 line = endp;
658 }
659 }
660
661 printk_emit(facility, level, NULL, 0, "%s", line);
662 kfree(buf);
663 return ret;
664 }
665
666 static ssize_t devkmsg_read(struct file *file, char __user *buf,
667 size_t count, loff_t *ppos)
668 {
669 struct devkmsg_user *user = file->private_data;
670 struct printk_log *msg;
671 size_t len;
672 ssize_t ret;
673
674 if (!user)
675 return -EBADF;
676
677 ret = mutex_lock_interruptible(&user->lock);
678 if (ret)
679 return ret;
680 raw_spin_lock_irq(&logbuf_lock);
681 while (user->seq == log_next_seq) {
682 if (file->f_flags & O_NONBLOCK) {
683 ret = -EAGAIN;
684 raw_spin_unlock_irq(&logbuf_lock);
685 goto out;
686 }
687
688 raw_spin_unlock_irq(&logbuf_lock);
689 ret = wait_event_interruptible(log_wait,
690 user->seq != log_next_seq);
691 if (ret)
692 goto out;
693 raw_spin_lock_irq(&logbuf_lock);
694 }
695
696 if (user->seq < log_first_seq) {
697 /* our last seen message is gone, return error and reset */
698 user->idx = log_first_idx;
699 user->seq = log_first_seq;
700 ret = -EPIPE;
701 raw_spin_unlock_irq(&logbuf_lock);
702 goto out;
703 }
704
705 msg = log_from_idx(user->idx);
706 len = msg_print_ext_header(user->buf, sizeof(user->buf),
707 msg, user->seq, user->prev);
708 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
709 log_dict(msg), msg->dict_len,
710 log_text(msg), msg->text_len);
711
712 user->prev = msg->flags;
713 user->idx = log_next(user->idx);
714 user->seq++;
715 raw_spin_unlock_irq(&logbuf_lock);
716
717 if (len > count) {
718 ret = -EINVAL;
719 goto out;
720 }
721
722 if (copy_to_user(buf, user->buf, len)) {
723 ret = -EFAULT;
724 goto out;
725 }
726 ret = len;
727 out:
728 mutex_unlock(&user->lock);
729 return ret;
730 }
731
732 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
733 {
734 struct devkmsg_user *user = file->private_data;
735 loff_t ret = 0;
736
737 if (!user)
738 return -EBADF;
739 if (offset)
740 return -ESPIPE;
741
742 raw_spin_lock_irq(&logbuf_lock);
743 switch (whence) {
744 case SEEK_SET:
745 /* the first record */
746 user->idx = log_first_idx;
747 user->seq = log_first_seq;
748 break;
749 case SEEK_DATA:
750 /*
751 * The first record after the last SYSLOG_ACTION_CLEAR,
752 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
753 * changes no global state, and does not clear anything.
754 */
755 user->idx = clear_idx;
756 user->seq = clear_seq;
757 break;
758 case SEEK_END:
759 /* after the last record */
760 user->idx = log_next_idx;
761 user->seq = log_next_seq;
762 break;
763 default:
764 ret = -EINVAL;
765 }
766 raw_spin_unlock_irq(&logbuf_lock);
767 return ret;
768 }
769
770 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
771 {
772 struct devkmsg_user *user = file->private_data;
773 int ret = 0;
774
775 if (!user)
776 return POLLERR|POLLNVAL;
777
778 poll_wait(file, &log_wait, wait);
779
780 raw_spin_lock_irq(&logbuf_lock);
781 if (user->seq < log_next_seq) {
782 /* return error when data has vanished underneath us */
783 if (user->seq < log_first_seq)
784 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
785 else
786 ret = POLLIN|POLLRDNORM;
787 }
788 raw_spin_unlock_irq(&logbuf_lock);
789
790 return ret;
791 }
792
793 static int devkmsg_open(struct inode *inode, struct file *file)
794 {
795 struct devkmsg_user *user;
796 int err;
797
798 /* write-only does not need any file context */
799 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
800 return 0;
801
802 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
803 SYSLOG_FROM_READER);
804 if (err)
805 return err;
806
807 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
808 if (!user)
809 return -ENOMEM;
810
811 mutex_init(&user->lock);
812
813 raw_spin_lock_irq(&logbuf_lock);
814 user->idx = log_first_idx;
815 user->seq = log_first_seq;
816 raw_spin_unlock_irq(&logbuf_lock);
817
818 file->private_data = user;
819 return 0;
820 }
821
822 static int devkmsg_release(struct inode *inode, struct file *file)
823 {
824 struct devkmsg_user *user = file->private_data;
825
826 if (!user)
827 return 0;
828
829 mutex_destroy(&user->lock);
830 kfree(user);
831 return 0;
832 }
833
834 const struct file_operations kmsg_fops = {
835 .open = devkmsg_open,
836 .read = devkmsg_read,
837 .write_iter = devkmsg_write,
838 .llseek = devkmsg_llseek,
839 .poll = devkmsg_poll,
840 .release = devkmsg_release,
841 };
842
843 #ifdef CONFIG_KEXEC_CORE
844 /*
845 * This appends the listed symbols to /proc/vmcore
846 *
847 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
848 * obtain access to symbols that are otherwise very difficult to locate. These
849 * symbols are specifically used so that utilities can access and extract the
850 * dmesg log from a vmcore file after a crash.
851 */
852 void log_buf_kexec_setup(void)
853 {
854 VMCOREINFO_SYMBOL(log_buf);
855 VMCOREINFO_SYMBOL(log_buf_len);
856 VMCOREINFO_SYMBOL(log_first_idx);
857 VMCOREINFO_SYMBOL(log_next_idx);
858 /*
859 * Export struct printk_log size and field offsets. User space tools can
860 * parse it and detect any changes to structure down the line.
861 */
862 VMCOREINFO_STRUCT_SIZE(printk_log);
863 VMCOREINFO_OFFSET(printk_log, ts_nsec);
864 VMCOREINFO_OFFSET(printk_log, len);
865 VMCOREINFO_OFFSET(printk_log, text_len);
866 VMCOREINFO_OFFSET(printk_log, dict_len);
867 }
868 #endif
869
870 /* requested log_buf_len from kernel cmdline */
871 static unsigned long __initdata new_log_buf_len;
872
873 /* we practice scaling the ring buffer by powers of 2 */
874 static void __init log_buf_len_update(unsigned size)
875 {
876 if (size)
877 size = roundup_pow_of_two(size);
878 if (size > log_buf_len)
879 new_log_buf_len = size;
880 }
881
882 /* save requested log_buf_len since it's too early to process it */
883 static int __init log_buf_len_setup(char *str)
884 {
885 unsigned size = memparse(str, &str);
886
887 log_buf_len_update(size);
888
889 return 0;
890 }
891 early_param("log_buf_len", log_buf_len_setup);
892
893 #ifdef CONFIG_SMP
894 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
895
896 static void __init log_buf_add_cpu(void)
897 {
898 unsigned int cpu_extra;
899
900 /*
901 * archs should set up cpu_possible_bits properly with
902 * set_cpu_possible() after setup_arch() but just in
903 * case lets ensure this is valid.
904 */
905 if (num_possible_cpus() == 1)
906 return;
907
908 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
909
910 /* by default this will only continue through for large > 64 CPUs */
911 if (cpu_extra <= __LOG_BUF_LEN / 2)
912 return;
913
914 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
915 __LOG_CPU_MAX_BUF_LEN);
916 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
917 cpu_extra);
918 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
919
920 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
921 }
922 #else /* !CONFIG_SMP */
923 static inline void log_buf_add_cpu(void) {}
924 #endif /* CONFIG_SMP */
925
926 void __init setup_log_buf(int early)
927 {
928 unsigned long flags;
929 char *new_log_buf;
930 int free;
931
932 if (log_buf != __log_buf)
933 return;
934
935 if (!early && !new_log_buf_len)
936 log_buf_add_cpu();
937
938 if (!new_log_buf_len)
939 return;
940
941 if (early) {
942 new_log_buf =
943 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
944 } else {
945 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
946 LOG_ALIGN);
947 }
948
949 if (unlikely(!new_log_buf)) {
950 pr_err("log_buf_len: %ld bytes not available\n",
951 new_log_buf_len);
952 return;
953 }
954
955 raw_spin_lock_irqsave(&logbuf_lock, flags);
956 log_buf_len = new_log_buf_len;
957 log_buf = new_log_buf;
958 new_log_buf_len = 0;
959 free = __LOG_BUF_LEN - log_next_idx;
960 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
961 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
962
963 pr_info("log_buf_len: %d bytes\n", log_buf_len);
964 pr_info("early log buf free: %d(%d%%)\n",
965 free, (free * 100) / __LOG_BUF_LEN);
966 }
967
968 static bool __read_mostly ignore_loglevel;
969
970 static int __init ignore_loglevel_setup(char *str)
971 {
972 ignore_loglevel = true;
973 pr_info("debug: ignoring loglevel setting.\n");
974
975 return 0;
976 }
977
978 early_param("ignore_loglevel", ignore_loglevel_setup);
979 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
980 MODULE_PARM_DESC(ignore_loglevel,
981 "ignore loglevel setting (prints all kernel messages to the console)");
982
983 #ifdef CONFIG_BOOT_PRINTK_DELAY
984
985 static int boot_delay; /* msecs delay after each printk during bootup */
986 static unsigned long long loops_per_msec; /* based on boot_delay */
987
988 static int __init boot_delay_setup(char *str)
989 {
990 unsigned long lpj;
991
992 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
993 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
994
995 get_option(&str, &boot_delay);
996 if (boot_delay > 10 * 1000)
997 boot_delay = 0;
998
999 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1000 "HZ: %d, loops_per_msec: %llu\n",
1001 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1002 return 0;
1003 }
1004 early_param("boot_delay", boot_delay_setup);
1005
1006 static void boot_delay_msec(int level)
1007 {
1008 unsigned long long k;
1009 unsigned long timeout;
1010
1011 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1012 || (level >= console_loglevel && !ignore_loglevel)) {
1013 return;
1014 }
1015
1016 k = (unsigned long long)loops_per_msec * boot_delay;
1017
1018 timeout = jiffies + msecs_to_jiffies(boot_delay);
1019 while (k) {
1020 k--;
1021 cpu_relax();
1022 /*
1023 * use (volatile) jiffies to prevent
1024 * compiler reduction; loop termination via jiffies
1025 * is secondary and may or may not happen.
