kmsg: make sure all messages reach a newly registered boot console
[deliverable/linux.git] / kernel / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45
46 #include <asm/uaccess.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/printk.h>
50
51 /*
52 * Architectures can override it:
53 */
54 void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
55 {
56 }
57
58 /* printk's without a loglevel use this.. */
59 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
60
61 /* We show everything that is MORE important than this.. */
62 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
63 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
64
65 DECLARE_WAIT_QUEUE_HEAD(log_wait);
66
67 int console_printk[4] = {
68 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
69 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
70 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
71 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
72 };
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 /*
91 * This is used for debugging the mess that is the VT code by
92 * keeping track if we have the console semaphore held. It's
93 * definitely not the perfect debug tool (we don't know if _WE_
94 * hold it are racing, but it helps tracking those weird code
95 * path in the console code where we end up in places I want
96 * locked without the console sempahore held
97 */
98 static int console_locked, console_suspended;
99
100 /*
101 * If exclusive_console is non-NULL then only this console is to be printed to.
102 */
103 static struct console *exclusive_console;
104
105 /*
106 * Array of consoles built from command line options (console=)
107 */
108 struct console_cmdline
109 {
110 char name[8]; /* Name of the driver */
111 int index; /* Minor dev. to use */
112 char *options; /* Options for the driver */
113 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
114 char *brl_options; /* Options for braille driver */
115 #endif
116 };
117
118 #define MAX_CMDLINECONSOLES 8
119
120 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
121 static int selected_console = -1;
122 static int preferred_console = -1;
123 int console_set_on_cmdline;
124 EXPORT_SYMBOL(console_set_on_cmdline);
125
126 /* Flag: console code may call schedule() */
127 static int console_may_schedule;
128
129 /*
130 * The printk log buffer consists of a chain of concatenated variable
131 * length records. Every record starts with a record header, containing
132 * the overall length of the record.
133 *
134 * The heads to the first and last entry in the buffer, as well as the
135 * sequence numbers of these both entries are maintained when messages
136 * are stored..
137 *
138 * If the heads indicate available messages, the length in the header
139 * tells the start next message. A length == 0 for the next message
140 * indicates a wrap-around to the beginning of the buffer.
141 *
142 * Every record carries the monotonic timestamp in microseconds, as well as
143 * the standard userspace syslog level and syslog facility. The usual
144 * kernel messages use LOG_KERN; userspace-injected messages always carry
145 * a matching syslog facility, by default LOG_USER. The origin of every
146 * message can be reliably determined that way.
147 *
148 * The human readable log message directly follows the message header. The
149 * length of the message text is stored in the header, the stored message
150 * is not terminated.
151 *
152 * Optionally, a message can carry a dictionary of properties (key/value pairs),
153 * to provide userspace with a machine-readable message context.
154 *
155 * Examples for well-defined, commonly used property names are:
156 * DEVICE=b12:8 device identifier
157 * b12:8 block dev_t
158 * c127:3 char dev_t
159 * n8 netdev ifindex
160 * +sound:card0 subsystem:devname
161 * SUBSYSTEM=pci driver-core subsystem name
162 *
163 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
164 * follows directly after a '=' character. Every property is terminated by
165 * a '\0' character. The last property is not terminated.
166 *
167 * Example of a message structure:
168 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
169 * 0008 34 00 record is 52 bytes long
170 * 000a 0b 00 text is 11 bytes long
171 * 000c 1f 00 dictionary is 23 bytes long
172 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
173 * 0010 69 74 27 73 20 61 20 6c "it's a l"
174 * 69 6e 65 "ine"
175 * 001b 44 45 56 49 43 "DEVIC"
176 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
177 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
178 * 67 "g"
179 * 0032 00 00 00 padding to next message header
180 *
181 * The 'struct log' buffer header must never be directly exported to
182 * userspace, it is a kernel-private implementation detail that might
183 * need to be changed in the future, when the requirements change.
184 *
185 * /dev/kmsg exports the structured data in the following line format:
186 * "level,sequnum,timestamp;<message text>\n"
187 *
188 * The optional key/value pairs are attached as continuation lines starting
189 * with a space character and terminated by a newline. All possible
190 * non-prinatable characters are escaped in the "\xff" notation.
191 *
192 * Users of the export format should ignore possible additional values
193 * separated by ',', and find the message after the ';' character.
194 */
195
196 enum log_flags {
197 LOG_DEFAULT = 0,
198 LOG_NOCONS = 1, /* already flushed, do not print to console */
199 };
200
201 struct log {
202 u64 ts_nsec; /* timestamp in nanoseconds */
203 u16 len; /* length of entire record */
204 u16 text_len; /* length of text buffer */
205 u16 dict_len; /* length of dictionary buffer */
206 u8 facility; /* syslog facility */
207 u8 flags:5; /* internal record flags */
208 u8 level:3; /* syslog level */
209 };
210
211 /*
212 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
213 * used in interesting ways to provide interlocking in console_unlock();
214 */
215 static DEFINE_RAW_SPINLOCK(logbuf_lock);
216
217 /* the next printk record to read by syslog(READ) or /proc/kmsg */
218 static u64 syslog_seq;
219 static u32 syslog_idx;
220
221 /* index and sequence number of the first record stored in the buffer */
222 static u64 log_first_seq;
223 static u32 log_first_idx;
224
225 /* index and sequence number of the next record to store in the buffer */
226 static u64 log_next_seq;
227 #ifdef CONFIG_PRINTK
228 static u32 log_next_idx;
229
230 /* the next printk record to read after the last 'clear' command */
231 static u64 clear_seq;
232 static u32 clear_idx;
233
234 #define LOG_LINE_MAX 1024
235
236 /* record buffer */
237 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
238 #define LOG_ALIGN 4
239 #else
240 #define LOG_ALIGN __alignof__(struct log)
241 #endif
242 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
243 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
244 static char *log_buf = __log_buf;
245 static u32 log_buf_len = __LOG_BUF_LEN;
246
247 /* cpu currently holding logbuf_lock */
248 static volatile unsigned int logbuf_cpu = UINT_MAX;
249
250 /* human readable text of the record */
251 static char *log_text(const struct log *msg)
252 {
253 return (char *)msg + sizeof(struct log);
254 }
255
256 /* optional key/value pair dictionary attached to the record */
257 static char *log_dict(const struct log *msg)
258 {
259 return (char *)msg + sizeof(struct log) + msg->text_len;
260 }
261
262 /* get record by index; idx must point to valid msg */
263 static struct log *log_from_idx(u32 idx)
264 {
265 struct log *msg = (struct log *)(log_buf + idx);
266
267 /*
268 * A length == 0 record is the end of buffer marker. Wrap around and
269 * read the message at the start of the buffer.
270 */
271 if (!msg->len)
272 return (struct log *)log_buf;
273 return msg;
274 }
275
276 /* get next record; idx must point to valid msg */
277 static u32 log_next(u32 idx)
278 {
279 struct log *msg = (struct log *)(log_buf + idx);
280
281 /* length == 0 indicates the end of the buffer; wrap */
282 /*
283 * A length == 0 record is the end of buffer marker. Wrap around and
284 * read the message at the start of the buffer as *this* one, and
285 * return the one after that.
286 */
287 if (!msg->len) {
288 msg = (struct log *)log_buf;
289 return msg->len;
290 }
291 return idx + msg->len;
292 }
293
294 /* insert record into the buffer, discard old ones, update heads */
295 static void log_store(int facility, int level,
296 enum log_flags flags, u64 ts_nsec,
297 const char *dict, u16 dict_len,
298 const char *text, u16 text_len)
299 {
300 struct log *msg;
301 u32 size, pad_len;
302
303 /* number of '\0' padding bytes to next message */
304 size = sizeof(struct log) + text_len + dict_len;
305 pad_len = (-size) & (LOG_ALIGN - 1);
306 size += pad_len;
307
308 while (log_first_seq < log_next_seq) {
309 u32 free;
310
311 if (log_next_idx > log_first_idx)
312 free = max(log_buf_len - log_next_idx, log_first_idx);
313 else
314 free = log_first_idx - log_next_idx;
315
316 if (free > size + sizeof(struct log))
317 break;
318
319 /* drop old messages until we have enough contiuous space */
320 log_first_idx = log_next(log_first_idx);
321 log_first_seq++;
322 }
323
324 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
325 /*
326 * This message + an additional empty header does not fit
327 * at the end of the buffer. Add an empty header with len == 0
328 * to signify a wrap around.
329 */
330 memset(log_buf + log_next_idx, 0, sizeof(struct log));
331 log_next_idx = 0;
332 }
333
334 /* fill message */
335 msg = (struct log *)(log_buf + log_next_idx);
336 memcpy(log_text(msg), text, text_len);
337 msg->text_len = text_len;
338 memcpy(log_dict(msg), dict, dict_len);
339 msg->dict_len = dict_len;
340 msg->facility = facility;
341 msg->level = level & 7;
342 msg->flags = flags & 0x1f;
343 if (ts_nsec > 0)
344 msg->ts_nsec = ts_nsec;
345 else
346 msg->ts_nsec = local_clock();
347 memset(log_dict(msg) + dict_len, 0, pad_len);
348 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
349
350 /* insert message */
351 log_next_idx += msg->len;
352 log_next_seq++;
353 }
354
355 /* /dev/kmsg - userspace message inject/listen interface */
356 struct devkmsg_user {
357 u64 seq;
358 u32 idx;
359 struct mutex lock;
360 char buf[8192];
361 };
362
363 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
364 unsigned long count, loff_t pos)
365 {
366 char *buf, *line;
367 int i;
368 int level = default_message_loglevel;
369 int facility = 1; /* LOG_USER */
370 size_t len = iov_length(iv, count);
371 ssize_t ret = len;
372
373 if (len > LOG_LINE_MAX)
374 return -EINVAL;
375 buf = kmalloc(len+1, GFP_KERNEL);
376 if (buf == NULL)
377 return -ENOMEM;
378
379 line = buf;
380 for (i = 0; i < count; i++) {
381 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len))
382 goto out;
383 line += iv[i].iov_len;
384 }
385
386 /*
387 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
388 * the decimal value represents 32bit, the lower 3 bit are the log
389 * level, the rest are the log facility.
