Merge branch 'pm-sleep'
[deliverable/linux.git] / kernel / ptrace.c
1 /*
2 * linux/kernel/ptrace.c
3 *
4 * (C) Copyright 1999 Linus Torvalds
5 *
6 * Common interfaces for "ptrace()" which we do not want
7 * to continually duplicate across every architecture.
8 */
9
10 #include <linux/capability.h>
11 #include <linux/export.h>
12 #include <linux/sched.h>
13 #include <linux/errno.h>
14 #include <linux/mm.h>
15 #include <linux/highmem.h>
16 #include <linux/pagemap.h>
17 #include <linux/ptrace.h>
18 #include <linux/security.h>
19 #include <linux/signal.h>
20 #include <linux/uio.h>
21 #include <linux/audit.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/syscalls.h>
24 #include <linux/uaccess.h>
25 #include <linux/regset.h>
26 #include <linux/hw_breakpoint.h>
27 #include <linux/cn_proc.h>
28 #include <linux/compat.h>
29
30
31 /*
32 * ptrace a task: make the debugger its new parent and
33 * move it to the ptrace list.
34 *
35 * Must be called with the tasklist lock write-held.
36 */
37 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent)
38 {
39 BUG_ON(!list_empty(&child->ptrace_entry));
40 list_add(&child->ptrace_entry, &new_parent->ptraced);
41 child->parent = new_parent;
42 }
43
44 /**
45 * __ptrace_unlink - unlink ptracee and restore its execution state
46 * @child: ptracee to be unlinked
47 *
48 * Remove @child from the ptrace list, move it back to the original parent,
49 * and restore the execution state so that it conforms to the group stop
50 * state.
51 *
52 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
53 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between
54 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
55 * If the ptracer is exiting, the ptracee can be in any state.
56 *
57 * After detach, the ptracee should be in a state which conforms to the
58 * group stop. If the group is stopped or in the process of stopping, the
59 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
60 * up from TASK_TRACED.
61 *
62 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
63 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
64 * to but in the opposite direction of what happens while attaching to a
65 * stopped task. However, in this direction, the intermediate RUNNING
66 * state is not hidden even from the current ptracer and if it immediately
67 * re-attaches and performs a WNOHANG wait(2), it may fail.
68 *
69 * CONTEXT:
70 * write_lock_irq(tasklist_lock)
71 */
72 void __ptrace_unlink(struct task_struct *child)
73 {
74 BUG_ON(!child->ptrace);
75
76 child->ptrace = 0;
77 child->parent = child->real_parent;
78 list_del_init(&child->ptrace_entry);
79
80 spin_lock(&child->sighand->siglock);
81
82 /*
83 * Clear all pending traps and TRAPPING. TRAPPING should be
84 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
85 */
86 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
87 task_clear_jobctl_trapping(child);
88
89 /*
90 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
91 * @child isn't dead.
92 */
93 if (!(child->flags & PF_EXITING) &&
94 (child->signal->flags & SIGNAL_STOP_STOPPED ||
95 child->signal->group_stop_count)) {
96 child->jobctl |= JOBCTL_STOP_PENDING;
97
98 /*
99 * This is only possible if this thread was cloned by the
100 * traced task running in the stopped group, set the signal
101 * for the future reports.
102 * FIXME: we should change ptrace_init_task() to handle this
103 * case.
104 */
105 if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
106 child->jobctl |= SIGSTOP;
107 }
108
109 /*
110 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
111 * @child in the butt. Note that @resume should be used iff @child
112 * is in TASK_TRACED; otherwise, we might unduly disrupt
113 * TASK_KILLABLE sleeps.
114 */
115 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
116 ptrace_signal_wake_up(child, true);
117
118 spin_unlock(&child->sighand->siglock);
119 }
120
121 /* Ensure that nothing can wake it up, even SIGKILL */
122 static bool ptrace_freeze_traced(struct task_struct *task)
123 {
124 bool ret = false;
125
126 /* Lockless, nobody but us can set this flag */
127 if (task->jobctl & JOBCTL_LISTENING)
128 return ret;
129
130 spin_lock_irq(&task->sighand->siglock);
131 if (task_is_traced(task) && !__fatal_signal_pending(task)) {
132 task->state = __TASK_TRACED;
133 ret = true;
134 }
135 spin_unlock_irq(&task->sighand->siglock);
136
137 return ret;
138 }
139
140 static void ptrace_unfreeze_traced(struct task_struct *task)
141 {
142 if (task->state != __TASK_TRACED)
143 return;
144
145 WARN_ON(!task->ptrace || task->parent != current);
146
147 spin_lock_irq(&task->sighand->siglock);
148 if (__fatal_signal_pending(task))
149 wake_up_state(task, __TASK_TRACED);
150 else
151 task->state = TASK_TRACED;
152 spin_unlock_irq(&task->sighand->siglock);
153 }
154
155 /**
156 * ptrace_check_attach - check whether ptracee is ready for ptrace operation
157 * @child: ptracee to check for
158 * @ignore_state: don't check whether @child is currently %TASK_TRACED
159 *
160 * Check whether @child is being ptraced by %current and ready for further
161 * ptrace operations. If @ignore_state is %false, @child also should be in
162 * %TASK_TRACED state and on return the child is guaranteed to be traced
163 * and not executing. If @ignore_state is %true, @child can be in any
164 * state.