1026 */
1027 if (time_after(jiffies, timeout))
1028 break;
1029 touch_nmi_watchdog();
1030 }
1031 }
1032 #else
1033 static inline void boot_delay_msec(int level)
1034 {
1035 }
1036 #endif
1037
1038 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1039 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1040
1041 static size_t print_time(u64 ts, char *buf)
1042 {
1043 unsigned long rem_nsec;
1044
1045 if (!printk_time)
1046 return 0;
1047
1048 rem_nsec = do_div(ts, 1000000000);
1049
1050 if (!buf)
1051 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1052
1053 return sprintf(buf, "[%5lu.%06lu] ",
1054 (unsigned long)ts, rem_nsec / 1000);
1055 }
1056
1057 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1058 {
1059 size_t len = 0;
1060 unsigned int prefix = (msg->facility << 3) | msg->level;
1061
1062 if (syslog) {
1063 if (buf) {
1064 len += sprintf(buf, "<%u>", prefix);
1065 } else {
1066 len += 3;
1067 if (prefix > 999)
1068 len += 3;
1069 else if (prefix > 99)
1070 len += 2;
1071 else if (prefix > 9)
1072 len++;
1073 }
1074 }
1075
1076 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1077 return len;
1078 }
1079
1080 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1081 bool syslog, char *buf, size_t size)
1082 {
1083 const char *text = log_text(msg);
1084 size_t text_size = msg->text_len;
1085 bool prefix = true;
1086 bool newline = true;
1087 size_t len = 0;
1088
1089 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1090 prefix = false;
1091
1092 if (msg->flags & LOG_CONT) {
1093 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1094 prefix = false;
1095
1096 if (!(msg->flags & LOG_NEWLINE))
1097 newline = false;
1098 }
1099
1100 do {
1101 const char *next = memchr(text, '\n', text_size);
1102 size_t text_len;
1103
1104 if (next) {
1105 text_len = next - text;
1106 next++;
1107 text_size -= next - text;
1108 } else {
1109 text_len = text_size;
1110 }
1111
1112 if (buf) {
1113 if (print_prefix(msg, syslog, NULL) +
1114 text_len + 1 >= size - len)
1115 break;
1116
1117 if (prefix)
1118 len += print_prefix(msg, syslog, buf + len);
1119 memcpy(buf + len, text, text_len);
1120 len += text_len;
1121 if (next || newline)
1122 buf[len++] = '\n';
1123 } else {
1124 /* SYSLOG_ACTION_* buffer size only calculation */
1125 if (prefix)
1126 len += print_prefix(msg, syslog, NULL);
1127 len += text_len;
1128 if (next || newline)
1129 len++;
1130 }
1131
1132 prefix = true;
1133 text = next;
1134 } while (text);
1135
1136 return len;
1137 }
1138
1139 static int syslog_print(char __user *buf, int size)
1140 {
1141 char *text;
1142 struct printk_log *msg;
1143 int len = 0;
1144
1145 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1146 if (!text)
1147 return -ENOMEM;
1148
1149 while (size > 0) {
1150 size_t n;
1151 size_t skip;
1152
1153 raw_spin_lock_irq(&logbuf_lock);
1154 if (syslog_seq < log_first_seq) {
1155 /* messages are gone, move to first one */
1156 syslog_seq = log_first_seq;
1157 syslog_idx = log_first_idx;
1158 syslog_prev = 0;
1159 syslog_partial = 0;
1160 }
1161 if (syslog_seq == log_next_seq) {
1162 raw_spin_unlock_irq(&logbuf_lock);
1163 break;
1164 }
1165
1166 skip = syslog_partial;
1167 msg = log_from_idx(syslog_idx);
1168 n = msg_print_text(msg, syslog_prev, true, text,
1169 LOG_LINE_MAX + PREFIX_MAX);
1170 if (n - syslog_partial <= size) {
1171 /* message fits into buffer, move forward */
1172 syslog_idx = log_next(syslog_idx);
1173 syslog_seq++;
1174 syslog_prev = msg->flags;
1175 n -= syslog_partial;
1176 syslog_partial = 0;
1177 } else if (!len){
1178 /* partial read(), remember position */
1179 n = size;
1180 syslog_partial += n;
1181 } else
1182 n = 0;
1183 raw_spin_unlock_irq(&logbuf_lock);
1184
1185 if (!n)
1186 break;
1187
1188 if (copy_to_user(buf, text + skip, n)) {
1189 if (!len)
1190 len = -EFAULT;
1191 break;
1192 }
1193
1194 len += n;
1195 size -= n;
1196 buf += n;
1197 }
1198
1199 kfree(text);
1200 return len;
1201 }
1202
1203 static int syslog_print_all(char __user *buf, int size, bool clear)
1204 {
1205 char *text;
1206 int len = 0;
1207
1208 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1209 if (!text)
1210 return -ENOMEM;
1211
1212 raw_spin_lock_irq(&logbuf_lock);
1213 if (buf) {
1214 u64 next_seq;
1215 u64 seq;
1216 u32 idx;
1217 enum log_flags prev;
1218
1219 if (clear_seq < log_first_seq) {
1220 /* messages are gone, move to first available one */
1221 clear_seq = log_first_seq;
1222 clear_idx = log_first_idx;
1223 }
1224
1225 /*
1226 * Find first record that fits, including all following records,
1227 * into the user-provided buffer for this dump.
1228 */
1229 seq = clear_seq;
1230 idx = clear_idx;
1231 prev = 0;
1232 while (seq < log_next_seq) {
1233 struct printk_log *msg = log_from_idx(idx);
1234
1235 len += msg_print_text(msg, prev, true, NULL, 0);
1236 prev = msg->flags;
1237 idx = log_next(idx);
1238 seq++;
1239 }
1240
1241 /* move first record forward until length fits into the buffer */
1242 seq = clear_seq;
1243 idx = clear_idx;
1244 prev = 0;
1245 while (len > size && seq < log_next_seq) {
1246 struct printk_log *msg = log_from_idx(idx);
1247
1248 len -= msg_print_text(msg, prev, true, NULL, 0);
1249 prev = msg->flags;
1250 idx = log_next(idx);
1251 seq++;
1252 }
1253
1254 /* last message fitting into this dump */
1255 next_seq = log_next_seq;
1256
1257 len = 0;
1258 while (len >= 0 && seq < next_seq) {
1259 struct printk_log *msg = log_from_idx(idx);
1260 int textlen;
1261
1262 textlen = msg_print_text(msg, prev, true, text,
1263 LOG_LINE_MAX + PREFIX_MAX);
1264 if (textlen < 0) {
1265 len = textlen;
1266 break;
1267 }
1268 idx = log_next(idx);
1269 seq++;
1270 prev = msg->flags;
1271
1272 raw_spin_unlock_irq(&logbuf_lock);
1273 if (copy_to_user(buf + len, text, textlen))
1274 len = -EFAULT;
1275 else
1276 len += textlen;
1277 raw_spin_lock_irq(&logbuf_lock);
1278
1279 if (seq < log_first_seq) {
1280 /* messages are gone, move to next one */
1281 seq = log_first_seq;
1282 idx = log_first_idx;
1283 prev = 0;
1284 }
1285 }
1286 }
1287
1288 if (clear) {
1289 clear_seq = log_next_seq;
1290 clear_idx = log_next_idx;
1291 }
1292 raw_spin_unlock_irq(&logbuf_lock);
1293
1294 kfree(text);
1295 return len;
1296 }
1297
1298 int do_syslog(int type, char __user *buf, int len, int source)
1299 {
1300 bool clear = false;
1301 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1302 int error;
1303
1304 error = check_syslog_permissions(type, source);
1305 if (error)
1306 goto out;
1307
1308 switch (type) {
1309 case SYSLOG_ACTION_CLOSE: /* Close log */
1310 break;
1311 case SYSLOG_ACTION_OPEN: /* Open log */
1312 break;
1313 case SYSLOG_ACTION_READ: /* Read from log */
1314 error = -EINVAL;
1315 if (!buf || len < 0)
1316 goto out;
1317 error = 0;
1318 if (!len)
1319 goto out;
1320 if (!access_ok(VERIFY_WRITE, buf, len)) {
1321 error = -EFAULT;
1322 goto out;
1323 }
1324 error = wait_event_interruptible(log_wait,
1325 syslog_seq != log_next_seq);
1326 if (error)
1327 goto out;
1328 error = syslog_print(buf, len);
1329 break;
1330 /* Read/clear last kernel messages */
1331 case SYSLOG_ACTION_READ_CLEAR:
1332 clear = true;
1333 /* FALL THRU */
1334 /* Read last kernel messages */
1335 case SYSLOG_ACTION_READ_ALL:
1336 error = -EINVAL;
1337 if (!buf || len < 0)
1338 goto out;
1339 error = 0;
1340 if (!len)
1341 goto out;
1342 if (!access_ok(VERIFY_WRITE, buf, len)) {
1343 error = -EFAULT;
1344 goto out;
1345 }
1346 error = syslog_print_all(buf, len, clear);
1347 break;
1348 /* Clear ring buffer */
1349 case SYSLOG_ACTION_CLEAR:
1350 syslog_print_all(NULL, 0, true);
1351 break;
1352 /* Disable logging to console */
1353 case SYSLOG_ACTION_CONSOLE_OFF:
1354 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1355 saved_console_loglevel = console_loglevel;
1356 console_loglevel = minimum_console_loglevel;
1357 break;
1358 /* Enable logging to console */
1359 case SYSLOG_ACTION_CONSOLE_ON:
1360 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1361 console_loglevel = saved_console_loglevel;
1362 saved_console_loglevel = LOGLEVEL_DEFAULT;
1363 }
1364 break;
1365 /* Set level of messages printed to console */
1366 case SYSLOG_ACTION_CONSOLE_LEVEL:
1367 error = -EINVAL;
1368 if (len < 1 || len > 8)
1369 goto out;
1370 if (len < minimum_console_loglevel)
1371 len = minimum_console_loglevel;
1372 console_loglevel = len;
1373 /* Implicitly re-enable logging to console */
1374 saved_console_loglevel = LOGLEVEL_DEFAULT;
1375 error = 0;
1376 break;
1377 /* Number of chars in the log buffer */
1378 case SYSLOG_ACTION_SIZE_UNREAD:
1379 raw_spin_lock_irq(&logbuf_lock);
1380 if (syslog_seq < log_first_seq) {
1381 /* messages are gone, move to first one */
1382 syslog_seq = log_first_seq;
1383 syslog_idx = log_first_idx;
1384 syslog_prev = 0;
1385 syslog_partial = 0;
1386 }
1387 if (source == SYSLOG_FROM_PROC) {
1388 /*
1389 * Short-cut for poll(/"proc/kmsg") which simply checks
1390 * for pending data, not the size; return the count of
1391 * records, not the length.
