kmsg: /proc/kmsg - support reading of partial log records
[deliverable/linux.git] / kernel / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45
46 #include <asm/uaccess.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/printk.h>
50
51 /*
52 * Architectures can override it:
53 */
54 void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
55 {
56 }
57
58 /* printk's without a loglevel use this.. */
59 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
60
61 /* We show everything that is MORE important than this.. */
62 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
63 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
64
65 DECLARE_WAIT_QUEUE_HEAD(log_wait);
66
67 int console_printk[4] = {
68 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
69 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
70 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
71 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
72 };
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 /*
91 * This is used for debugging the mess that is the VT code by
92 * keeping track if we have the console semaphore held. It's
93 * definitely not the perfect debug tool (we don't know if _WE_
94 * hold it are racing, but it helps tracking those weird code
95 * path in the console code where we end up in places I want
96 * locked without the console sempahore held
97 */
98 static int console_locked, console_suspended;
99
100 /*
101 * If exclusive_console is non-NULL then only this console is to be printed to.
102 */
103 static struct console *exclusive_console;
104
105 /*
106 * Array of consoles built from command line options (console=)
107 */
108 struct console_cmdline
109 {
110 char name[8]; /* Name of the driver */
111 int index; /* Minor dev. to use */
112 char *options; /* Options for the driver */
113 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
114 char *brl_options; /* Options for braille driver */
115 #endif
116 };
117
118 #define MAX_CMDLINECONSOLES 8
119
120 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
121 static int selected_console = -1;
122 static int preferred_console = -1;
123 int console_set_on_cmdline;
124 EXPORT_SYMBOL(console_set_on_cmdline);
125
126 /* Flag: console code may call schedule() */
127 static int console_may_schedule;
128
129 /*
130 * The printk log buffer consists of a chain of concatenated variable
131 * length records. Every record starts with a record header, containing
132 * the overall length of the record.
133 *
134 * The heads to the first and last entry in the buffer, as well as the
135 * sequence numbers of these both entries are maintained when messages
136 * are stored..
137 *
138 * If the heads indicate available messages, the length in the header
139 * tells the start next message. A length == 0 for the next message
140 * indicates a wrap-around to the beginning of the buffer.
141 *
142 * Every record carries the monotonic timestamp in microseconds, as well as
143 * the standard userspace syslog level and syslog facility. The usual
144 * kernel messages use LOG_KERN; userspace-injected messages always carry
145 * a matching syslog facility, by default LOG_USER. The origin of every
146 * message can be reliably determined that way.
147 *
148 * The human readable log message directly follows the message header. The
149 * length of the message text is stored in the header, the stored message
150 * is not terminated.
151 *
152 * Optionally, a message can carry a dictionary of properties (key/value pairs),
153 * to provide userspace with a machine-readable message context.
154 *
155 * Examples for well-defined, commonly used property names are:
156 * DEVICE=b12:8 device identifier
157 * b12:8 block dev_t
158 * c127:3 char dev_t
159 * n8 netdev ifindex
160 * +sound:card0 subsystem:devname
161 * SUBSYSTEM=pci driver-core subsystem name
162 *
163 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
164 * follows directly after a '=' character. Every property is terminated by
165 * a '\0' character. The last property is not terminated.
166 *
167 * Example of a message structure:
168 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
169 * 0008 34 00 record is 52 bytes long
170 * 000a 0b 00 text is 11 bytes long
171 * 000c 1f 00 dictionary is 23 bytes long
172 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
173 * 0010 69 74 27 73 20 61 20 6c "it's a l"
174 * 69 6e 65 "ine"
175 * 001b 44 45 56 49 43 "DEVIC"
176 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
177 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
178 * 67 "g"
179 * 0032 00 00 00 padding to next message header
180 *
181 * The 'struct log' buffer header must never be directly exported to
182 * userspace, it is a kernel-private implementation detail that might
183 * need to be changed in the future, when the requirements change.
184 *
185 * /dev/kmsg exports the structured data in the following line format:
186 * "level,sequnum,timestamp;<message text>\n"
187 *
188 * The optional key/value pairs are attached as continuation lines starting
189 * with a space character and terminated by a newline. All possible
190 * non-prinatable characters are escaped in the "\xff" notation.
191 *
192 * Users of the export format should ignore possible additional values
193 * separated by ',', and find the message after the ';' character.
194 */
195
196 enum log_flags {
197 LOG_DEFAULT = 0,
198 LOG_NOCONS = 1, /* already flushed, do not print to console */
199 };
200
201 struct log {
202 u64 ts_nsec; /* timestamp in nanoseconds */
203 u16 len; /* length of entire record */
204 u16 text_len; /* length of text buffer */
205 u16 dict_len; /* length of dictionary buffer */
206 u8 facility; /* syslog facility */
207 u8 flags:5; /* internal record flags */
208 u8 level:3; /* syslog level */
209 };
210
211 /*
212 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
213 * used in interesting ways to provide interlocking in console_unlock();
214 */
215 static DEFINE_RAW_SPINLOCK(logbuf_lock);
216
217 /* the next printk record to read by syslog(READ) or /proc/kmsg */
218 static u64 syslog_seq;
219 static u32 syslog_idx;
220 static size_t syslog_partial;
221
222 /* index and sequence number of the first record stored in the buffer */
223 static u64 log_first_seq;
224 static u32 log_first_idx;
225
226 /* index and sequence number of the next record to store in the buffer */
227 static u64 log_next_seq;
228 #ifdef CONFIG_PRINTK
229 static u32 log_next_idx;
230
231 /* the next printk record to read after the last 'clear' command */
232 static u64 clear_seq;
233 static u32 clear_idx;
234
235 #define LOG_LINE_MAX 1024
236
237 /* record buffer */
238 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
239 #define LOG_ALIGN 4
240 #else
241 #define LOG_ALIGN __alignof__(struct log)
242 #endif
243 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
244 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
245 static char *log_buf = __log_buf;
246 static u32 log_buf_len = __LOG_BUF_LEN;
247
248 /* cpu currently holding logbuf_lock */
249 static volatile unsigned int logbuf_cpu = UINT_MAX;
250
251 /* human readable text of the record */
252 static char *log_text(const struct log *msg)
253 {
254 return (char *)msg + sizeof(struct log);
255 }
256
257 /* optional key/value pair dictionary attached to the record */
258 static char *log_dict(const struct log *msg)
259 {
260 return (char *)msg + sizeof(struct log) + msg->text_len;
261 }
262
263 /* get record by index; idx must point to valid msg */
264 static struct log *log_from_idx(u32 idx)
265 {
266 struct log *msg = (struct log *)(log_buf + idx);
267
268 /*
269 * A length == 0 record is the end of buffer marker. Wrap around and
270 * read the message at the start of the buffer.
271 */
272 if (!msg->len)
273 return (struct log *)log_buf;
274 return msg;
275 }
276
277 /* get next record; idx must point to valid msg */
278 static u32 log_next(u32 idx)
279 {
280 struct log *msg = (struct log *)(log_buf + idx);
281
282 /* length == 0 indicates the end of the buffer; wrap */
283 /*
284 * A length == 0 record is the end of buffer marker. Wrap around and
285 * read the message at the start of the buffer as *this* one, and
286 * return the one after that.
287 */
288 if (!msg->len) {
289 msg = (struct log *)log_buf;
290 return msg->len;
291 }
292 return idx + msg->len;
293 }
294
295 /* insert record into the buffer, discard old ones, update heads */
296 static void log_store(int facility, int level,
297 enum log_flags flags, u64 ts_nsec,
298 const char *dict, u16 dict_len,
299 const char *text, u16 text_len)
300 {
301 struct log *msg;
302 u32 size, pad_len;
303
304 /* number of '\0' padding bytes to next message */
305 size = sizeof(struct log) + text_len + dict_len;
306 pad_len = (-size) & (LOG_ALIGN - 1);
307 size += pad_len;
308
309 while (log_first_seq < log_next_seq) {
310 u32 free;
311
312 if (log_next_idx > log_first_idx)
313 free = max(log_buf_len - log_next_idx, log_first_idx);
314 else
315 free = log_first_idx - log_next_idx;
316
317 if (free > size + sizeof(struct log))
318 break;
319
320 /* drop old messages until we have enough contiuous space */
321 log_first_idx = log_next(log_first_idx);
322 log_first_seq++;
323 }
324
325 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
326 /*
327 * This message + an additional empty header does not fit
328 * at the end of the buffer. Add an empty header with len == 0
329 * to signify a wrap around.
330 */
331 memset(log_buf + log_next_idx, 0, sizeof(struct log));
332 log_next_idx = 0;
333 }
334
335 /* fill message */
336 msg = (struct log *)(log_buf + log_next_idx);
337 memcpy(log_text(msg), text, text_len);
338 msg->text_len = text_len;
339 memcpy(log_dict(msg), dict, dict_len);
340 msg->dict_len = dict_len;
341 msg->facility = facility;
342 msg->level = level & 7;
343 msg->flags = flags & 0x1f;
344 if (ts_nsec > 0)
345 msg->ts_nsec = ts_nsec;
346 else
347 msg->ts_nsec = local_clock();
348 memset(log_dict(msg) + dict_len, 0, pad_len);
349 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
350
351 /* insert message */
352 log_next_idx += msg->len;
353 log_next_seq++;
354 }
355
356 /* /dev/kmsg - userspace message inject/listen interface */
357 struct devkmsg_user {
358 u64 seq;
359 u32 idx;
360 struct mutex lock;
361 char buf[8192];
362 };
363
364 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
365 unsigned long count, loff_t pos)
366 {
367 char *buf, *line;
368 int i;
369 int level = default_message_loglevel;
370 int facility = 1; /* LOG_USER */
371 size_t len = iov_length(iv, count);
372 ssize_t ret = len;
373
374 if (len > LOG_LINE_MAX)
375 return -EINVAL;
376 buf = kmalloc(len+1, GFP_KERNEL);
377 if (buf == NULL)
378 return -ENOMEM;
379
380 line = buf;
381 for (i = 0; i < count; i++) {
382 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len))
383 goto out;
384 line += iv[i].iov_len;
385 }
386
387 /*
388 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
389 * the decimal value represents 32bit, the lower 3 bit are the log
390 * level, the rest are the log facility.
