printk() - restore timestamp printing at console output
[deliverable/linux.git] / kernel / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45
46 #include <asm/uaccess.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/printk.h>
50
51 /*
52 * Architectures can override it:
53 */
54 void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
55 {
56 }
57
58 /* printk's without a loglevel use this.. */
59 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
60
61 /* We show everything that is MORE important than this.. */
62 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
63 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
64
65 DECLARE_WAIT_QUEUE_HEAD(log_wait);
66
67 int console_printk[4] = {
68 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
69 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
70 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
71 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
72 };
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 /*
91 * This is used for debugging the mess that is the VT code by
92 * keeping track if we have the console semaphore held. It's
93 * definitely not the perfect debug tool (we don't know if _WE_
94 * hold it are racing, but it helps tracking those weird code
95 * path in the console code where we end up in places I want
96 * locked without the console sempahore held
97 */
98 static int console_locked, console_suspended;
99
100 /*
101 * If exclusive_console is non-NULL then only this console is to be printed to.
102 */
103 static struct console *exclusive_console;
104
105 /*
106 * Array of consoles built from command line options (console=)
107 */
108 struct console_cmdline
109 {
110 char name[8]; /* Name of the driver */
111 int index; /* Minor dev. to use */
112 char *options; /* Options for the driver */
113 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
114 char *brl_options; /* Options for braille driver */
115 #endif
116 };
117
118 #define MAX_CMDLINECONSOLES 8
119
120 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
121 static int selected_console = -1;
122 static int preferred_console = -1;
123 int console_set_on_cmdline;
124 EXPORT_SYMBOL(console_set_on_cmdline);
125
126 /* Flag: console code may call schedule() */
127 static int console_may_schedule;
128
129 /*
130 * The printk log buffer consists of a chain of concatenated variable
131 * length records. Every record starts with a record header, containing
132 * the overall length of the record.
133 *
134 * The heads to the first and last entry in the buffer, as well as the
135 * sequence numbers of these both entries are maintained when messages
136 * are stored..
137 *
138 * If the heads indicate available messages, the length in the header
139 * tells the start next message. A length == 0 for the next message
140 * indicates a wrap-around to the beginning of the buffer.
141 *
142 * Every record carries the monotonic timestamp in microseconds, as well as
143 * the standard userspace syslog level and syslog facility. The usual
144 * kernel messages use LOG_KERN; userspace-injected messages always carry
145 * a matching syslog facility, by default LOG_USER. The origin of every
146 * message can be reliably determined that way.
147 *
148 * The human readable log message directly follows the message header. The
149 * length of the message text is stored in the header, the stored message
150 * is not terminated.
151 *
152 * Optionally, a message can carry a dictionary of properties (key/value pairs),
153 * to provide userspace with a machine-readable message context.
154 *
155 * Examples for well-defined, commonly used property names are:
156 * DEVICE=b12:8 device identifier
157 * b12:8 block dev_t
158 * c127:3 char dev_t
159 * n8 netdev ifindex
160 * +sound:card0 subsystem:devname
161 * SUBSYSTEM=pci driver-core subsystem name
162 *
163 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
164 * follows directly after a '=' character. Every property is terminated by
165 * a '\0' character. The last property is not terminated.
166 *
167 * Example of a message structure:
168 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
169 * 0008 34 00 record is 52 bytes long
170 * 000a 0b 00 text is 11 bytes long
171 * 000c 1f 00 dictionary is 23 bytes long
172 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
173 * 0010 69 74 27 73 20 61 20 6c "it's a l"
174 * 69 6e 65 "ine"
175 * 001b 44 45 56 49 43 "DEVIC"
176 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
177 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
178 * 67 "g"
179 * 0032 00 00 00 padding to next message header
180 *
181 * The 'struct log' buffer header must never be directly exported to
182 * userspace, it is a kernel-private implementation detail that might
183 * need to be changed in the future, when the requirements change.
184 *
185 * /dev/kmsg exports the structured data in the following line format:
186 * "level,sequnum,timestamp;<message text>\n"
187 *
188 * The optional key/value pairs are attached as continuation lines starting
189 * with a space character and terminated by a newline. All possible
190 * non-prinatable characters are escaped in the "\xff" notation.
191 *
192 * Users of the export format should ignore possible additional values
193 * separated by ',', and find the message after the ';' character.
194 */
195
196 struct log {
197 u64 ts_nsec; /* timestamp in nanoseconds */
198 u16 len; /* length of entire record */
199 u16 text_len; /* length of text buffer */
200 u16 dict_len; /* length of dictionary buffer */
201 u16 level; /* syslog level + facility */
202 };
203
204 /*
205 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
206 * used in interesting ways to provide interlocking in console_unlock();
207 */
208 static DEFINE_RAW_SPINLOCK(logbuf_lock);
209
210 /* the next printk record to read by syslog(READ) or /proc/kmsg */
211 static u64 syslog_seq;
212 static u32 syslog_idx;
213
214 /* index and sequence number of the first record stored in the buffer */
215 static u64 log_first_seq;
216 static u32 log_first_idx;
217
218 /* index and sequence number of the next record to store in the buffer */
219 static u64 log_next_seq;
220 #ifdef CONFIG_PRINTK
221 static u32 log_next_idx;
222
223 /* the next printk record to read after the last 'clear' command */
224 static u64 clear_seq;
225 static u32 clear_idx;
226
227 #define LOG_LINE_MAX 1024
228
229 /* record buffer */
230 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
231 static char __log_buf[__LOG_BUF_LEN];
232 static char *log_buf = __log_buf;
233 static u32 log_buf_len = __LOG_BUF_LEN;
234
235 /* cpu currently holding logbuf_lock */
236 static volatile unsigned int logbuf_cpu = UINT_MAX;
237
238 /* human readable text of the record */
239 static char *log_text(const struct log *msg)
240 {
241 return (char *)msg + sizeof(struct log);
242 }
243
244 /* optional key/value pair dictionary attached to the record */
245 static char *log_dict(const struct log *msg)
246 {
247 return (char *)msg + sizeof(struct log) + msg->text_len;
248 }
249
250 /* get record by index; idx must point to valid msg */
251 static struct log *log_from_idx(u32 idx)
252 {
253 struct log *msg = (struct log *)(log_buf + idx);
254
255 /*
256 * A length == 0 record is the end of buffer marker. Wrap around and
257 * read the message at the start of the buffer.
258 */
259 if (!msg->len)
260 return (struct log *)log_buf;
261 return msg;
262 }
263
264 /* get next record; idx must point to valid msg */
265 static u32 log_next(u32 idx)
266 {
267 struct log *msg = (struct log *)(log_buf + idx);
268
269 /* length == 0 indicates the end of the buffer; wrap */
270 /*
271 * A length == 0 record is the end of buffer marker. Wrap around and
272 * read the message at the start of the buffer as *this* one, and
273 * return the one after that.
274 */
275 if (!msg->len) {
276 msg = (struct log *)log_buf;
277 return msg->len;
278 }
279 return idx + msg->len;
280 }
281
282 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
283 #define LOG_ALIGN 4
284 #else
285 #define LOG_ALIGN 8
286 #endif
287
288 /* insert record into the buffer, discard old ones, update heads */
289 static void log_store(int facility, int level,
290 const char *dict, u16 dict_len,
291 const char *text, u16 text_len)
292 {
293 struct log *msg;
294 u32 size, pad_len;
295
296 /* number of '\0' padding bytes to next message */
297 size = sizeof(struct log) + text_len + dict_len;
298 pad_len = (-size) & (LOG_ALIGN - 1);
299 size += pad_len;
300
301 while (log_first_seq < log_next_seq) {
302 u32 free;
303
304 if (log_next_idx > log_first_idx)
305 free = max(log_buf_len - log_next_idx, log_first_idx);
306 else
307 free = log_first_idx - log_next_idx;
308
309 if (free > size + sizeof(struct log))
310 break;
311
312 /* drop old messages until we have enough contiuous space */
313 log_first_idx = log_next(log_first_idx);
314 log_first_seq++;
315 }
316
317 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
318 /*
319 * This message + an additional empty header does not fit
320 * at the end of the buffer. Add an empty header with len == 0
321 * to signify a wrap around.