1392 */
1393 error = log_next_seq - syslog_seq;
1394 } else {
1395 u64 seq = syslog_seq;
1396 u32 idx = syslog_idx;
1397 enum log_flags prev = syslog_prev;
1398
1399 error = 0;
1400 while (seq < log_next_seq) {
1401 struct printk_log *msg = log_from_idx(idx);
1402
1403 error += msg_print_text(msg, prev, true, NULL, 0);
1404 idx = log_next(idx);
1405 seq++;
1406 prev = msg->flags;
1407 }
1408 error -= syslog_partial;
1409 }
1410 raw_spin_unlock_irq(&logbuf_lock);
1411 break;
1412 /* Size of the log buffer */
1413 case SYSLOG_ACTION_SIZE_BUFFER:
1414 error = log_buf_len;
1415 break;
1416 default:
1417 error = -EINVAL;
1418 break;
1419 }
1420 out:
1421 return error;
1422 }
1423
1424 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1425 {
1426 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1427 }
1428
1429 /*
1430 * Call the console drivers, asking them to write out
1431 * log_buf[start] to log_buf[end - 1].
1432 * The console_lock must be held.
1433 */
1434 static void call_console_drivers(int level,
1435 const char *ext_text, size_t ext_len,
1436 const char *text, size_t len)
1437 {
1438 struct console *con;
1439
1440 trace_console(text, len);
1441
1442 if (level >= console_loglevel && !ignore_loglevel)
1443 return;
1444 if (!console_drivers)
1445 return;
1446
1447 for_each_console(con) {
1448 if (exclusive_console && con != exclusive_console)
1449 continue;
1450 if (!(con->flags & CON_ENABLED))
1451 continue;
1452 if (!con->write)
1453 continue;
1454 if (!cpu_online(smp_processor_id()) &&
1455 !(con->flags & CON_ANYTIME))
1456 continue;
1457 if (con->flags & CON_EXTENDED)
1458 con->write(con, ext_text, ext_len);
1459 else
1460 con->write(con, text, len);
1461 }
1462 }
1463
1464 /*
1465 * Zap console related locks when oopsing.
1466 * To leave time for slow consoles to print a full oops,
1467 * only zap at most once every 30 seconds.
1468 */
1469 static void zap_locks(void)
1470 {
1471 static unsigned long oops_timestamp;
1472
1473 if (time_after_eq(jiffies, oops_timestamp) &&
1474 !time_after(jiffies, oops_timestamp + 30 * HZ))
1475 return;
1476
1477 oops_timestamp = jiffies;
1478
1479 debug_locks_off();
1480 /* If a crash is occurring, make sure we can't deadlock */
1481 raw_spin_lock_init(&logbuf_lock);
1482 /* And make sure that we print immediately */
1483 sema_init(&console_sem, 1);
1484 }
1485
1486 int printk_delay_msec __read_mostly;
1487
1488 static inline void printk_delay(void)
1489 {
1490 if (unlikely(printk_delay_msec)) {
1491 int m = printk_delay_msec;
1492
1493 while (m--) {
1494 mdelay(1);
1495 touch_nmi_watchdog();
1496 }
1497 }
1498 }
1499
1500 /*
1501 * Continuation lines are buffered, and not committed to the record buffer
1502 * until the line is complete, or a race forces it. The line fragments
1503 * though, are printed immediately to the consoles to ensure everything has
1504 * reached the console in case of a kernel crash.
1505 */
1506 static struct cont {
1507 char buf[LOG_LINE_MAX];
1508 size_t len; /* length == 0 means unused buffer */
1509 size_t cons; /* bytes written to console */
1510 struct task_struct *owner; /* task of first print*/
1511 u64 ts_nsec; /* time of first print */
1512 u8 level; /* log level of first message */
1513 u8 facility; /* log facility of first message */
1514 enum log_flags flags; /* prefix, newline flags */
1515 bool flushed:1; /* buffer sealed and committed */
1516 } cont;
1517
1518 static void cont_flush(enum log_flags flags)
1519 {
1520 if (cont.flushed)
1521 return;
1522 if (cont.len == 0)
1523 return;
1524
1525 if (cont.cons) {
1526 /*
1527 * If a fragment of this line was directly flushed to the
1528 * console; wait for the console to pick up the rest of the
1529 * line. LOG_NOCONS suppresses a duplicated output.
1530 */
1531 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1532 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1533 cont.flags = flags;
1534 cont.flushed = true;
1535 } else {
1536 /*
1537 * If no fragment of this line ever reached the console,
1538 * just submit it to the store and free the buffer.
1539 */
1540 log_store(cont.facility, cont.level, flags, 0,
1541 NULL, 0, cont.buf, cont.len);
1542 cont.len = 0;
1543 }
1544 }
1545
1546 static bool cont_add(int facility, int level, const char *text, size_t len)
1547 {
1548 if (cont.len && cont.flushed)
1549 return false;
1550
1551 /*
1552 * If ext consoles are present, flush and skip in-kernel
1553 * continuation. See nr_ext_console_drivers definition. Also, if
1554 * the line gets too long, split it up in separate records.
1555 */
1556 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1557 cont_flush(LOG_CONT);
1558 return false;
1559 }
1560
1561 if (!cont.len) {
1562 cont.facility = facility;
1563 cont.level = level;
1564 cont.owner = current;
1565 cont.ts_nsec = local_clock();
1566 cont.flags = 0;
1567 cont.cons = 0;
1568 cont.flushed = false;
1569 }
1570
1571 memcpy(cont.buf + cont.len, text, len);
1572 cont.len += len;
1573
1574 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1575 cont_flush(LOG_CONT);
1576
1577 return true;
1578 }
1579
1580 static size_t cont_print_text(char *text, size_t size)
1581 {
1582 size_t textlen = 0;
1583 size_t len;
1584
1585 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1586 textlen += print_time(cont.ts_nsec, text);
1587 size -= textlen;
1588 }
1589
1590 len = cont.len - cont.cons;
1591 if (len > 0) {
1592 if (len+1 > size)
1593 len = size-1;
1594 memcpy(text + textlen, cont.buf + cont.cons, len);
1595 textlen += len;
1596 cont.cons = cont.len;
1597 }
1598
1599 if (cont.flushed) {
1600 if (cont.flags & LOG_NEWLINE)
1601 text[textlen++] = '\n';
1602 /* got everything, release buffer */
1603 cont.len = 0;
1604 }
1605 return textlen;
1606 }
1607
1608 asmlinkage int vprintk_emit(int facility, int level,
1609 const char *dict, size_t dictlen,
1610 const char *fmt, va_list args)
1611 {
1612 static bool recursion_bug;
1613 static char textbuf[LOG_LINE_MAX];
1614 char *text = textbuf;
1615 size_t text_len = 0;
1616 enum log_flags lflags = 0;
1617 unsigned long flags;
1618 int this_cpu;
1619 int printed_len = 0;
1620 bool in_sched = false;
1621 /* cpu currently holding logbuf_lock in this function */
1622 static unsigned int logbuf_cpu = UINT_MAX;
1623
1624 if (level == LOGLEVEL_SCHED) {
1625 level = LOGLEVEL_DEFAULT;
1626 in_sched = true;
1627 }
1628
1629 boot_delay_msec(level);
1630 printk_delay();
1631
1632 local_irq_save(flags);
1633 this_cpu = smp_processor_id();
1634
1635 /*
1636 * Ouch, printk recursed into itself!