165 *
166 * CONTEXT:
167 * Grabs and releases tasklist_lock and @child->sighand->siglock.
168 *
169 * RETURNS:
170 * 0 on success, -ESRCH if %child is not ready.
171 */
172 static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
173 {
174 int ret = -ESRCH;
175
176 /*
177 * We take the read lock around doing both checks to close a
178 * possible race where someone else was tracing our child and
179 * detached between these two checks. After this locked check,
180 * we are sure that this is our traced child and that can only
181 * be changed by us so it's not changing right after this.
182 */
183 read_lock(&tasklist_lock);
184 if (child->ptrace && child->parent == current) {
185 WARN_ON(child->state == __TASK_TRACED);
186 /*
187 * child->sighand can't be NULL, release_task()
188 * does ptrace_unlink() before __exit_signal().
189 */
190 if (ignore_state || ptrace_freeze_traced(child))
191 ret = 0;
192 }
193 read_unlock(&tasklist_lock);
194
195 if (!ret && !ignore_state) {
196 if (!wait_task_inactive(child, __TASK_TRACED)) {
197 /*
198 * This can only happen if may_ptrace_stop() fails and
199 * ptrace_stop() changes ->state back to TASK_RUNNING,
200 * so we should not worry about leaking __TASK_TRACED.
201 */
202 WARN_ON(child->state == __TASK_TRACED);
203 ret = -ESRCH;
204 }
205 }
206
207 return ret;
208 }
209
210 static int ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
211 {
212 if (mode & PTRACE_MODE_NOAUDIT)
213 return has_ns_capability_noaudit(current, ns, CAP_SYS_PTRACE);
214 else
215 return has_ns_capability(current, ns, CAP_SYS_PTRACE);
216 }
217
218 /* Returns 0 on success, -errno on denial. */
219 static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
220 {
221 const struct cred *cred = current_cred(), *tcred;
222
223 /* May we inspect the given task?
224 * This check is used both for attaching with ptrace
225 * and for allowing access to sensitive information in /proc.
226 *
227 * ptrace_attach denies several cases that /proc allows
228 * because setting up the necessary parent/child relationship
229 * or halting the specified task is impossible.
230 */
231 int dumpable = 0;
232 /* Don't let security modules deny introspection */
233 if (same_thread_group(task, current))
234 return 0;
235 rcu_read_lock();
236 tcred = __task_cred(task);
237 if (uid_eq(cred->uid, tcred->euid) &&
238 uid_eq(cred->uid, tcred->suid) &&
239 uid_eq(cred->uid, tcred->uid) &&
240 gid_eq(cred->gid, tcred->egid) &&
241 gid_eq(cred->gid, tcred->sgid) &&
242 gid_eq(cred->gid, tcred->gid))
243 goto ok;
244 if (ptrace_has_cap(tcred->user_ns, mode))
245 goto ok;
246 rcu_read_unlock();
247 return -EPERM;
248 ok:
249 rcu_read_unlock();
250 smp_rmb();
251 if (task->mm)
252 dumpable = get_dumpable(task->mm);
253 rcu_read_lock();
254 if (dumpable != SUID_DUMP_USER &&
255 !ptrace_has_cap(__task_cred(task)->user_ns, mode)) {
256 rcu_read_unlock();
257 return -EPERM;
258 }
259 rcu_read_unlock();
260
261 return security_ptrace_access_check(task, mode);
262 }
263
264 bool ptrace_may_access(struct task_struct *task, unsigned int mode)
265 {
266 int err;
267 task_lock(task);
268 err = __ptrace_may_access(task, mode);
269 task_unlock(task);
270 return !err;
271 }
272
273 static int ptrace_attach(struct task_struct *task, long request,
274 unsigned long addr,
275 unsigned long flags)
276 {
277 bool seize = (request == PTRACE_SEIZE);
278 int retval;
279
280 retval = -EIO;
281 if (seize) {
282 if (addr != 0)
283 goto out;
284 if (flags & ~(unsigned long)PTRACE_O_MASK)
285 goto out;
286 flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
287 } else {
288 flags = PT_PTRACED;
289 }
290
291 audit_ptrace(task);
292
293 retval = -EPERM;
294 if (unlikely(task->flags & PF_KTHREAD))
295 goto out;
296 if (same_thread_group(task, current))
297 goto out;
298
299 /*
300 * Protect exec's credential calculations against our interference;
301 * SUID, SGID and LSM creds get determined differently
302 * under ptrace.