390 *
391 * If no prefix or no userspace facility is specified, we
392 * enforce LOG_USER, to be able to reliably distinguish
393 * kernel-generated messages from userspace-injected ones.
394 */
395 line = buf;
396 if (line[0] == '<') {
397 char *endp = NULL;
398
399 i = simple_strtoul(line+1, &endp, 10);
400 if (endp && endp[0] == '>') {
401 level = i & 7;
402 if (i >> 3)
403 facility = i >> 3;
404 endp++;
405 len -= endp - line;
406 line = endp;
407 }
408 }
409 line[len] = '\0';
410
411 printk_emit(facility, level, NULL, 0, "%s", line);
412 out:
413 kfree(buf);
414 return ret;
415 }
416
417 static ssize_t devkmsg_read(struct file *file, char __user *buf,
418 size_t count, loff_t *ppos)
419 {
420 struct devkmsg_user *user = file->private_data;
421 struct log *msg;
422 u64 ts_usec;
423 size_t i;
424 size_t len;
425 ssize_t ret;
426
427 if (!user)
428 return -EBADF;
429
430 ret = mutex_lock_interruptible(&user->lock);
431 if (ret)
432 return ret;
433 raw_spin_lock_irq(&logbuf_lock);
434 while (user->seq == log_next_seq) {
435 if (file->f_flags & O_NONBLOCK) {
436 ret = -EAGAIN;
437 raw_spin_unlock_irq(&logbuf_lock);
438 goto out;
439 }
440
441 raw_spin_unlock_irq(&logbuf_lock);
442 ret = wait_event_interruptible(log_wait,
443 user->seq != log_next_seq);
444 if (ret)
445 goto out;
446 raw_spin_lock_irq(&logbuf_lock);
447 }
448
449 if (user->seq < log_first_seq) {
450 /* our last seen message is gone, return error and reset */
451 user->idx = log_first_idx;
452 user->seq = log_first_seq;
453 ret = -EPIPE;
454 raw_spin_unlock_irq(&logbuf_lock);
455 goto out;
456 }
457
458 msg = log_from_idx(user->idx);
459 ts_usec = msg->ts_nsec;
460 do_div(ts_usec, 1000);
461 len = sprintf(user->buf, "%u,%llu,%llu;",
462 (msg->facility << 3) | msg->level, user->seq, ts_usec);
463
464 /* escape non-printable characters */
465 for (i = 0; i < msg->text_len; i++) {
466 unsigned char c = log_text(msg)[i];
467
468 if (c < ' ' || c >= 127 || c == '\\')
469 len += sprintf(user->buf + len, "\\x%02x", c);
470 else
471 user->buf[len++] = c;
472 }
473 user->buf[len++] = '\n';
474
475 if (msg->dict_len) {
476 bool line = true;
477
478 for (i = 0; i < msg->dict_len; i++) {
479 unsigned char c = log_dict(msg)[i];
480
481 if (line) {
482 user->buf[len++] = ' ';
483 line = false;
484 }
485
486 if (c == '\0') {
487 user->buf[len++] = '\n';
488 line = true;
489 continue;
490 }
491
492 if (c < ' ' || c >= 127 || c == '\\') {
493 len += sprintf(user->buf + len, "\\x%02x", c);
494 continue;
495 }
496
497 user->buf[len++] = c;
498 }
499 user->buf[len++] = '\n';
500 }
501
502 user->idx = log_next(user->idx);
503 user->seq++;
504 raw_spin_unlock_irq(&logbuf_lock);
505
506 if (len > count) {
507 ret = -EINVAL;
508 goto out;
509 }
510
511 if (copy_to_user(buf, user->buf, len)) {
512 ret = -EFAULT;
513 goto out;
514 }
515 ret = len;
516 out:
517 mutex_unlock(&user->lock);
518 return ret;
519 }
520
521 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
522 {
523 struct devkmsg_user *user = file->private_data;
524 loff_t ret = 0;
525
526 if (!user)
527 return -EBADF;
528 if (offset)
529 return -ESPIPE;
530
531 raw_spin_lock_irq(&logbuf_lock);
532 switch (whence) {
533 case SEEK_SET:
534 /* the first record */
535 user->idx = log_first_idx;
536 user->seq = log_first_seq;
537 break;
538 case SEEK_DATA:
539 /*
540 * The first record after the last SYSLOG_ACTION_CLEAR,
541 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
542 * changes no global state, and does not clear anything.
543 */
544 user->idx = clear_idx;
545 user->seq = clear_seq;
546 break;
547 case SEEK_END:
548 /* after the last record */
549 user->idx = log_next_idx;
550 user->seq = log_next_seq;
551 break;
552 default:
553 ret = -EINVAL;
554 }
555 raw_spin_unlock_irq(&logbuf_lock);
556 return ret;
557 }
558
559 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
560 {
561 struct devkmsg_user *user = file->private_data;
562 int ret = 0;
563
564 if (!user)
565 return POLLERR|POLLNVAL;
566
567 poll_wait(file, &log_wait, wait);
568
569 raw_spin_lock_irq(&logbuf_lock);
570 if (user->seq < log_next_seq) {
571 /* return error when data has vanished underneath us */
572 if (user->seq < log_first_seq)
573 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
574 ret = POLLIN|POLLRDNORM;
575 }
576 raw_spin_unlock_irq(&logbuf_lock);
577
578 return ret;
579 }
580
581 static int devkmsg_open(struct inode *inode, struct file *file)
582 {
583 struct devkmsg_user *user;
584 int err;
585
586 /* write-only does not need any file context */
587 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
588 return 0;
589
590 err = security_syslog(SYSLOG_ACTION_READ_ALL);
591 if (err)
592 return err;
593
594 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
595 if (!user)
596 return -ENOMEM;
597
598 mutex_init(&user->lock);
599
600 raw_spin_lock_irq(&logbuf_lock);
601 user->idx = log_first_idx;
602 user->seq = log_first_seq;
603 raw_spin_unlock_irq(&logbuf_lock);
604
605 file->private_data = user;
606 return 0;
607 }
608
609 static int devkmsg_release(struct inode *inode, struct file *file)
610 {
611 struct devkmsg_user *user = file->private_data;
612
613 if (!user)
614 return 0;
615
616 mutex_destroy(&user->lock);
617 kfree(user);
618 return 0;
619 }
620
621 const struct file_operations kmsg_fops = {
622 .open = devkmsg_open,
623 .read = devkmsg_read,
624 .aio_write = devkmsg_writev,
625 .llseek = devkmsg_llseek,
626 .poll = devkmsg_poll,
627 .release = devkmsg_release,
628 };
629
630 #ifdef CONFIG_KEXEC
631 /*
632 * This appends the listed symbols to /proc/vmcoreinfo
633 *
634 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
635 * obtain access to symbols that are otherwise very difficult to locate. These
636 * symbols are specifically used so that utilities can access and extract the
637 * dmesg log from a vmcore file after a crash.
638 */
639 void log_buf_kexec_setup(void)
640 {
641 VMCOREINFO_SYMBOL(log_buf);
642 VMCOREINFO_SYMBOL(log_buf_len);
643 VMCOREINFO_SYMBOL(log_first_idx);
644 VMCOREINFO_SYMBOL(log_next_idx);
645 }
646 #endif
647
648 /* requested log_buf_len from kernel cmdline */
649 static unsigned long __initdata new_log_buf_len;
650
651 /* save requested log_buf_len since it's too early to process it */
652 static int __init log_buf_len_setup(char *str)
653 {
654 unsigned size = memparse(str, &str);
655
656 if (size)
657 size = roundup_pow_of_two(size);
658 if (size > log_buf_len)
659 new_log_buf_len = size;
660
661 return 0;
662 }
663 early_param("log_buf_len", log_buf_len_setup);
664
665 void __init setup_log_buf(int early)
666 {
667 unsigned long flags;
668 char *new_log_buf;
669 int free;
670
671 if (!new_log_buf_len)
672 return;
673
674 if (early) {
675 unsigned long mem;
676
677 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
678 if (!mem)
679 return;
680 new_log_buf = __va(mem);
681 } else {
682 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
683 }
684
685 if (unlikely(!new_log_buf)) {
686 pr_err("log_buf_len: %ld bytes not available\n",
687 new_log_buf_len);
688 return;
689 }
690
691 raw_spin_lock_irqsave(&logbuf_lock, flags);
692 log_buf_len = new_log_buf_len;
693 log_buf = new_log_buf;
694 new_log_buf_len = 0;
695 free = __LOG_BUF_LEN - log_next_idx;
696 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
697 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
698
699 pr_info("log_buf_len: %d\n", log_buf_len);
700 pr_info("early log buf free: %d(%d%%)\n",
701 free, (free * 100) / __LOG_BUF_LEN);
702 }
703
704 #ifdef CONFIG_BOOT_PRINTK_DELAY
705
706 static int boot_delay; /* msecs delay after each printk during bootup */
707 static unsigned long long loops_per_msec; /* based on boot_delay */
708
709 static int __init boot_delay_setup(char *str)
710 {
711 unsigned long lpj;
712
713 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
714 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
715
716 get_option(&str, &boot_delay);
717 if (boot_delay > 10 * 1000)
718 boot_delay = 0;
719
720 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
721 "HZ: %d, loops_per_msec: %llu\n",
722 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
723 return 1;
724 }
725 __setup("boot_delay=", boot_delay_setup);
726
727 static void boot_delay_msec(void)
728 {
729 unsigned long long k;
730 unsigned long timeout;
731
732 if (boot_delay == 0 || system_state != SYSTEM_BOOTING)
733 return;
734
735 k = (unsigned long long)loops_per_msec * boot_delay;
736
737 timeout = jiffies + msecs_to_jiffies(boot_delay);
738 while (k) {
739 k--;
740 cpu_relax();
741 /*
742 * use (volatile) jiffies to prevent
743 * compiler reduction; loop termination via jiffies
744 * is secondary and may or may not happen.