1637 */
1638 if (unlikely(logbuf_cpu == this_cpu)) {
1639 /*
1640 * If a crash is occurring during printk() on this CPU,
1641 * then try to get the crash message out but make sure
1642 * we can't deadlock. Otherwise just return to avoid the
1643 * recursion and return - but flag the recursion so that
1644 * it can be printed at the next appropriate moment:
1645 */
1646 if (!oops_in_progress && !lockdep_recursing(current)) {
1647 recursion_bug = true;
1648 local_irq_restore(flags);
1649 return 0;
1650 }
1651 zap_locks();
1652 }
1653
1654 lockdep_off();
1655 /* This stops the holder of console_sem just where we want him */
1656 raw_spin_lock(&logbuf_lock);
1657 logbuf_cpu = this_cpu;
1658
1659 if (unlikely(recursion_bug)) {
1660 static const char recursion_msg[] =
1661 "BUG: recent printk recursion!";
1662
1663 recursion_bug = false;
1664 /* emit KERN_CRIT message */
1665 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1666 NULL, 0, recursion_msg,
1667 strlen(recursion_msg));
1668 }
1669
1670 /*
1671 * The printf needs to come first; we need the syslog
1672 * prefix which might be passed-in as a parameter.
1673 */
1674 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1675
1676 /* mark and strip a trailing newline */
1677 if (text_len && text[text_len-1] == '\n') {
1678 text_len--;
1679 lflags |= LOG_NEWLINE;
1680 }
1681
1682 /* strip kernel syslog prefix and extract log level or control flags */
1683 if (facility == 0) {
1684 int kern_level = printk_get_level(text);
1685
1686 if (kern_level) {
1687 const char *end_of_header = printk_skip_level(text);
1688 switch (kern_level) {
1689 case '0' ... '7':
1690 if (level == LOGLEVEL_DEFAULT)
1691 level = kern_level - '0';
1692 /* fallthrough */
1693 case 'd': /* KERN_DEFAULT */
1694 lflags |= LOG_PREFIX;
1695 }
1696 /*
1697 * No need to check length here because vscnprintf
1698 * put '\0' at the end of the string. Only valid and
1699 * newly printed level is detected.
1700 */
1701 text_len -= end_of_header - text;
1702 text = (char *)end_of_header;
1703 }
1704 }
1705
1706 if (level == LOGLEVEL_DEFAULT)
1707 level = default_message_loglevel;
1708
1709 if (dict)
1710 lflags |= LOG_PREFIX|LOG_NEWLINE;
1711
1712 if (!(lflags & LOG_NEWLINE)) {
1713 /*
1714 * Flush the conflicting buffer. An earlier newline was missing,
1715 * or another task also prints continuation lines.
1716 */
1717 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1718 cont_flush(LOG_NEWLINE);
1719
1720 /* buffer line if possible, otherwise store it right away */
1721 if (cont_add(facility, level, text, text_len))
1722 printed_len += text_len;
1723 else
1724 printed_len += log_store(facility, level,
1725 lflags | LOG_CONT, 0,
1726 dict, dictlen, text, text_len);
1727 } else {
1728 bool stored = false;
1729
1730 /*
1731 * If an earlier newline was missing and it was the same task,
1732 * either merge it with the current buffer and flush, or if
1733 * there was a race with interrupts (prefix == true) then just
1734 * flush it out and store this line separately.
1735 * If the preceding printk was from a different task and missed
1736 * a newline, flush and append the newline.
1737 */
1738 if (cont.len) {
1739 if (cont.owner == current && !(lflags & LOG_PREFIX))
1740 stored = cont_add(facility, level, text,
1741 text_len);
1742 cont_flush(LOG_NEWLINE);
1743 }
1744
1745 if (stored)
1746 printed_len += text_len;
1747 else
1748 printed_len += log_store(facility, level, lflags, 0,
1749 dict, dictlen, text, text_len);
1750 }
1751
1752 logbuf_cpu = UINT_MAX;
1753 raw_spin_unlock(&logbuf_lock);
1754 lockdep_on();
1755 local_irq_restore(flags);
1756
1757 /* If called from the scheduler, we can not call up(). */
1758 if (!in_sched) {
1759 lockdep_off();
1760 /*
1761 * Try to acquire and then immediately release the console
1762 * semaphore. The release will print out buffers and wake up
1763 * /dev/kmsg and syslog() users.
1764 */
1765 if (console_trylock())
1766 console_unlock();
1767 lockdep_on();
1768 }
1769
1770 return printed_len;
1771 }
1772 EXPORT_SYMBOL(vprintk_emit);
1773
1774 asmlinkage int vprintk(const char *fmt, va_list args)
1775 {
1776 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1777 }
1778 EXPORT_SYMBOL(vprintk);
1779
1780 asmlinkage int printk_emit(int facility, int level,
1781 const char *dict, size_t dictlen,
1782 const char *fmt, ...)
1783 {
1784 va_list args;
1785 int r;
1786
1787 va_start(args, fmt);
1788 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1789 va_end(args);
1790
1791 return r;
1792 }
1793 EXPORT_SYMBOL(printk_emit);
1794
1795 int vprintk_default(const char *fmt, va_list args)
1796 {
1797 int r;
1798
1799 #ifdef CONFIG_KGDB_KDB
1800 if (unlikely(kdb_trap_printk)) {
1801 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1802 return r;
1803 }
1804 #endif
1805 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1806
1807 return r;
1808 }
1809 EXPORT_SYMBOL_GPL(vprintk_default);
1810
1811 /*
1812 * This allows printk to be diverted to another function per cpu.
1813 * This is useful for calling printk functions from within NMI
1814 * without worrying about race conditions that can lock up the
1815 * box.
1816 */
1817 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1818
1819 /**
1820 * printk - print a kernel message
1821 * @fmt: format string
1822 *
1823 * This is printk(). It can be called from any context. We want it to work.
1824 *
1825 * We try to grab the console_lock. If we succeed, it's easy - we log the
1826 * output and call the console drivers. If we fail to get the semaphore, we
1827 * place the output into the log buffer and return. The current holder of
1828 * the console_sem will notice the new output in console_unlock(); and will
1829 * send it to the consoles before releasing the lock.
1830 *
1831 * One effect of this deferred printing is that code which calls printk() and
1832 * then changes console_loglevel may break. This is because console_loglevel
1833 * is inspected when the actual printing occurs.
1834 *
1835 * See also:
1836 * printf(3)
1837 *
1838 * See the vsnprintf() documentation for format string extensions over C99.
1839 */
1840 asmlinkage __visible int printk(const char *fmt, ...)
1841 {
1842 printk_func_t vprintk_func;
1843 va_list args;
1844 int r;
1845
1846 va_start(args, fmt);
1847
1848 /*
1849 * If a caller overrides the per_cpu printk_func, then it needs
1850 * to disable preemption when calling printk(). Otherwise
1851 * the printk_func should be set to the default. No need to
1852 * disable preemption here.
1853 */
1854 vprintk_func = this_cpu_read(printk_func);
1855 r = vprintk_func(fmt, args);
1856
1857 va_end(args);
1858
1859 return r;
1860 }
1861 EXPORT_SYMBOL(printk);
1862
1863 #else /* CONFIG_PRINTK */
1864
1865 #define LOG_LINE_MAX 0
1866 #define PREFIX_MAX 0
1867
1868 static u64 syslog_seq;
1869 static u32 syslog_idx;
1870 static u64 console_seq;
1871 static u32 console_idx;
1872 static enum log_flags syslog_prev;
1873 static u64 log_first_seq;
1874 static u32 log_first_idx;
1875 static u64 log_next_seq;
1876 static enum log_flags console_prev;
1877 static struct cont {
1878 size_t len;
1879 size_t cons;
1880 u8 level;
1881 bool flushed:1;
1882 } cont;
1883 static char *log_text(const struct printk_log *msg) { return NULL; }
1884 static char *log_dict(const struct printk_log *msg) { return NULL; }
1885 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1886 static u32 log_next(u32 idx) { return 0; }
1887 static ssize_t msg_print_ext_header(char *buf, size_t size,
1888 struct printk_log *msg, u64 seq,
1889 enum log_flags prev_flags) { return 0; }
1890 static ssize_t msg_print_ext_body(char *buf, size_t size,
1891 char *dict, size_t dict_len,
1892 char *text, size_t text_len) { return 0; }
1893 static void call_console_drivers(int level,
1894 const char *ext_text, size_t ext_len,
1895 const char *text, size_t len) {}
1896 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1897 bool syslog, char *buf, size_t size) { return 0; }
1898 static size_t cont_print_text(char *text, size_t size) { return 0; }
1899
1900 /* Still needs to be defined for users */
1901 DEFINE_PER_CPU(printk_func_t, printk_func);
1902
1903 #endif /* CONFIG_PRINTK */
1904
1905 #ifdef CONFIG_EARLY_PRINTK
1906 struct console *early_console;
1907
1908 asmlinkage __visible void early_printk(const char *fmt, ...)
1909 {
1910 va_list ap;
1911 char buf[512];
1912 int n;
1913
1914 if (!early_console)
1915 return;
1916
1917 va_start(ap, fmt);
1918 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1919 va_end(ap);
1920
1921 early_console->write(early_console, buf, n);
1922 }
1923 #endif
1924
1925 static int __add_preferred_console(char *name, int idx, char *options,
1926 char *brl_options)
1927 {
1928 struct console_cmdline *c;
1929 int i;
1930
1931 /*
1932 * See if this tty is not yet registered, and
1933 * if we have a slot free.
1934 */
1935 for (i = 0, c = console_cmdline;
1936 i < MAX_CMDLINECONSOLES && c->name[0];
1937 i++, c++) {
1938 if (strcmp(c->name, name) == 0 && c->index == idx) {
1939 if (!brl_options)
1940 selected_console = i;
1941 return 0;
1942 }
1943 }
1944 if (i == MAX_CMDLINECONSOLES)
1945 return -E2BIG;
1946 if (!brl_options)
1947 selected_console = i;
1948 strlcpy(c->name, name, sizeof(c->name));
1949 c->options = options;
1950 braille_set_options(c, brl_options);
1951
1952 c->index = idx;
1953 return 0;
1954 }
1955 /*
1956 * Set up a console. Called via do_early_param() in init/main.c
1957 * for each "console=" parameter in the boot command line.