303 */
304 retval = -ERESTARTNOINTR;
305 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
306 goto out;
307
308 task_lock(task);
309 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH);
310 task_unlock(task);
311 if (retval)
312 goto unlock_creds;
313
314 write_lock_irq(&tasklist_lock);
315 retval = -EPERM;
316 if (unlikely(task->exit_state))
317 goto unlock_tasklist;
318 if (task->ptrace)
319 goto unlock_tasklist;
320
321 if (seize)
322 flags |= PT_SEIZED;
323 rcu_read_lock();
324 if (ns_capable(__task_cred(task)->user_ns, CAP_SYS_PTRACE))
325 flags |= PT_PTRACE_CAP;
326 rcu_read_unlock();
327 task->ptrace = flags;
328
329 __ptrace_link(task, current);
330
331 /* SEIZE doesn't trap tracee on attach */
332 if (!seize)
333 send_sig_info(SIGSTOP, SEND_SIG_FORCED, task);
334
335 spin_lock(&task->sighand->siglock);
336
337 /*
338 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
339 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING
340 * will be cleared if the child completes the transition or any
341 * event which clears the group stop states happens. We'll wait
342 * for the transition to complete before returning from this
343 * function.
344 *
345 * This hides STOPPED -> RUNNING -> TRACED transition from the
346 * attaching thread but a different thread in the same group can
347 * still observe the transient RUNNING state. IOW, if another
348 * thread's WNOHANG wait(2) on the stopped tracee races against
349 * ATTACH, the wait(2) may fail due to the transient RUNNING.
350 *
351 * The following task_is_stopped() test is safe as both transitions
352 * in and out of STOPPED are protected by siglock.
353 */
354 if (task_is_stopped(task) &&
355 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
356 signal_wake_up_state(task, __TASK_STOPPED);
357
358 spin_unlock(&task->sighand->siglock);
359
360 retval = 0;
361 unlock_tasklist:
362 write_unlock_irq(&tasklist_lock);
363 unlock_creds:
364 mutex_unlock(&task->signal->cred_guard_mutex);
365 out:
366 if (!retval) {
367 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT,
368 TASK_UNINTERRUPTIBLE);
369 proc_ptrace_connector(task, PTRACE_ATTACH);
370 }
371
372 return retval;
373 }
374
375 /**
376 * ptrace_traceme -- helper for PTRACE_TRACEME
377 *
378 * Performs checks and sets PT_PTRACED.
379 * Should be used by all ptrace implementations for PTRACE_TRACEME.
380 */
381 static int ptrace_traceme(void)
382 {
383 int ret = -EPERM;
384
385 write_lock_irq(&tasklist_lock);
386 /* Are we already being traced? */
387 if (!current->ptrace) {
388 ret = security_ptrace_traceme(current->parent);
389 /*
390 * Check PF_EXITING to ensure ->real_parent has not passed
391 * exit_ptrace(). Otherwise we don't report the error but
392 * pretend ->real_parent untraces us right after return.
393 */
394 if (!ret && !(current->real_parent->flags & PF_EXITING)) {
395 current->ptrace = PT_PTRACED;
396 __ptrace_link(current, current->real_parent);
397 }
398 }
399 write_unlock_irq(&tasklist_lock);
400
401 return ret;
402 }
403
404 /*
405 * Called with irqs disabled, returns true if childs should reap themselves.
406 */
407 static int ignoring_children(struct sighand_struct *sigh)
408 {
409 int ret;
410 spin_lock(&sigh->siglock);
411 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
412 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
413 spin_unlock(&sigh->siglock);
414 return ret;
415 }
416
417 /*
418 * Called with tasklist_lock held for writing.
419 * Unlink a traced task, and clean it up if it was a traced zombie.
420 * Return true if it needs to be reaped with release_task().
421 * (We can't call release_task() here because we already hold tasklist_lock.)
422 *
423 * If it's a zombie, our attachedness prevented normal parent notification
424 * or self-reaping. Do notification now if it would have happened earlier.
425 * If it should reap itself, return true.
426 *
427 * If it's our own child, there is no notification to do. But if our normal
428 * children self-reap, then this child was prevented by ptrace and we must
429 * reap it now, in that case we must also wake up sub-threads sleeping in
430 * do_wait().