391 *
392 * If no prefix or no userspace facility is specified, we
393 * enforce LOG_USER, to be able to reliably distinguish
394 * kernel-generated messages from userspace-injected ones.
395 */
396 line = buf;
397 if (line[0] == '<') {
398 char *endp = NULL;
399
400 i = simple_strtoul(line+1, &endp, 10);
401 if (endp && endp[0] == '>') {
402 level = i & 7;
403 if (i >> 3)
404 facility = i >> 3;
405 endp++;
406 len -= endp - line;
407 line = endp;
408 }
409 }
410 line[len] = '\0';
411
412 printk_emit(facility, level, NULL, 0, "%s", line);
413 out:
414 kfree(buf);
415 return ret;
416 }
417
418 static ssize_t devkmsg_read(struct file *file, char __user *buf,
419 size_t count, loff_t *ppos)
420 {
421 struct devkmsg_user *user = file->private_data;
422 struct log *msg;
423 u64 ts_usec;
424 size_t i;
425 size_t len;
426 ssize_t ret;
427
428 if (!user)
429 return -EBADF;
430
431 ret = mutex_lock_interruptible(&user->lock);
432 if (ret)
433 return ret;
434 raw_spin_lock_irq(&logbuf_lock);
435 while (user->seq == log_next_seq) {
436 if (file->f_flags & O_NONBLOCK) {
437 ret = -EAGAIN;
438 raw_spin_unlock_irq(&logbuf_lock);
439 goto out;
440 }
441
442 raw_spin_unlock_irq(&logbuf_lock);
443 ret = wait_event_interruptible(log_wait,
444 user->seq != log_next_seq);
445 if (ret)
446 goto out;
447 raw_spin_lock_irq(&logbuf_lock);
448 }
449
450 if (user->seq < log_first_seq) {
451 /* our last seen message is gone, return error and reset */
452 user->idx = log_first_idx;
453 user->seq = log_first_seq;
454 ret = -EPIPE;
455 raw_spin_unlock_irq(&logbuf_lock);
456 goto out;
457 }
458
459 msg = log_from_idx(user->idx);
460 ts_usec = msg->ts_nsec;
461 do_div(ts_usec, 1000);
462 len = sprintf(user->buf, "%u,%llu,%llu;",
463 (msg->facility << 3) | msg->level, user->seq, ts_usec);
464
465 /* escape non-printable characters */
466 for (i = 0; i < msg->text_len; i++) {
467 unsigned char c = log_text(msg)[i];
468
469 if (c < ' ' || c >= 127 || c == '\\')
470 len += sprintf(user->buf + len, "\\x%02x", c);
471 else
472 user->buf[len++] = c;
473 }
474 user->buf[len++] = '\n';
475
476 if (msg->dict_len) {
477 bool line = true;
478
479 for (i = 0; i < msg->dict_len; i++) {
480 unsigned char c = log_dict(msg)[i];
481
482 if (line) {
483 user->buf[len++] = ' ';
484 line = false;
485 }
486
487 if (c == '\0') {
488 user->buf[len++] = '\n';
489 line = true;
490 continue;
491 }
492
493 if (c < ' ' || c >= 127 || c == '\\') {
494 len += sprintf(user->buf + len, "\\x%02x", c);
495 continue;
496 }
497
498 user->buf[len++] = c;
499 }
500 user->buf[len++] = '\n';
501 }
502
503 user->idx = log_next(user->idx);
504 user->seq++;
505 raw_spin_unlock_irq(&logbuf_lock);
506
507 if (len > count) {
508 ret = -EINVAL;
509 goto out;
510 }
511
512 if (copy_to_user(buf, user->buf, len)) {
513 ret = -EFAULT;
514 goto out;
515 }
516 ret = len;
517 out:
518 mutex_unlock(&user->lock);
519 return ret;
520 }
521
522 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
523 {
524 struct devkmsg_user *user = file->private_data;
525 loff_t ret = 0;
526
527 if (!user)
528 return -EBADF;
529 if (offset)
530 return -ESPIPE;
531
532 raw_spin_lock_irq(&logbuf_lock);
533 switch (whence) {
534 case SEEK_SET:
535 /* the first record */
536 user->idx = log_first_idx;
537 user->seq = log_first_seq;
538 break;
539 case SEEK_DATA:
540 /*
541 * The first record after the last SYSLOG_ACTION_CLEAR,
542 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
543 * changes no global state, and does not clear anything.
544 */
545 user->idx = clear_idx;
546 user->seq = clear_seq;
547 break;
548 case SEEK_END:
549 /* after the last record */
550 user->idx = log_next_idx;
551 user->seq = log_next_seq;
552 break;
553 default:
554 ret = -EINVAL;
555 }
556 raw_spin_unlock_irq(&logbuf_lock);
557 return ret;
558 }
559
560 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
561 {
562 struct devkmsg_user *user = file->private_data;
563 int ret = 0;
564
565 if (!user)
566 return POLLERR|POLLNVAL;
567
568 poll_wait(file, &log_wait, wait);
569
570 raw_spin_lock_irq(&logbuf_lock);
571 if (user->seq < log_next_seq) {
572 /* return error when data has vanished underneath us */
573 if (user->seq < log_first_seq)
574 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
575 ret = POLLIN|POLLRDNORM;
576 }
577 raw_spin_unlock_irq(&logbuf_lock);
578
579 return ret;
580 }
581
582 static int devkmsg_open(struct inode *inode, struct file *file)
583 {
584 struct devkmsg_user *user;
585 int err;
586
587 /* write-only does not need any file context */
588 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
589 return 0;
590
591 err = security_syslog(SYSLOG_ACTION_READ_ALL);
592 if (err)
593 return err;
594
595 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
596 if (!user)
597 return -ENOMEM;
598
599 mutex_init(&user->lock);
600
601 raw_spin_lock_irq(&logbuf_lock);
602 user->idx = log_first_idx;
603 user->seq = log_first_seq;
604 raw_spin_unlock_irq(&logbuf_lock);
605
606 file->private_data = user;
607 return 0;
608 }
609
610 static int devkmsg_release(struct inode *inode, struct file *file)
611 {
612 struct devkmsg_user *user = file->private_data;
613
614 if (!user)
615 return 0;
616
617 mutex_destroy(&user->lock);
618 kfree(user);
619 return 0;
620 }
621
622 const struct file_operations kmsg_fops = {
623 .open = devkmsg_open,
624 .read = devkmsg_read,
625 .aio_write = devkmsg_writev,
626 .llseek = devkmsg_llseek,
627 .poll = devkmsg_poll,
628 .release = devkmsg_release,
629 };
630
631 #ifdef CONFIG_KEXEC
632 /*
633 * This appends the listed symbols to /proc/vmcoreinfo
634 *
635 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
636 * obtain access to symbols that are otherwise very difficult to locate. These
637 * symbols are specifically used so that utilities can access and extract the
638 * dmesg log from a vmcore file after a crash.
639 */
640 void log_buf_kexec_setup(void)
641 {
642 VMCOREINFO_SYMBOL(log_buf);
643 VMCOREINFO_SYMBOL(log_buf_len);
644 VMCOREINFO_SYMBOL(log_first_idx);
645 VMCOREINFO_SYMBOL(log_next_idx);
646 }
647 #endif
648
649 /* requested log_buf_len from kernel cmdline */
650 static unsigned long __initdata new_log_buf_len;
651
652 /* save requested log_buf_len since it's too early to process it */
653 static int __init log_buf_len_setup(char *str)
654 {
655 unsigned size = memparse(str, &str);
656
657 if (size)
658 size = roundup_pow_of_two(size);
659 if (size > log_buf_len)
660 new_log_buf_len = size;
661
662 return 0;
663 }
664 early_param("log_buf_len", log_buf_len_setup);
665
666 void __init setup_log_buf(int early)
667 {
668 unsigned long flags;
669 char *new_log_buf;
670 int free;
671
672 if (!new_log_buf_len)
673 return;
674
675 if (early) {
676 unsigned long mem;
677
678 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
679 if (!mem)
680 return;
681 new_log_buf = __va(mem);
682 } else {
683 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
684 }
685
686 if (unlikely(!new_log_buf)) {
687 pr_err("log_buf_len: %ld bytes not available\n",
688 new_log_buf_len);
689 return;
690 }
691
692 raw_spin_lock_irqsave(&logbuf_lock, flags);
693 log_buf_len = new_log_buf_len;
694 log_buf = new_log_buf;
695 new_log_buf_len = 0;
696 free = __LOG_BUF_LEN - log_next_idx;
697 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
698 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
699
700 pr_info("log_buf_len: %d\n", log_buf_len);
701 pr_info("early log buf free: %d(%d%%)\n",
702 free, (free * 100) / __LOG_BUF_LEN);
703 }
704
705 #ifdef CONFIG_BOOT_PRINTK_DELAY
706
707 static int boot_delay; /* msecs delay after each printk during bootup */
708 static unsigned long long loops_per_msec; /* based on boot_delay */
709
710 static int __init boot_delay_setup(char *str)
711 {
712 unsigned long lpj;
713
714 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
715 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
716
717 get_option(&str, &boot_delay);
718 if (boot_delay > 10 * 1000)
719 boot_delay = 0;
720
721 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
722 "HZ: %d, loops_per_msec: %llu\n",
723 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
724 return 1;
725 }
726 __setup("boot_delay=", boot_delay_setup);
727
728 static void boot_delay_msec(void)
729 {
730 unsigned long long k;
731 unsigned long timeout;
732
733 if (boot_delay == 0 || system_state != SYSTEM_BOOTING)
734 return;
735
736 k = (unsigned long long)loops_per_msec * boot_delay;
737
738 timeout = jiffies + msecs_to_jiffies(boot_delay);
739 while (k) {
740 k--;
741 cpu_relax();
742 /*
743 * use (volatile) jiffies to prevent
744 * compiler reduction; loop termination via jiffies
745 * is secondary and may or may not happen.