1958 */
1959 static int __init console_setup(char *str)
1960 {
1961 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1962 char *s, *options, *brl_options = NULL;
1963 int idx;
1964
1965 if (_braille_console_setup(&str, &brl_options))
1966 return 1;
1967
1968 /*
1969 * Decode str into name, index, options.
1970 */
1971 if (str[0] >= '0' && str[0] <= '9') {
1972 strcpy(buf, "ttyS");
1973 strncpy(buf + 4, str, sizeof(buf) - 5);
1974 } else {
1975 strncpy(buf, str, sizeof(buf) - 1);
1976 }
1977 buf[sizeof(buf) - 1] = 0;
1978 options = strchr(str, ',');
1979 if (options)
1980 *(options++) = 0;
1981 #ifdef __sparc__
1982 if (!strcmp(str, "ttya"))
1983 strcpy(buf, "ttyS0");
1984 if (!strcmp(str, "ttyb"))
1985 strcpy(buf, "ttyS1");
1986 #endif
1987 for (s = buf; *s; s++)
1988 if (isdigit(*s) || *s == ',')
1989 break;
1990 idx = simple_strtoul(s, NULL, 10);
1991 *s = 0;
1992
1993 __add_preferred_console(buf, idx, options, brl_options);
1994 console_set_on_cmdline = 1;
1995 return 1;
1996 }
1997 __setup("console=", console_setup);
1998
1999 /**
2000 * add_preferred_console - add a device to the list of preferred consoles.
2001 * @name: device name
2002 * @idx: device index
2003 * @options: options for this console
2004 *
2005 * The last preferred console added will be used for kernel messages
2006 * and stdin/out/err for init. Normally this is used by console_setup
2007 * above to handle user-supplied console arguments; however it can also
2008 * be used by arch-specific code either to override the user or more
2009 * commonly to provide a default console (ie from PROM variables) when
2010 * the user has not supplied one.
2011 */
2012 int add_preferred_console(char *name, int idx, char *options)
2013 {
2014 return __add_preferred_console(name, idx, options, NULL);
2015 }
2016
2017 bool console_suspend_enabled = true;
2018 EXPORT_SYMBOL(console_suspend_enabled);
2019
2020 static int __init console_suspend_disable(char *str)
2021 {
2022 console_suspend_enabled = false;
2023 return 1;
2024 }
2025 __setup("no_console_suspend", console_suspend_disable);
2026 module_param_named(console_suspend, console_suspend_enabled,
2027 bool, S_IRUGO | S_IWUSR);
2028 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2029 " and hibernate operations");
2030
2031 /**
2032 * suspend_console - suspend the console subsystem
2033 *
2034 * This disables printk() while we go into suspend states
2035 */
2036 void suspend_console(void)
2037 {
2038 if (!console_suspend_enabled)
2039 return;
2040 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2041 console_lock();
2042 console_suspended = 1;
2043 up_console_sem();
2044 }
2045
2046 void resume_console(void)
2047 {
2048 if (!console_suspend_enabled)
2049 return;
2050 down_console_sem();
2051 console_suspended = 0;
2052 console_unlock();
2053 }
2054
2055 /**
2056 * console_cpu_notify - print deferred console messages after CPU hotplug
2057 * @self: notifier struct
2058 * @action: CPU hotplug event
2059 * @hcpu: unused
2060 *
2061 * If printk() is called from a CPU that is not online yet, the messages
2062 * will be spooled but will not show up on the console. This function is
2063 * called when a new CPU comes online (or fails to come up), and ensures
2064 * that any such output gets printed.
2065 */
2066 static int console_cpu_notify(struct notifier_block *self,
2067 unsigned long action, void *hcpu)
2068 {
2069 switch (action) {
2070 case CPU_ONLINE:
2071 case CPU_DEAD:
2072 case CPU_DOWN_FAILED:
2073 case CPU_UP_CANCELED:
2074 console_lock();
2075 console_unlock();
2076 }
2077 return NOTIFY_OK;
2078 }
2079
2080 /**
2081 * console_lock - lock the console system for exclusive use.
2082 *
2083 * Acquires a lock which guarantees that the caller has
2084 * exclusive access to the console system and the console_drivers list.
2085 *
2086 * Can sleep, returns nothing.
2087 */
2088 void console_lock(void)
2089 {
2090 might_sleep();
2091
2092 down_console_sem();
2093 if (console_suspended)
2094 return;
2095 console_locked = 1;
2096 console_may_schedule = 1;
2097 }
2098 EXPORT_SYMBOL(console_lock);
2099
2100 /**
2101 * console_trylock - try to lock the console system for exclusive use.
2102 *
2103 * Try to acquire a lock which guarantees that the caller has exclusive
2104 * access to the console system and the console_drivers list.
2105 *
2106 * returns 1 on success, and 0 on failure to acquire the lock.
2107 */
2108 int console_trylock(void)
2109 {
2110 if (down_trylock_console_sem())
2111 return 0;
2112 if (console_suspended) {
2113 up_console_sem();
2114 return 0;
2115 }
2116 console_locked = 1;
2117 /*
2118 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2119 * safe to schedule (e.g. calling printk while holding a spin_lock),
2120 * because preempt_disable()/preempt_enable() are just barriers there
2121 * and preempt_count() is always 0.
2122 *
2123 * RCU read sections have a separate preemption counter when
2124 * PREEMPT_RCU enabled thus we must take extra care and check
2125 * rcu_preempt_depth(), otherwise RCU read sections modify
2126 * preempt_count().
2127 */
2128 console_may_schedule = !oops_in_progress &&
2129 preemptible() &&
2130 !rcu_preempt_depth();
2131 return 1;
2132 }
2133 EXPORT_SYMBOL(console_trylock);
2134
2135 int is_console_locked(void)
2136 {
2137 return console_locked;
2138 }
2139
2140 /*
2141 * Check if we have any console that is capable of printing while cpu is
2142 * booting or shutting down. Requires console_sem.
2143 */
2144 static int have_callable_console(void)
2145 {
2146 struct console *con;
2147
2148 for_each_console(con)
2149 if ((con->flags & CON_ENABLED) &&
2150 (con->flags & CON_ANYTIME))
2151 return 1;
2152
2153 return 0;
2154 }
2155
2156 /*
2157 * Can we actually use the console at this time on this cpu?
2158 *
2159 * Console drivers may assume that per-cpu resources have been allocated. So
2160 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2161 * call them until this CPU is officially up.
2162 */
2163 static inline int can_use_console(void)
2164 {
2165 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2166 }
2167
2168 static void console_cont_flush(char *text, size_t size)
2169 {
2170 unsigned long flags;
2171 size_t len;
2172
2173 raw_spin_lock_irqsave(&logbuf_lock, flags);
2174
2175 if (!cont.len)
2176 goto out;
2177
2178 /*
2179 * We still queue earlier records, likely because the console was
2180 * busy. The earlier ones need to be printed before this one, we
2181 * did not flush any fragment so far, so just let it queue up.
2182 */
2183 if (console_seq < log_next_seq && !cont.cons)
2184 goto out;
2185
2186 len = cont_print_text(text, size);
2187 raw_spin_unlock(&logbuf_lock);
2188 stop_critical_timings();
2189 call_console_drivers(cont.level, NULL, 0, text, len);
2190 start_critical_timings();
2191 local_irq_restore(flags);
2192 return;
2193 out:
2194 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2195 }
2196
2197 /**
2198 * console_unlock - unlock the console system
2199 *
2200 * Releases the console_lock which the caller holds on the console system
2201 * and the console driver list.
2202 *
2203 * While the console_lock was held, console output may have been buffered
2204 * by printk(). If this is the case, console_unlock(); emits
2205 * the output prior to releasing the lock.
2206 *
2207 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2208 *
2209 * console_unlock(); may be called from any context.
2210 */
2211 void console_unlock(void)
2212 {
2213 static char ext_text[CONSOLE_EXT_LOG_MAX];
2214 static char text[LOG_LINE_MAX + PREFIX_MAX];
2215 static u64 seen_seq;
2216 unsigned long flags;
2217 bool wake_klogd = false;
2218 bool do_cond_resched, retry;
2219
2220 if (console_suspended) {
2221 up_console_sem();
2222 return;
2223 }
2224
2225 /*
2226 * Console drivers are called under logbuf_lock, so
2227 * @console_may_schedule should be cleared before; however, we may
2228 * end up dumping a lot of lines, for example, if called from
2229 * console registration path, and should invoke cond_resched()
2230 * between lines if allowable. Not doing so can cause a very long
2231 * scheduling stall on a slow console leading to RCU stall and
2232 * softlockup warnings which exacerbate the issue with more
2233 * messages practically incapacitating the system.
2234 */
2235 do_cond_resched = console_may_schedule;
2236 console_may_schedule = 0;
2237
2238 again:
2239 /*
2240 * We released the console_sem lock, so we need to recheck if
2241 * cpu is online and (if not) is there at least one CON_ANYTIME
2242 * console.