745 */
746 if (time_after(jiffies, timeout))
747 break;
748 touch_nmi_watchdog();
749 }
750 }
751 #else
752 static inline void boot_delay_msec(void)
753 {
754 }
755 #endif
756
757 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
758 int dmesg_restrict = 1;
759 #else
760 int dmesg_restrict;
761 #endif
762
763 static int syslog_action_restricted(int type)
764 {
765 if (dmesg_restrict)
766 return 1;
767 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
768 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
769 }
770
771 static int check_syslog_permissions(int type, bool from_file)
772 {
773 /*
774 * If this is from /proc/kmsg and we've already opened it, then we've
775 * already done the capabilities checks at open time.
776 */
777 if (from_file && type != SYSLOG_ACTION_OPEN)
778 return 0;
779
780 if (syslog_action_restricted(type)) {
781 if (capable(CAP_SYSLOG))
782 return 0;
783 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
784 if (capable(CAP_SYS_ADMIN)) {
785 printk_once(KERN_WARNING "%s (%d): "
786 "Attempt to access syslog with CAP_SYS_ADMIN "
787 "but no CAP_SYSLOG (deprecated).\n",
788 current->comm, task_pid_nr(current));
789 return 0;
790 }
791 return -EPERM;
792 }
793 return 0;
794 }
795
796 #if defined(CONFIG_PRINTK_TIME)
797 static bool printk_time = 1;
798 #else
799 static bool printk_time;
800 #endif
801 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
802
803 static size_t print_time(u64 ts, char *buf)
804 {
805 unsigned long rem_nsec;
806
807 if (!printk_time)
808 return 0;
809
810 if (!buf)
811 return 15;
812
813 rem_nsec = do_div(ts, 1000000000);
814 return sprintf(buf, "[%5lu.%06lu] ",
815 (unsigned long)ts, rem_nsec / 1000);
816 }
817
818 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
819 {
820 size_t len = 0;
821 unsigned int prefix = (msg->facility << 3) | msg->level;
822
823 if (syslog) {
824 if (buf) {
825 len += sprintf(buf, "<%u>", prefix);
826 } else {
827 len += 3;
828 if (prefix > 999)
829 len += 3;
830 else if (prefix > 99)
831 len += 2;
832 else if (prefix > 9)
833 len++;
834 }
835 }
836
837 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
838 return len;
839 }
840
841 static size_t msg_print_text(const struct log *msg, bool syslog,
842 char *buf, size_t size)
843 {
844 const char *text = log_text(msg);
845 size_t text_size = msg->text_len;
846 size_t len = 0;
847
848 do {
849 const char *next = memchr(text, '\n', text_size);
850 size_t text_len;
851
852 if (next) {
853 text_len = next - text;
854 next++;
855 text_size -= next - text;
856 } else {
857 text_len = text_size;
858 }
859
860 if (buf) {
861 if (print_prefix(msg, syslog, NULL) +
862 text_len + 1>= size - len)
863 break;
864
865 len += print_prefix(msg, syslog, buf + len);
866 memcpy(buf + len, text, text_len);
867 len += text_len;
868 buf[len++] = '\n';
869 } else {
870 /* SYSLOG_ACTION_* buffer size only calculation */
871 len += print_prefix(msg, syslog, NULL);
872 len += text_len + 1;
873 }
874
875 text = next;
876 } while (text);
877
878 return len;
879 }
880
881 static int syslog_print(char __user *buf, int size)
882 {
883 char *text;
884 struct log *msg;
885 int len = 0;
886
887 text = kmalloc(LOG_LINE_MAX, GFP_KERNEL);
888 if (!text)
889 return -ENOMEM;
890
891 while (size > 0) {
892 size_t n;
893
894 raw_spin_lock_irq(&logbuf_lock);
895 if (syslog_seq < log_first_seq) {
896 /* messages are gone, move to first one */
897 syslog_seq = log_first_seq;
898 syslog_idx = log_first_idx;
899 }
900 if (syslog_seq == log_next_seq) {
901 raw_spin_unlock_irq(&logbuf_lock);
902 break;
903 }
904 msg = log_from_idx(syslog_idx);
905 n = msg_print_text(msg, true, text, LOG_LINE_MAX);
906 if (n <= size) {
907 syslog_idx = log_next(syslog_idx);
908 syslog_seq++;
909 } else
910 n = 0;
911 raw_spin_unlock_irq(&logbuf_lock);
912
913 if (!n)
914 break;
915
916 len += n;
917 size -= n;
918 buf += n;
919 n = copy_to_user(buf - n, text, n);
920
921 if (n) {
922 len -= n;
923 if (!len)
924 len = -EFAULT;
925 break;
926 }
927 }
928
929 kfree(text);
930 return len;
931 }
932
933 static int syslog_print_all(char __user *buf, int size, bool clear)
934 {
935 char *text;
936 int len = 0;
937
938 text = kmalloc(LOG_LINE_MAX, GFP_KERNEL);
939 if (!text)
940 return -ENOMEM;
941
942 raw_spin_lock_irq(&logbuf_lock);
943 if (buf) {
944 u64 next_seq;
945 u64 seq;
946 u32 idx;
947
948 if (clear_seq < log_first_seq) {
949 /* messages are gone, move to first available one */
950 clear_seq = log_first_seq;
951 clear_idx = log_first_idx;
952 }
953
954 /*
955 * Find first record that fits, including all following records,
956 * into the user-provided buffer for this dump.
957 */
958 seq = clear_seq;
959 idx = clear_idx;
960 while (seq < log_next_seq) {
961 struct log *msg = log_from_idx(idx);
962
963 len += msg_print_text(msg, true, NULL, 0);
964 idx = log_next(idx);
965 seq++;
966 }
967
968 /* move first record forward until length fits into the buffer */
969 seq = clear_seq;
970 idx = clear_idx;
971 while (len > size && seq < log_next_seq) {
972 struct log *msg = log_from_idx(idx);
973
974 len -= msg_print_text(msg, true, NULL, 0);
975 idx = log_next(idx);
976 seq++;
977 }
978
979 /* last message fitting into this dump */
980 next_seq = log_next_seq;
981
982 len = 0;
983 while (len >= 0 && seq < next_seq) {
984 struct log *msg = log_from_idx(idx);
985 int textlen;
986
987 textlen = msg_print_text(msg, true, text, LOG_LINE_MAX);
988 if (textlen < 0) {
989 len = textlen;
990 break;
991 }
992 idx = log_next(idx);
993 seq++;
994
995 raw_spin_unlock_irq(&logbuf_lock);
996 if (copy_to_user(buf + len, text, textlen))
997 len = -EFAULT;
998 else
999 len += textlen;
1000 raw_spin_lock_irq(&logbuf_lock);
1001
1002 if (seq < log_first_seq) {
1003 /* messages are gone, move to next one */
1004 seq = log_first_seq;
1005 idx = log_first_idx;
1006 }
1007 }
1008 }
1009
1010 if (clear) {
1011 clear_seq = log_next_seq;
1012 clear_idx = log_next_idx;
1013 }
1014 raw_spin_unlock_irq(&logbuf_lock);
1015
1016 kfree(text);
1017 return len;
1018 }
1019
1020 int do_syslog(int type, char __user *buf, int len, bool from_file)
1021 {
1022 bool clear = false;
1023 static int saved_console_loglevel = -1;
1024 int error;
1025
1026 error = check_syslog_permissions(type, from_file);
1027 if (error)
1028 goto out;
1029
1030 error = security_syslog(type);
1031 if (error)
1032 return error;
1033
1034 switch (type) {
1035 case SYSLOG_ACTION_CLOSE: /* Close log */
1036 break;
1037 case SYSLOG_ACTION_OPEN: /* Open log */
1038 break;
1039 case SYSLOG_ACTION_READ: /* Read from log */
1040 error = -EINVAL;
1041 if (!buf || len < 0)
1042 goto out;
1043 error = 0;
1044 if (!len)
1045 goto out;
1046 if (!access_ok(VERIFY_WRITE, buf, len)) {
1047 error = -EFAULT;
1048 goto out;
1049 }
1050 error = wait_event_interruptible(log_wait,
1051 syslog_seq != log_next_seq);
1052 if (error)
1053 goto out;
1054 error = syslog_print(buf, len);
1055 break;
1056 /* Read/clear last kernel messages */
1057 case SYSLOG_ACTION_READ_CLEAR:
1058 clear = true;
1059 /* FALL THRU */
1060 /* Read last kernel messages */
1061 case SYSLOG_ACTION_READ_ALL:
1062 error = -EINVAL;
1063 if (!buf || len < 0)
1064 goto out;
1065 error = 0;
1066 if (!len)
1067 goto out;
1068 if (!access_ok(VERIFY_WRITE, buf, len)) {
1069 error = -EFAULT;
1070 goto out;
1071 }
1072 error = syslog_print_all(buf, len, clear);
1073 break;
1074 /* Clear ring buffer */
1075 case SYSLOG_ACTION_CLEAR:
1076 syslog_print_all(NULL, 0, true);
1077 break;
1078 /* Disable logging to console */
1079 case SYSLOG_ACTION_CONSOLE_OFF:
1080 if (saved_console_loglevel == -1)
1081 saved_console_loglevel = console_loglevel;
1082 console_loglevel = minimum_console_loglevel;
1083 break;
1084 /* Enable logging to console */
1085 case SYSLOG_ACTION_CONSOLE_ON:
1086 if (saved_console_loglevel != -1) {
1087 console_loglevel = saved_console_loglevel;
1088 saved_console_loglevel = -1;
1089 }
1090 break;
1091 /* Set level of messages printed to console */
1092 case SYSLOG_ACTION_CONSOLE_LEVEL:
1093 error = -EINVAL;
1094 if (len < 1 || len > 8)
1095 goto out;
1096 if (len < minimum_console_loglevel)
1097 len = minimum_console_loglevel;
1098 console_loglevel = len;
1099 /* Implicitly re-enable logging to console */
1100 saved_console_loglevel = -1;
1101 error = 0;
1102 break;
1103 /* Number of chars in the log buffer */
1104 case SYSLOG_ACTION_SIZE_UNREAD:
1105 raw_spin_lock_irq(&logbuf_lock);
1106 if (syslog_seq < log_first_seq) {
1107 /* messages are gone, move to first one */
1108 syslog_seq = log_first_seq;
1109 syslog_idx = log_first_idx;
1110 }
1111 if (from_file) {
1112 /*
1113 * Short-cut for poll(/"proc/kmsg") which simply checks
1114 * for pending data, not the size; return the count of
1115 * records, not the length.