322 */
323 memset(log_buf + log_next_idx, 0, sizeof(struct log));
324 log_next_idx = 0;
325 }
326
327 /* fill message */
328 msg = (struct log *)(log_buf + log_next_idx);
329 memcpy(log_text(msg), text, text_len);
330 msg->text_len = text_len;
331 memcpy(log_dict(msg), dict, dict_len);
332 msg->dict_len = dict_len;
333 msg->level = (facility << 3) | (level & 7);
334 msg->ts_nsec = local_clock();
335 memset(log_dict(msg) + dict_len, 0, pad_len);
336 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
337
338 /* insert message */
339 log_next_idx += msg->len;
340 log_next_seq++;
341 }
342
343 /* /dev/kmsg - userspace message inject/listen interface */
344 struct devkmsg_user {
345 u64 seq;
346 u32 idx;
347 struct mutex lock;
348 char buf[8192];
349 };
350
351 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
352 unsigned long count, loff_t pos)
353 {
354 char *buf, *line;
355 int i;
356 int level = default_message_loglevel;
357 int facility = 1; /* LOG_USER */
358 size_t len = iov_length(iv, count);
359 ssize_t ret = len;
360
361 if (len > LOG_LINE_MAX)
362 return -EINVAL;
363 buf = kmalloc(len+1, GFP_KERNEL);
364 if (buf == NULL)
365 return -ENOMEM;
366
367 line = buf;
368 for (i = 0; i < count; i++) {
369 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len))
370 goto out;
371 line += iv[i].iov_len;
372 }
373
374 /*
375 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
376 * the decimal value represents 32bit, the lower 3 bit are the log
377 * level, the rest are the log facility.
378 *
379 * If no prefix or no userspace facility is specified, we
380 * enforce LOG_USER, to be able to reliably distinguish
381 * kernel-generated messages from userspace-injected ones.
382 */
383 line = buf;
384 if (line[0] == '<') {
385 char *endp = NULL;
386
387 i = simple_strtoul(line+1, &endp, 10);
388 if (endp && endp[0] == '>') {
389 level = i & 7;
390 if (i >> 3)
391 facility = i >> 3;
392 endp++;
393 len -= endp - line;
394 line = endp;
395 }
396 }
397 line[len] = '\0';
398
399 printk_emit(facility, level, NULL, 0, "%s", line);
400 out:
401 kfree(buf);
402 return ret;
403 }
404
405 static ssize_t devkmsg_read(struct file *file, char __user *buf,
406 size_t count, loff_t *ppos)
407 {
408 struct devkmsg_user *user = file->private_data;
409 struct log *msg;
410 u64 ts_usec;
411 size_t i;
412 size_t len;
413 ssize_t ret;
414
415 if (!user)
416 return -EBADF;
417
418 mutex_lock(&user->lock);
419 raw_spin_lock(&logbuf_lock);
420 while (user->seq == log_next_seq) {
421 if (file->f_flags & O_NONBLOCK) {
422 ret = -EAGAIN;
423 raw_spin_unlock(&logbuf_lock);
424 goto out;
425 }
426
427 raw_spin_unlock(&logbuf_lock);
428 ret = wait_event_interruptible(log_wait,
429 user->seq != log_next_seq);
430 if (ret)
431 goto out;
432 raw_spin_lock(&logbuf_lock);
433 }
434
435 if (user->seq < log_first_seq) {
436 /* our last seen message is gone, return error and reset */
437 user->idx = log_first_idx;
438 user->seq = log_first_seq;
439 ret = -EPIPE;
440 raw_spin_unlock(&logbuf_lock);
441 goto out;
442 }
443
444 msg = log_from_idx(user->idx);
445 ts_usec = msg->ts_nsec;
446 do_div(ts_usec, 1000);
447 len = sprintf(user->buf, "%u,%llu,%llu;",
448 msg->level, user->seq, ts_usec);
449
450 /* escape non-printable characters */
451 for (i = 0; i < msg->text_len; i++) {
452 char c = log_text(msg)[i];
453
454 if (c < ' ' || c >= 128)
455 len += sprintf(user->buf + len, "\\x%02x", c);
456 else
457 user->buf[len++] = c;
458 }
459 user->buf[len++] = '\n';
460
461 if (msg->dict_len) {
462 bool line = true;
463
464 for (i = 0; i < msg->dict_len; i++) {
465 char c = log_dict(msg)[i];
466
467 if (line) {
468 user->buf[len++] = ' ';
469 line = false;
470 }
471
472 if (c == '\0') {
473 user->buf[len++] = '\n';
474 line = true;
475 continue;
476 }
477
478 if (c < ' ' || c >= 128) {
479 len += sprintf(user->buf + len, "\\x%02x", c);
480 continue;
481 }
482
483 user->buf[len++] = c;
484 }
485 user->buf[len++] = '\n';
486 }
487
488 user->idx = log_next(user->idx);
489 user->seq++;
490 raw_spin_unlock(&logbuf_lock);
491
492 if (len > count) {
493 ret = -EINVAL;
494 goto out;
495 }
496
497 if (copy_to_user(buf, user->buf, len)) {
498 ret = -EFAULT;
499 goto out;
500 }
501 ret = len;
502 out:
503 mutex_unlock(&user->lock);
504 return ret;
505 }
506
507 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
508 {
509 struct devkmsg_user *user = file->private_data;
510 loff_t ret = 0;
511
512 if (!user)
513 return -EBADF;
514 if (offset)
515 return -ESPIPE;
516
517 raw_spin_lock(&logbuf_lock);
518 switch (whence) {
519 case SEEK_SET:
520 /* the first record */
521 user->idx = log_first_idx;
522 user->seq = log_first_seq;
523 break;
524 case SEEK_DATA:
525 /*
526 * The first record after the last SYSLOG_ACTION_CLEAR,
527 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
528 * changes no global state, and does not clear anything.
529 */
530 user->idx = clear_idx;
531 user->seq = clear_seq;
532 break;
533 case SEEK_END:
534 /* after the last record */
535 user->idx = log_next_idx;
536 user->seq = log_next_seq;
537 break;
538 default:
539 ret = -EINVAL;
540 }
541 raw_spin_unlock(&logbuf_lock);
542 return ret;
543 }
544
545 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
546 {
547 struct devkmsg_user *user = file->private_data;
548 int ret = 0;
549
550 if (!user)
551 return POLLERR|POLLNVAL;
552
553 poll_wait(file, &log_wait, wait);
554
555 raw_spin_lock(&logbuf_lock);
556 if (user->seq < log_next_seq) {
557 /* return error when data has vanished underneath us */
558 if (user->seq < log_first_seq)
559 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
560 ret = POLLIN|POLLRDNORM;
561 }
562 raw_spin_unlock(&logbuf_lock);
563
564 return ret;
565 }
566
567 static int devkmsg_open(struct inode *inode, struct file *file)
568 {
569 struct devkmsg_user *user;
570 int err;
571
572 /* write-only does not need any file context */
573 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
574 return 0;
575
576 err = security_syslog(SYSLOG_ACTION_READ_ALL);
577 if (err)
578 return err;
579
580 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
581 if (!user)
582 return -ENOMEM;
583
584 mutex_init(&user->lock);
585
586 raw_spin_lock(&logbuf_lock);
587 user->idx = log_first_idx;
588 user->seq = log_first_seq;
589 raw_spin_unlock(&logbuf_lock);
590
591 file->private_data = user;
592 return 0;
593 }
594
595 static int devkmsg_release(struct inode *inode, struct file *file)
596 {
597 struct devkmsg_user *user = file->private_data;
598
599 if (!user)
600 return 0;
601
602 mutex_destroy(&user->lock);
603 kfree(user);
604 return 0;
605 }
606
607 const struct file_operations kmsg_fops = {
608 .open = devkmsg_open,
609 .read = devkmsg_read,
610 .aio_write = devkmsg_writev,
611 .llseek = devkmsg_llseek,
612 .poll = devkmsg_poll,
613 .release = devkmsg_release,
614 };
615
616 #ifdef CONFIG_KEXEC
617 /*
618 * This appends the listed symbols to /proc/vmcoreinfo
619 *
620 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
621 * obtain access to symbols that are otherwise very difficult to locate. These
622 * symbols are specifically used so that utilities can access and extract the
623 * dmesg log from a vmcore file after a crash.