2243 */
2244 if (!can_use_console()) {
2245 console_locked = 0;
2246 up_console_sem();
2247 return;
2248 }
2249
2250 /* flush buffered message fragment immediately to console */
2251 console_cont_flush(text, sizeof(text));
2252
2253 for (;;) {
2254 struct printk_log *msg;
2255 size_t ext_len = 0;
2256 size_t len;
2257 int level;
2258
2259 raw_spin_lock_irqsave(&logbuf_lock, flags);
2260 if (seen_seq != log_next_seq) {
2261 wake_klogd = true;
2262 seen_seq = log_next_seq;
2263 }
2264
2265 if (console_seq < log_first_seq) {
2266 len = sprintf(text, "** %u printk messages dropped ** ",
2267 (unsigned)(log_first_seq - console_seq));
2268
2269 /* messages are gone, move to first one */
2270 console_seq = log_first_seq;
2271 console_idx = log_first_idx;
2272 console_prev = 0;
2273 } else {
2274 len = 0;
2275 }
2276 skip:
2277 if (console_seq == log_next_seq)
2278 break;
2279
2280 msg = log_from_idx(console_idx);
2281 if (msg->flags & LOG_NOCONS) {
2282 /*
2283 * Skip record we have buffered and already printed
2284 * directly to the console when we received it.
2285 */
2286 console_idx = log_next(console_idx);
2287 console_seq++;
2288 /*
2289 * We will get here again when we register a new
2290 * CON_PRINTBUFFER console. Clear the flag so we
2291 * will properly dump everything later.
2292 */
2293 msg->flags &= ~LOG_NOCONS;
2294 console_prev = msg->flags;
2295 goto skip;
2296 }
2297
2298 level = msg->level;
2299 len += msg_print_text(msg, console_prev, false,
2300 text + len, sizeof(text) - len);
2301 if (nr_ext_console_drivers) {
2302 ext_len = msg_print_ext_header(ext_text,
2303 sizeof(ext_text),
2304 msg, console_seq, console_prev);
2305 ext_len += msg_print_ext_body(ext_text + ext_len,
2306 sizeof(ext_text) - ext_len,
2307 log_dict(msg), msg->dict_len,
2308 log_text(msg), msg->text_len);
2309 }
2310 console_idx = log_next(console_idx);
2311 console_seq++;
2312 console_prev = msg->flags;
2313 raw_spin_unlock(&logbuf_lock);
2314
2315 stop_critical_timings(); /* don't trace print latency */
2316 call_console_drivers(level, ext_text, ext_len, text, len);
2317 start_critical_timings();
2318 local_irq_restore(flags);
2319
2320 if (do_cond_resched)
2321 cond_resched();
2322 }
2323 console_locked = 0;
2324
2325 /* Release the exclusive_console once it is used */
2326 if (unlikely(exclusive_console))
2327 exclusive_console = NULL;
2328
2329 raw_spin_unlock(&logbuf_lock);
2330
2331 up_console_sem();
2332
2333 /*
2334 * Someone could have filled up the buffer again, so re-check if there's
2335 * something to flush. In case we cannot trylock the console_sem again,
2336 * there's a new owner and the console_unlock() from them will do the
2337 * flush, no worries.
2338 */
2339 raw_spin_lock(&logbuf_lock);
2340 retry = console_seq != log_next_seq;
2341 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2342
2343 if (retry && console_trylock())
2344 goto again;
2345
2346 if (wake_klogd)
2347 wake_up_klogd();
2348 }
2349 EXPORT_SYMBOL(console_unlock);
2350
2351 /**
2352 * console_conditional_schedule - yield the CPU if required
2353 *
2354 * If the console code is currently allowed to sleep, and
2355 * if this CPU should yield the CPU to another task, do
2356 * so here.
2357 *
2358 * Must be called within console_lock();.
2359 */
2360 void __sched console_conditional_schedule(void)
2361 {
2362 if (console_may_schedule)
2363 cond_resched();
2364 }
2365 EXPORT_SYMBOL(console_conditional_schedule);
2366
2367 void console_unblank(void)
2368 {
2369 struct console *c;
2370
2371 /*
2372 * console_unblank can no longer be called in interrupt context unless
2373 * oops_in_progress is set to 1..
2374 */
2375 if (oops_in_progress) {
2376 if (down_trylock_console_sem() != 0)
2377 return;
2378 } else
2379 console_lock();
2380
2381 console_locked = 1;
2382 console_may_schedule = 0;
2383 for_each_console(c)
2384 if ((c->flags & CON_ENABLED) && c->unblank)
2385 c->unblank();
2386 console_unlock();
2387 }
2388
2389 /**
2390 * console_flush_on_panic - flush console content on panic
2391 *
2392 * Immediately output all pending messages no matter what.
2393 */
2394 void console_flush_on_panic(void)
2395 {
2396 /*
2397 * If someone else is holding the console lock, trylock will fail
2398 * and may_schedule may be set. Ignore and proceed to unlock so
2399 * that messages are flushed out. As this can be called from any
2400 * context and we don't want to get preempted while flushing,
2401 * ensure may_schedule is cleared.
2402 */
2403 console_trylock();
2404 console_may_schedule = 0;
2405 console_unlock();
2406 }
2407
2408 /*
2409 * Return the console tty driver structure and its associated index
2410 */
2411 struct tty_driver *console_device(int *index)
2412 {
2413 struct console *c;
2414 struct tty_driver *driver = NULL;
2415
2416 console_lock();
2417 for_each_console(c) {
2418 if (!c->device)
2419 continue;
2420 driver = c->device(c, index);
2421 if (driver)
2422 break;
2423 }
2424 console_unlock();
2425 return driver;
2426 }
2427
2428 /*
2429 * Prevent further output on the passed console device so that (for example)
2430 * serial drivers can disable console output before suspending a port, and can
2431 * re-enable output afterwards.
2432 */
2433 void console_stop(struct console *console)
2434 {
2435 console_lock();
2436 console->flags &= ~CON_ENABLED;
2437 console_unlock();
2438 }
2439 EXPORT_SYMBOL(console_stop);
2440
2441 void console_start(struct console *console)
2442 {
2443 console_lock();
2444 console->flags |= CON_ENABLED;
2445 console_unlock();
2446 }
2447 EXPORT_SYMBOL(console_start);
2448
2449 static int __read_mostly keep_bootcon;
2450
2451 static int __init keep_bootcon_setup(char *str)
2452 {
2453 keep_bootcon = 1;
2454 pr_info("debug: skip boot console de-registration.\n");
2455
2456 return 0;
2457 }
2458
2459 early_param("keep_bootcon", keep_bootcon_setup);
2460
2461 /*
2462 * The console driver calls this routine during kernel initialization
2463 * to register the console printing procedure with printk() and to
2464 * print any messages that were printed by the kernel before the
2465 * console driver was initialized.
2466 *
2467 * This can happen pretty early during the boot process (because of
2468 * early_printk) - sometimes before setup_arch() completes - be careful
2469 * of what kernel features are used - they may not be initialised yet.
2470 *
2471 * There are two types of consoles - bootconsoles (early_printk) and
2472 * "real" consoles (everything which is not a bootconsole) which are
2473 * handled differently.
2474 * - Any number of bootconsoles can be registered at any time.
2475 * - As soon as a "real" console is registered, all bootconsoles
2476 * will be unregistered automatically.
2477 * - Once a "real" console is registered, any attempt to register a
2478 * bootconsoles will be rejected
2479 */
2480 void register_console(struct console *newcon)
2481 {
2482 int i;
2483 unsigned long flags;
2484 struct console *bcon = NULL;
2485 struct console_cmdline *c;
2486
2487 if (console_drivers)
2488 for_each_console(bcon)
2489 if (WARN(bcon == newcon,
2490 "console '%s%d' already registered\n",
2491 bcon->name, bcon->index))
2492 return;
2493
2494 /*
2495 * before we register a new CON_BOOT console, make sure we don't
2496 * already have a valid console
2497 */
2498 if (console_drivers && newcon->flags & CON_BOOT) {
2499 /* find the last or real console */
2500 for_each_console(bcon) {
2501 if (!(bcon->flags & CON_BOOT)) {
2502 pr_info("Too late to register bootconsole %s%d\n",
2503 newcon->name, newcon->index);
2504 return;
2505 }
2506 }
2507 }
2508
2509 if (console_drivers && console_drivers->flags & CON_BOOT)
2510 bcon = console_drivers;
2511
2512 if (preferred_console < 0 || bcon || !console_drivers)
2513 preferred_console = selected_console;
2514
2515 /*
2516 * See if we want to use this console driver. If we
2517 * didn't select a console we take the first one
2518 * that registers here.
2519 */
2520 if (preferred_console < 0) {
2521 if (newcon->index < 0)
2522 newcon->index = 0;
2523 if (newcon->setup == NULL ||
2524 newcon->setup(newcon, NULL) == 0) {
2525 newcon->flags |= CON_ENABLED;
2526 if (newcon->device) {
2527 newcon->flags |= CON_CONSDEV;
2528 preferred_console = 0;
2529 }
2530 }
2531 }
2532
2533 /*
2534 * See if this console matches one we selected on
2535 * the command line.
2536 */
2537 for (i = 0, c = console_cmdline;
2538 i < MAX_CMDLINECONSOLES && c->name[0];
2539 i++, c++) {
2540 if (!newcon->match ||
2541 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2542 /* default matching */
2543 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2544 if (strcmp(c->name, newcon->name) != 0)
2545 continue;
2546 if (newcon->index >= 0 &&
2547 newcon->index != c->index)
2548 continue;
2549 if (newcon->index < 0)
2550 newcon->index = c->index;
2551
2552 if (_braille_register_console(newcon, c))
2553 return;
2554
2555 if (newcon->setup &&
2556 newcon->setup(newcon, c->options) != 0)
2557 break;
2558 }
2559
2560 newcon->flags |= CON_ENABLED;
2561 if (i == selected_console) {
2562 newcon->flags |= CON_CONSDEV;
2563 preferred_console = selected_console;
2564 }
2565 break;
2566 }
2567
2568 if (!(newcon->flags & CON_ENABLED))
2569 return;
2570
2571 /*
2572 * If we have a bootconsole, and are switching to a real console,
2573 * don't print everything out again, since when the boot console, and
2574 * the real console are the same physical device, it's annoying to
2575 * see the beginning boot messages twice
2576 */
2577 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2578 newcon->flags &= ~CON_PRINTBUFFER;
2579
2580 /*
2581 * Put this console in the list - keep the
2582 * preferred driver at the head of the list.