1116 */
1117 error = log_next_idx - syslog_idx;
1118 } else {
1119 u64 seq;
1120 u32 idx;
1121
1122 error = 0;
1123 seq = syslog_seq;
1124 idx = syslog_idx;
1125 while (seq < log_next_seq) {
1126 struct log *msg = log_from_idx(idx);
1127
1128 error += msg_print_text(msg, true, NULL, 0);
1129 idx = log_next(idx);
1130 seq++;
1131 }
1132 }
1133 raw_spin_unlock_irq(&logbuf_lock);
1134 break;
1135 /* Size of the log buffer */
1136 case SYSLOG_ACTION_SIZE_BUFFER:
1137 error = log_buf_len;
1138 break;
1139 default:
1140 error = -EINVAL;
1141 break;
1142 }
1143 out:
1144 return error;
1145 }
1146
1147 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1148 {
1149 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1150 }
1151
1152 #ifdef CONFIG_KGDB_KDB
1153 /* kdb dmesg command needs access to the syslog buffer. do_syslog()
1154 * uses locks so it cannot be used during debugging. Just tell kdb
1155 * where the start and end of the physical and logical logs are. This
1156 * is equivalent to do_syslog(3).
1157 */
1158 void kdb_syslog_data(char *syslog_data[4])
1159 {
1160 syslog_data[0] = log_buf;
1161 syslog_data[1] = log_buf + log_buf_len;
1162 syslog_data[2] = log_buf + log_first_idx;
1163 syslog_data[3] = log_buf + log_next_idx;
1164 }
1165 #endif /* CONFIG_KGDB_KDB */
1166
1167 static bool __read_mostly ignore_loglevel;
1168
1169 static int __init ignore_loglevel_setup(char *str)
1170 {
1171 ignore_loglevel = 1;
1172 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
1173
1174 return 0;
1175 }
1176
1177 early_param("ignore_loglevel", ignore_loglevel_setup);
1178 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1179 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
1180 "print all kernel messages to the console.");
1181
1182 /*
1183 * Call the console drivers, asking them to write out
1184 * log_buf[start] to log_buf[end - 1].
1185 * The console_lock must be held.
1186 */
1187 static void call_console_drivers(int level, const char *text, size_t len)
1188 {
1189 struct console *con;
1190
1191 trace_console(text, 0, len, len);
1192
1193 if (level >= console_loglevel && !ignore_loglevel)
1194 return;
1195 if (!console_drivers)
1196 return;
1197
1198 for_each_console(con) {
1199 if (exclusive_console && con != exclusive_console)
1200 continue;
1201 if (!(con->flags & CON_ENABLED))
1202 continue;
1203 if (!con->write)
1204 continue;
1205 if (!cpu_online(smp_processor_id()) &&
1206 !(con->flags & CON_ANYTIME))
1207 continue;
1208 con->write(con, text, len);
1209 }
1210 }
1211
1212 /*
1213 * Zap console related locks when oopsing. Only zap at most once
1214 * every 10 seconds, to leave time for slow consoles to print a
1215 * full oops.
1216 */
1217 static void zap_locks(void)
1218 {
1219 static unsigned long oops_timestamp;
1220
1221 if (time_after_eq(jiffies, oops_timestamp) &&
1222 !time_after(jiffies, oops_timestamp + 30 * HZ))
1223 return;
1224
1225 oops_timestamp = jiffies;
1226
1227 debug_locks_off();
1228 /* If a crash is occurring, make sure we can't deadlock */
1229 raw_spin_lock_init(&logbuf_lock);
1230 /* And make sure that we print immediately */
1231 sema_init(&console_sem, 1);
1232 }
1233
1234 /* Check if we have any console registered that can be called early in boot. */
1235 static int have_callable_console(void)
1236 {
1237 struct console *con;
1238
1239 for_each_console(con)
1240 if (con->flags & CON_ANYTIME)
1241 return 1;
1242
1243 return 0;
1244 }
1245
1246 /*
1247 * Can we actually use the console at this time on this cpu?
1248 *
1249 * Console drivers may assume that per-cpu resources have
1250 * been allocated. So unless they're explicitly marked as
1251 * being able to cope (CON_ANYTIME) don't call them until
1252 * this CPU is officially up.
1253 */
1254 static inline int can_use_console(unsigned int cpu)
1255 {
1256 return cpu_online(cpu) || have_callable_console();
1257 }
1258
1259 /*
1260 * Try to get console ownership to actually show the kernel
1261 * messages from a 'printk'. Return true (and with the
1262 * console_lock held, and 'console_locked' set) if it
1263 * is successful, false otherwise.
1264 *
1265 * This gets called with the 'logbuf_lock' spinlock held and
1266 * interrupts disabled. It should return with 'lockbuf_lock'
1267 * released but interrupts still disabled.
1268 */
1269 static int console_trylock_for_printk(unsigned int cpu)
1270 __releases(&logbuf_lock)
1271 {
1272 int retval = 0, wake = 0;
1273
1274 if (console_trylock()) {
1275 retval = 1;
1276
1277 /*
1278 * If we can't use the console, we need to release
1279 * the console semaphore by hand to avoid flushing
1280 * the buffer. We need to hold the console semaphore
1281 * in order to do this test safely.
1282 */
1283 if (!can_use_console(cpu)) {
1284 console_locked = 0;
1285 wake = 1;
1286 retval = 0;
1287 }
1288 }
1289 logbuf_cpu = UINT_MAX;
1290 if (wake)
1291 up(&console_sem);
1292 raw_spin_unlock(&logbuf_lock);
1293 return retval;
1294 }
1295
1296 int printk_delay_msec __read_mostly;
1297
1298 static inline void printk_delay(void)
1299 {
1300 if (unlikely(printk_delay_msec)) {
1301 int m = printk_delay_msec;
1302
1303 while (m--) {
1304 mdelay(1);
1305 touch_nmi_watchdog();
1306 }
1307 }
1308 }
1309
1310 /*
1311 * Continuation lines are buffered, and not committed to the record buffer
1312 * until the line is complete, or a race forces it. The line fragments
1313 * though, are printed immediately to the consoles to ensure everything has
1314 * reached the console in case of a kernel crash.
1315 */
1316 static struct cont {
1317 char buf[LOG_LINE_MAX];
1318 size_t len; /* length == 0 means unused buffer */
1319 size_t cons; /* bytes written to console */
1320 struct task_struct *owner; /* task of first print*/
1321 u64 ts_nsec; /* time of first print */
1322 u8 level; /* log level of first message */
1323 u8 facility; /* log level of first message */
1324 bool flushed:1; /* buffer sealed and committed */
1325 } cont;
1326
1327 static void cont_flush(void)
1328 {
1329 if (cont.flushed)
1330 return;
1331 if (cont.len == 0)
1332 return;
1333
1334 log_store(cont.facility, cont.level, LOG_NOCONS, cont.ts_nsec,
1335 NULL, 0, cont.buf, cont.len);
1336
1337 cont.flushed = true;
1338 }
1339
1340 static bool cont_add(int facility, int level, const char *text, size_t len)
1341 {
1342 if (cont.len && cont.flushed)
1343 return false;
1344
1345 if (cont.len + len > sizeof(cont.buf)) {
1346 cont_flush();
1347 return false;
1348 }
1349
1350 if (!cont.len) {
1351 cont.facility = facility;
1352 cont.level = level;
1353 cont.owner = current;
1354 cont.ts_nsec = local_clock();
1355 cont.cons = 0;
1356 cont.flushed = false;
1357 }
1358
1359 memcpy(cont.buf + cont.len, text, len);
1360 cont.len += len;
1361 return true;
1362 }
1363
1364 static size_t cont_print_text(char *text, size_t size)
1365 {
1366 size_t textlen = 0;
1367 size_t len;
1368
1369 if (cont.cons == 0) {
1370 textlen += print_time(cont.ts_nsec, text);
1371 size -= textlen;
1372 }
1373
1374 len = cont.len - cont.cons;
1375 if (len > 0) {
1376 if (len+1 > size)
1377 len = size-1;
1378 memcpy(text + textlen, cont.buf + cont.cons, len);
1379 textlen += len;
1380 cont.cons = cont.len;
1381 }
1382
1383 if (cont.flushed) {
1384 text[textlen++] = '\n';
1385 /* got everything, release buffer */
1386 cont.len = 0;
1387 }
1388 return textlen;
1389 }
1390
1391 asmlinkage int vprintk_emit(int facility, int level,
1392 const char *dict, size_t dictlen,
1393 const char *fmt, va_list args)
1394 {
1395 static int recursion_bug;
1396 static char textbuf[LOG_LINE_MAX];
1397 char *text = textbuf;
1398 size_t text_len;
1399 unsigned long flags;
1400 int this_cpu;
1401 bool newline = false;
1402 bool prefix = false;
1403 int printed_len = 0;
1404
1405 boot_delay_msec();
1406 printk_delay();
1407
1408 /* This stops the holder of console_sem just where we want him */
1409 local_irq_save(flags);
1410 this_cpu = smp_processor_id();
1411
1412 /*
1413 * Ouch, printk recursed into itself!