624 */
625 void log_buf_kexec_setup(void)
626 {
627 VMCOREINFO_SYMBOL(log_buf);
628 VMCOREINFO_SYMBOL(log_buf_len);
629 VMCOREINFO_SYMBOL(log_first_idx);
630 VMCOREINFO_SYMBOL(log_next_idx);
631 }
632 #endif
633
634 /* requested log_buf_len from kernel cmdline */
635 static unsigned long __initdata new_log_buf_len;
636
637 /* save requested log_buf_len since it's too early to process it */
638 static int __init log_buf_len_setup(char *str)
639 {
640 unsigned size = memparse(str, &str);
641
642 if (size)
643 size = roundup_pow_of_two(size);
644 if (size > log_buf_len)
645 new_log_buf_len = size;
646
647 return 0;
648 }
649 early_param("log_buf_len", log_buf_len_setup);
650
651 void __init setup_log_buf(int early)
652 {
653 unsigned long flags;
654 char *new_log_buf;
655 int free;
656
657 if (!new_log_buf_len)
658 return;
659
660 if (early) {
661 unsigned long mem;
662
663 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
664 if (!mem)
665 return;
666 new_log_buf = __va(mem);
667 } else {
668 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
669 }
670
671 if (unlikely(!new_log_buf)) {
672 pr_err("log_buf_len: %ld bytes not available\n",
673 new_log_buf_len);
674 return;
675 }
676
677 raw_spin_lock_irqsave(&logbuf_lock, flags);
678 log_buf_len = new_log_buf_len;
679 log_buf = new_log_buf;
680 new_log_buf_len = 0;
681 free = __LOG_BUF_LEN - log_next_idx;
682 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
683 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
684
685 pr_info("log_buf_len: %d\n", log_buf_len);
686 pr_info("early log buf free: %d(%d%%)\n",
687 free, (free * 100) / __LOG_BUF_LEN);
688 }
689
690 #ifdef CONFIG_BOOT_PRINTK_DELAY
691
692 static int boot_delay; /* msecs delay after each printk during bootup */
693 static unsigned long long loops_per_msec; /* based on boot_delay */
694
695 static int __init boot_delay_setup(char *str)
696 {
697 unsigned long lpj;
698
699 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
700 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
701
702 get_option(&str, &boot_delay);
703 if (boot_delay > 10 * 1000)
704 boot_delay = 0;
705
706 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
707 "HZ: %d, loops_per_msec: %llu\n",
708 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
709 return 1;
710 }
711 __setup("boot_delay=", boot_delay_setup);
712
713 static void boot_delay_msec(void)
714 {
715 unsigned long long k;
716 unsigned long timeout;
717
718 if (boot_delay == 0 || system_state != SYSTEM_BOOTING)
719 return;
720
721 k = (unsigned long long)loops_per_msec * boot_delay;
722
723 timeout = jiffies + msecs_to_jiffies(boot_delay);
724 while (k) {
725 k--;
726 cpu_relax();
727 /*
728 * use (volatile) jiffies to prevent
729 * compiler reduction; loop termination via jiffies
730 * is secondary and may or may not happen.
731 */
732 if (time_after(jiffies, timeout))
733 break;
734 touch_nmi_watchdog();
735 }
736 }
737 #else
738 static inline void boot_delay_msec(void)
739 {
740 }
741 #endif
742
743 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
744 int dmesg_restrict = 1;
745 #else
746 int dmesg_restrict;
747 #endif
748
749 static int syslog_action_restricted(int type)
750 {
751 if (dmesg_restrict)
752 return 1;
753 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
754 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
755 }
756
757 static int check_syslog_permissions(int type, bool from_file)
758 {
759 /*
760 * If this is from /proc/kmsg and we've already opened it, then we've
761 * already done the capabilities checks at open time.
762 */
763 if (from_file && type != SYSLOG_ACTION_OPEN)
764 return 0;
765
766 if (syslog_action_restricted(type)) {
767 if (capable(CAP_SYSLOG))
768 return 0;
769 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
770 if (capable(CAP_SYS_ADMIN)) {
771 printk_once(KERN_WARNING "%s (%d): "
772 "Attempt to access syslog with CAP_SYS_ADMIN "
773 "but no CAP_SYSLOG (deprecated).\n",
774 current->comm, task_pid_nr(current));
775 return 0;
776 }
777 return -EPERM;
778 }
779 return 0;
780 }
781
782 #if defined(CONFIG_PRINTK_TIME)
783 static bool printk_time = 1;
784 #else
785 static bool printk_time;
786 #endif
787 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
788
789 static size_t prepend_timestamp(unsigned long long t, char *buf)
790 {
791 unsigned long rem_ns;
792
793 if (!printk_time)
794 return 0;
795
796 if (!buf)
797 return 15;
798
799 rem_ns = do_div(t, 1000000000);
800
801 return sprintf(buf, "[%5lu.%06lu] ",
802 (unsigned long) t, rem_ns / 1000);
803 }
804
805 static int syslog_print_line(u32 idx, char *text, size_t size)
806 {
807 struct log *msg;
808 size_t len;
809
810 msg = log_from_idx(idx);
811 if (!text) {
812 /* calculate length only */
813 len = 3;
814
815 if (msg->level > 9)
816 len++;
817 if (msg->level > 99)
818 len++;
819 len += prepend_timestamp(0, NULL);
820
821 len += msg->text_len;
822 len++;
823 return len;
824 }
825
826 len = sprintf(text, "<%u>", msg->level);
827 len += prepend_timestamp(msg->ts_nsec, text + len);
828 if (len + msg->text_len > size)
829 return -EINVAL;
830 memcpy(text + len, log_text(msg), msg->text_len);
831 len += msg->text_len;
832 text[len++] = '\n';
833 return len;
834 }
835
836 static int syslog_print(char __user *buf, int size)
837 {
838 char *text;
839 int len;
840
841 text = kmalloc(LOG_LINE_MAX, GFP_KERNEL);
842 if (!text)
843 return -ENOMEM;
844
845 raw_spin_lock_irq(&logbuf_lock);
846 if (syslog_seq < log_first_seq) {
847 /* messages are gone, move to first one */
848 syslog_seq = log_first_seq;
849 syslog_idx = log_first_idx;
850 }
851 len = syslog_print_line(syslog_idx, text, LOG_LINE_MAX);
852 syslog_idx = log_next(syslog_idx);
853 syslog_seq++;
854 raw_spin_unlock_irq(&logbuf_lock);
855
856 if (len > 0 && copy_to_user(buf, text, len))
857 len = -EFAULT;
858
859 kfree(text);
860 return len;
861 }
862
863 static int syslog_print_all(char __user *buf, int size, bool clear)
864 {
865 char *text;
866 int len = 0;
867
868 text = kmalloc(LOG_LINE_MAX, GFP_KERNEL);
869 if (!text)
870 return -ENOMEM;
871
872 raw_spin_lock_irq(&logbuf_lock);
873 if (buf) {
874 u64 next_seq;
875 u64 seq;
876 u32 idx;
877
878 if (clear_seq < log_first_seq) {
879 /* messages are gone, move to first available one */
880 clear_seq = log_first_seq;
881 clear_idx = log_first_idx;
882 }
883
884 /*
885 * Find first record that fits, including all following records,
886 * into the user-provided buffer for this dump.