2583 */
2584 console_lock();
2585 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2586 newcon->next = console_drivers;
2587 console_drivers = newcon;
2588 if (newcon->next)
2589 newcon->next->flags &= ~CON_CONSDEV;
2590 } else {
2591 newcon->next = console_drivers->next;
2592 console_drivers->next = newcon;
2593 }
2594
2595 if (newcon->flags & CON_EXTENDED)
2596 if (!nr_ext_console_drivers++)
2597 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2598
2599 if (newcon->flags & CON_PRINTBUFFER) {
2600 /*
2601 * console_unlock(); will print out the buffered messages
2602 * for us.
2603 */
2604 raw_spin_lock_irqsave(&logbuf_lock, flags);
2605 console_seq = syslog_seq;
2606 console_idx = syslog_idx;
2607 console_prev = syslog_prev;
2608 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2609 /*
2610 * We're about to replay the log buffer. Only do this to the
2611 * just-registered console to avoid excessive message spam to
2612 * the already-registered consoles.
2613 */
2614 exclusive_console = newcon;
2615 }
2616 console_unlock();
2617 console_sysfs_notify();
2618
2619 /*
2620 * By unregistering the bootconsoles after we enable the real console
2621 * we get the "console xxx enabled" message on all the consoles -
2622 * boot consoles, real consoles, etc - this is to ensure that end
2623 * users know there might be something in the kernel's log buffer that
2624 * went to the bootconsole (that they do not see on the real console)
2625 */
2626 pr_info("%sconsole [%s%d] enabled\n",
2627 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2628 newcon->name, newcon->index);
2629 if (bcon &&
2630 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2631 !keep_bootcon) {
2632 /* We need to iterate through all boot consoles, to make
2633 * sure we print everything out, before we unregister them.
2634 */
2635 for_each_console(bcon)
2636 if (bcon->flags & CON_BOOT)
2637 unregister_console(bcon);
2638 }
2639 }
2640 EXPORT_SYMBOL(register_console);
2641
2642 int unregister_console(struct console *console)
2643 {
2644 struct console *a, *b;
2645 int res;
2646
2647 pr_info("%sconsole [%s%d] disabled\n",
2648 (console->flags & CON_BOOT) ? "boot" : "" ,
2649 console->name, console->index);
2650
2651 res = _braille_unregister_console(console);
2652 if (res)
2653 return res;
2654
2655 res = 1;
2656 console_lock();
2657 if (console_drivers == console) {
2658 console_drivers=console->next;
2659 res = 0;
2660 } else if (console_drivers) {
2661 for (a=console_drivers->next, b=console_drivers ;
2662 a; b=a, a=b->next) {
2663 if (a == console) {
2664 b->next = a->next;
2665 res = 0;
2666 break;
2667 }
2668 }
2669 }
2670
2671 if (!res && (console->flags & CON_EXTENDED))
2672 nr_ext_console_drivers--;
2673
2674 /*
2675 * If this isn't the last console and it has CON_CONSDEV set, we
2676 * need to set it on the next preferred console.
2677 */
2678 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2679 console_drivers->flags |= CON_CONSDEV;
2680
2681 console->flags &= ~CON_ENABLED;
2682 console_unlock();
2683 console_sysfs_notify();
2684 return res;
2685 }
2686 EXPORT_SYMBOL(unregister_console);
2687
2688 /*
2689 * Some boot consoles access data that is in the init section and which will
2690 * be discarded after the initcalls have been run. To make sure that no code
2691 * will access this data, unregister the boot consoles in a late initcall.
2692 *
2693 * If for some reason, such as deferred probe or the driver being a loadable
2694 * module, the real console hasn't registered yet at this point, there will
2695 * be a brief interval in which no messages are logged to the console, which
2696 * makes it difficult to diagnose problems that occur during this time.
2697 *
2698 * To mitigate this problem somewhat, only unregister consoles whose memory
2699 * intersects with the init section. Note that code exists elsewhere to get
2700 * rid of the boot console as soon as the proper console shows up, so there
2701 * won't be side-effects from postponing the removal.
2702 */
2703 static int __init printk_late_init(void)
2704 {
2705 struct console *con;
2706
2707 for_each_console(con) {
2708 if (!keep_bootcon && con->flags & CON_BOOT) {
2709 /*
2710 * Make sure to unregister boot consoles whose data
2711 * resides in the init section before the init section
2712 * is discarded. Boot consoles whose data will stick
2713 * around will automatically be unregistered when the
2714 * proper console replaces them.
2715 */
2716 if (init_section_intersects(con, sizeof(*con)))
2717 unregister_console(con);
2718 }
2719 }
2720 hotcpu_notifier(console_cpu_notify, 0);
2721 return 0;
2722 }
2723 late_initcall(printk_late_init);
2724
2725 #if defined CONFIG_PRINTK
2726 /*
2727 * Delayed printk version, for scheduler-internal messages:
2728 */
2729 #define PRINTK_PENDING_WAKEUP 0x01
2730 #define PRINTK_PENDING_OUTPUT 0x02
2731
2732 static DEFINE_PER_CPU(int, printk_pending);
2733
2734 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2735 {
2736 int pending = __this_cpu_xchg(printk_pending, 0);
2737
2738 if (pending & PRINTK_PENDING_OUTPUT) {
2739 /* If trylock fails, someone else is doing the printing */
2740 if (console_trylock())
2741 console_unlock();
2742 }
2743
2744 if (pending & PRINTK_PENDING_WAKEUP)
2745 wake_up_interruptible(&log_wait);
2746 }
2747
2748 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2749 .func = wake_up_klogd_work_func,
2750 .flags = IRQ_WORK_LAZY,
2751 };
2752
2753 void wake_up_klogd(void)
2754 {
2755 preempt_disable();
2756 if (waitqueue_active(&log_wait)) {
2757 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2758 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2759 }
2760 preempt_enable();
2761 }
2762
2763 int printk_deferred(const char *fmt, ...)
2764 {
2765 va_list args;
2766 int r;
2767
2768 preempt_disable();
2769 va_start(args, fmt);
2770 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2771 va_end(args);
2772
2773 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2774 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2775 preempt_enable();
2776
2777 return r;
2778 }
2779
2780 /*
2781 * printk rate limiting, lifted from the networking subsystem.
2782 *
2783 * This enforces a rate limit: not more than 10 kernel messages
2784 * every 5s to make a denial-of-service attack impossible.
2785 */
2786 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2787
2788 int __printk_ratelimit(const char *func)
2789 {
2790 return ___ratelimit(&printk_ratelimit_state, func);
2791 }
2792 EXPORT_SYMBOL(__printk_ratelimit);
2793
2794 /**
2795 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2796 * @caller_jiffies: pointer to caller's state
2797 * @interval_msecs: minimum interval between prints
2798 *
2799 * printk_timed_ratelimit() returns true if more than @interval_msecs
2800 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2801 * returned true.
2802 */
2803 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2804 unsigned int interval_msecs)
2805 {
2806 unsigned long elapsed = jiffies - *caller_jiffies;
2807
2808 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2809 return false;
2810
2811 *caller_jiffies = jiffies;
2812 return true;
2813 }
2814 EXPORT_SYMBOL(printk_timed_ratelimit);
2815
2816 static DEFINE_SPINLOCK(dump_list_lock);
2817 static LIST_HEAD(dump_list);
2818
2819 /**
2820 * kmsg_dump_register - register a kernel log dumper.
2821 * @dumper: pointer to the kmsg_dumper structure
2822 *
2823 * Adds a kernel log dumper to the system. The dump callback in the
2824 * structure will be called when the kernel oopses or panics and must be
2825 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2826 */
2827 int kmsg_dump_register(struct kmsg_dumper *dumper)
2828 {
2829 unsigned long flags;
2830 int err = -EBUSY;
2831
2832 /* The dump callback needs to be set */
2833 if (!dumper->dump)
2834 return -EINVAL;
2835
2836 spin_lock_irqsave(&dump_list_lock, flags);
2837 /* Don't allow registering multiple times */
2838 if (!dumper->registered) {
2839 dumper->registered = 1;
2840 list_add_tail_rcu(&dumper->list, &dump_list);
2841 err = 0;
2842 }
2843 spin_unlock_irqrestore(&dump_list_lock, flags);
2844
2845 return err;
2846 }
2847 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2848
2849 /**
2850 * kmsg_dump_unregister - unregister a kmsg dumper.
2851 * @dumper: pointer to the kmsg_dumper structure
2852 *
2853 * Removes a dump device from the system. Returns zero on success and
2854 * %-EINVAL otherwise.
2855 */
2856 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2857 {
2858 unsigned long flags;
2859 int err = -EINVAL;
2860
2861 spin_lock_irqsave(&dump_list_lock, flags);
2862 if (dumper->registered) {
2863 dumper->registered = 0;
2864 list_del_rcu(&dumper->list);
2865 err = 0;
2866 }
2867 spin_unlock_irqrestore(&dump_list_lock, flags);
2868 synchronize_rcu();
2869
2870 return err;
2871 }
2872 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2873
2874 static bool always_kmsg_dump;
2875 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2876
2877 /**
2878 * kmsg_dump - dump kernel log to kernel message dumpers.