431 */
432 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
433 {
434 bool dead;
435
436 __ptrace_unlink(p);
437
438 if (p->exit_state != EXIT_ZOMBIE)
439 return false;
440
441 dead = !thread_group_leader(p);
442
443 if (!dead && thread_group_empty(p)) {
444 if (!same_thread_group(p->real_parent, tracer))
445 dead = do_notify_parent(p, p->exit_signal);
446 else if (ignoring_children(tracer->sighand)) {
447 __wake_up_parent(p, tracer);
448 dead = true;
449 }
450 }
451 /* Mark it as in the process of being reaped. */
452 if (dead)
453 p->exit_state = EXIT_DEAD;
454 return dead;
455 }
456
457 static int ptrace_detach(struct task_struct *child, unsigned int data)
458 {
459 if (!valid_signal(data))
460 return -EIO;
461
462 /* Architecture-specific hardware disable .. */
463 ptrace_disable(child);
464 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
465
466 write_lock_irq(&tasklist_lock);
467 /*
468 * We rely on ptrace_freeze_traced(). It can't be killed and
469 * untraced by another thread, it can't be a zombie.
470 */
471 WARN_ON(!child->ptrace || child->exit_state);
472 /*
473 * tasklist_lock avoids the race with wait_task_stopped(), see
474 * the comment in ptrace_resume().
475 */
476 child->exit_code = data;
477 __ptrace_detach(current, child);
478 write_unlock_irq(&tasklist_lock);
479
480 proc_ptrace_connector(child, PTRACE_DETACH);
481
482 return 0;
483 }
484
485 /*
486 * Detach all tasks we were using ptrace on. Called with tasklist held
487 * for writing.
488 */
489 void exit_ptrace(struct task_struct *tracer, struct list_head *dead)
490 {
491 struct task_struct *p, *n;
492
493 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
494 if (unlikely(p->ptrace & PT_EXITKILL))
495 send_sig_info(SIGKILL, SEND_SIG_FORCED, p);
496
497 if (__ptrace_detach(tracer, p))
498 list_add(&p->ptrace_entry, dead);
499 }
500 }
501
502 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
503 {
504 int copied = 0;
505
506 while (len > 0) {
507 char buf[128];
508 int this_len, retval;
509
510 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
511 retval = access_process_vm(tsk, src, buf, this_len, 0);
512 if (!retval) {
513 if (copied)
514 break;
515 return -EIO;
516 }
517 if (copy_to_user(dst, buf, retval))
518 return -EFAULT;
519 copied += retval;
520 src += retval;
521 dst += retval;
522 len -= retval;
523 }
524 return copied;
525 }
526
527 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
528 {
529 int copied = 0;
530
531 while (len > 0) {
532 char buf[128];
533 int this_len, retval;
534
535 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
536 if (copy_from_user(buf, src, this_len))
537 return -EFAULT;
538 retval = access_process_vm(tsk, dst, buf, this_len, 1);
539 if (!retval) {
540 if (copied)
541 break;
542 return -EIO;
543 }
544 copied += retval;
545 src += retval;
546 dst += retval;
547 len -= retval;
548 }
549 return copied;
550 }
551
552 static int ptrace_setoptions(struct task_struct *child, unsigned long data)
553 {
554 unsigned flags;
555
556 if (data & ~(unsigned long)PTRACE_O_MASK)
557 return -EINVAL;
558
559 if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) {
560 if (!config_enabled(CONFIG_CHECKPOINT_RESTORE) ||
561 !config_enabled(CONFIG_SECCOMP))
562 return -EINVAL;
563
564 if (!capable(CAP_SYS_ADMIN))
565 return -EPERM;
566
567 if (seccomp_mode(&current->seccomp) != SECCOMP_MODE_DISABLED ||
568 current->ptrace & PT_SUSPEND_SECCOMP)
569 return -EPERM;
570 }
571
572 /* Avoid intermediate state when all opts are cleared */
573 flags = child->ptrace;
574 flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
575 flags |= (data << PT_OPT_FLAG_SHIFT);
576 child->ptrace = flags;
577
578 return 0;
579 }
580
581 static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info)
582 {
583 unsigned long flags;
584 int error = -ESRCH;
585
586 if (lock_task_sighand(child, &flags)) {
587 error = -EINVAL;
588 if (likely(child->last_siginfo != NULL)) {
589 *info = *child->last_siginfo;
590 error = 0;
591 }
592 unlock_task_sighand(child, &flags);
593 }
594 return error;
595 }
596
597 static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info)
598 {
599 unsigned long flags;
600 int error = -ESRCH;
601
602 if (lock_task_sighand(child, &flags)) {
603 error = -EINVAL;
604 if (likely(child->last_siginfo != NULL)) {
605 *child->last_siginfo = *info;
606 error = 0;
607 }
608 unlock_task_sighand(child, &flags);
609 }
610 return error;
611 }
612
613 static int ptrace_peek_siginfo(struct task_struct *child,
614 unsigned long addr,
615 unsigned long data)
616 {
617 struct ptrace_peeksiginfo_args arg;
618 struct sigpending *pending;
619 struct sigqueue *q;
620 int ret, i;
621
622 ret = copy_from_user(&arg, (void __user *) addr,
623 sizeof(struct ptrace_peeksiginfo_args));
624 if (ret)
625 return -EFAULT;
626
627 if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