887 */
888 seq = clear_seq;
889 idx = clear_idx;
890 while (seq < log_next_seq) {
891 len += syslog_print_line(idx, NULL, 0);
892 idx = log_next(idx);
893 seq++;
894 }
895 seq = clear_seq;
896 idx = clear_idx;
897 while (len > size && seq < log_next_seq) {
898 len -= syslog_print_line(idx, NULL, 0);
899 idx = log_next(idx);
900 seq++;
901 }
902
903 /* last message in this dump */
904 next_seq = log_next_seq;
905
906 len = 0;
907 while (len >= 0 && seq < next_seq) {
908 int textlen;
909
910 textlen = syslog_print_line(idx, text, LOG_LINE_MAX);
911 if (textlen < 0) {
912 len = textlen;
913 break;
914 }
915 idx = log_next(idx);
916 seq++;
917
918 raw_spin_unlock_irq(&logbuf_lock);
919 if (copy_to_user(buf + len, text, textlen))
920 len = -EFAULT;
921 else
922 len += textlen;
923 raw_spin_lock_irq(&logbuf_lock);
924
925 if (seq < log_first_seq) {
926 /* messages are gone, move to next one */
927 seq = log_first_seq;
928 idx = log_first_idx;
929 }
930 }
931 }
932
933 if (clear) {
934 clear_seq = log_next_seq;
935 clear_idx = log_next_idx;
936 }
937 raw_spin_unlock_irq(&logbuf_lock);
938
939 kfree(text);
940 return len;
941 }
942
943 int do_syslog(int type, char __user *buf, int len, bool from_file)
944 {
945 bool clear = false;
946 static int saved_console_loglevel = -1;
947 int error;
948
949 error = check_syslog_permissions(type, from_file);
950 if (error)
951 goto out;
952
953 error = security_syslog(type);
954 if (error)
955 return error;
956
957 switch (type) {
958 case SYSLOG_ACTION_CLOSE: /* Close log */
959 break;
960 case SYSLOG_ACTION_OPEN: /* Open log */
961 break;
962 case SYSLOG_ACTION_READ: /* Read from log */
963 error = -EINVAL;
964 if (!buf || len < 0)
965 goto out;
966 error = 0;
967 if (!len)
968 goto out;
969 if (!access_ok(VERIFY_WRITE, buf, len)) {
970 error = -EFAULT;
971 goto out;
972 }
973 error = wait_event_interruptible(log_wait,
974 syslog_seq != log_next_seq);
975 if (error)
976 goto out;
977 error = syslog_print(buf, len);
978 break;
979 /* Read/clear last kernel messages */
980 case SYSLOG_ACTION_READ_CLEAR:
981 clear = true;
982 /* FALL THRU */
983 /* Read last kernel messages */
984 case SYSLOG_ACTION_READ_ALL:
985 error = -EINVAL;
986 if (!buf || len < 0)
987 goto out;
988 error = 0;
989 if (!len)
990 goto out;
991 if (!access_ok(VERIFY_WRITE, buf, len)) {
992 error = -EFAULT;
993 goto out;
994 }
995 error = syslog_print_all(buf, len, clear);
996 break;
997 /* Clear ring buffer */
998 case SYSLOG_ACTION_CLEAR:
999 syslog_print_all(NULL, 0, true);
1000 /* Disable logging to console */
1001 case SYSLOG_ACTION_CONSOLE_OFF:
1002 if (saved_console_loglevel == -1)
1003 saved_console_loglevel = console_loglevel;
1004 console_loglevel = minimum_console_loglevel;
1005 break;
1006 /* Enable logging to console */
1007 case SYSLOG_ACTION_CONSOLE_ON:
1008 if (saved_console_loglevel != -1) {
1009 console_loglevel = saved_console_loglevel;
1010 saved_console_loglevel = -1;
1011 }
1012 break;
1013 /* Set level of messages printed to console */
1014 case SYSLOG_ACTION_CONSOLE_LEVEL:
1015 error = -EINVAL;
1016 if (len < 1 || len > 8)
1017 goto out;
1018 if (len < minimum_console_loglevel)
1019 len = minimum_console_loglevel;
1020 console_loglevel = len;
1021 /* Implicitly re-enable logging to console */
1022 saved_console_loglevel = -1;
1023 error = 0;
1024 break;
1025 /* Number of chars in the log buffer */
1026 case SYSLOG_ACTION_SIZE_UNREAD:
1027 raw_spin_lock_irq(&logbuf_lock);
1028 if (syslog_seq < log_first_seq) {
1029 /* messages are gone, move to first one */
1030 syslog_seq = log_first_seq;
1031 syslog_idx = log_first_idx;
1032 }
1033 if (from_file) {
1034 /*
1035 * Short-cut for poll(/"proc/kmsg") which simply checks
1036 * for pending data, not the size; return the count of
1037 * records, not the length.
1038 */
1039 error = log_next_idx - syslog_idx;
1040 } else {
1041 u64 seq;
1042 u32 idx;
1043
1044 error = 0;
1045 seq = syslog_seq;
1046 idx = syslog_idx;
1047 while (seq < log_next_seq) {
1048 error += syslog_print_line(idx, NULL, 0);
1049 idx = log_next(idx);
1050 seq++;
1051 }
1052 }
1053 raw_spin_unlock_irq(&logbuf_lock);
1054 break;
1055 /* Size of the log buffer */
1056 case SYSLOG_ACTION_SIZE_BUFFER:
1057 error = log_buf_len;
1058 break;
1059 default:
1060 error = -EINVAL;
1061 break;
1062 }
1063 out:
1064 return error;
1065 }
1066
1067 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1068 {
1069 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1070 }
1071
1072 #ifdef CONFIG_KGDB_KDB
1073 /* kdb dmesg command needs access to the syslog buffer. do_syslog()
1074 * uses locks so it cannot be used during debugging. Just tell kdb
1075 * where the start and end of the physical and logical logs are. This
1076 * is equivalent to do_syslog(3).
1077 */
1078 void kdb_syslog_data(char *syslog_data[4])
1079 {
1080 syslog_data[0] = log_buf;
1081 syslog_data[1] = log_buf + log_buf_len;
1082 syslog_data[2] = log_buf + log_first_idx;
1083 syslog_data[3] = log_buf + log_next_idx;
1084 }
1085 #endif /* CONFIG_KGDB_KDB */
1086
1087 static bool __read_mostly ignore_loglevel;
1088
1089 static int __init ignore_loglevel_setup(char *str)
1090 {
1091 ignore_loglevel = 1;
1092 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
1093
1094 return 0;
1095 }
1096
1097 early_param("ignore_loglevel", ignore_loglevel_setup);
1098 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1099 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
1100 "print all kernel messages to the console.");
1101
1102 /*
1103 * Call the console drivers, asking them to write out
1104 * log_buf[start] to log_buf[end - 1].
1105 * The console_lock must be held.
1106 */
1107 static void call_console_drivers(int level, const char *text, size_t len)
1108 {
1109 struct console *con;
1110
1111 trace_console(text, 0, len, len);
1112
1113 if (level >= console_loglevel && !ignore_loglevel)
1114 return;
1115 if (!console_drivers)
1116 return;
1117
1118 for_each_console(con) {
1119 if (exclusive_console && con != exclusive_console)
1120 continue;
1121 if (!(con->flags & CON_ENABLED))
1122 continue;
1123 if (!con->write)
1124 continue;
1125 if (!cpu_online(smp_processor_id()) &&
1126 !(con->flags & CON_ANYTIME))
1127 continue;
1128 con->write(con, text, len);
1129 }
1130 }
1131
1132 /*
1133 * Zap console related locks when oopsing. Only zap at most once
1134 * every 10 seconds, to leave time for slow consoles to print a
1135 * full oops.
1136 */
1137 static void zap_locks(void)
1138 {
1139 static unsigned long oops_timestamp;
1140
1141 if (time_after_eq(jiffies, oops_timestamp) &&
1142 !time_after(jiffies, oops_timestamp + 30 * HZ))
1143 return;
1144
1145 oops_timestamp = jiffies;
1146
1147 debug_locks_off();
1148 /* If a crash is occurring, make sure we can't deadlock */
1149 raw_spin_lock_init(&logbuf_lock);
1150 /* And make sure that we print immediately */
1151 sema_init(&console_sem, 1);
1152 }
1153
1154 /* Check if we have any console registered that can be called early in boot. */
1155 static int have_callable_console(void)
1156 {
1157 struct console *con;
1158
1159 for_each_console(con)
1160 if (con->flags & CON_ANYTIME)
1161 return 1;
1162
1163 return 0;
1164 }
1165
1166 /*
1167 * Can we actually use the console at this time on this cpu?
1168 *
1169 * Console drivers may assume that per-cpu resources have
1170 * been allocated. So unless they're explicitly marked as
1171 * being able to cope (CON_ANYTIME) don't call them until
1172 * this CPU is officially up.
1173 */
1174 static inline int can_use_console(unsigned int cpu)
1175 {
1176 return cpu_online(cpu) || have_callable_console();
1177 }
1178
1179 /*
1180 * Try to get console ownership to actually show the kernel
1181 * messages from a 'printk'. Return true (and with the
1182 * console_lock held, and 'console_locked' set) if it
1183 * is successful, false otherwise.
1184 *
1185 * This gets called with the 'logbuf_lock' spinlock held and
1186 * interrupts disabled. It should return with 'lockbuf_lock'
1187 * released but interrupts still disabled.
1188 */
1189 static int console_trylock_for_printk(unsigned int cpu)
1190 __releases(&logbuf_lock)
1191 {
1192 int retval = 0, wake = 0;
1193
1194 if (console_trylock()) {
1195 retval = 1;
1196
1197 /*
1198 * If we can't use the console, we need to release
1199 * the console semaphore by hand to avoid flushing
1200 * the buffer. We need to hold the console semaphore
1201 * in order to do this test safely.