746 */
747 if (time_after(jiffies, timeout))
748 break;
749 touch_nmi_watchdog();
750 }
751 }
752 #else
753 static inline void boot_delay_msec(void)
754 {
755 }
756 #endif
757
758 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
759 int dmesg_restrict = 1;
760 #else
761 int dmesg_restrict;
762 #endif
763
764 static int syslog_action_restricted(int type)
765 {
766 if (dmesg_restrict)
767 return 1;
768 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
769 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
770 }
771
772 static int check_syslog_permissions(int type, bool from_file)
773 {
774 /*
775 * If this is from /proc/kmsg and we've already opened it, then we've
776 * already done the capabilities checks at open time.
777 */
778 if (from_file && type != SYSLOG_ACTION_OPEN)
779 return 0;
780
781 if (syslog_action_restricted(type)) {
782 if (capable(CAP_SYSLOG))
783 return 0;
784 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
785 if (capable(CAP_SYS_ADMIN)) {
786 printk_once(KERN_WARNING "%s (%d): "
787 "Attempt to access syslog with CAP_SYS_ADMIN "
788 "but no CAP_SYSLOG (deprecated).\n",
789 current->comm, task_pid_nr(current));
790 return 0;
791 }
792 return -EPERM;
793 }
794 return 0;
795 }
796
797 #if defined(CONFIG_PRINTK_TIME)
798 static bool printk_time = 1;
799 #else
800 static bool printk_time;
801 #endif
802 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
803
804 static size_t print_time(u64 ts, char *buf)
805 {
806 unsigned long rem_nsec;
807
808 if (!printk_time)
809 return 0;
810
811 if (!buf)
812 return 15;
813
814 rem_nsec = do_div(ts, 1000000000);
815 return sprintf(buf, "[%5lu.%06lu] ",
816 (unsigned long)ts, rem_nsec / 1000);
817 }
818
819 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
820 {
821 size_t len = 0;
822 unsigned int prefix = (msg->facility << 3) | msg->level;
823
824 if (syslog) {
825 if (buf) {
826 len += sprintf(buf, "<%u>", prefix);
827 } else {
828 len += 3;
829 if (prefix > 999)
830 len += 3;
831 else if (prefix > 99)
832 len += 2;
833 else if (prefix > 9)
834 len++;
835 }
836 }
837
838 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
839 return len;
840 }
841
842 static size_t msg_print_text(const struct log *msg, bool syslog,
843 char *buf, size_t size)
844 {
845 const char *text = log_text(msg);
846 size_t text_size = msg->text_len;
847 size_t len = 0;
848
849 do {
850 const char *next = memchr(text, '\n', text_size);
851 size_t text_len;
852
853 if (next) {
854 text_len = next - text;
855 next++;
856 text_size -= next - text;
857 } else {
858 text_len = text_size;
859 }
860
861 if (buf) {
862 if (print_prefix(msg, syslog, NULL) +
863 text_len + 1>= size - len)
864 break;
865
866 len += print_prefix(msg, syslog, buf + len);
867 memcpy(buf + len, text, text_len);
868 len += text_len;
869 buf[len++] = '\n';
870 } else {
871 /* SYSLOG_ACTION_* buffer size only calculation */
872 len += print_prefix(msg, syslog, NULL);
873 len += text_len + 1;
874 }
875
876 text = next;
877 } while (text);
878
879 return len;
880 }
881
882 static int syslog_print(char __user *buf, int size)
883 {
884 char *text;
885 struct log *msg;
886 int len = 0;
887
888 text = kmalloc(LOG_LINE_MAX, GFP_KERNEL);
889 if (!text)
890 return -ENOMEM;
891
892 while (size > 0) {
893 size_t n;
894 size_t skip;
895
896 raw_spin_lock_irq(&logbuf_lock);
897 if (syslog_seq < log_first_seq) {
898 /* messages are gone, move to first one */
899 syslog_seq = log_first_seq;
900 syslog_idx = log_first_idx;
901 syslog_partial = 0;
902 }
903 if (syslog_seq == log_next_seq) {
904 raw_spin_unlock_irq(&logbuf_lock);
905 break;
906 }
907
908 skip = syslog_partial;
909 msg = log_from_idx(syslog_idx);
910 n = msg_print_text(msg, true, text, LOG_LINE_MAX);
911 if (n - syslog_partial <= size) {
912 /* message fits into buffer, move forward */
913 syslog_idx = log_next(syslog_idx);
914 syslog_seq++;
915 n -= syslog_partial;
916 syslog_partial = 0;
917 } else if (!len){
918 /* partial read(), remember position */
919 n = size;
920 syslog_partial += n;
921 } else
922 n = 0;
923 raw_spin_unlock_irq(&logbuf_lock);
924
925 if (!n)
926 break;
927
928 if (copy_to_user(buf, text + skip, n)) {
929 if (!len)
930 len = -EFAULT;
931 break;
932 }
933
934 len += n;
935 size -= n;
936 buf += n;
937 }
938
939 kfree(text);
940 return len;
941 }
942
943 static int syslog_print_all(char __user *buf, int size, bool clear)
944 {
945 char *text;
946 int len = 0;
947
948 text = kmalloc(LOG_LINE_MAX, GFP_KERNEL);
949 if (!text)
950 return -ENOMEM;
951
952 raw_spin_lock_irq(&logbuf_lock);
953 if (buf) {
954 u64 next_seq;
955 u64 seq;
956 u32 idx;
957
958 if (clear_seq < log_first_seq) {
959 /* messages are gone, move to first available one */
960 clear_seq = log_first_seq;
961 clear_idx = log_first_idx;
962 }
963
964 /*
965 * Find first record that fits, including all following records,
966 * into the user-provided buffer for this dump.
967 */
968 seq = clear_seq;
969 idx = clear_idx;
970 while (seq < log_next_seq) {
971 struct log *msg = log_from_idx(idx);
972
973 len += msg_print_text(msg, true, NULL, 0);
974 idx = log_next(idx);
975 seq++;
976 }
977
978 /* move first record forward until length fits into the buffer */
979 seq = clear_seq;
980 idx = clear_idx;
981 while (len > size && seq < log_next_seq) {
982 struct log *msg = log_from_idx(idx);
983
984 len -= msg_print_text(msg, true, NULL, 0);
985 idx = log_next(idx);
986 seq++;
987 }
988
989 /* last message fitting into this dump */
990 next_seq = log_next_seq;
991
992 len = 0;
993 while (len >= 0 && seq < next_seq) {
994 struct log *msg = log_from_idx(idx);
995 int textlen;
996
997 textlen = msg_print_text(msg, true, text, LOG_LINE_MAX);
998 if (textlen < 0) {
999 len = textlen;
1000 break;
1001 }
1002 idx = log_next(idx);
1003 seq++;
1004
1005 raw_spin_unlock_irq(&logbuf_lock);
1006 if (copy_to_user(buf + len, text, textlen))
1007 len = -EFAULT;
1008 else
1009 len += textlen;
1010 raw_spin_lock_irq(&logbuf_lock);
1011
1012 if (seq < log_first_seq) {
1013 /* messages are gone, move to next one */
1014 seq = log_first_seq;
1015 idx = log_first_idx;
1016 }
1017 }
1018 }
1019
1020 if (clear) {
1021 clear_seq = log_next_seq;
1022 clear_idx = log_next_idx;
1023 }
1024 raw_spin_unlock_irq(&logbuf_lock);
1025
1026 kfree(text);
1027 return len;
1028 }
1029
1030 int do_syslog(int type, char __user *buf, int len, bool from_file)
1031 {
1032 bool clear = false;
1033 static int saved_console_loglevel = -1;
1034 int error;
1035
1036 error = check_syslog_permissions(type, from_file);
1037 if (error)
1038 goto out;
1039
1040 error = security_syslog(type);
1041 if (error)
1042 return error;
1043
1044 switch (type) {
1045 case SYSLOG_ACTION_CLOSE: /* Close log */
1046 break;
1047 case SYSLOG_ACTION_OPEN: /* Open log */
1048 break;
1049 case SYSLOG_ACTION_READ: /* Read from log */
1050 error = -EINVAL;
1051 if (!buf || len < 0)
1052 goto out;
1053 error = 0;
1054 if (!len)
1055 goto out;
1056 if (!access_ok(VERIFY_WRITE, buf, len)) {
1057 error = -EFAULT;
1058 goto out;
1059 }
1060 error = wait_event_interruptible(log_wait,
1061 syslog_seq != log_next_seq);
1062 if (error)
1063 goto out;
1064 error = syslog_print(buf, len);
1065 break;
1066 /* Read/clear last kernel messages */
1067 case SYSLOG_ACTION_READ_CLEAR:
1068 clear = true;
1069 /* FALL THRU */
1070 /* Read last kernel messages */
1071 case SYSLOG_ACTION_READ_ALL:
1072 error = -EINVAL;
1073 if (!buf || len < 0)
1074 goto out;
1075 error = 0;
1076 if (!len)
1077 goto out;
1078 if (!access_ok(VERIFY_WRITE, buf, len)) {
1079 error = -EFAULT;
1080 goto out;
1081 }
1082 error = syslog_print_all(buf, len, clear);
1083 break;
1084 /* Clear ring buffer */
1085 case SYSLOG_ACTION_CLEAR:
1086 syslog_print_all(NULL, 0, true);
1087 break;
1088 /* Disable logging to console */
1089 case SYSLOG_ACTION_CONSOLE_OFF:
1090 if (saved_console_loglevel == -1)
1091 saved_console_loglevel = console_loglevel;
1092 console_loglevel = minimum_console_loglevel;
1093 break;
1094 /* Enable logging to console */
1095 case SYSLOG_ACTION_CONSOLE_ON:
1096 if (saved_console_loglevel != -1) {
1097 console_loglevel = saved_console_loglevel;
1098 saved_console_loglevel = -1;
1099 }
1100 break;
1101 /* Set level of messages printed to console */
1102 case SYSLOG_ACTION_CONSOLE_LEVEL:
1103 error = -EINVAL;
1104 if (len < 1 || len > 8)
1105 goto out;
1106 if (len < minimum_console_loglevel)
1107 len = minimum_console_loglevel;
1108 console_loglevel = len;
1109 /* Implicitly re-enable logging to console */
1110 saved_console_loglevel = -1;
1111 error = 0;
1112 break;
1113 /* Number of chars in the log buffer */
1114 case SYSLOG_ACTION_SIZE_UNREAD:
1115 raw_spin_lock_irq(&logbuf_lock);
1116 if (syslog_seq < log_first_seq) {
1117 /* messages are gone, move to first one */
1118 syslog_seq = log_first_seq;
1119 syslog_idx = log_first_idx;
1120 syslog_partial = 0;
1121 }
1122 if (from_file) {
1123 /*
1124 * Short-cut for poll(/"proc/kmsg") which simply checks
1125 * for pending data, not the size; return the count of
1126 * records, not the length.