628 return -EINVAL; /* unknown flags */
629
630 if (arg.nr < 0)
631 return -EINVAL;
632
633 if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
634 pending = &child->signal->shared_pending;
635 else
636 pending = &child->pending;
637
638 for (i = 0; i < arg.nr; ) {
639 siginfo_t info;
640 s32 off = arg.off + i;
641
642 spin_lock_irq(&child->sighand->siglock);
643 list_for_each_entry(q, &pending->list, list) {
644 if (!off--) {
645 copy_siginfo(&info, &q->info);
646 break;
647 }
648 }
649 spin_unlock_irq(&child->sighand->siglock);
650
651 if (off >= 0) /* beyond the end of the list */
652 break;
653
654 #ifdef CONFIG_COMPAT
655 if (unlikely(is_compat_task())) {
656 compat_siginfo_t __user *uinfo = compat_ptr(data);
657
658 if (copy_siginfo_to_user32(uinfo, &info) ||
659 __put_user(info.si_code, &uinfo->si_code)) {
660 ret = -EFAULT;
661 break;
662 }
663
664 } else
665 #endif
666 {
667 siginfo_t __user *uinfo = (siginfo_t __user *) data;
668
669 if (copy_siginfo_to_user(uinfo, &info) ||
670 __put_user(info.si_code, &uinfo->si_code)) {
671 ret = -EFAULT;
672 break;
673 }
674 }
675
676 data += sizeof(siginfo_t);
677 i++;
678
679 if (signal_pending(current))
680 break;
681
682 cond_resched();
683 }
684
685 if (i > 0)
686 return i;
687
688 return ret;
689 }
690
691 #ifdef PTRACE_SINGLESTEP
692 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
693 #else
694 #define is_singlestep(request) 0
695 #endif
696
697 #ifdef PTRACE_SINGLEBLOCK
698 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
699 #else
700 #define is_singleblock(request) 0
701 #endif
702
703 #ifdef PTRACE_SYSEMU
704 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
705 #else
706 #define is_sysemu_singlestep(request) 0
707 #endif
708
709 static int ptrace_resume(struct task_struct *child, long request,
710 unsigned long data)
711 {
712 bool need_siglock;
713
714 if (!valid_signal(data))
715 return -EIO;
716
717 if (request == PTRACE_SYSCALL)
718 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
719 else
720 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
721
722 #ifdef TIF_SYSCALL_EMU
723 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
724 set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
725 else
726 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
727 #endif
728
729 if (is_singleblock(request)) {
730 if (unlikely(!arch_has_block_step()))
731 return -EIO;
732 user_enable_block_step(child);
733 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
734 if (unlikely(!arch_has_single_step()))
735 return -EIO;
736 user_enable_single_step(child);
737 } else {
738 user_disable_single_step(child);
739 }
740
741 /*
742 * Change ->exit_code and ->state under siglock to avoid the race
743 * with wait_task_stopped() in between; a non-zero ->exit_code will
744 * wrongly look like another report from tracee.
745 *
746 * Note that we need siglock even if ->exit_code == data and/or this
747 * status was not reported yet, the new status must not be cleared by
748 * wait_task_stopped() after resume.
749 *
750 * If data == 0 we do not care if wait_task_stopped() reports the old
751 * status and clears the code too; this can't race with the tracee, it
752 * takes siglock after resume.
753 */
754 need_siglock = data && !thread_group_empty(current);
755 if (need_siglock)
756 spin_lock_irq(&child->sighand->siglock);
757 child->exit_code = data;
758 wake_up_state(child, __TASK_TRACED);
759 if (need_siglock)
760 spin_unlock_irq(&child->sighand->siglock);
761
762 return 0;
763 }
764
765 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
766
767 static const struct user_regset *
768 find_regset(const struct user_regset_view *view, unsigned int type)
769 {
770 const struct user_regset *regset;
771 int n;
772
773 for (n = 0; n < view->n; ++n) {
774 regset = view->regsets + n;
775 if (regset->core_note_type == type)
776 return regset;
777 }
778
779 return NULL;
780 }
781
782 static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
783 struct iovec *kiov)
784 {
785 const struct user_regset_view *view = task_user_regset_view(task);
786 const struct user_regset *regset = find_regset(view, type);
787 int regset_no;
788
789 if (!regset || (kiov->iov_len % regset->size) != 0)
790 return -EINVAL;
791
792 regset_no = regset - view->regsets;
793 kiov->iov_len = min(kiov->iov_len,
794 (__kernel_size_t) (regset->n * regset->size));
795
796 if (req == PTRACE_GETREGSET)
797 return copy_regset_to_user(task, view, regset_no, 0,
798 kiov->iov_len, kiov->iov_base);
799 else
800 return copy_regset_from_user(task, view, regset_no, 0,
801 kiov->iov_len, kiov->iov_base);
802 }
803
804 /*
805 * This is declared in linux/regset.h and defined in machine-dependent
806 * code. We put the export here, near the primary machine-neutral use,
807 * to ensure no machine forgets it.