1202 */
1203 if (!can_use_console(cpu)) {
1204 console_locked = 0;
1205 wake = 1;
1206 retval = 0;
1207 }
1208 }
1209 logbuf_cpu = UINT_MAX;
1210 if (wake)
1211 up(&console_sem);
1212 raw_spin_unlock(&logbuf_lock);
1213 return retval;
1214 }
1215
1216 int printk_delay_msec __read_mostly;
1217
1218 static inline void printk_delay(void)
1219 {
1220 if (unlikely(printk_delay_msec)) {
1221 int m = printk_delay_msec;
1222
1223 while (m--) {
1224 mdelay(1);
1225 touch_nmi_watchdog();
1226 }
1227 }
1228 }
1229
1230 asmlinkage int vprintk_emit(int facility, int level,
1231 const char *dict, size_t dictlen,
1232 const char *fmt, va_list args)
1233 {
1234 static int recursion_bug;
1235 static char buf[LOG_LINE_MAX];
1236 static size_t buflen;
1237 static int buflevel;
1238 static char textbuf[LOG_LINE_MAX];
1239 static struct task_struct *cont;
1240 char *text = textbuf;
1241 size_t textlen;
1242 unsigned long flags;
1243 int this_cpu;
1244 bool newline = false;
1245 bool prefix = false;
1246 int printed_len = 0;
1247
1248 boot_delay_msec();
1249 printk_delay();
1250
1251 /* This stops the holder of console_sem just where we want him */
1252 local_irq_save(flags);
1253 this_cpu = smp_processor_id();
1254
1255 /*
1256 * Ouch, printk recursed into itself!
1257 */
1258 if (unlikely(logbuf_cpu == this_cpu)) {
1259 /*
1260 * If a crash is occurring during printk() on this CPU,
1261 * then try to get the crash message out but make sure
1262 * we can't deadlock. Otherwise just return to avoid the
1263 * recursion and return - but flag the recursion so that
1264 * it can be printed at the next appropriate moment:
1265 */
1266 if (!oops_in_progress && !lockdep_recursing(current)) {
1267 recursion_bug = 1;
1268 goto out_restore_irqs;
1269 }
1270 zap_locks();
1271 }
1272
1273 lockdep_off();
1274 raw_spin_lock(&logbuf_lock);
1275 logbuf_cpu = this_cpu;
1276
1277 if (recursion_bug) {
1278 static const char recursion_msg[] =
1279 "BUG: recent printk recursion!";
1280
1281 recursion_bug = 0;
1282 printed_len += strlen(recursion_msg);
1283 /* emit KERN_CRIT message */
1284 log_store(0, 2, NULL, 0, recursion_msg, printed_len);
1285 }
1286
1287 /*
1288 * The printf needs to come first; we need the syslog
1289 * prefix which might be passed-in as a parameter.
1290 */
1291 textlen = vscnprintf(text, sizeof(textbuf), fmt, args);
1292
1293 /* mark and strip a trailing newline */
1294 if (textlen && text[textlen-1] == '\n') {
1295 textlen--;
1296 newline = true;
1297 }
1298
1299 /* strip syslog prefix and extract log level or flags */
1300 if (text[0] == '<' && text[1] && text[2] == '>') {
1301 switch (text[1]) {
1302 case '0' ... '7':
1303 if (level == -1)
1304 level = text[1] - '0';
1305 case 'd': /* KERN_DEFAULT */
1306 prefix = true;
1307 case 'c': /* KERN_CONT */
1308 text += 3;
1309 textlen -= 3;
1310 }
1311 }
1312
1313 if (buflen && (prefix || dict || cont != current)) {
1314 /* flush existing buffer */
1315 log_store(facility, buflevel, NULL, 0, buf, buflen);
1316 printed_len += buflen;
1317 buflen = 0;
1318 }
1319
1320 if (buflen == 0) {
1321 /* remember level for first message in the buffer */
1322 if (level == -1)
1323 buflevel = default_message_loglevel;
1324 else
1325 buflevel = level;
1326 }
1327
1328 if (buflen || !newline) {
1329 /* append to existing buffer, or buffer until next message */
1330 if (buflen + textlen > sizeof(buf))
1331 textlen = sizeof(buf) - buflen;
1332 memcpy(buf + buflen, text, textlen);
1333 buflen += textlen;
1334 }
1335
1336 if (newline) {
1337 /* end of line; flush buffer */
1338 if (buflen) {
1339 log_store(facility, buflevel,
1340 dict, dictlen, buf, buflen);
1341 printed_len += buflen;
1342 buflen = 0;
1343 } else {
1344 log_store(facility, buflevel,
1345 dict, dictlen, text, textlen);
1346 printed_len += textlen;
1347 }
1348 cont = NULL;
1349 } else {
1350 /* remember thread which filled the buffer */
1351 cont = current;
1352 }
1353
1354 /*
1355 * Try to acquire and then immediately release the console semaphore.
1356 * The release will print out buffers and wake up /dev/kmsg and syslog()
1357 * users.
1358 *
1359 * The console_trylock_for_printk() function will release 'logbuf_lock'
1360 * regardless of whether it actually gets the console semaphore or not.
1361 */
1362 if (console_trylock_for_printk(this_cpu))
1363 console_unlock();
1364
1365 lockdep_on();
1366 out_restore_irqs:
1367 local_irq_restore(flags);
1368
1369 return printed_len;
1370 }
1371 EXPORT_SYMBOL(vprintk_emit);
1372
1373 asmlinkage int vprintk(const char *fmt, va_list args)
1374 {
1375 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1376 }
1377 EXPORT_SYMBOL(vprintk);
1378
1379 asmlinkage int printk_emit(int facility, int level,
1380 const char *dict, size_t dictlen,
1381 const char *fmt, ...)
1382 {
1383 va_list args;
1384 int r;
1385
1386 va_start(args, fmt);
1387 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1388 va_end(args);
1389
1390 return r;
1391 }
1392 EXPORT_SYMBOL(printk_emit);
1393
1394 /**
1395 * printk - print a kernel message
1396 * @fmt: format string
1397 *
1398 * This is printk(). It can be called from any context. We want it to work.
1399 *
1400 * We try to grab the console_lock. If we succeed, it's easy - we log the
1401 * output and call the console drivers. If we fail to get the semaphore, we
1402 * place the output into the log buffer and return. The current holder of
1403 * the console_sem will notice the new output in console_unlock(); and will
1404 * send it to the consoles before releasing the lock.
1405 *
1406 * One effect of this deferred printing is that code which calls printk() and
1407 * then changes console_loglevel may break. This is because console_loglevel
1408 * is inspected when the actual printing occurs.
1409 *
1410 * See also:
1411 * printf(3)
1412 *
1413 * See the vsnprintf() documentation for format string extensions over C99.
1414 */
1415 asmlinkage int printk(const char *fmt, ...)
1416 {
1417 va_list args;
1418 int r;
1419
1420 #ifdef CONFIG_KGDB_KDB
1421 if (unlikely(kdb_trap_printk)) {
1422 va_start(args, fmt);
1423 r = vkdb_printf(fmt, args);
1424 va_end(args);
1425 return r;
1426 }
1427 #endif
1428 va_start(args, fmt);
1429 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1430 va_end(args);
1431
1432 return r;
1433 }
1434 EXPORT_SYMBOL(printk);
1435
1436 #else
1437
1438 #define LOG_LINE_MAX 0
1439 static struct log *log_from_idx(u32 idx) { return NULL; }
1440 static u32 log_next(u32 idx) { return 0; }
1441 static char *log_text(const struct log *msg) { return NULL; }
1442 static void call_console_drivers(int level, const char *text, size_t len) {}
1443
1444 #endif /* CONFIG_PRINTK */
1445
1446 static int __add_preferred_console(char *name, int idx, char *options,
1447 char *brl_options)
1448 {
1449 struct console_cmdline *c;
1450 int i;
1451
1452 /*
1453 * See if this tty is not yet registered, and
1454 * if we have a slot free.
1455 */
1456 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1457 if (strcmp(console_cmdline[i].name, name) == 0 &&
1458 console_cmdline[i].index == idx) {
1459 if (!brl_options)
1460 selected_console = i;
1461 return 0;
1462 }
1463 if (i == MAX_CMDLINECONSOLES)
1464 return -E2BIG;
1465 if (!brl_options)
1466 selected_console = i;
1467 c = &console_cmdline[i];
1468 strlcpy(c->name, name, sizeof(c->name));
1469 c->options = options;
1470 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1471 c->brl_options = brl_options;
1472 #endif
1473 c->index = idx;
1474 return 0;
1475 }
1476 /*
1477 * Set up a list of consoles. Called from init/main.c
1478 */
1479 static int __init console_setup(char *str)
1480 {
1481 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1482 char *s, *options, *brl_options = NULL;
1483 int idx;
1484
1485 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1486 if (!memcmp(str, "brl,", 4)) {
1487 brl_options = "";
1488 str += 4;
1489 } else if (!memcmp(str, "brl=", 4)) {
1490 brl_options = str + 4;
1491 str = strchr(brl_options, ',');
1492 if (!str) {
1493 printk(KERN_ERR "need port name after brl=\n");
1494 return 1;
1495 }
1496 *(str++) = 0;
1497 }
1498 #endif
1499
1500 /*
1501 * Decode str into name, index, options.