1127 */
1128 error = log_next_idx - syslog_idx;
1129 } else {
1130 u64 seq;
1131 u32 idx;
1132
1133 error = 0;
1134 seq = syslog_seq;
1135 idx = syslog_idx;
1136 while (seq < log_next_seq) {
1137 struct log *msg = log_from_idx(idx);
1138
1139 error += msg_print_text(msg, true, NULL, 0);
1140 idx = log_next(idx);
1141 seq++;
1142 }
1143 error -= syslog_partial;
1144 }
1145 raw_spin_unlock_irq(&logbuf_lock);
1146 break;
1147 /* Size of the log buffer */
1148 case SYSLOG_ACTION_SIZE_BUFFER:
1149 error = log_buf_len;
1150 break;
1151 default:
1152 error = -EINVAL;
1153 break;
1154 }
1155 out:
1156 return error;
1157 }
1158
1159 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1160 {
1161 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1162 }
1163
1164 #ifdef CONFIG_KGDB_KDB
1165 /* kdb dmesg command needs access to the syslog buffer. do_syslog()
1166 * uses locks so it cannot be used during debugging. Just tell kdb
1167 * where the start and end of the physical and logical logs are. This
1168 * is equivalent to do_syslog(3).
1169 */
1170 void kdb_syslog_data(char *syslog_data[4])
1171 {
1172 syslog_data[0] = log_buf;
1173 syslog_data[1] = log_buf + log_buf_len;
1174 syslog_data[2] = log_buf + log_first_idx;
1175 syslog_data[3] = log_buf + log_next_idx;
1176 }
1177 #endif /* CONFIG_KGDB_KDB */
1178
1179 static bool __read_mostly ignore_loglevel;
1180
1181 static int __init ignore_loglevel_setup(char *str)
1182 {
1183 ignore_loglevel = 1;
1184 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
1185
1186 return 0;
1187 }
1188
1189 early_param("ignore_loglevel", ignore_loglevel_setup);
1190 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1191 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
1192 "print all kernel messages to the console.");
1193
1194 /*
1195 * Call the console drivers, asking them to write out
1196 * log_buf[start] to log_buf[end - 1].
1197 * The console_lock must be held.
1198 */
1199 static void call_console_drivers(int level, const char *text, size_t len)
1200 {
1201 struct console *con;
1202
1203 trace_console(text, 0, len, len);
1204
1205 if (level >= console_loglevel && !ignore_loglevel)
1206 return;
1207 if (!console_drivers)
1208 return;
1209
1210 for_each_console(con) {
1211 if (exclusive_console && con != exclusive_console)
1212 continue;
1213 if (!(con->flags & CON_ENABLED))
1214 continue;
1215 if (!con->write)
1216 continue;
1217 if (!cpu_online(smp_processor_id()) &&
1218 !(con->flags & CON_ANYTIME))
1219 continue;
1220 con->write(con, text, len);
1221 }
1222 }
1223
1224 /*
1225 * Zap console related locks when oopsing. Only zap at most once
1226 * every 10 seconds, to leave time for slow consoles to print a
1227 * full oops.
1228 */
1229 static void zap_locks(void)
1230 {
1231 static unsigned long oops_timestamp;
1232
1233 if (time_after_eq(jiffies, oops_timestamp) &&
1234 !time_after(jiffies, oops_timestamp + 30 * HZ))
1235 return;
1236
1237 oops_timestamp = jiffies;
1238
1239 debug_locks_off();
1240 /* If a crash is occurring, make sure we can't deadlock */
1241 raw_spin_lock_init(&logbuf_lock);
1242 /* And make sure that we print immediately */
1243 sema_init(&console_sem, 1);
1244 }
1245
1246 /* Check if we have any console registered that can be called early in boot. */
1247 static int have_callable_console(void)
1248 {
1249 struct console *con;
1250
1251 for_each_console(con)
1252 if (con->flags & CON_ANYTIME)
1253 return 1;
1254
1255 return 0;
1256 }
1257
1258 /*
1259 * Can we actually use the console at this time on this cpu?
1260 *
1261 * Console drivers may assume that per-cpu resources have
1262 * been allocated. So unless they're explicitly marked as
1263 * being able to cope (CON_ANYTIME) don't call them until
1264 * this CPU is officially up.
1265 */
1266 static inline int can_use_console(unsigned int cpu)
1267 {
1268 return cpu_online(cpu) || have_callable_console();
1269 }
1270
1271 /*
1272 * Try to get console ownership to actually show the kernel
1273 * messages from a 'printk'. Return true (and with the
1274 * console_lock held, and 'console_locked' set) if it
1275 * is successful, false otherwise.
1276 *
1277 * This gets called with the 'logbuf_lock' spinlock held and
1278 * interrupts disabled. It should return with 'lockbuf_lock'
1279 * released but interrupts still disabled.
1280 */
1281 static int console_trylock_for_printk(unsigned int cpu)
1282 __releases(&logbuf_lock)
1283 {
1284 int retval = 0, wake = 0;
1285
1286 if (console_trylock()) {
1287 retval = 1;
1288
1289 /*
1290 * If we can't use the console, we need to release
1291 * the console semaphore by hand to avoid flushing
1292 * the buffer. We need to hold the console semaphore
1293 * in order to do this test safely.
1294 */
1295 if (!can_use_console(cpu)) {
1296 console_locked = 0;
1297 wake = 1;
1298 retval = 0;
1299 }
1300 }
1301 logbuf_cpu = UINT_MAX;
1302 if (wake)
1303 up(&console_sem);
1304 raw_spin_unlock(&logbuf_lock);
1305 return retval;
1306 }
1307
1308 int printk_delay_msec __read_mostly;
1309
1310 static inline void printk_delay(void)
1311 {
1312 if (unlikely(printk_delay_msec)) {
1313 int m = printk_delay_msec;
1314
1315 while (m--) {
1316 mdelay(1);
1317 touch_nmi_watchdog();
1318 }
1319 }
1320 }
1321
1322 /*
1323 * Continuation lines are buffered, and not committed to the record buffer
1324 * until the line is complete, or a race forces it. The line fragments
1325 * though, are printed immediately to the consoles to ensure everything has
1326 * reached the console in case of a kernel crash.
1327 */
1328 static struct cont {
1329 char buf[LOG_LINE_MAX];
1330 size_t len; /* length == 0 means unused buffer */
1331 size_t cons; /* bytes written to console */
1332 struct task_struct *owner; /* task of first print*/
1333 u64 ts_nsec; /* time of first print */
1334 u8 level; /* log level of first message */
1335 u8 facility; /* log level of first message */
1336 bool flushed:1; /* buffer sealed and committed */
1337 } cont;
1338
1339 static void cont_flush(void)
1340 {
1341 if (cont.flushed)
1342 return;
1343 if (cont.len == 0)
1344 return;
1345
1346 log_store(cont.facility, cont.level, LOG_NOCONS, cont.ts_nsec,
1347 NULL, 0, cont.buf, cont.len);
1348
1349 cont.flushed = true;
1350 }
1351
1352 static bool cont_add(int facility, int level, const char *text, size_t len)
1353 {
1354 if (cont.len && cont.flushed)
1355 return false;
1356
1357 if (cont.len + len > sizeof(cont.buf)) {
1358 cont_flush();
1359 return false;
1360 }
1361
1362 if (!cont.len) {
1363 cont.facility = facility;
1364 cont.level = level;
1365 cont.owner = current;
1366 cont.ts_nsec = local_clock();
1367 cont.cons = 0;
1368 cont.flushed = false;
1369 }
1370
1371 memcpy(cont.buf + cont.len, text, len);
1372 cont.len += len;
1373 return true;
1374 }
1375
1376 static size_t cont_print_text(char *text, size_t size)
1377 {
1378 size_t textlen = 0;
1379 size_t len;
1380
1381 if (cont.cons == 0) {
1382 textlen += print_time(cont.ts_nsec, text);
1383 size -= textlen;
1384 }
1385
1386 len = cont.len - cont.cons;
1387 if (len > 0) {
1388 if (len+1 > size)
1389 len = size-1;
1390 memcpy(text + textlen, cont.buf + cont.cons, len);
1391 textlen += len;
1392 cont.cons = cont.len;
1393 }
1394
1395 if (cont.flushed) {
1396 text[textlen++] = '\n';
1397 /* got everything, release buffer */
1398 cont.len = 0;
1399 }
1400 return textlen;
1401 }
1402
1403 asmlinkage int vprintk_emit(int facility, int level,
1404 const char *dict, size_t dictlen,
1405 const char *fmt, va_list args)
1406 {
1407 static int recursion_bug;
1408 static char textbuf[LOG_LINE_MAX];
1409 char *text = textbuf;
1410 size_t text_len;
1411 unsigned long flags;
1412 int this_cpu;
1413 bool newline = false;
1414 bool prefix = false;
1415 int printed_len = 0;
1416
1417 boot_delay_msec();
1418 printk_delay();
1419
1420 /* This stops the holder of console_sem just where we want him */
1421 local_irq_save(flags);
1422 this_cpu = smp_processor_id();
1423
1424 /*
1425 * Ouch, printk recursed into itself!