808 */
809 EXPORT_SYMBOL_GPL(task_user_regset_view);
810 #endif
811
812 int ptrace_request(struct task_struct *child, long request,
813 unsigned long addr, unsigned long data)
814 {
815 bool seized = child->ptrace & PT_SEIZED;
816 int ret = -EIO;
817 siginfo_t siginfo, *si;
818 void __user *datavp = (void __user *) data;
819 unsigned long __user *datalp = datavp;
820 unsigned long flags;
821
822 switch (request) {
823 case PTRACE_PEEKTEXT:
824 case PTRACE_PEEKDATA:
825 return generic_ptrace_peekdata(child, addr, data);
826 case PTRACE_POKETEXT:
827 case PTRACE_POKEDATA:
828 return generic_ptrace_pokedata(child, addr, data);
829
830 #ifdef PTRACE_OLDSETOPTIONS
831 case PTRACE_OLDSETOPTIONS:
832 #endif
833 case PTRACE_SETOPTIONS:
834 ret = ptrace_setoptions(child, data);
835 break;
836 case PTRACE_GETEVENTMSG:
837 ret = put_user(child->ptrace_message, datalp);
838 break;
839
840 case PTRACE_PEEKSIGINFO:
841 ret = ptrace_peek_siginfo(child, addr, data);
842 break;
843
844 case PTRACE_GETSIGINFO:
845 ret = ptrace_getsiginfo(child, &siginfo);
846 if (!ret)
847 ret = copy_siginfo_to_user(datavp, &siginfo);
848 break;
849
850 case PTRACE_SETSIGINFO:
851 if (copy_from_user(&siginfo, datavp, sizeof siginfo))
852 ret = -EFAULT;
853 else
854 ret = ptrace_setsiginfo(child, &siginfo);
855 break;
856
857 case PTRACE_GETSIGMASK:
858 if (addr != sizeof(sigset_t)) {
859 ret = -EINVAL;
860 break;
861 }
862
863 if (copy_to_user(datavp, &child->blocked, sizeof(sigset_t)))
864 ret = -EFAULT;
865 else
866 ret = 0;
867
868 break;
869
870 case PTRACE_SETSIGMASK: {
871 sigset_t new_set;
872
873 if (addr != sizeof(sigset_t)) {
874 ret = -EINVAL;
875 break;
876 }
877
878 if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) {
879 ret = -EFAULT;
880 break;
881 }
882
883 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
884
885 /*
886 * Every thread does recalc_sigpending() after resume, so
887 * retarget_shared_pending() and recalc_sigpending() are not
888 * called here.
889 */
890 spin_lock_irq(&child->sighand->siglock);
891 child->blocked = new_set;
892 spin_unlock_irq(&child->sighand->siglock);
893
894 ret = 0;
895 break;
896 }
897
898 case PTRACE_INTERRUPT:
899 /*
900 * Stop tracee without any side-effect on signal or job
901 * control. At least one trap is guaranteed to happen
902 * after this request. If @child is already trapped, the
903 * current trap is not disturbed and another trap will
904 * happen after the current trap is ended with PTRACE_CONT.
905 *
906 * The actual trap might not be PTRACE_EVENT_STOP trap but
907 * the pending condition is cleared regardless.
908 */
909 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
910 break;
911
912 /*
913 * INTERRUPT doesn't disturb existing trap sans one
914 * exception. If ptracer issued LISTEN for the current
915 * STOP, this INTERRUPT should clear LISTEN and re-trap
916 * tracee into STOP.
917 */
918 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
919 ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
920
921 unlock_task_sighand(child, &flags);
922 ret = 0;
923 break;
924
925 case PTRACE_LISTEN:
926 /*
927 * Listen for events. Tracee must be in STOP. It's not
928 * resumed per-se but is not considered to be in TRACED by
929 * wait(2) or ptrace(2). If an async event (e.g. group
930 * stop state change) happens, tracee will enter STOP trap
931 * again. Alternatively, ptracer can issue INTERRUPT to
932 * finish listening and re-trap tracee into STOP.