2879 * @reason: the reason (oops, panic etc) for dumping
2880 *
2881 * Call each of the registered dumper's dump() callback, which can
2882 * retrieve the kmsg records with kmsg_dump_get_line() or
2883 * kmsg_dump_get_buffer().
2884 */
2885 void kmsg_dump(enum kmsg_dump_reason reason)
2886 {
2887 struct kmsg_dumper *dumper;
2888 unsigned long flags;
2889
2890 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2891 return;
2892
2893 rcu_read_lock();
2894 list_for_each_entry_rcu(dumper, &dump_list, list) {
2895 if (dumper->max_reason && reason > dumper->max_reason)
2896 continue;
2897
2898 /* initialize iterator with data about the stored records */
2899 dumper->active = true;
2900
2901 raw_spin_lock_irqsave(&logbuf_lock, flags);
2902 dumper->cur_seq = clear_seq;
2903 dumper->cur_idx = clear_idx;
2904 dumper->next_seq = log_next_seq;
2905 dumper->next_idx = log_next_idx;
2906 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2907
2908 /* invoke dumper which will iterate over records */
2909 dumper->dump(dumper, reason);
2910
2911 /* reset iterator */
2912 dumper->active = false;
2913 }
2914 rcu_read_unlock();
2915 }
2916
2917 /**
2918 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2919 * @dumper: registered kmsg dumper
2920 * @syslog: include the "<4>" prefixes
2921 * @line: buffer to copy the line to
2922 * @size: maximum size of the buffer
2923 * @len: length of line placed into buffer
2924 *
2925 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2926 * record, and copy one record into the provided buffer.
2927 *
2928 * Consecutive calls will return the next available record moving
2929 * towards the end of the buffer with the youngest messages.
2930 *
2931 * A return value of FALSE indicates that there are no more records to
2932 * read.
2933 *
2934 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2935 */
2936 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2937 char *line, size_t size, size_t *len)
2938 {
2939 struct printk_log *msg;
2940 size_t l = 0;
2941 bool ret = false;
2942
2943 if (!dumper->active)
2944 goto out;
2945
2946 if (dumper->cur_seq < log_first_seq) {
2947 /* messages are gone, move to first available one */
2948 dumper->cur_seq = log_first_seq;
2949 dumper->cur_idx = log_first_idx;
2950 }
2951
2952 /* last entry */
2953 if (dumper->cur_seq >= log_next_seq)
2954 goto out;
2955
2956 msg = log_from_idx(dumper->cur_idx);
2957 l = msg_print_text(msg, 0, syslog, line, size);
2958
2959 dumper->cur_idx = log_next(dumper->cur_idx);
2960 dumper->cur_seq++;
2961 ret = true;
2962 out:
2963 if (len)
2964 *len = l;
2965 return ret;
2966 }
2967
2968 /**
2969 * kmsg_dump_get_line - retrieve one kmsg log line
2970 * @dumper: registered kmsg dumper
2971 * @syslog: include the "<4>" prefixes
2972 * @line: buffer to copy the line to
2973 * @size: maximum size of the buffer
2974 * @len: length of line placed into buffer
2975 *
2976 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2977 * record, and copy one record into the provided buffer.
2978 *
2979 * Consecutive calls will return the next available record moving
2980 * towards the end of the buffer with the youngest messages.
2981 *
2982 * A return value of FALSE indicates that there are no more records to
2983 * read.
2984 */
2985 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2986 char *line, size_t size, size_t *len)
2987 {
2988 unsigned long flags;
2989 bool ret;
2990
2991 raw_spin_lock_irqsave(&logbuf_lock, flags);
2992 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2993 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2994
2995 return ret;
2996 }
2997 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2998
2999 /**
3000 * kmsg_dump_get_buffer - copy kmsg log lines
3001 * @dumper: registered kmsg dumper
3002 * @syslog: include the "<4>" prefixes
3003 * @buf: buffer to copy the line to
3004 * @size: maximum size of the buffer
3005 * @len: length of line placed into buffer
3006 *
3007 * Start at the end of the kmsg buffer and fill the provided buffer
3008 * with as many of the the *youngest* kmsg records that fit into it.
3009 * If the buffer is large enough, all available kmsg records will be
3010 * copied with a single call.
3011 *
3012 * Consecutive calls will fill the buffer with the next block of
3013 * available older records, not including the earlier retrieved ones.
3014 *
3015 * A return value of FALSE indicates that there are no more records to
3016 * read.
3017 */
3018 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3019 char *buf, size_t size, size_t *len)
3020 {
3021 unsigned long flags;
3022 u64 seq;
3023 u32 idx;
3024 u64 next_seq;
3025 u32 next_idx;
3026 enum log_flags prev;
3027 size_t l = 0;
3028 bool ret = false;
3029
3030 if (!dumper->active)
3031 goto out;
3032
3033 raw_spin_lock_irqsave(&logbuf_lock, flags);
3034 if (dumper->cur_seq < log_first_seq) {
3035 /* messages are gone, move to first available one */
3036 dumper->cur_seq = log_first_seq;
3037 dumper->cur_idx = log_first_idx;
3038 }
3039
3040 /* last entry */
3041 if (dumper->cur_seq >= dumper->next_seq) {
3042 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3043 goto out;
3044 }
3045
3046 /* calculate length of entire buffer */
3047 seq = dumper->cur_seq;
3048 idx = dumper->cur_idx;
3049 prev = 0;
3050 while (seq < dumper->next_seq) {
3051 struct printk_log *msg = log_from_idx(idx);
3052
3053 l += msg_print_text(msg, prev, true, NULL, 0);
3054 idx = log_next(idx);
3055 seq++;
3056 prev = msg->flags;
3057 }
3058
3059 /* move first record forward until length fits into the buffer */
3060 seq = dumper->cur_seq;
3061 idx = dumper->cur_idx;
3062 prev = 0;
3063 while (l > size && seq < dumper->next_seq) {
3064 struct printk_log *msg = log_from_idx(idx);
3065
3066 l -= msg_print_text(msg, prev, true, NULL, 0);
3067 idx = log_next(idx);
3068 seq++;
3069 prev = msg->flags;
3070 }
3071
3072 /* last message in next interation */
3073 next_seq = seq;
3074 next_idx = idx;
3075
3076 l = 0;
3077 while (seq < dumper->next_seq) {
3078 struct printk_log *msg = log_from_idx(idx);
3079
3080 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3081 idx = log_next(idx);
3082 seq++;
3083 prev = msg->flags;
3084 }
3085
3086 dumper->next_seq = next_seq;
3087 dumper->next_idx = next_idx;
3088 ret = true;
3089 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3090 out:
3091 if (len)
3092 *len = l;
3093 return ret;
3094 }
3095 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3096
3097 /**
3098 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3099 * @dumper: registered kmsg dumper
3100 *
3101 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3102 * kmsg_dump_get_buffer() can be called again and used multiple
3103 * times within the same dumper.dump() callback.
3104 *
3105 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3106 */
3107 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3108 {
3109 dumper->cur_seq = clear_seq;
3110 dumper->cur_idx = clear_idx;
3111 dumper->next_seq = log_next_seq;
3112 dumper->next_idx = log_next_idx;
3113 }
3114
3115 /**
3116 * kmsg_dump_rewind - reset the interator
3117 * @dumper: registered kmsg dumper
3118 *
3119 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3120 * kmsg_dump_get_buffer() can be called again and used multiple
3121 * times within the same dumper.dump() callback.
3122 */
3123 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3124 {
3125 unsigned long flags;
3126
3127 raw_spin_lock_irqsave(&logbuf_lock, flags);
3128 kmsg_dump_rewind_nolock(dumper);
3129 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3130 }
3131 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3132
3133 static char dump_stack_arch_desc_str[128];
3134
3135 /**
3136 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3137 * @fmt: printf-style format string
3138 * @...: arguments for the format string
3139 *
3140 * The configured string will be printed right after utsname during task
3141 * dumps. Usually used to add arch-specific system identifiers. If an
3142 * arch wants to make use of such an ID string, it should initialize this
3143 * as soon as possible during boot.
3144 */
3145 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3146 {
3147 va_list args;
3148
3149 va_start(args, fmt);
3150 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3151 fmt, args);
3152 va_end(args);
3153 }
3154
3155 /**
3156 * dump_stack_print_info - print generic debug info for dump_stack()
3157 * @log_lvl: log level
3158 *
3159 * Arch-specific dump_stack() implementations can use this function to
3160 * print out the same debug information as the generic dump_stack().
3161 */
3162 void dump_stack_print_info(const char *log_lvl)
3163 {
3164 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3165 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3166 print_tainted(), init_utsname()->release,
3167 (int)strcspn(init_utsname()->version, " "),
3168 init_utsname()->version);
3169
3170 if (dump_stack_arch_desc_str[0] != '\0')
3171 printk("%sHardware name: %s\n",
3172 log_lvl, dump_stack_arch_desc_str);
3173
3174 print_worker_info(log_lvl, current);
3175 }
3176
3177 /**
3178 * show_regs_print_info - print generic debug info for show_regs()
3179 * @log_lvl: log level
3180 *
3181 * show_regs() implementations can use this function to print out generic
3182 * debug information.
3183 */
3184 void show_regs_print_info(const char *log_lvl)
3185 {
3186 dump_stack_print_info(log_lvl);
3187
3188 printk("%stask: %p ti: %p task.ti: %p\n",
3189 log_lvl, current, current_thread_info(),
3190 task_thread_info(current));
3191 }
3192
3193 #endif
This page took 0.13613 seconds and 6 git commands to generate.