1502 */
1503 if (str[0] >= '0' && str[0] <= '9') {
1504 strcpy(buf, "ttyS");
1505 strncpy(buf + 4, str, sizeof(buf) - 5);
1506 } else {
1507 strncpy(buf, str, sizeof(buf) - 1);
1508 }
1509 buf[sizeof(buf) - 1] = 0;
1510 if ((options = strchr(str, ',')) != NULL)
1511 *(options++) = 0;
1512 #ifdef __sparc__
1513 if (!strcmp(str, "ttya"))
1514 strcpy(buf, "ttyS0");
1515 if (!strcmp(str, "ttyb"))
1516 strcpy(buf, "ttyS1");
1517 #endif
1518 for (s = buf; *s; s++)
1519 if ((*s >= '0' && *s <= '9') || *s == ',')
1520 break;
1521 idx = simple_strtoul(s, NULL, 10);
1522 *s = 0;
1523
1524 __add_preferred_console(buf, idx, options, brl_options);
1525 console_set_on_cmdline = 1;
1526 return 1;
1527 }
1528 __setup("console=", console_setup);
1529
1530 /**
1531 * add_preferred_console - add a device to the list of preferred consoles.
1532 * @name: device name
1533 * @idx: device index
1534 * @options: options for this console
1535 *
1536 * The last preferred console added will be used for kernel messages
1537 * and stdin/out/err for init. Normally this is used by console_setup
1538 * above to handle user-supplied console arguments; however it can also
1539 * be used by arch-specific code either to override the user or more
1540 * commonly to provide a default console (ie from PROM variables) when
1541 * the user has not supplied one.
1542 */
1543 int add_preferred_console(char *name, int idx, char *options)
1544 {
1545 return __add_preferred_console(name, idx, options, NULL);
1546 }
1547
1548 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1549 {
1550 struct console_cmdline *c;
1551 int i;
1552
1553 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1554 if (strcmp(console_cmdline[i].name, name) == 0 &&
1555 console_cmdline[i].index == idx) {
1556 c = &console_cmdline[i];
1557 strlcpy(c->name, name_new, sizeof(c->name));
1558 c->name[sizeof(c->name) - 1] = 0;
1559 c->options = options;
1560 c->index = idx_new;
1561 return i;
1562 }
1563 /* not found */
1564 return -1;
1565 }
1566
1567 bool console_suspend_enabled = 1;
1568 EXPORT_SYMBOL(console_suspend_enabled);
1569
1570 static int __init console_suspend_disable(char *str)
1571 {
1572 console_suspend_enabled = 0;
1573 return 1;
1574 }
1575 __setup("no_console_suspend", console_suspend_disable);
1576 module_param_named(console_suspend, console_suspend_enabled,
1577 bool, S_IRUGO | S_IWUSR);
1578 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1579 " and hibernate operations");
1580
1581 /**
1582 * suspend_console - suspend the console subsystem
1583 *
1584 * This disables printk() while we go into suspend states
1585 */
1586 void suspend_console(void)
1587 {
1588 if (!console_suspend_enabled)
1589 return;
1590 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1591 console_lock();
1592 console_suspended = 1;
1593 up(&console_sem);
1594 }
1595
1596 void resume_console(void)
1597 {
1598 if (!console_suspend_enabled)
1599 return;
1600 down(&console_sem);
1601 console_suspended = 0;
1602 console_unlock();
1603 }
1604
1605 /**
1606 * console_cpu_notify - print deferred console messages after CPU hotplug
1607 * @self: notifier struct
1608 * @action: CPU hotplug event
1609 * @hcpu: unused
1610 *
1611 * If printk() is called from a CPU that is not online yet, the messages
1612 * will be spooled but will not show up on the console. This function is
1613 * called when a new CPU comes online (or fails to come up), and ensures
1614 * that any such output gets printed.
1615 */
1616 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1617 unsigned long action, void *hcpu)
1618 {
1619 switch (action) {
1620 case CPU_ONLINE:
1621 case CPU_DEAD:
1622 case CPU_DYING:
1623 case CPU_DOWN_FAILED:
1624 case CPU_UP_CANCELED:
1625 console_lock();
1626 console_unlock();
1627 }
1628 return NOTIFY_OK;
1629 }
1630
1631 /**
1632 * console_lock - lock the console system for exclusive use.
1633 *
1634 * Acquires a lock which guarantees that the caller has
1635 * exclusive access to the console system and the console_drivers list.
1636 *
1637 * Can sleep, returns nothing.
1638 */
1639 void console_lock(void)
1640 {
1641 BUG_ON(in_interrupt());
1642 down(&console_sem);
1643 if (console_suspended)
1644 return;
1645 console_locked = 1;
1646 console_may_schedule = 1;
1647 }
1648 EXPORT_SYMBOL(console_lock);
1649
1650 /**
1651 * console_trylock - try to lock the console system for exclusive use.
1652 *
1653 * Tried to acquire a lock which guarantees that the caller has
1654 * exclusive access to the console system and the console_drivers list.
1655 *
1656 * returns 1 on success, and 0 on failure to acquire the lock.
1657 */
1658 int console_trylock(void)
1659 {
1660 if (down_trylock(&console_sem))
1661 return 0;
1662 if (console_suspended) {
1663 up(&console_sem);
1664 return 0;
1665 }
1666 console_locked = 1;
1667 console_may_schedule = 0;
1668 return 1;
1669 }
1670 EXPORT_SYMBOL(console_trylock);
1671
1672 int is_console_locked(void)
1673 {
1674 return console_locked;
1675 }
1676
1677 /*
1678 * Delayed printk version, for scheduler-internal messages:
1679 */
1680 #define PRINTK_BUF_SIZE 512
1681
1682 #define PRINTK_PENDING_WAKEUP 0x01
1683 #define PRINTK_PENDING_SCHED 0x02
1684
1685 static DEFINE_PER_CPU(int, printk_pending);
1686 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
1687
1688 void printk_tick(void)
1689 {
1690 if (__this_cpu_read(printk_pending)) {
1691 int pending = __this_cpu_xchg(printk_pending, 0);
1692 if (pending & PRINTK_PENDING_SCHED) {
1693 char *buf = __get_cpu_var(printk_sched_buf);
1694 printk(KERN_WARNING "[sched_delayed] %s", buf);
1695 }
1696 if (pending & PRINTK_PENDING_WAKEUP)
1697 wake_up_interruptible(&log_wait);
1698 }
1699 }
1700
1701 int printk_needs_cpu(int cpu)
1702 {
1703 if (cpu_is_offline(cpu))
1704 printk_tick();
1705 return __this_cpu_read(printk_pending);
1706 }
1707
1708 void wake_up_klogd(void)
1709 {
1710 if (waitqueue_active(&log_wait))
1711 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
1712 }
1713
1714 /* the next printk record to write to the console */
1715 static u64 console_seq;
1716 static u32 console_idx;
1717
1718 /**
1719 * console_unlock - unlock the console system
1720 *
1721 * Releases the console_lock which the caller holds on the console system
1722 * and the console driver list.
1723 *
1724 * While the console_lock was held, console output may have been buffered
1725 * by printk(). If this is the case, console_unlock(); emits
1726 * the output prior to releasing the lock.
1727 *
1728 * If there is output waiting, we wake /dev/kmsg and syslog() users.
1729 *
1730 * console_unlock(); may be called from any context.