933 */
934 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
935 break;
936
937 si = child->last_siginfo;
938 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
939 child->jobctl |= JOBCTL_LISTENING;
940 /*
941 * If NOTIFY is set, it means event happened between
942 * start of this trap and now. Trigger re-trap.
943 */
944 if (child->jobctl & JOBCTL_TRAP_NOTIFY)
945 ptrace_signal_wake_up(child, true);
946 ret = 0;
947 }
948 unlock_task_sighand(child, &flags);
949 break;
950
951 case PTRACE_DETACH: /* detach a process that was attached. */
952 ret = ptrace_detach(child, data);
953 break;
954
955 #ifdef CONFIG_BINFMT_ELF_FDPIC
956 case PTRACE_GETFDPIC: {
957 struct mm_struct *mm = get_task_mm(child);
958 unsigned long tmp = 0;
959
960 ret = -ESRCH;
961 if (!mm)
962 break;
963
964 switch (addr) {
965 case PTRACE_GETFDPIC_EXEC:
966 tmp = mm->context.exec_fdpic_loadmap;
967 break;
968 case PTRACE_GETFDPIC_INTERP:
969 tmp = mm->context.interp_fdpic_loadmap;
970 break;
971 default:
972 break;
973 }
974 mmput(mm);
975
976 ret = put_user(tmp, datalp);
977 break;
978 }
979 #endif
980
981 #ifdef PTRACE_SINGLESTEP
982 case PTRACE_SINGLESTEP:
983 #endif
984 #ifdef PTRACE_SINGLEBLOCK
985 case PTRACE_SINGLEBLOCK:
986 #endif
987 #ifdef PTRACE_SYSEMU
988 case PTRACE_SYSEMU:
989 case PTRACE_SYSEMU_SINGLESTEP:
990 #endif
991 case PTRACE_SYSCALL:
992 case PTRACE_CONT:
993 return ptrace_resume(child, request, data);
994
995 case PTRACE_KILL:
996 if (child->exit_state) /* already dead */
997 return 0;
998 return ptrace_resume(child, request, SIGKILL);
999
1000 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1001 case PTRACE_GETREGSET:
1002 case PTRACE_SETREGSET: {
1003 struct iovec kiov;
1004 struct iovec __user *uiov = datavp;
1005
1006 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1007 return -EFAULT;
1008
1009 if (__get_user(kiov.iov_base, &uiov->iov_base) ||
1010 __get_user(kiov.iov_len, &uiov->iov_len))
1011 return -EFAULT;
1012
1013 ret = ptrace_regset(child, request, addr, &kiov);
1014 if (!ret)
1015 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1016 break;
1017 }
1018 #endif
1019
1020 case PTRACE_SECCOMP_GET_FILTER:
1021 ret = seccomp_get_filter(child, addr, datavp);
1022 break;
1023
1024 default:
1025 break;
1026 }
1027
1028 return ret;
1029 }
1030
1031 static struct task_struct *ptrace_get_task_struct(pid_t pid)
1032 {
1033 struct task_struct *child;
1034
1035 rcu_read_lock();
1036 child = find_task_by_vpid(pid);
1037 if (child)
1038 get_task_struct(child);
1039 rcu_read_unlock();
1040
1041 if (!child)
1042 return ERR_PTR(-ESRCH);
1043 return child;
1044 }
1045
1046 #ifndef arch_ptrace_attach
1047 #define arch_ptrace_attach(child) do { } while (0)
1048 #endif
1049
1050 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
1051 unsigned long, data)
1052 {
1053 struct task_struct *child;
1054 long ret;
1055
1056 if (request == PTRACE_TRACEME) {
1057 ret = ptrace_traceme();
1058 if (!ret)
1059 arch_ptrace_attach(current);
1060 goto out;
1061 }
1062
1063 child = ptrace_get_task_struct(pid);
1064 if (IS_ERR(child)) {
1065 ret = PTR_ERR(child);
1066 goto out;
1067 }
1068
1069 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1070 ret = ptrace_attach(child, request, addr, data);
1071 /*
1072 * Some architectures need to do book-keeping after
1073 * a ptrace attach.