1426 */
1427 if (unlikely(logbuf_cpu == this_cpu)) {
1428 /*
1429 * If a crash is occurring during printk() on this CPU,
1430 * then try to get the crash message out but make sure
1431 * we can't deadlock. Otherwise just return to avoid the
1432 * recursion and return - but flag the recursion so that
1433 * it can be printed at the next appropriate moment:
1434 */
1435 if (!oops_in_progress && !lockdep_recursing(current)) {
1436 recursion_bug = 1;
1437 goto out_restore_irqs;
1438 }
1439 zap_locks();
1440 }
1441
1442 lockdep_off();
1443 raw_spin_lock(&logbuf_lock);
1444 logbuf_cpu = this_cpu;
1445
1446 if (recursion_bug) {
1447 static const char recursion_msg[] =
1448 "BUG: recent printk recursion!";
1449
1450 recursion_bug = 0;
1451 printed_len += strlen(recursion_msg);
1452 /* emit KERN_CRIT message */
1453 log_store(0, 2, LOG_DEFAULT, 0,
1454 NULL, 0, recursion_msg, printed_len);
1455 }
1456
1457 /*
1458 * The printf needs to come first; we need the syslog
1459 * prefix which might be passed-in as a parameter.
1460 */
1461 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1462
1463 /* mark and strip a trailing newline */
1464 if (text_len && text[text_len-1] == '\n') {
1465 text_len--;
1466 newline = true;
1467 }
1468
1469 /* strip syslog prefix and extract log level or control flags */
1470 if (text[0] == '<' && text[1] && text[2] == '>') {
1471 switch (text[1]) {
1472 case '0' ... '7':
1473 if (level == -1)
1474 level = text[1] - '0';
1475 case 'd': /* KERN_DEFAULT */
1476 prefix = true;
1477 case 'c': /* KERN_CONT */
1478 text += 3;
1479 text_len -= 3;
1480 }
1481 }
1482
1483 if (level == -1)
1484 level = default_message_loglevel;
1485
1486 if (dict) {
1487 prefix = true;
1488 newline = true;
1489 }
1490
1491 if (!newline) {
1492 /*
1493 * Flush the conflicting buffer. An earlier newline was missing,
1494 * or another task also prints continuation lines.
1495 */
1496 if (cont.len && (prefix || cont.owner != current))
1497 cont_flush();
1498
1499 /* buffer line if possible, otherwise store it right away */
1500 if (!cont_add(facility, level, text, text_len))
1501 log_store(facility, level, LOG_DEFAULT, 0,
1502 dict, dictlen, text, text_len);
1503 } else {
1504 bool stored = false;
1505
1506 /*
1507 * If an earlier newline was missing and it was the same task,
1508 * either merge it with the current buffer and flush, or if
1509 * there was a race with interrupts (prefix == true) then just
1510 * flush it out and store this line separately.
1511 */
1512 if (cont.len && cont.owner == current) {
1513 if (!prefix)
1514 stored = cont_add(facility, level, text, text_len);
1515 cont_flush();
1516 }
1517
1518 if (!stored)
1519 log_store(facility, level, LOG_DEFAULT, 0,
1520 dict, dictlen, text, text_len);
1521 }
1522 printed_len += text_len;
1523
1524 /*
1525 * Try to acquire and then immediately release the console semaphore.
1526 * The release will print out buffers and wake up /dev/kmsg and syslog()
1527 * users.
1528 *
1529 * The console_trylock_for_printk() function will release 'logbuf_lock'
1530 * regardless of whether it actually gets the console semaphore or not.
1531 */
1532 if (console_trylock_for_printk(this_cpu))
1533 console_unlock();
1534
1535 lockdep_on();
1536 out_restore_irqs:
1537 local_irq_restore(flags);
1538
1539 return printed_len;
1540 }
1541 EXPORT_SYMBOL(vprintk_emit);
1542
1543 asmlinkage int vprintk(const char *fmt, va_list args)
1544 {
1545 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1546 }
1547 EXPORT_SYMBOL(vprintk);
1548
1549 asmlinkage int printk_emit(int facility, int level,
1550 const char *dict, size_t dictlen,
1551 const char *fmt, ...)
1552 {
1553 va_list args;
1554 int r;
1555
1556 va_start(args, fmt);
1557 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1558 va_end(args);
1559
1560 return r;
1561 }
1562 EXPORT_SYMBOL(printk_emit);
1563
1564 /**
1565 * printk - print a kernel message
1566 * @fmt: format string
1567 *
1568 * This is printk(). It can be called from any context. We want it to work.
1569 *
1570 * We try to grab the console_lock. If we succeed, it's easy - we log the
1571 * output and call the console drivers. If we fail to get the semaphore, we
1572 * place the output into the log buffer and return. The current holder of
1573 * the console_sem will notice the new output in console_unlock(); and will
1574 * send it to the consoles before releasing the lock.
1575 *
1576 * One effect of this deferred printing is that code which calls printk() and
1577 * then changes console_loglevel may break. This is because console_loglevel
1578 * is inspected when the actual printing occurs.
1579 *
1580 * See also:
1581 * printf(3)
1582 *
1583 * See the vsnprintf() documentation for format string extensions over C99.
1584 */
1585 asmlinkage int printk(const char *fmt, ...)
1586 {
1587 va_list args;
1588 int r;
1589
1590 #ifdef CONFIG_KGDB_KDB
1591 if (unlikely(kdb_trap_printk)) {
1592 va_start(args, fmt);
1593 r = vkdb_printf(fmt, args);
1594 va_end(args);
1595 return r;
1596 }
1597 #endif
1598 va_start(args, fmt);
1599 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1600 va_end(args);
1601
1602 return r;
1603 }
1604 EXPORT_SYMBOL(printk);
1605
1606 #else
1607
1608 #define LOG_LINE_MAX 0
1609 static struct cont {
1610 size_t len;
1611 size_t cons;
1612 u8 level;
1613 bool flushed:1;
1614 } cont;
1615 static struct log *log_from_idx(u32 idx) { return NULL; }
1616 static u32 log_next(u32 idx) { return 0; }
1617 static void call_console_drivers(int level, const char *text, size_t len) {}
1618 static size_t msg_print_text(const struct log *msg, bool syslog,
1619 char *buf, size_t size) { return 0; }
1620 static size_t cont_print_text(char *text, size_t size) { return 0; }
1621
1622 #endif /* CONFIG_PRINTK */
1623
1624 static int __add_preferred_console(char *name, int idx, char *options,
1625 char *brl_options)
1626 {
1627 struct console_cmdline *c;
1628 int i;
1629
1630 /*
1631 * See if this tty is not yet registered, and
1632 * if we have a slot free.
1633 */
1634 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1635 if (strcmp(console_cmdline[i].name, name) == 0 &&
1636 console_cmdline[i].index == idx) {
1637 if (!brl_options)
1638 selected_console = i;
1639 return 0;
1640 }
1641 if (i == MAX_CMDLINECONSOLES)
1642 return -E2BIG;
1643 if (!brl_options)
1644 selected_console = i;
1645 c = &console_cmdline[i];
1646 strlcpy(c->name, name, sizeof(c->name));
1647 c->options = options;
1648 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1649 c->brl_options = brl_options;
1650 #endif
1651 c->index = idx;
1652 return 0;
1653 }
1654 /*
1655 * Set up a list of consoles. Called from init/main.c
1656 */
1657 static int __init console_setup(char *str)
1658 {
1659 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1660 char *s, *options, *brl_options = NULL;
1661 int idx;
1662
1663 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1664 if (!memcmp(str, "brl,", 4)) {
1665 brl_options = "";
1666 str += 4;
1667 } else if (!memcmp(str, "brl=", 4)) {
1668 brl_options = str + 4;
1669 str = strchr(brl_options, ',');
1670 if (!str) {
1671 printk(KERN_ERR "need port name after brl=\n");
1672 return 1;
1673 }
1674 *(str++) = 0;
1675 }
1676 #endif
1677
1678 /*
1679 * Decode str into name, index, options.
1680 */
1681 if (str[0] >= '0' && str[0] <= '9') {
1682 strcpy(buf, "ttyS");
1683 strncpy(buf + 4, str, sizeof(buf) - 5);
1684 } else {
1685 strncpy(buf, str, sizeof(buf) - 1);
1686 }
1687 buf[sizeof(buf) - 1] = 0;
1688 if ((options = strchr(str, ',')) != NULL)
1689 *(options++) = 0;
1690 #ifdef __sparc__
1691 if (!strcmp(str, "ttya"))
1692 strcpy(buf, "ttyS0");
1693 if (!strcmp(str, "ttyb"))
1694 strcpy(buf, "ttyS1");
1695 #endif
1696 for (s = buf; *s; s++)
1697 if ((*s >= '0' && *s <= '9') || *s == ',')
1698 break;
1699 idx = simple_strtoul(s, NULL, 10);
1700 *s = 0;
1701
1702 __add_preferred_console(buf, idx, options, brl_options);
1703 console_set_on_cmdline = 1;
1704 return 1;
1705 }
1706 __setup("console=", console_setup);
1707
1708 /**
1709 * add_preferred_console - add a device to the list of preferred consoles.