1414 */
1415 if (unlikely(logbuf_cpu == this_cpu)) {
1416 /*
1417 * If a crash is occurring during printk() on this CPU,
1418 * then try to get the crash message out but make sure
1419 * we can't deadlock. Otherwise just return to avoid the
1420 * recursion and return - but flag the recursion so that
1421 * it can be printed at the next appropriate moment:
1422 */
1423 if (!oops_in_progress && !lockdep_recursing(current)) {
1424 recursion_bug = 1;
1425 goto out_restore_irqs;
1426 }
1427 zap_locks();
1428 }
1429
1430 lockdep_off();
1431 raw_spin_lock(&logbuf_lock);
1432 logbuf_cpu = this_cpu;
1433
1434 if (recursion_bug) {
1435 static const char recursion_msg[] =
1436 "BUG: recent printk recursion!";
1437
1438 recursion_bug = 0;
1439 printed_len += strlen(recursion_msg);
1440 /* emit KERN_CRIT message */
1441 log_store(0, 2, LOG_DEFAULT, 0,
1442 NULL, 0, recursion_msg, printed_len);
1443 }
1444
1445 /*
1446 * The printf needs to come first; we need the syslog
1447 * prefix which might be passed-in as a parameter.
1448 */
1449 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1450
1451 /* mark and strip a trailing newline */
1452 if (text_len && text[text_len-1] == '\n') {
1453 text_len--;
1454 newline = true;
1455 }
1456
1457 /* strip syslog prefix and extract log level or control flags */
1458 if (text[0] == '<' && text[1] && text[2] == '>') {
1459 switch (text[1]) {
1460 case '0' ... '7':
1461 if (level == -1)
1462 level = text[1] - '0';
1463 case 'd': /* KERN_DEFAULT */
1464 prefix = true;
1465 case 'c': /* KERN_CONT */
1466 text += 3;
1467 text_len -= 3;
1468 }
1469 }
1470
1471 if (level == -1)
1472 level = default_message_loglevel;
1473
1474 if (dict) {
1475 prefix = true;
1476 newline = true;
1477 }
1478
1479 if (!newline) {
1480 /*
1481 * Flush the conflicting buffer. An earlier newline was missing,
1482 * or another task also prints continuation lines.
1483 */
1484 if (cont.len && (prefix || cont.owner != current))
1485 cont_flush();
1486
1487 /* buffer line if possible, otherwise store it right away */
1488 if (!cont_add(facility, level, text, text_len))
1489 log_store(facility, level, LOG_DEFAULT, 0,
1490 dict, dictlen, text, text_len);
1491 } else {
1492 bool stored = false;
1493
1494 /*
1495 * If an earlier newline was missing and it was the same task,
1496 * either merge it with the current buffer and flush, or if
1497 * there was a race with interrupts (prefix == true) then just
1498 * flush it out and store this line separately.
1499 */
1500 if (cont.len && cont.owner == current) {
1501 if (!prefix)
1502 stored = cont_add(facility, level, text, text_len);
1503 cont_flush();
1504 }
1505
1506 if (!stored)
1507 log_store(facility, level, LOG_DEFAULT, 0,
1508 dict, dictlen, text, text_len);
1509 }
1510 printed_len += text_len;
1511
1512 /*
1513 * Try to acquire and then immediately release the console semaphore.
1514 * The release will print out buffers and wake up /dev/kmsg and syslog()
1515 * users.
1516 *
1517 * The console_trylock_for_printk() function will release 'logbuf_lock'
1518 * regardless of whether it actually gets the console semaphore or not.
1519 */
1520 if (console_trylock_for_printk(this_cpu))
1521 console_unlock();
1522
1523 lockdep_on();
1524 out_restore_irqs:
1525 local_irq_restore(flags);
1526
1527 return printed_len;
1528 }
1529 EXPORT_SYMBOL(vprintk_emit);
1530
1531 asmlinkage int vprintk(const char *fmt, va_list args)
1532 {
1533 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1534 }
1535 EXPORT_SYMBOL(vprintk);
1536
1537 asmlinkage int printk_emit(int facility, int level,
1538 const char *dict, size_t dictlen,
1539 const char *fmt, ...)
1540 {
1541 va_list args;
1542 int r;
1543
1544 va_start(args, fmt);
1545 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1546 va_end(args);
1547
1548 return r;
1549 }
1550 EXPORT_SYMBOL(printk_emit);
1551
1552 /**
1553 * printk - print a kernel message
1554 * @fmt: format string
1555 *
1556 * This is printk(). It can be called from any context. We want it to work.
1557 *
1558 * We try to grab the console_lock. If we succeed, it's easy - we log the
1559 * output and call the console drivers. If we fail to get the semaphore, we
1560 * place the output into the log buffer and return. The current holder of
1561 * the console_sem will notice the new output in console_unlock(); and will
1562 * send it to the consoles before releasing the lock.
1563 *
1564 * One effect of this deferred printing is that code which calls printk() and
1565 * then changes console_loglevel may break. This is because console_loglevel
1566 * is inspected when the actual printing occurs.
1567 *
1568 * See also:
1569 * printf(3)
1570 *
1571 * See the vsnprintf() documentation for format string extensions over C99.
1572 */
1573 asmlinkage int printk(const char *fmt, ...)
1574 {
1575 va_list args;
1576 int r;
1577
1578 #ifdef CONFIG_KGDB_KDB
1579 if (unlikely(kdb_trap_printk)) {
1580 va_start(args, fmt);
1581 r = vkdb_printf(fmt, args);
1582 va_end(args);
1583 return r;
1584 }
1585 #endif
1586 va_start(args, fmt);
1587 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1588 va_end(args);
1589
1590 return r;
1591 }
1592 EXPORT_SYMBOL(printk);
1593
1594 #else
1595
1596 #define LOG_LINE_MAX 0
1597 static struct cont {
1598 size_t len;
1599 size_t cons;
1600 u8 level;
1601 bool flushed:1;
1602 } cont;
1603 static struct log *log_from_idx(u32 idx) { return NULL; }
1604 static u32 log_next(u32 idx) { return 0; }
1605 static void call_console_drivers(int level, const char *text, size_t len) {}
1606 static size_t msg_print_text(const struct log *msg, bool syslog,
1607 char *buf, size_t size) { return 0; }
1608 static size_t cont_print_text(char *text, size_t size) { return 0; }
1609
1610 #endif /* CONFIG_PRINTK */
1611
1612 static int __add_preferred_console(char *name, int idx, char *options,
1613 char *brl_options)
1614 {
1615 struct console_cmdline *c;
1616 int i;
1617
1618 /*
1619 * See if this tty is not yet registered, and
1620 * if we have a slot free.
1621 */
1622 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1623 if (strcmp(console_cmdline[i].name, name) == 0 &&
1624 console_cmdline[i].index == idx) {
1625 if (!brl_options)
1626 selected_console = i;
1627 return 0;
1628 }
1629 if (i == MAX_CMDLINECONSOLES)
1630 return -E2BIG;
1631 if (!brl_options)
1632 selected_console = i;
1633 c = &console_cmdline[i];
1634 strlcpy(c->name, name, sizeof(c->name));
1635 c->options = options;
1636 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1637 c->brl_options = brl_options;
1638 #endif
1639 c->index = idx;
1640 return 0;
1641 }
1642 /*
1643 * Set up a list of consoles. Called from init/main.c
1644 */
1645 static int __init console_setup(char *str)
1646 {
1647 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1648 char *s, *options, *brl_options = NULL;
1649 int idx;
1650
1651 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1652 if (!memcmp(str, "brl,", 4)) {
1653 brl_options = "";
1654 str += 4;
1655 } else if (!memcmp(str, "brl=", 4)) {
1656 brl_options = str + 4;
1657 str = strchr(brl_options, ',');
1658 if (!str) {
1659 printk(KERN_ERR "need port name after brl=\n");
1660 return 1;
1661 }
1662 *(str++) = 0;
1663 }
1664 #endif
1665
1666 /*
1667 * Decode str into name, index, options.
1668 */
1669 if (str[0] >= '0' && str[0] <= '9') {
1670 strcpy(buf, "ttyS");
1671 strncpy(buf + 4, str, sizeof(buf) - 5);
1672 } else {
1673 strncpy(buf, str, sizeof(buf) - 1);
1674 }
1675 buf[sizeof(buf) - 1] = 0;
1676 if ((options = strchr(str, ',')) != NULL)
1677 *(options++) = 0;
1678 #ifdef __sparc__
1679 if (!strcmp(str, "ttya"))
1680 strcpy(buf, "ttyS0");
1681 if (!strcmp(str, "ttyb"))
1682 strcpy(buf, "ttyS1");
1683 #endif
1684 for (s = buf; *s; s++)
1685 if ((*s >= '0' && *s <= '9') || *s == ',')
1686 break;
1687 idx = simple_strtoul(s, NULL, 10);
1688 *s = 0;
1689
1690 __add_preferred_console(buf, idx, options, brl_options);
1691 console_set_on_cmdline = 1;
1692 return 1;
1693 }
1694 __setup("console=", console_setup);
1695
1696 /**
1697 * add_preferred_console - add a device to the list of preferred consoles.