1074 */
1075 if (!ret)
1076 arch_ptrace_attach(child);
1077 goto out_put_task_struct;
1078 }
1079
1080 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1081 request == PTRACE_INTERRUPT);
1082 if (ret < 0)
1083 goto out_put_task_struct;
1084
1085 ret = arch_ptrace(child, request, addr, data);
1086 if (ret || request != PTRACE_DETACH)
1087 ptrace_unfreeze_traced(child);
1088
1089 out_put_task_struct:
1090 put_task_struct(child);
1091 out:
1092 return ret;
1093 }
1094
1095 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
1096 unsigned long data)
1097 {
1098 unsigned long tmp;
1099 int copied;
1100
1101 copied = access_process_vm(tsk, addr, &tmp, sizeof(tmp), 0);
1102 if (copied != sizeof(tmp))
1103 return -EIO;
1104 return put_user(tmp, (unsigned long __user *)data);
1105 }
1106
1107 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
1108 unsigned long data)
1109 {
1110 int copied;
1111
1112 copied = access_process_vm(tsk, addr, &data, sizeof(data), 1);
1113 return (copied == sizeof(data)) ? 0 : -EIO;
1114 }
1115
1116 #if defined CONFIG_COMPAT
1117
1118 int compat_ptrace_request(struct task_struct *child, compat_long_t request,
1119 compat_ulong_t addr, compat_ulong_t data)
1120 {
1121 compat_ulong_t __user *datap = compat_ptr(data);
1122 compat_ulong_t word;
1123 siginfo_t siginfo;
1124 int ret;
1125
1126 switch (request) {
1127 case PTRACE_PEEKTEXT:
1128 case PTRACE_PEEKDATA:
1129 ret = access_process_vm(child, addr, &word, sizeof(word), 0);
1130 if (ret != sizeof(word))
1131 ret = -EIO;
1132 else
1133 ret = put_user(word, datap);
1134 break;
1135
1136 case PTRACE_POKETEXT:
1137 case PTRACE_POKEDATA:
1138 ret = access_process_vm(child, addr, &data, sizeof(data), 1);
1139 ret = (ret != sizeof(data) ? -EIO : 0);
1140 break;
1141
1142 case PTRACE_GETEVENTMSG:
1143 ret = put_user((compat_ulong_t) child->ptrace_message, datap);
1144 break;
1145
1146 case PTRACE_GETSIGINFO:
1147 ret = ptrace_getsiginfo(child, &siginfo);
1148 if (!ret)
1149 ret = copy_siginfo_to_user32(
1150 (struct compat_siginfo __user *) datap,
1151 &siginfo);
1152 break;
1153
1154 case PTRACE_SETSIGINFO:
1155 memset(&siginfo, 0, sizeof siginfo);
1156 if (copy_siginfo_from_user32(
1157 &siginfo, (struct compat_siginfo __user *) datap))
1158 ret = -EFAULT;
1159 else
1160 ret = ptrace_setsiginfo(child, &siginfo);
1161 break;
1162 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1163 case PTRACE_GETREGSET:
1164 case PTRACE_SETREGSET:
1165 {
1166 struct iovec kiov;
1167 struct compat_iovec __user *uiov =
1168 (struct compat_iovec __user *) datap;
1169 compat_uptr_t ptr;
1170 compat_size_t len;
1171
1172 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1173 return -EFAULT;
1174
1175 if (__get_user(ptr, &uiov->iov_base) ||
1176 __get_user(len, &uiov->iov_len))
1177 return -EFAULT;
1178
1179 kiov.iov_base = compat_ptr(ptr);
1180 kiov.iov_len = len;
1181
1182 ret = ptrace_regset(child, request, addr, &kiov);
1183 if (!ret)
1184 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1185 break;
1186 }
1187 #endif
1188
1189 default:
1190 ret = ptrace_request(child, request, addr, data);
1191 }
1192
1193 return ret;
1194 }
1195
1196 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid,
1197 compat_long_t, addr, compat_long_t, data)
1198 {
1199 struct task_struct *child;
1200 long ret;
1201
1202 if (request == PTRACE_TRACEME) {
1203 ret = ptrace_traceme();
1204 goto out;
1205 }
1206
1207 child = ptrace_get_task_struct(pid);
1208 if (IS_ERR(child)) {
1209 ret = PTR_ERR(child);
1210 goto out;
1211 }
1212
1213 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1214 ret = ptrace_attach(child, request, addr, data);
1215 /*
1216 * Some architectures need to do book-keeping after
1217 * a ptrace attach.
1218 */
1219 if (!ret)
1220 arch_ptrace_attach(child);
1221 goto out_put_task_struct;
1222 }
1223
1224 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1225 request == PTRACE_INTERRUPT);
1226 if (!ret) {
1227 ret = compat_arch_ptrace(child, request, addr, data);
1228 if (ret || request != PTRACE_DETACH)
1229 ptrace_unfreeze_traced(child);
1230 }
1231
1232 out_put_task_struct:
1233 put_task_struct(child);
1234 out:
1235 return ret;
1236 }
1237 #endif /* CONFIG_COMPAT */
This page took 0.069313 seconds and 6 git commands to generate.