1710 * @name: device name
1711 * @idx: device index
1712 * @options: options for this console
1713 *
1714 * The last preferred console added will be used for kernel messages
1715 * and stdin/out/err for init. Normally this is used by console_setup
1716 * above to handle user-supplied console arguments; however it can also
1717 * be used by arch-specific code either to override the user or more
1718 * commonly to provide a default console (ie from PROM variables) when
1719 * the user has not supplied one.
1720 */
1721 int add_preferred_console(char *name, int idx, char *options)
1722 {
1723 return __add_preferred_console(name, idx, options, NULL);
1724 }
1725
1726 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1727 {
1728 struct console_cmdline *c;
1729 int i;
1730
1731 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1732 if (strcmp(console_cmdline[i].name, name) == 0 &&
1733 console_cmdline[i].index == idx) {
1734 c = &console_cmdline[i];
1735 strlcpy(c->name, name_new, sizeof(c->name));
1736 c->name[sizeof(c->name) - 1] = 0;
1737 c->options = options;
1738 c->index = idx_new;
1739 return i;
1740 }
1741 /* not found */
1742 return -1;
1743 }
1744
1745 bool console_suspend_enabled = 1;
1746 EXPORT_SYMBOL(console_suspend_enabled);
1747
1748 static int __init console_suspend_disable(char *str)
1749 {
1750 console_suspend_enabled = 0;
1751 return 1;
1752 }
1753 __setup("no_console_suspend", console_suspend_disable);
1754 module_param_named(console_suspend, console_suspend_enabled,
1755 bool, S_IRUGO | S_IWUSR);
1756 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1757 " and hibernate operations");
1758
1759 /**
1760 * suspend_console - suspend the console subsystem
1761 *
1762 * This disables printk() while we go into suspend states
1763 */
1764 void suspend_console(void)
1765 {
1766 if (!console_suspend_enabled)
1767 return;
1768 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1769 console_lock();
1770 console_suspended = 1;
1771 up(&console_sem);
1772 }
1773
1774 void resume_console(void)
1775 {
1776 if (!console_suspend_enabled)
1777 return;
1778 down(&console_sem);
1779 console_suspended = 0;
1780 console_unlock();
1781 }
1782
1783 /**
1784 * console_cpu_notify - print deferred console messages after CPU hotplug
1785 * @self: notifier struct
1786 * @action: CPU hotplug event
1787 * @hcpu: unused
1788 *
1789 * If printk() is called from a CPU that is not online yet, the messages
1790 * will be spooled but will not show up on the console. This function is
1791 * called when a new CPU comes online (or fails to come up), and ensures
1792 * that any such output gets printed.
1793 */
1794 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1795 unsigned long action, void *hcpu)
1796 {
1797 switch (action) {
1798 case CPU_ONLINE:
1799 case CPU_DEAD:
1800 case CPU_DYING:
1801 case CPU_DOWN_FAILED:
1802 case CPU_UP_CANCELED:
1803 console_lock();
1804 console_unlock();
1805 }
1806 return NOTIFY_OK;
1807 }
1808
1809 /**
1810 * console_lock - lock the console system for exclusive use.
1811 *
1812 * Acquires a lock which guarantees that the caller has
1813 * exclusive access to the console system and the console_drivers list.
1814 *
1815 * Can sleep, returns nothing.
1816 */
1817 void console_lock(void)
1818 {
1819 BUG_ON(in_interrupt());
1820 down(&console_sem);
1821 if (console_suspended)
1822 return;
1823 console_locked = 1;
1824 console_may_schedule = 1;
1825 }
1826 EXPORT_SYMBOL(console_lock);
1827
1828 /**
1829 * console_trylock - try to lock the console system for exclusive use.
1830 *
1831 * Tried to acquire a lock which guarantees that the caller has
1832 * exclusive access to the console system and the console_drivers list.
1833 *
1834 * returns 1 on success, and 0 on failure to acquire the lock.
1835 */
1836 int console_trylock(void)
1837 {
1838 if (down_trylock(&console_sem))
1839 return 0;
1840 if (console_suspended) {
1841 up(&console_sem);
1842 return 0;
1843 }
1844 console_locked = 1;
1845 console_may_schedule = 0;
1846 return 1;
1847 }
1848 EXPORT_SYMBOL(console_trylock);
1849
1850 int is_console_locked(void)
1851 {
1852 return console_locked;
1853 }
1854
1855 /*
1856 * Delayed printk version, for scheduler-internal messages:
1857 */
1858 #define PRINTK_BUF_SIZE 512
1859
1860 #define PRINTK_PENDING_WAKEUP 0x01
1861 #define PRINTK_PENDING_SCHED 0x02
1862
1863 static DEFINE_PER_CPU(int, printk_pending);
1864 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
1865
1866 void printk_tick(void)
1867 {
1868 if (__this_cpu_read(printk_pending)) {
1869 int pending = __this_cpu_xchg(printk_pending, 0);
1870 if (pending & PRINTK_PENDING_SCHED) {
1871 char *buf = __get_cpu_var(printk_sched_buf);
1872 printk(KERN_WARNING "[sched_delayed] %s", buf);
1873 }
1874 if (pending & PRINTK_PENDING_WAKEUP)
1875 wake_up_interruptible(&log_wait);
1876 }
1877 }
1878
1879 int printk_needs_cpu(int cpu)
1880 {
1881 if (cpu_is_offline(cpu))
1882 printk_tick();
1883 return __this_cpu_read(printk_pending);
1884 }
1885
1886 void wake_up_klogd(void)
1887 {
1888 if (waitqueue_active(&log_wait))
1889 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
1890 }
1891
1892 /* the next printk record to write to the console */
1893 static u64 console_seq;
1894 static u32 console_idx;
1895
1896 /**
1897 * console_unlock - unlock the console system
1898 *
1899 * Releases the console_lock which the caller holds on the console system
1900 * and the console driver list.
1901 *
1902 * While the console_lock was held, console output may have been buffered
1903 * by printk(). If this is the case, console_unlock(); emits
1904 * the output prior to releasing the lock.
1905 *
1906 * If there is output waiting, we wake /dev/kmsg and syslog() users.
1907 *
1908 * console_unlock(); may be called from any context.
1909 */
1910 void console_unlock(void)
1911 {
1912 static char text[LOG_LINE_MAX];
1913 static u64 seen_seq;
1914 unsigned long flags;
1915 bool wake_klogd = false;
1916 bool retry;
1917
1918 if (console_suspended) {
1919 up(&console_sem);
1920 return;
1921 }
1922
1923 console_may_schedule = 0;
1924
1925 /* flush buffered message fragment immediately to console */
1926 raw_spin_lock_irqsave(&logbuf_lock, flags);
1927 if (cont.len && (cont.cons < cont.len || cont.flushed)) {
1928 size_t len;
1929
1930 len = cont_print_text(text, sizeof(text));
1931 raw_spin_unlock(&logbuf_lock);
1932 stop_critical_timings();
1933 call_console_drivers(cont.level, text, len);
1934 start_critical_timings();
1935 local_irq_restore(flags);
1936 } else
1937 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1938
1939 again:
1940 for (;;) {
1941 struct log *msg;
1942 size_t len;
1943 int level;
1944
1945 raw_spin_lock_irqsave(&logbuf_lock, flags);
1946 if (seen_seq != log_next_seq) {
1947 wake_klogd = true;
1948 seen_seq = log_next_seq;
1949 }
1950
1951 if (console_seq < log_first_seq) {
1952 /* messages are gone, move to first one */
1953 console_seq = log_first_seq;
1954 console_idx = log_first_idx;
1955 }
1956 skip:
1957 if (console_seq == log_next_seq)
1958 break;
1959
1960 msg = log_from_idx(console_idx);
1961 if (msg->flags & LOG_NOCONS) {
1962 /*
1963 * Skip record we have buffered and already printed
1964 * directly to the console when we received it.
1965 */
1966 console_idx = log_next(console_idx);
1967 console_seq++;
1968 /*
1969 * We will get here again when we register a new
1970 * CON_PRINTBUFFER console. Clear the flag so we
1971 * will properly dump everything later.
1972 */
1973 msg->flags &= ~LOG_NOCONS;
1974 goto skip;
1975 }
1976
1977 level = msg->level;
1978 len = msg_print_text(msg, false, text, sizeof(text));
1979
1980 console_idx = log_next(console_idx);
1981 console_seq++;
1982 raw_spin_unlock(&logbuf_lock);
1983
1984 stop_critical_timings(); /* don't trace print latency */
1985 call_console_drivers(level, text, len);
1986 start_critical_timings();
1987 local_irq_restore(flags);
1988 }
1989 console_locked = 0;
1990
1991 /* Release the exclusive_console once it is used */
1992 if (unlikely(exclusive_console))
1993 exclusive_console = NULL;
1994
1995 raw_spin_unlock(&logbuf_lock);
1996
1997 up(&console_sem);
1998
1999 /*
2000 * Someone could have filled up the buffer again, so re-check if there's
2001 * something to flush. In case we cannot trylock the console_sem again,
2002 * there's a new owner and the console_unlock() from them will do the
2003 * flush, no worries.
2004 */
2005 raw_spin_lock(&logbuf_lock);
2006 retry = console_seq != log_next_seq;
2007 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2008
2009 if (retry && console_trylock())
2010 goto again;
2011
2012 if (wake_klogd)
2013 wake_up_klogd();
2014 }
2015 EXPORT_SYMBOL(console_unlock);
2016
2017 /**
2018 * console_conditional_schedule - yield the CPU if required
2019 *
2020 * If the console code is currently allowed to sleep, and
2021 * if this CPU should yield the CPU to another task, do
2022 * so here.