1731 */
1732 void console_unlock(void)
1733 {
1734 static u64 seen_seq;
1735 unsigned long flags;
1736 bool wake_klogd = false;
1737 bool retry;
1738
1739 if (console_suspended) {
1740 up(&console_sem);
1741 return;
1742 }
1743
1744 console_may_schedule = 0;
1745
1746 again:
1747 for (;;) {
1748 struct log *msg;
1749 static char text[LOG_LINE_MAX];
1750 size_t len, l;
1751 int level;
1752
1753 raw_spin_lock_irqsave(&logbuf_lock, flags);
1754 if (seen_seq != log_next_seq) {
1755 wake_klogd = true;
1756 seen_seq = log_next_seq;
1757 }
1758
1759 if (console_seq < log_first_seq) {
1760 /* messages are gone, move to first one */
1761 console_seq = log_first_seq;
1762 console_idx = log_first_idx;
1763 }
1764
1765 if (console_seq == log_next_seq)
1766 break;
1767
1768 msg = log_from_idx(console_idx);
1769 level = msg->level & 7;
1770
1771 len = prepend_timestamp(msg->ts_nsec, text);
1772 l = msg->text_len;
1773 if (len + l + 1 >= sizeof(text))
1774 l = sizeof(text) - len - 1;
1775 memcpy(text + len, log_text(msg), l);
1776 len += l;
1777 text[len++] = '\n';
1778
1779 console_idx = log_next(console_idx);
1780 console_seq++;
1781 raw_spin_unlock(&logbuf_lock);
1782
1783 stop_critical_timings(); /* don't trace print latency */
1784 call_console_drivers(level, text, len);
1785 start_critical_timings();
1786 local_irq_restore(flags);
1787 }
1788 console_locked = 0;
1789
1790 /* Release the exclusive_console once it is used */
1791 if (unlikely(exclusive_console))
1792 exclusive_console = NULL;
1793
1794 raw_spin_unlock(&logbuf_lock);
1795
1796 up(&console_sem);
1797
1798 /*
1799 * Someone could have filled up the buffer again, so re-check if there's
1800 * something to flush. In case we cannot trylock the console_sem again,
1801 * there's a new owner and the console_unlock() from them will do the
1802 * flush, no worries.
1803 */
1804 raw_spin_lock(&logbuf_lock);
1805 retry = console_seq != log_next_seq;
1806 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1807
1808 if (retry && console_trylock())
1809 goto again;
1810
1811 if (wake_klogd)
1812 wake_up_klogd();
1813 }
1814 EXPORT_SYMBOL(console_unlock);
1815
1816 /**
1817 * console_conditional_schedule - yield the CPU if required
1818 *
1819 * If the console code is currently allowed to sleep, and
1820 * if this CPU should yield the CPU to another task, do
1821 * so here.
1822 *
1823 * Must be called within console_lock();.
1824 */
1825 void __sched console_conditional_schedule(void)
1826 {
1827 if (console_may_schedule)
1828 cond_resched();
1829 }
1830 EXPORT_SYMBOL(console_conditional_schedule);
1831
1832 void console_unblank(void)
1833 {
1834 struct console *c;
1835
1836 /*
1837 * console_unblank can no longer be called in interrupt context unless
1838 * oops_in_progress is set to 1..
1839 */
1840 if (oops_in_progress) {
1841 if (down_trylock(&console_sem) != 0)
1842 return;
1843 } else
1844 console_lock();
1845
1846 console_locked = 1;
1847 console_may_schedule = 0;
1848 for_each_console(c)
1849 if ((c->flags & CON_ENABLED) && c->unblank)
1850 c->unblank();
1851 console_unlock();
1852 }
1853
1854 /*
1855 * Return the console tty driver structure and its associated index
1856 */
1857 struct tty_driver *console_device(int *index)
1858 {
1859 struct console *c;
1860 struct tty_driver *driver = NULL;
1861
1862 console_lock();
1863 for_each_console(c) {
1864 if (!c->device)
1865 continue;
1866 driver = c->device(c, index);
1867 if (driver)
1868 break;
1869 }
1870 console_unlock();
1871 return driver;
1872 }
1873
1874 /*
1875 * Prevent further output on the passed console device so that (for example)
1876 * serial drivers can disable console output before suspending a port, and can
1877 * re-enable output afterwards.
1878 */
1879 void console_stop(struct console *console)
1880 {
1881 console_lock();
1882 console->flags &= ~CON_ENABLED;
1883 console_unlock();
1884 }
1885 EXPORT_SYMBOL(console_stop);
1886
1887 void console_start(struct console *console)
1888 {
1889 console_lock();
1890 console->flags |= CON_ENABLED;
1891 console_unlock();
1892 }
1893 EXPORT_SYMBOL(console_start);
1894
1895 static int __read_mostly keep_bootcon;
1896
1897 static int __init keep_bootcon_setup(char *str)
1898 {
1899 keep_bootcon = 1;
1900 printk(KERN_INFO "debug: skip boot console de-registration.\n");
1901
1902 return 0;
1903 }
1904
1905 early_param("keep_bootcon", keep_bootcon_setup);
1906
1907 /*
1908 * The console driver calls this routine during kernel initialization
1909 * to register the console printing procedure with printk() and to
1910 * print any messages that were printed by the kernel before the
1911 * console driver was initialized.
1912 *
1913 * This can happen pretty early during the boot process (because of
1914 * early_printk) - sometimes before setup_arch() completes - be careful
1915 * of what kernel features are used - they may not be initialised yet.
1916 *
1917 * There are two types of consoles - bootconsoles (early_printk) and
1918 * "real" consoles (everything which is not a bootconsole) which are
1919 * handled differently.
1920 * - Any number of bootconsoles can be registered at any time.
1921 * - As soon as a "real" console is registered, all bootconsoles
1922 * will be unregistered automatically.
1923 * - Once a "real" console is registered, any attempt to register a
1924 * bootconsoles will be rejected
1925 */
1926 void register_console(struct console *newcon)
1927 {
1928 int i;
1929 unsigned long flags;
1930 struct console *bcon = NULL;
1931
1932 /*
1933 * before we register a new CON_BOOT console, make sure we don't
1934 * already have a valid console
1935 */
1936 if (console_drivers && newcon->flags & CON_BOOT) {
1937 /* find the last or real console */
1938 for_each_console(bcon) {
1939 if (!(bcon->flags & CON_BOOT)) {
1940 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
1941 newcon->name, newcon->index);
1942 return;
1943 }
1944 }
1945 }
1946
1947 if (console_drivers && console_drivers->flags & CON_BOOT)
1948 bcon = console_drivers;
1949
1950 if (preferred_console < 0 || bcon || !console_drivers)
1951 preferred_console = selected_console;
1952
1953 if (newcon->early_setup)
1954 newcon->early_setup();
1955
1956 /*
1957 * See if we want to use this console driver. If we
1958 * didn't select a console we take the first one
1959 * that registers here.
1960 */
1961 if (preferred_console < 0) {
1962 if (newcon->index < 0)
1963 newcon->index = 0;
1964 if (newcon->setup == NULL ||
1965 newcon->setup(newcon, NULL) == 0) {
1966 newcon->flags |= CON_ENABLED;
1967 if (newcon->device) {
1968 newcon->flags |= CON_CONSDEV;
1969 preferred_console = 0;
1970 }
1971 }
1972 }
1973
1974 /*
1975 * See if this console matches one we selected on
1976 * the command line.
1977 */
1978 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
1979 i++) {
1980 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
1981 continue;
1982 if (newcon->index >= 0 &&
1983 newcon->index != console_cmdline[i].index)
1984 continue;
1985 if (newcon->index < 0)
1986 newcon->index = console_cmdline[i].index;
1987 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1988 if (console_cmdline[i].brl_options) {
1989 newcon->flags |= CON_BRL;
1990 braille_register_console(newcon,
1991 console_cmdline[i].index,
1992 console_cmdline[i].options,
1993 console_cmdline[i].brl_options);
1994 return;
1995 }
1996 #endif
1997 if (newcon->setup &&
1998 newcon->setup(newcon, console_cmdline[i].options) != 0)
1999 break;
2000 newcon->flags |= CON_ENABLED;
2001 newcon->index = console_cmdline[i].index;
2002 if (i == selected_console) {
2003 newcon->flags |= CON_CONSDEV;
2004 preferred_console = selected_console;
2005 }
2006 break;
2007 }
2008
2009 if (!(newcon->flags & CON_ENABLED))
2010 return;
2011
2012 /*
2013 * If we have a bootconsole, and are switching to a real console,
2014 * don't print everything out again, since when the boot console, and
2015 * the real console are the same physical device, it's annoying to
2016 * see the beginning boot messages twice
2017 */
2018 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2019 newcon->flags &= ~CON_PRINTBUFFER;
2020
2021 /*
2022 * Put this console in the list - keep the
2023 * preferred driver at the head of the list.