1698 * @name: device name
1699 * @idx: device index
1700 * @options: options for this console
1701 *
1702 * The last preferred console added will be used for kernel messages
1703 * and stdin/out/err for init. Normally this is used by console_setup
1704 * above to handle user-supplied console arguments; however it can also
1705 * be used by arch-specific code either to override the user or more
1706 * commonly to provide a default console (ie from PROM variables) when
1707 * the user has not supplied one.
1708 */
1709 int add_preferred_console(char *name, int idx, char *options)
1710 {
1711 return __add_preferred_console(name, idx, options, NULL);
1712 }
1713
1714 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1715 {
1716 struct console_cmdline *c;
1717 int i;
1718
1719 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1720 if (strcmp(console_cmdline[i].name, name) == 0 &&
1721 console_cmdline[i].index == idx) {
1722 c = &console_cmdline[i];
1723 strlcpy(c->name, name_new, sizeof(c->name));
1724 c->name[sizeof(c->name) - 1] = 0;
1725 c->options = options;
1726 c->index = idx_new;
1727 return i;
1728 }
1729 /* not found */
1730 return -1;
1731 }
1732
1733 bool console_suspend_enabled = 1;
1734 EXPORT_SYMBOL(console_suspend_enabled);
1735
1736 static int __init console_suspend_disable(char *str)
1737 {
1738 console_suspend_enabled = 0;
1739 return 1;
1740 }
1741 __setup("no_console_suspend", console_suspend_disable);
1742 module_param_named(console_suspend, console_suspend_enabled,
1743 bool, S_IRUGO | S_IWUSR);
1744 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1745 " and hibernate operations");
1746
1747 /**
1748 * suspend_console - suspend the console subsystem
1749 *
1750 * This disables printk() while we go into suspend states
1751 */
1752 void suspend_console(void)
1753 {
1754 if (!console_suspend_enabled)
1755 return;
1756 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1757 console_lock();
1758 console_suspended = 1;
1759 up(&console_sem);
1760 }
1761
1762 void resume_console(void)
1763 {
1764 if (!console_suspend_enabled)
1765 return;
1766 down(&console_sem);
1767 console_suspended = 0;
1768 console_unlock();
1769 }
1770
1771 /**
1772 * console_cpu_notify - print deferred console messages after CPU hotplug
1773 * @self: notifier struct
1774 * @action: CPU hotplug event
1775 * @hcpu: unused
1776 *
1777 * If printk() is called from a CPU that is not online yet, the messages
1778 * will be spooled but will not show up on the console. This function is
1779 * called when a new CPU comes online (or fails to come up), and ensures
1780 * that any such output gets printed.
1781 */
1782 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1783 unsigned long action, void *hcpu)
1784 {
1785 switch (action) {
1786 case CPU_ONLINE:
1787 case CPU_DEAD:
1788 case CPU_DYING:
1789 case CPU_DOWN_FAILED:
1790 case CPU_UP_CANCELED:
1791 console_lock();
1792 console_unlock();
1793 }
1794 return NOTIFY_OK;
1795 }
1796
1797 /**
1798 * console_lock - lock the console system for exclusive use.
1799 *
1800 * Acquires a lock which guarantees that the caller has
1801 * exclusive access to the console system and the console_drivers list.
1802 *
1803 * Can sleep, returns nothing.
1804 */
1805 void console_lock(void)
1806 {
1807 BUG_ON(in_interrupt());
1808 down(&console_sem);
1809 if (console_suspended)
1810 return;
1811 console_locked = 1;
1812 console_may_schedule = 1;
1813 }
1814 EXPORT_SYMBOL(console_lock);
1815
1816 /**
1817 * console_trylock - try to lock the console system for exclusive use.
1818 *
1819 * Tried to acquire a lock which guarantees that the caller has
1820 * exclusive access to the console system and the console_drivers list.
1821 *
1822 * returns 1 on success, and 0 on failure to acquire the lock.
1823 */
1824 int console_trylock(void)
1825 {
1826 if (down_trylock(&console_sem))
1827 return 0;
1828 if (console_suspended) {
1829 up(&console_sem);
1830 return 0;
1831 }
1832 console_locked = 1;
1833 console_may_schedule = 0;
1834 return 1;
1835 }
1836 EXPORT_SYMBOL(console_trylock);
1837
1838 int is_console_locked(void)
1839 {
1840 return console_locked;
1841 }
1842
1843 /*
1844 * Delayed printk version, for scheduler-internal messages:
1845 */
1846 #define PRINTK_BUF_SIZE 512
1847
1848 #define PRINTK_PENDING_WAKEUP 0x01
1849 #define PRINTK_PENDING_SCHED 0x02
1850
1851 static DEFINE_PER_CPU(int, printk_pending);
1852 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
1853
1854 void printk_tick(void)
1855 {
1856 if (__this_cpu_read(printk_pending)) {
1857 int pending = __this_cpu_xchg(printk_pending, 0);
1858 if (pending & PRINTK_PENDING_SCHED) {
1859 char *buf = __get_cpu_var(printk_sched_buf);
1860 printk(KERN_WARNING "[sched_delayed] %s", buf);
1861 }
1862 if (pending & PRINTK_PENDING_WAKEUP)
1863 wake_up_interruptible(&log_wait);
1864 }
1865 }
1866
1867 int printk_needs_cpu(int cpu)
1868 {
1869 if (cpu_is_offline(cpu))
1870 printk_tick();
1871 return __this_cpu_read(printk_pending);
1872 }
1873
1874 void wake_up_klogd(void)
1875 {
1876 if (waitqueue_active(&log_wait))
1877 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
1878 }
1879
1880 /* the next printk record to write to the console */
1881 static u64 console_seq;
1882 static u32 console_idx;
1883
1884 /**
1885 * console_unlock - unlock the console system
1886 *
1887 * Releases the console_lock which the caller holds on the console system
1888 * and the console driver list.
1889 *
1890 * While the console_lock was held, console output may have been buffered
1891 * by printk(). If this is the case, console_unlock(); emits
1892 * the output prior to releasing the lock.
1893 *
1894 * If there is output waiting, we wake /dev/kmsg and syslog() users.
1895 *
1896 * console_unlock(); may be called from any context.
1897 */
1898 void console_unlock(void)
1899 {
1900 static char text[LOG_LINE_MAX];
1901 static u64 seen_seq;
1902 unsigned long flags;
1903 bool wake_klogd = false;
1904 bool retry;
1905
1906 if (console_suspended) {
1907 up(&console_sem);
1908 return;
1909 }
1910
1911 console_may_schedule = 0;
1912
1913 /* flush buffered message fragment immediately to console */
1914 raw_spin_lock_irqsave(&logbuf_lock, flags);
1915 if (cont.len && (cont.cons < cont.len || cont.flushed)) {
1916 size_t len;
1917
1918 len = cont_print_text(text, sizeof(text));
1919 raw_spin_unlock(&logbuf_lock);
1920 stop_critical_timings();
1921 call_console_drivers(cont.level, text, len);
1922 start_critical_timings();
1923 local_irq_restore(flags);
1924 } else
1925 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1926
1927 again:
1928 for (;;) {
1929 struct log *msg;
1930 size_t len;
1931 int level;
1932
1933 raw_spin_lock_irqsave(&logbuf_lock, flags);
1934 if (seen_seq != log_next_seq) {
1935 wake_klogd = true;
1936 seen_seq = log_next_seq;
1937 }
1938
1939 if (console_seq < log_first_seq) {
1940 /* messages are gone, move to first one */
1941 console_seq = log_first_seq;
1942 console_idx = log_first_idx;
1943 }
1944 skip:
1945 if (console_seq == log_next_seq)
1946 break;
1947
1948 msg = log_from_idx(console_idx);
1949 if (msg->flags & LOG_NOCONS) {
1950 /*
1951 * Skip record we have buffered and already printed
1952 * directly to the console when we received it.
1953 */
1954 console_idx = log_next(console_idx);
1955 console_seq++;
1956 /*
1957 * We will get here again when we register a new
1958 * CON_PRINTBUFFER console. Clear the flag so we
1959 * will properly dump everything later.
1960 */
1961 msg->flags &= ~LOG_NOCONS;
1962 goto skip;
1963 }
1964
1965 level = msg->level;
1966 len = msg_print_text(msg, false, text, sizeof(text));
1967
1968 console_idx = log_next(console_idx);
1969 console_seq++;
1970 raw_spin_unlock(&logbuf_lock);
1971
1972 stop_critical_timings(); /* don't trace print latency */
1973 call_console_drivers(level, text, len);
1974 start_critical_timings();
1975 local_irq_restore(flags);
1976 }
1977 console_locked = 0;
1978
1979 /* Release the exclusive_console once it is used */
1980 if (unlikely(exclusive_console))
1981 exclusive_console = NULL;
1982
1983 raw_spin_unlock(&logbuf_lock);
1984
1985 up(&console_sem);
1986
1987 /*
1988 * Someone could have filled up the buffer again, so re-check if there's
1989 * something to flush. In case we cannot trylock the console_sem again,
1990 * there's a new owner and the console_unlock() from them will do the
1991 * flush, no worries.
1992 */
1993 raw_spin_lock(&logbuf_lock);
1994 retry = console_seq != log_next_seq;
1995 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1996
1997 if (retry && console_trylock())
1998 goto again;
1999
2000 if (wake_klogd)
2001 wake_up_klogd();
2002 }
2003 EXPORT_SYMBOL(console_unlock);
2004
2005 /**
2006 * console_conditional_schedule - yield the CPU if required
2007 *
2008 * If the console code is currently allowed to sleep, and
2009 * if this CPU should yield the CPU to another task, do
2010 * so here.
2011 *
2012 * Must be called within console_lock();.