2023 *
2024 * Must be called within console_lock();.
2025 */
2026 void __sched console_conditional_schedule(void)
2027 {
2028 if (console_may_schedule)
2029 cond_resched();
2030 }
2031 EXPORT_SYMBOL(console_conditional_schedule);
2032
2033 void console_unblank(void)
2034 {
2035 struct console *c;
2036
2037 /*
2038 * console_unblank can no longer be called in interrupt context unless
2039 * oops_in_progress is set to 1..
2040 */
2041 if (oops_in_progress) {
2042 if (down_trylock(&console_sem) != 0)
2043 return;
2044 } else
2045 console_lock();
2046
2047 console_locked = 1;
2048 console_may_schedule = 0;
2049 for_each_console(c)
2050 if ((c->flags & CON_ENABLED) && c->unblank)
2051 c->unblank();
2052 console_unlock();
2053 }
2054
2055 /*
2056 * Return the console tty driver structure and its associated index
2057 */
2058 struct tty_driver *console_device(int *index)
2059 {
2060 struct console *c;
2061 struct tty_driver *driver = NULL;
2062
2063 console_lock();
2064 for_each_console(c) {
2065 if (!c->device)
2066 continue;
2067 driver = c->device(c, index);
2068 if (driver)
2069 break;
2070 }
2071 console_unlock();
2072 return driver;
2073 }
2074
2075 /*
2076 * Prevent further output on the passed console device so that (for example)
2077 * serial drivers can disable console output before suspending a port, and can
2078 * re-enable output afterwards.
2079 */
2080 void console_stop(struct console *console)
2081 {
2082 console_lock();
2083 console->flags &= ~CON_ENABLED;
2084 console_unlock();
2085 }
2086 EXPORT_SYMBOL(console_stop);
2087
2088 void console_start(struct console *console)
2089 {
2090 console_lock();
2091 console->flags |= CON_ENABLED;
2092 console_unlock();
2093 }
2094 EXPORT_SYMBOL(console_start);
2095
2096 static int __read_mostly keep_bootcon;
2097
2098 static int __init keep_bootcon_setup(char *str)
2099 {
2100 keep_bootcon = 1;
2101 printk(KERN_INFO "debug: skip boot console de-registration.\n");
2102
2103 return 0;
2104 }
2105
2106 early_param("keep_bootcon", keep_bootcon_setup);
2107
2108 /*
2109 * The console driver calls this routine during kernel initialization
2110 * to register the console printing procedure with printk() and to
2111 * print any messages that were printed by the kernel before the
2112 * console driver was initialized.
2113 *
2114 * This can happen pretty early during the boot process (because of
2115 * early_printk) - sometimes before setup_arch() completes - be careful
2116 * of what kernel features are used - they may not be initialised yet.
2117 *
2118 * There are two types of consoles - bootconsoles (early_printk) and
2119 * "real" consoles (everything which is not a bootconsole) which are
2120 * handled differently.
2121 * - Any number of bootconsoles can be registered at any time.
2122 * - As soon as a "real" console is registered, all bootconsoles
2123 * will be unregistered automatically.
2124 * - Once a "real" console is registered, any attempt to register a
2125 * bootconsoles will be rejected
2126 */
2127 void register_console(struct console *newcon)
2128 {
2129 int i;
2130 unsigned long flags;
2131 struct console *bcon = NULL;
2132
2133 /*
2134 * before we register a new CON_BOOT console, make sure we don't
2135 * already have a valid console
2136 */
2137 if (console_drivers && newcon->flags & CON_BOOT) {
2138 /* find the last or real console */
2139 for_each_console(bcon) {
2140 if (!(bcon->flags & CON_BOOT)) {
2141 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
2142 newcon->name, newcon->index);
2143 return;
2144 }
2145 }
2146 }
2147
2148 if (console_drivers && console_drivers->flags & CON_BOOT)
2149 bcon = console_drivers;
2150
2151 if (preferred_console < 0 || bcon || !console_drivers)
2152 preferred_console = selected_console;
2153
2154 if (newcon->early_setup)
2155 newcon->early_setup();
2156
2157 /*
2158 * See if we want to use this console driver. If we
2159 * didn't select a console we take the first one
2160 * that registers here.
2161 */
2162 if (preferred_console < 0) {
2163 if (newcon->index < 0)
2164 newcon->index = 0;
2165 if (newcon->setup == NULL ||
2166 newcon->setup(newcon, NULL) == 0) {
2167 newcon->flags |= CON_ENABLED;
2168 if (newcon->device) {
2169 newcon->flags |= CON_CONSDEV;
2170 preferred_console = 0;
2171 }
2172 }
2173 }
2174
2175 /*
2176 * See if this console matches one we selected on
2177 * the command line.
2178 */
2179 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2180 i++) {
2181 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2182 continue;
2183 if (newcon->index >= 0 &&
2184 newcon->index != console_cmdline[i].index)
2185 continue;
2186 if (newcon->index < 0)
2187 newcon->index = console_cmdline[i].index;
2188 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2189 if (console_cmdline[i].brl_options) {
2190 newcon->flags |= CON_BRL;
2191 braille_register_console(newcon,
2192 console_cmdline[i].index,
2193 console_cmdline[i].options,
2194 console_cmdline[i].brl_options);
2195 return;
2196 }
2197 #endif
2198 if (newcon->setup &&
2199 newcon->setup(newcon, console_cmdline[i].options) != 0)
2200 break;
2201 newcon->flags |= CON_ENABLED;
2202 newcon->index = console_cmdline[i].index;
2203 if (i == selected_console) {
2204 newcon->flags |= CON_CONSDEV;
2205 preferred_console = selected_console;
2206 }
2207 break;
2208 }
2209
2210 if (!(newcon->flags & CON_ENABLED))
2211 return;
2212
2213 /*
2214 * If we have a bootconsole, and are switching to a real console,
2215 * don't print everything out again, since when the boot console, and
2216 * the real console are the same physical device, it's annoying to
2217 * see the beginning boot messages twice
2218 */
2219 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2220 newcon->flags &= ~CON_PRINTBUFFER;
2221
2222 /*
2223 * Put this console in the list - keep the
2224 * preferred driver at the head of the list.
2225 */
2226 console_lock();
2227 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2228 newcon->next = console_drivers;
2229 console_drivers = newcon;
2230 if (newcon->next)
2231 newcon->next->flags &= ~CON_CONSDEV;
2232 } else {
2233 newcon->next = console_drivers->next;
2234 console_drivers->next = newcon;
2235 }
2236 if (newcon->flags & CON_PRINTBUFFER) {
2237 /*
2238 * console_unlock(); will print out the buffered messages
2239 * for us.
2240 */
2241 raw_spin_lock_irqsave(&logbuf_lock, flags);
2242 console_seq = syslog_seq;
2243 console_idx = syslog_idx;
2244 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2245 /*
2246 * We're about to replay the log buffer. Only do this to the
2247 * just-registered console to avoid excessive message spam to
2248 * the already-registered consoles.
2249 */
2250 exclusive_console = newcon;
2251 }
2252 console_unlock();
2253 console_sysfs_notify();
2254
2255 /*
2256 * By unregistering the bootconsoles after we enable the real console
2257 * we get the "console xxx enabled" message on all the consoles -
2258 * boot consoles, real consoles, etc - this is to ensure that end
2259 * users know there might be something in the kernel's log buffer that
2260 * went to the bootconsole (that they do not see on the real console)
2261 */
2262 if (bcon &&
2263 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2264 !keep_bootcon) {
2265 /* we need to iterate through twice, to make sure we print
2266 * everything out, before we unregister the console(s)
2267 */
2268 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2269 newcon->name, newcon->index);
2270 for_each_console(bcon)
2271 if (bcon->flags & CON_BOOT)
2272 unregister_console(bcon);
2273 } else {
2274 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2275 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2276 newcon->name, newcon->index);
2277 }
2278 }
2279 EXPORT_SYMBOL(register_console);
2280
2281 int unregister_console(struct console *console)
2282 {
2283 struct console *a, *b;
2284 int res = 1;
2285
2286 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2287 if (console->flags & CON_BRL)
2288 return braille_unregister_console(console);
2289 #endif
2290
2291 console_lock();
2292 if (console_drivers == console) {
2293 console_drivers=console->next;
2294 res = 0;
2295 } else if (console_drivers) {
2296 for (a=console_drivers->next, b=console_drivers ;
2297 a; b=a, a=b->next) {
2298 if (a == console) {
2299 b->next = a->next;
2300 res = 0;
2301 break;
2302 }
2303 }
2304 }
2305
2306 /*
2307 * If this isn't the last console and it has CON_CONSDEV set, we
2308 * need to set it on the next preferred console.
2309 */
2310 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2311 console_drivers->flags |= CON_CONSDEV;
2312
2313 console_unlock();
2314 console_sysfs_notify();
2315 return res;
2316 }
2317 EXPORT_SYMBOL(unregister_console);
2318
2319 static int __init printk_late_init(void)
2320 {
2321 struct console *con;
2322
2323 for_each_console(con) {
2324 if (!keep_bootcon && con->flags & CON_BOOT) {
2325 printk(KERN_INFO "turn off boot console %s%d\n",
2326 con->name, con->index);
2327 unregister_console(con);
2328 }
2329 }
2330 hotcpu_notifier(console_cpu_notify, 0);
2331 return 0;
2332 }
2333 late_initcall(printk_late_init);
2334
2335 #if defined CONFIG_PRINTK
2336
2337 int printk_sched(const char *fmt, ...)
2338 {
2339 unsigned long flags;
2340 va_list args;
2341 char *buf;
2342 int r;
2343
2344 local_irq_save(flags);
2345 buf = __get_cpu_var(printk_sched_buf);
2346
2347 va_start(args, fmt);
2348 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2349 va_end(args);
2350
2351 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2352 local_irq_restore(flags);
2353
2354 return r;
2355 }
2356
2357 /*
2358 * printk rate limiting, lifted from the networking subsystem.