2024 */
2025 console_lock();
2026 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2027 newcon->next = console_drivers;
2028 console_drivers = newcon;
2029 if (newcon->next)
2030 newcon->next->flags &= ~CON_CONSDEV;
2031 } else {
2032 newcon->next = console_drivers->next;
2033 console_drivers->next = newcon;
2034 }
2035 if (newcon->flags & CON_PRINTBUFFER) {
2036 /*
2037 * console_unlock(); will print out the buffered messages
2038 * for us.
2039 */
2040 raw_spin_lock_irqsave(&logbuf_lock, flags);
2041 console_seq = syslog_seq;
2042 console_idx = syslog_idx;
2043 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2044 /*
2045 * We're about to replay the log buffer. Only do this to the
2046 * just-registered console to avoid excessive message spam to
2047 * the already-registered consoles.
2048 */
2049 exclusive_console = newcon;
2050 }
2051 console_unlock();
2052 console_sysfs_notify();
2053
2054 /*
2055 * By unregistering the bootconsoles after we enable the real console
2056 * we get the "console xxx enabled" message on all the consoles -
2057 * boot consoles, real consoles, etc - this is to ensure that end
2058 * users know there might be something in the kernel's log buffer that
2059 * went to the bootconsole (that they do not see on the real console)
2060 */
2061 if (bcon &&
2062 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2063 !keep_bootcon) {
2064 /* we need to iterate through twice, to make sure we print
2065 * everything out, before we unregister the console(s)
2066 */
2067 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2068 newcon->name, newcon->index);
2069 for_each_console(bcon)
2070 if (bcon->flags & CON_BOOT)
2071 unregister_console(bcon);
2072 } else {
2073 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2074 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2075 newcon->name, newcon->index);
2076 }
2077 }
2078 EXPORT_SYMBOL(register_console);
2079
2080 int unregister_console(struct console *console)
2081 {
2082 struct console *a, *b;
2083 int res = 1;
2084
2085 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2086 if (console->flags & CON_BRL)
2087 return braille_unregister_console(console);
2088 #endif
2089
2090 console_lock();
2091 if (console_drivers == console) {
2092 console_drivers=console->next;
2093 res = 0;
2094 } else if (console_drivers) {
2095 for (a=console_drivers->next, b=console_drivers ;
2096 a; b=a, a=b->next) {
2097 if (a == console) {
2098 b->next = a->next;
2099 res = 0;
2100 break;
2101 }
2102 }
2103 }
2104
2105 /*
2106 * If this isn't the last console and it has CON_CONSDEV set, we
2107 * need to set it on the next preferred console.
2108 */
2109 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2110 console_drivers->flags |= CON_CONSDEV;
2111
2112 console_unlock();
2113 console_sysfs_notify();
2114 return res;
2115 }
2116 EXPORT_SYMBOL(unregister_console);
2117
2118 static int __init printk_late_init(void)
2119 {
2120 struct console *con;
2121
2122 for_each_console(con) {
2123 if (!keep_bootcon && con->flags & CON_BOOT) {
2124 printk(KERN_INFO "turn off boot console %s%d\n",
2125 con->name, con->index);
2126 unregister_console(con);
2127 }
2128 }
2129 hotcpu_notifier(console_cpu_notify, 0);
2130 return 0;
2131 }
2132 late_initcall(printk_late_init);
2133
2134 #if defined CONFIG_PRINTK
2135
2136 int printk_sched(const char *fmt, ...)
2137 {
2138 unsigned long flags;
2139 va_list args;
2140 char *buf;
2141 int r;
2142
2143 local_irq_save(flags);
2144 buf = __get_cpu_var(printk_sched_buf);
2145
2146 va_start(args, fmt);
2147 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2148 va_end(args);
2149
2150 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2151 local_irq_restore(flags);
2152
2153 return r;
2154 }
2155
2156 /*
2157 * printk rate limiting, lifted from the networking subsystem.
2158 *
2159 * This enforces a rate limit: not more than 10 kernel messages
2160 * every 5s to make a denial-of-service attack impossible.
2161 */
2162 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2163
2164 int __printk_ratelimit(const char *func)
2165 {
2166 return ___ratelimit(&printk_ratelimit_state, func);
2167 }
2168 EXPORT_SYMBOL(__printk_ratelimit);
2169
2170 /**
2171 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2172 * @caller_jiffies: pointer to caller's state
2173 * @interval_msecs: minimum interval between prints
2174 *
2175 * printk_timed_ratelimit() returns true if more than @interval_msecs
2176 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2177 * returned true.
2178 */
2179 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2180 unsigned int interval_msecs)
2181 {
2182 if (*caller_jiffies == 0
2183 || !time_in_range(jiffies, *caller_jiffies,
2184 *caller_jiffies
2185 + msecs_to_jiffies(interval_msecs))) {
2186 *caller_jiffies = jiffies;
2187 return true;
2188 }
2189 return false;
2190 }
2191 EXPORT_SYMBOL(printk_timed_ratelimit);
2192
2193 static DEFINE_SPINLOCK(dump_list_lock);
2194 static LIST_HEAD(dump_list);
2195
2196 /**
2197 * kmsg_dump_register - register a kernel log dumper.
2198 * @dumper: pointer to the kmsg_dumper structure
2199 *
2200 * Adds a kernel log dumper to the system. The dump callback in the
2201 * structure will be called when the kernel oopses or panics and must be
2202 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2203 */
2204 int kmsg_dump_register(struct kmsg_dumper *dumper)
2205 {
2206 unsigned long flags;
2207 int err = -EBUSY;
2208
2209 /* The dump callback needs to be set */
2210 if (!dumper->dump)
2211 return -EINVAL;
2212
2213 spin_lock_irqsave(&dump_list_lock, flags);
2214 /* Don't allow registering multiple times */
2215 if (!dumper->registered) {
2216 dumper->registered = 1;
2217 list_add_tail_rcu(&dumper->list, &dump_list);
2218 err = 0;
2219 }
2220 spin_unlock_irqrestore(&dump_list_lock, flags);
2221
2222 return err;
2223 }
2224 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2225
2226 /**
2227 * kmsg_dump_unregister - unregister a kmsg dumper.
2228 * @dumper: pointer to the kmsg_dumper structure
2229 *
2230 * Removes a dump device from the system. Returns zero on success and
2231 * %-EINVAL otherwise.
2232 */
2233 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2234 {
2235 unsigned long flags;
2236 int err = -EINVAL;
2237
2238 spin_lock_irqsave(&dump_list_lock, flags);
2239 if (dumper->registered) {
2240 dumper->registered = 0;
2241 list_del_rcu(&dumper->list);
2242 err = 0;
2243 }
2244 spin_unlock_irqrestore(&dump_list_lock, flags);
2245 synchronize_rcu();
2246
2247 return err;
2248 }
2249 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2250
2251 static bool always_kmsg_dump;
2252 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2253
2254 /**
2255 * kmsg_dump - dump kernel log to kernel message dumpers.
2256 * @reason: the reason (oops, panic etc) for dumping
2257 *
2258 * Iterate through each of the dump devices and call the oops/panic
2259 * callbacks with the log buffer.
2260 */
2261 void kmsg_dump(enum kmsg_dump_reason reason)
2262 {
2263 u64 idx;
2264 struct kmsg_dumper *dumper;
2265 const char *s1, *s2;
2266 unsigned long l1, l2;
2267 unsigned long flags;
2268
2269 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2270 return;
2271
2272 /* Theoretically, the log could move on after we do this, but
2273 there's not a lot we can do about that. The new messages
2274 will overwrite the start of what we dump. */
2275
2276 raw_spin_lock_irqsave(&logbuf_lock, flags);
2277 if (syslog_seq < log_first_seq)
2278 idx = syslog_idx;
2279 else
2280 idx = log_first_idx;
2281
2282 if (idx > log_next_idx) {
2283 s1 = log_buf;
2284 l1 = log_next_idx;
2285
2286 s2 = log_buf + idx;
2287 l2 = log_buf_len - idx;
2288 } else {
2289 s1 = "";
2290 l1 = 0;
2291
2292 s2 = log_buf + idx;
2293 l2 = log_next_idx - idx;
2294 }
2295 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2296
2297 rcu_read_lock();
2298 list_for_each_entry_rcu(dumper, &dump_list, list)
2299 dumper->dump(dumper, reason, s1, l1, s2, l2);
2300 rcu_read_unlock();
2301 }
2302 #endif
This page took 0.079946 seconds and 5 git commands to generate.