2013 */
2014 void __sched console_conditional_schedule(void)
2015 {
2016 if (console_may_schedule)
2017 cond_resched();
2018 }
2019 EXPORT_SYMBOL(console_conditional_schedule);
2020
2021 void console_unblank(void)
2022 {
2023 struct console *c;
2024
2025 /*
2026 * console_unblank can no longer be called in interrupt context unless
2027 * oops_in_progress is set to 1..
2028 */
2029 if (oops_in_progress) {
2030 if (down_trylock(&console_sem) != 0)
2031 return;
2032 } else
2033 console_lock();
2034
2035 console_locked = 1;
2036 console_may_schedule = 0;
2037 for_each_console(c)
2038 if ((c->flags & CON_ENABLED) && c->unblank)
2039 c->unblank();
2040 console_unlock();
2041 }
2042
2043 /*
2044 * Return the console tty driver structure and its associated index
2045 */
2046 struct tty_driver *console_device(int *index)
2047 {
2048 struct console *c;
2049 struct tty_driver *driver = NULL;
2050
2051 console_lock();
2052 for_each_console(c) {
2053 if (!c->device)
2054 continue;
2055 driver = c->device(c, index);
2056 if (driver)
2057 break;
2058 }
2059 console_unlock();
2060 return driver;
2061 }
2062
2063 /*
2064 * Prevent further output on the passed console device so that (for example)
2065 * serial drivers can disable console output before suspending a port, and can
2066 * re-enable output afterwards.
2067 */
2068 void console_stop(struct console *console)
2069 {
2070 console_lock();
2071 console->flags &= ~CON_ENABLED;
2072 console_unlock();
2073 }
2074 EXPORT_SYMBOL(console_stop);
2075
2076 void console_start(struct console *console)
2077 {
2078 console_lock();
2079 console->flags |= CON_ENABLED;
2080 console_unlock();
2081 }
2082 EXPORT_SYMBOL(console_start);
2083
2084 static int __read_mostly keep_bootcon;
2085
2086 static int __init keep_bootcon_setup(char *str)
2087 {
2088 keep_bootcon = 1;
2089 printk(KERN_INFO "debug: skip boot console de-registration.\n");
2090
2091 return 0;
2092 }
2093
2094 early_param("keep_bootcon", keep_bootcon_setup);
2095
2096 /*
2097 * The console driver calls this routine during kernel initialization
2098 * to register the console printing procedure with printk() and to
2099 * print any messages that were printed by the kernel before the
2100 * console driver was initialized.
2101 *
2102 * This can happen pretty early during the boot process (because of
2103 * early_printk) - sometimes before setup_arch() completes - be careful
2104 * of what kernel features are used - they may not be initialised yet.
2105 *
2106 * There are two types of consoles - bootconsoles (early_printk) and
2107 * "real" consoles (everything which is not a bootconsole) which are
2108 * handled differently.
2109 * - Any number of bootconsoles can be registered at any time.
2110 * - As soon as a "real" console is registered, all bootconsoles
2111 * will be unregistered automatically.
2112 * - Once a "real" console is registered, any attempt to register a
2113 * bootconsoles will be rejected
2114 */
2115 void register_console(struct console *newcon)
2116 {
2117 int i;
2118 unsigned long flags;
2119 struct console *bcon = NULL;
2120
2121 /*
2122 * before we register a new CON_BOOT console, make sure we don't
2123 * already have a valid console
2124 */
2125 if (console_drivers && newcon->flags & CON_BOOT) {
2126 /* find the last or real console */
2127 for_each_console(bcon) {
2128 if (!(bcon->flags & CON_BOOT)) {
2129 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
2130 newcon->name, newcon->index);
2131 return;
2132 }
2133 }
2134 }
2135
2136 if (console_drivers && console_drivers->flags & CON_BOOT)
2137 bcon = console_drivers;
2138
2139 if (preferred_console < 0 || bcon || !console_drivers)
2140 preferred_console = selected_console;
2141
2142 if (newcon->early_setup)
2143 newcon->early_setup();
2144
2145 /*
2146 * See if we want to use this console driver. If we
2147 * didn't select a console we take the first one
2148 * that registers here.
2149 */
2150 if (preferred_console < 0) {
2151 if (newcon->index < 0)
2152 newcon->index = 0;
2153 if (newcon->setup == NULL ||
2154 newcon->setup(newcon, NULL) == 0) {
2155 newcon->flags |= CON_ENABLED;
2156 if (newcon->device) {
2157 newcon->flags |= CON_CONSDEV;
2158 preferred_console = 0;
2159 }
2160 }
2161 }
2162
2163 /*
2164 * See if this console matches one we selected on
2165 * the command line.
2166 */
2167 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2168 i++) {
2169 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2170 continue;
2171 if (newcon->index >= 0 &&
2172 newcon->index != console_cmdline[i].index)
2173 continue;
2174 if (newcon->index < 0)
2175 newcon->index = console_cmdline[i].index;
2176 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2177 if (console_cmdline[i].brl_options) {
2178 newcon->flags |= CON_BRL;
2179 braille_register_console(newcon,
2180 console_cmdline[i].index,
2181 console_cmdline[i].options,
2182 console_cmdline[i].brl_options);
2183 return;
2184 }
2185 #endif
2186 if (newcon->setup &&
2187 newcon->setup(newcon, console_cmdline[i].options) != 0)
2188 break;
2189 newcon->flags |= CON_ENABLED;
2190 newcon->index = console_cmdline[i].index;
2191 if (i == selected_console) {
2192 newcon->flags |= CON_CONSDEV;
2193 preferred_console = selected_console;
2194 }
2195 break;
2196 }
2197
2198 if (!(newcon->flags & CON_ENABLED))
2199 return;
2200
2201 /*
2202 * If we have a bootconsole, and are switching to a real console,
2203 * don't print everything out again, since when the boot console, and
2204 * the real console are the same physical device, it's annoying to
2205 * see the beginning boot messages twice
2206 */
2207 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2208 newcon->flags &= ~CON_PRINTBUFFER;
2209
2210 /*
2211 * Put this console in the list - keep the
2212 * preferred driver at the head of the list.
2213 */
2214 console_lock();
2215 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2216 newcon->next = console_drivers;
2217 console_drivers = newcon;
2218 if (newcon->next)
2219 newcon->next->flags &= ~CON_CONSDEV;
2220 } else {
2221 newcon->next = console_drivers->next;
2222 console_drivers->next = newcon;
2223 }
2224 if (newcon->flags & CON_PRINTBUFFER) {
2225 /*
2226 * console_unlock(); will print out the buffered messages
2227 * for us.
2228 */
2229 raw_spin_lock_irqsave(&logbuf_lock, flags);
2230 console_seq = syslog_seq;
2231 console_idx = syslog_idx;
2232 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2233 /*
2234 * We're about to replay the log buffer. Only do this to the
2235 * just-registered console to avoid excessive message spam to
2236 * the already-registered consoles.
2237 */
2238 exclusive_console = newcon;
2239 }
2240 console_unlock();
2241 console_sysfs_notify();
2242
2243 /*
2244 * By unregistering the bootconsoles after we enable the real console
2245 * we get the "console xxx enabled" message on all the consoles -
2246 * boot consoles, real consoles, etc - this is to ensure that end
2247 * users know there might be something in the kernel's log buffer that
2248 * went to the bootconsole (that they do not see on the real console)
2249 */
2250 if (bcon &&
2251 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2252 !keep_bootcon) {
2253 /* we need to iterate through twice, to make sure we print
2254 * everything out, before we unregister the console(s)
2255 */
2256 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2257 newcon->name, newcon->index);
2258 for_each_console(bcon)
2259 if (bcon->flags & CON_BOOT)
2260 unregister_console(bcon);
2261 } else {
2262 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2263 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2264 newcon->name, newcon->index);
2265 }
2266 }
2267 EXPORT_SYMBOL(register_console);
2268
2269 int unregister_console(struct console *console)
2270 {
2271 struct console *a, *b;
2272 int res = 1;
2273
2274 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2275 if (console->flags & CON_BRL)
2276 return braille_unregister_console(console);
2277 #endif
2278
2279 console_lock();
2280 if (console_drivers == console) {
2281 console_drivers=console->next;
2282 res = 0;
2283 } else if (console_drivers) {
2284 for (a=console_drivers->next, b=console_drivers ;
2285 a; b=a, a=b->next) {
2286 if (a == console) {
2287 b->next = a->next;
2288 res = 0;
2289 break;
2290 }
2291 }
2292 }
2293
2294 /*
2295 * If this isn't the last console and it has CON_CONSDEV set, we
2296 * need to set it on the next preferred console.
2297 */
2298 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2299 console_drivers->flags |= CON_CONSDEV;
2300
2301 console_unlock();
2302 console_sysfs_notify();
2303 return res;
2304 }
2305 EXPORT_SYMBOL(unregister_console);
2306
2307 static int __init printk_late_init(void)
2308 {
2309 struct console *con;
2310
2311 for_each_console(con) {
2312 if (!keep_bootcon && con->flags & CON_BOOT) {
2313 printk(KERN_INFO "turn off boot console %s%d\n",
2314 con->name, con->index);
2315 unregister_console(con);
2316 }
2317 }
2318 hotcpu_notifier(console_cpu_notify, 0);
2319 return 0;
2320 }
2321 late_initcall(printk_late_init);
2322
2323 #if defined CONFIG_PRINTK
2324
2325 int printk_sched(const char *fmt, ...)
2326 {
2327 unsigned long flags;
2328 va_list args;
2329 char *buf;
2330 int r;
2331
2332 local_irq_save(flags);
2333 buf = __get_cpu_var(printk_sched_buf);
2334
2335 va_start(args, fmt);
2336 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2337 va_end(args);
2338
2339 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2340 local_irq_restore(flags);
2341
2342 return r;
2343 }
2344
2345 /*
2346 * printk rate limiting, lifted from the networking subsystem.