2359 *
2360 * This enforces a rate limit: not more than 10 kernel messages
2361 * every 5s to make a denial-of-service attack impossible.
2362 */
2363 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2364
2365 int __printk_ratelimit(const char *func)
2366 {
2367 return ___ratelimit(&printk_ratelimit_state, func);
2368 }
2369 EXPORT_SYMBOL(__printk_ratelimit);
2370
2371 /**
2372 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2373 * @caller_jiffies: pointer to caller's state
2374 * @interval_msecs: minimum interval between prints
2375 *
2376 * printk_timed_ratelimit() returns true if more than @interval_msecs
2377 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2378 * returned true.
2379 */
2380 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2381 unsigned int interval_msecs)
2382 {
2383 if (*caller_jiffies == 0
2384 || !time_in_range(jiffies, *caller_jiffies,
2385 *caller_jiffies
2386 + msecs_to_jiffies(interval_msecs))) {
2387 *caller_jiffies = jiffies;
2388 return true;
2389 }
2390 return false;
2391 }
2392 EXPORT_SYMBOL(printk_timed_ratelimit);
2393
2394 static DEFINE_SPINLOCK(dump_list_lock);
2395 static LIST_HEAD(dump_list);
2396
2397 /**
2398 * kmsg_dump_register - register a kernel log dumper.
2399 * @dumper: pointer to the kmsg_dumper structure
2400 *
2401 * Adds a kernel log dumper to the system. The dump callback in the
2402 * structure will be called when the kernel oopses or panics and must be
2403 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2404 */
2405 int kmsg_dump_register(struct kmsg_dumper *dumper)
2406 {
2407 unsigned long flags;
2408 int err = -EBUSY;
2409
2410 /* The dump callback needs to be set */
2411 if (!dumper->dump)
2412 return -EINVAL;
2413
2414 spin_lock_irqsave(&dump_list_lock, flags);
2415 /* Don't allow registering multiple times */
2416 if (!dumper->registered) {
2417 dumper->registered = 1;
2418 list_add_tail_rcu(&dumper->list, &dump_list);
2419 err = 0;
2420 }
2421 spin_unlock_irqrestore(&dump_list_lock, flags);
2422
2423 return err;
2424 }
2425 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2426
2427 /**
2428 * kmsg_dump_unregister - unregister a kmsg dumper.
2429 * @dumper: pointer to the kmsg_dumper structure
2430 *
2431 * Removes a dump device from the system. Returns zero on success and
2432 * %-EINVAL otherwise.
2433 */
2434 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2435 {
2436 unsigned long flags;
2437 int err = -EINVAL;
2438
2439 spin_lock_irqsave(&dump_list_lock, flags);
2440 if (dumper->registered) {
2441 dumper->registered = 0;
2442 list_del_rcu(&dumper->list);
2443 err = 0;
2444 }
2445 spin_unlock_irqrestore(&dump_list_lock, flags);
2446 synchronize_rcu();
2447
2448 return err;
2449 }
2450 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2451
2452 static bool always_kmsg_dump;
2453 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2454
2455 /**
2456 * kmsg_dump - dump kernel log to kernel message dumpers.
2457 * @reason: the reason (oops, panic etc) for dumping
2458 *
2459 * Call each of the registered dumper's dump() callback, which can
2460 * retrieve the kmsg records with kmsg_dump_get_line() or
2461 * kmsg_dump_get_buffer().
2462 */
2463 void kmsg_dump(enum kmsg_dump_reason reason)
2464 {
2465 struct kmsg_dumper *dumper;
2466 unsigned long flags;
2467
2468 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2469 return;
2470
2471 rcu_read_lock();
2472 list_for_each_entry_rcu(dumper, &dump_list, list) {
2473 if (dumper->max_reason && reason > dumper->max_reason)
2474 continue;
2475
2476 /* initialize iterator with data about the stored records */
2477 dumper->active = true;
2478
2479 raw_spin_lock_irqsave(&logbuf_lock, flags);
2480 dumper->cur_seq = clear_seq;
2481 dumper->cur_idx = clear_idx;
2482 dumper->next_seq = log_next_seq;
2483 dumper->next_idx = log_next_idx;
2484 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2485
2486 /* invoke dumper which will iterate over records */
2487 dumper->dump(dumper, reason);
2488
2489 /* reset iterator */
2490 dumper->active = false;
2491 }
2492 rcu_read_unlock();
2493 }
2494
2495 /**
2496 * kmsg_dump_get_line - retrieve one kmsg log line
2497 * @dumper: registered kmsg dumper
2498 * @syslog: include the "<4>" prefixes
2499 * @line: buffer to copy the line to
2500 * @size: maximum size of the buffer
2501 * @len: length of line placed into buffer
2502 *
2503 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2504 * record, and copy one record into the provided buffer.
2505 *
2506 * Consecutive calls will return the next available record moving
2507 * towards the end of the buffer with the youngest messages.
2508 *
2509 * A return value of FALSE indicates that there are no more records to
2510 * read.
2511 */
2512 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2513 char *line, size_t size, size_t *len)
2514 {
2515 unsigned long flags;
2516 struct log *msg;
2517 size_t l = 0;
2518 bool ret = false;
2519
2520 if (!dumper->active)
2521 goto out;
2522
2523 raw_spin_lock_irqsave(&logbuf_lock, flags);
2524 if (dumper->cur_seq < log_first_seq) {
2525 /* messages are gone, move to first available one */
2526 dumper->cur_seq = log_first_seq;
2527 dumper->cur_idx = log_first_idx;
2528 }
2529
2530 /* last entry */
2531 if (dumper->cur_seq >= log_next_seq) {
2532 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2533 goto out;
2534 }
2535
2536 msg = log_from_idx(dumper->cur_idx);
2537 l = msg_print_text(msg, syslog,
2538 line, size);
2539
2540 dumper->cur_idx = log_next(dumper->cur_idx);
2541 dumper->cur_seq++;
2542 ret = true;
2543 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2544 out:
2545 if (len)
2546 *len = l;
2547 return ret;
2548 }
2549 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2550
2551 /**
2552 * kmsg_dump_get_buffer - copy kmsg log lines
2553 * @dumper: registered kmsg dumper
2554 * @syslog: include the "<4>" prefixes
2555 * @buf: buffer to copy the line to
2556 * @size: maximum size of the buffer
2557 * @len: length of line placed into buffer
2558 *
2559 * Start at the end of the kmsg buffer and fill the provided buffer
2560 * with as many of the the *youngest* kmsg records that fit into it.
2561 * If the buffer is large enough, all available kmsg records will be
2562 * copied with a single call.
2563 *
2564 * Consecutive calls will fill the buffer with the next block of
2565 * available older records, not including the earlier retrieved ones.
2566 *
2567 * A return value of FALSE indicates that there are no more records to
2568 * read.
2569 */
2570 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2571 char *buf, size_t size, size_t *len)
2572 {
2573 unsigned long flags;
2574 u64 seq;
2575 u32 idx;
2576 u64 next_seq;
2577 u32 next_idx;
2578 size_t l = 0;
2579 bool ret = false;
2580
2581 if (!dumper->active)
2582 goto out;
2583
2584 raw_spin_lock_irqsave(&logbuf_lock, flags);
2585 if (dumper->cur_seq < log_first_seq) {
2586 /* messages are gone, move to first available one */
2587 dumper->cur_seq = log_first_seq;
2588 dumper->cur_idx = log_first_idx;
2589 }
2590
2591 /* last entry */
2592 if (dumper->cur_seq >= dumper->next_seq) {
2593 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2594 goto out;
2595 }
2596
2597 /* calculate length of entire buffer */
2598 seq = dumper->cur_seq;
2599 idx = dumper->cur_idx;
2600 while (seq < dumper->next_seq) {
2601 struct log *msg = log_from_idx(idx);
2602
2603 l += msg_print_text(msg, true, NULL, 0);
2604 idx = log_next(idx);
2605 seq++;
2606 }
2607
2608 /* move first record forward until length fits into the buffer */
2609 seq = dumper->cur_seq;
2610 idx = dumper->cur_idx;
2611 while (l > size && seq < dumper->next_seq) {
2612 struct log *msg = log_from_idx(idx);
2613
2614 l -= msg_print_text(msg, true, NULL, 0);
2615 idx = log_next(idx);
2616 seq++;
2617 }
2618
2619 /* last message in next interation */
2620 next_seq = seq;
2621 next_idx = idx;
2622
2623 l = 0;
2624 while (seq < dumper->next_seq) {
2625 struct log *msg = log_from_idx(idx);
2626
2627 l += msg_print_text(msg, syslog,
2628 buf + l, size - l);
2629
2630 idx = log_next(idx);
2631 seq++;
2632 }
2633
2634 dumper->next_seq = next_seq;
2635 dumper->next_idx = next_idx;
2636 ret = true;
2637 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2638 out:
2639 if (len)
2640 *len = l;
2641 return ret;
2642 }
2643 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2644
2645 /**
2646 * kmsg_dump_rewind - reset the interator
2647 * @dumper: registered kmsg dumper
2648 *
2649 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2650 * kmsg_dump_get_buffer() can be called again and used multiple
2651 * times within the same dumper.dump() callback.
2652 */
2653 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2654 {
2655 unsigned long flags;
2656
2657 raw_spin_lock_irqsave(&logbuf_lock, flags);
2658 dumper->cur_seq = clear_seq;
2659 dumper->cur_idx = clear_idx;
2660 dumper->next_seq = log_next_seq;
2661 dumper->next_idx = log_next_idx;
2662 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2663 }
2664 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2665 #endif
This page took 0.12481 seconds and 5 git commands to generate.