2347 *
2348 * This enforces a rate limit: not more than 10 kernel messages
2349 * every 5s to make a denial-of-service attack impossible.
2350 */
2351 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2352
2353 int __printk_ratelimit(const char *func)
2354 {
2355 return ___ratelimit(&printk_ratelimit_state, func);
2356 }
2357 EXPORT_SYMBOL(__printk_ratelimit);
2358
2359 /**
2360 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2361 * @caller_jiffies: pointer to caller's state
2362 * @interval_msecs: minimum interval between prints
2363 *
2364 * printk_timed_ratelimit() returns true if more than @interval_msecs
2365 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2366 * returned true.
2367 */
2368 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2369 unsigned int interval_msecs)
2370 {
2371 if (*caller_jiffies == 0
2372 || !time_in_range(jiffies, *caller_jiffies,
2373 *caller_jiffies
2374 + msecs_to_jiffies(interval_msecs))) {
2375 *caller_jiffies = jiffies;
2376 return true;
2377 }
2378 return false;
2379 }
2380 EXPORT_SYMBOL(printk_timed_ratelimit);
2381
2382 static DEFINE_SPINLOCK(dump_list_lock);
2383 static LIST_HEAD(dump_list);
2384
2385 /**
2386 * kmsg_dump_register - register a kernel log dumper.
2387 * @dumper: pointer to the kmsg_dumper structure
2388 *
2389 * Adds a kernel log dumper to the system. The dump callback in the
2390 * structure will be called when the kernel oopses or panics and must be
2391 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2392 */
2393 int kmsg_dump_register(struct kmsg_dumper *dumper)
2394 {
2395 unsigned long flags;
2396 int err = -EBUSY;
2397
2398 /* The dump callback needs to be set */
2399 if (!dumper->dump)
2400 return -EINVAL;
2401
2402 spin_lock_irqsave(&dump_list_lock, flags);
2403 /* Don't allow registering multiple times */
2404 if (!dumper->registered) {
2405 dumper->registered = 1;
2406 list_add_tail_rcu(&dumper->list, &dump_list);
2407 err = 0;
2408 }
2409 spin_unlock_irqrestore(&dump_list_lock, flags);
2410
2411 return err;
2412 }
2413 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2414
2415 /**
2416 * kmsg_dump_unregister - unregister a kmsg dumper.
2417 * @dumper: pointer to the kmsg_dumper structure
2418 *
2419 * Removes a dump device from the system. Returns zero on success and
2420 * %-EINVAL otherwise.
2421 */
2422 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2423 {
2424 unsigned long flags;
2425 int err = -EINVAL;
2426
2427 spin_lock_irqsave(&dump_list_lock, flags);
2428 if (dumper->registered) {
2429 dumper->registered = 0;
2430 list_del_rcu(&dumper->list);
2431 err = 0;
2432 }
2433 spin_unlock_irqrestore(&dump_list_lock, flags);
2434 synchronize_rcu();
2435
2436 return err;
2437 }
2438 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2439
2440 static bool always_kmsg_dump;
2441 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2442
2443 /**
2444 * kmsg_dump - dump kernel log to kernel message dumpers.
2445 * @reason: the reason (oops, panic etc) for dumping
2446 *
2447 * Call each of the registered dumper's dump() callback, which can
2448 * retrieve the kmsg records with kmsg_dump_get_line() or
2449 * kmsg_dump_get_buffer().
2450 */
2451 void kmsg_dump(enum kmsg_dump_reason reason)
2452 {
2453 struct kmsg_dumper *dumper;
2454 unsigned long flags;
2455
2456 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2457 return;
2458
2459 rcu_read_lock();
2460 list_for_each_entry_rcu(dumper, &dump_list, list) {
2461 if (dumper->max_reason && reason > dumper->max_reason)
2462 continue;
2463
2464 /* initialize iterator with data about the stored records */
2465 dumper->active = true;
2466
2467 raw_spin_lock_irqsave(&logbuf_lock, flags);
2468 dumper->cur_seq = clear_seq;
2469 dumper->cur_idx = clear_idx;
2470 dumper->next_seq = log_next_seq;
2471 dumper->next_idx = log_next_idx;
2472 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2473
2474 /* invoke dumper which will iterate over records */
2475 dumper->dump(dumper, reason);
2476
2477 /* reset iterator */
2478 dumper->active = false;
2479 }
2480 rcu_read_unlock();
2481 }
2482
2483 /**
2484 * kmsg_dump_get_line - retrieve one kmsg log line
2485 * @dumper: registered kmsg dumper
2486 * @syslog: include the "<4>" prefixes
2487 * @line: buffer to copy the line to
2488 * @size: maximum size of the buffer
2489 * @len: length of line placed into buffer
2490 *
2491 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2492 * record, and copy one record into the provided buffer.
2493 *
2494 * Consecutive calls will return the next available record moving
2495 * towards the end of the buffer with the youngest messages.
2496 *
2497 * A return value of FALSE indicates that there are no more records to
2498 * read.
2499 */
2500 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2501 char *line, size_t size, size_t *len)
2502 {
2503 unsigned long flags;
2504 struct log *msg;
2505 size_t l = 0;
2506 bool ret = false;
2507
2508 if (!dumper->active)
2509 goto out;
2510
2511 raw_spin_lock_irqsave(&logbuf_lock, flags);
2512 if (dumper->cur_seq < log_first_seq) {
2513 /* messages are gone, move to first available one */
2514 dumper->cur_seq = log_first_seq;
2515 dumper->cur_idx = log_first_idx;
2516 }
2517
2518 /* last entry */
2519 if (dumper->cur_seq >= log_next_seq) {
2520 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2521 goto out;
2522 }
2523
2524 msg = log_from_idx(dumper->cur_idx);
2525 l = msg_print_text(msg, syslog,
2526 line, size);
2527
2528 dumper->cur_idx = log_next(dumper->cur_idx);
2529 dumper->cur_seq++;
2530 ret = true;
2531 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2532 out:
2533 if (len)
2534 *len = l;
2535 return ret;
2536 }
2537 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2538
2539 /**
2540 * kmsg_dump_get_buffer - copy kmsg log lines
2541 * @dumper: registered kmsg dumper
2542 * @syslog: include the "<4>" prefixes
2543 * @buf: buffer to copy the line to
2544 * @size: maximum size of the buffer
2545 * @len: length of line placed into buffer
2546 *
2547 * Start at the end of the kmsg buffer and fill the provided buffer
2548 * with as many of the the *youngest* kmsg records that fit into it.
2549 * If the buffer is large enough, all available kmsg records will be
2550 * copied with a single call.
2551 *
2552 * Consecutive calls will fill the buffer with the next block of
2553 * available older records, not including the earlier retrieved ones.
2554 *
2555 * A return value of FALSE indicates that there are no more records to
2556 * read.
2557 */
2558 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2559 char *buf, size_t size, size_t *len)
2560 {
2561 unsigned long flags;
2562 u64 seq;
2563 u32 idx;
2564 u64 next_seq;
2565 u32 next_idx;
2566 size_t l = 0;
2567 bool ret = false;
2568
2569 if (!dumper->active)
2570 goto out;
2571
2572 raw_spin_lock_irqsave(&logbuf_lock, flags);
2573 if (dumper->cur_seq < log_first_seq) {
2574 /* messages are gone, move to first available one */
2575 dumper->cur_seq = log_first_seq;
2576 dumper->cur_idx = log_first_idx;
2577 }
2578
2579 /* last entry */
2580 if (dumper->cur_seq >= dumper->next_seq) {
2581 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2582 goto out;
2583 }
2584
2585 /* calculate length of entire buffer */
2586 seq = dumper->cur_seq;
2587 idx = dumper->cur_idx;
2588 while (seq < dumper->next_seq) {
2589 struct log *msg = log_from_idx(idx);
2590
2591 l += msg_print_text(msg, true, NULL, 0);
2592 idx = log_next(idx);
2593 seq++;
2594 }
2595
2596 /* move first record forward until length fits into the buffer */
2597 seq = dumper->cur_seq;
2598 idx = dumper->cur_idx;
2599 while (l > size && seq < dumper->next_seq) {
2600 struct log *msg = log_from_idx(idx);
2601
2602 l -= msg_print_text(msg, true, NULL, 0);
2603 idx = log_next(idx);
2604 seq++;
2605 }
2606
2607 /* last message in next interation */
2608 next_seq = seq;
2609 next_idx = idx;
2610
2611 l = 0;
2612 while (seq < dumper->next_seq) {
2613 struct log *msg = log_from_idx(idx);
2614
2615 l += msg_print_text(msg, syslog,
2616 buf + l, size - l);
2617
2618 idx = log_next(idx);
2619 seq++;
2620 }
2621
2622 dumper->next_seq = next_seq;
2623 dumper->next_idx = next_idx;
2624 ret = true;
2625 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2626 out:
2627 if (len)
2628 *len = l;
2629 return ret;
2630 }
2631 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2632
2633 /**
2634 * kmsg_dump_rewind - reset the interator
2635 * @dumper: registered kmsg dumper
2636 *
2637 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2638 * kmsg_dump_get_buffer() can be called again and used multiple
2639 * times within the same dumper.dump() callback.
2640 */
2641 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2642 {
2643 unsigned long flags;
2644
2645 raw_spin_lock_irqsave(&logbuf_lock, flags);
2646 dumper->cur_seq = clear_seq;
2647 dumper->cur_idx = clear_idx;
2648 dumper->next_seq = log_next_seq;
2649 dumper->next_idx = log_next_idx;
2650 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2651 }
2652 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2653 #endif
This page took 0.113008 seconds and 5 git commands to generate.