Merge tag 'nfs-for-4.0-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[deliverable/linux.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74 /*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82 #ifdef CONFIG_TRACING
83 # define DEFINE_RCU_TPS(sname) \
84 static char sname##_varname[] = #sname; \
85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86 # define RCU_STATE_NAME(sname) sname##_varname
87 #else
88 # define DEFINE_RCU_TPS(sname)
89 # define RCU_STATE_NAME(sname) __stringify(sname)
90 #endif
91
92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93 DEFINE_RCU_TPS(sname) \
94 struct rcu_state sname##_state = { \
95 .level = { &sname##_state.node[0] }, \
96 .call = cr, \
97 .fqs_state = RCU_GP_IDLE, \
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
102 .orphan_donetail = &sname##_state.orphan_donelist, \
103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
105 .name = RCU_STATE_NAME(sname), \
106 .abbr = sabbr, \
107 }; \
108 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
109
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113 static struct rcu_state *rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115
116 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118 module_param(rcu_fanout_leaf, int, 0444);
119 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
121 NUM_RCU_LVL_0,
122 NUM_RCU_LVL_1,
123 NUM_RCU_LVL_2,
124 NUM_RCU_LVL_3,
125 NUM_RCU_LVL_4,
126 };
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
129 /*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
133 * optimize synchronize_sched() to a simple barrier(). When this variable
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
141 /*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153 static int rcu_scheduler_fully_active __read_mostly;
154
155 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 static void invoke_rcu_core(void);
157 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158
159 /* rcuc/rcub kthread realtime priority */
160 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
161 module_param(kthread_prio, int, 0644);
162
163 /*
164 * Track the rcutorture test sequence number and the update version
165 * number within a given test. The rcutorture_testseq is incremented
166 * on every rcutorture module load and unload, so has an odd value
167 * when a test is running. The rcutorture_vernum is set to zero
168 * when rcutorture starts and is incremented on each rcutorture update.
169 * These variables enable correlating rcutorture output with the
170 * RCU tracing information.
171 */
172 unsigned long rcutorture_testseq;
173 unsigned long rcutorture_vernum;
174
175 /*
176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
177 * permit this function to be invoked without holding the root rcu_node
178 * structure's ->lock, but of course results can be subject to change.
179 */
180 static int rcu_gp_in_progress(struct rcu_state *rsp)
181 {
182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183 }
184
185 /*
186 * Note a quiescent state. Because we do not need to know
187 * how many quiescent states passed, just if there was at least
188 * one since the start of the grace period, this just sets a flag.
189 * The caller must have disabled preemption.
190 */
191 void rcu_sched_qs(void)
192 {
193 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
194 trace_rcu_grace_period(TPS("rcu_sched"),
195 __this_cpu_read(rcu_sched_data.gpnum),
196 TPS("cpuqs"));
197 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
198 }
199 }
200
201 void rcu_bh_qs(void)
202 {
203 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
204 trace_rcu_grace_period(TPS("rcu_bh"),
205 __this_cpu_read(rcu_bh_data.gpnum),
206 TPS("cpuqs"));
207 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
208 }
209 }
210
211 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
212
213 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
214 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
215 .dynticks = ATOMIC_INIT(1),
216 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
217 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
218 .dynticks_idle = ATOMIC_INIT(1),
219 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
220 };
221
222 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
223 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
224
225 /*
226 * Let the RCU core know that this CPU has gone through the scheduler,
227 * which is a quiescent state. This is called when the need for a
228 * quiescent state is urgent, so we burn an atomic operation and full
229 * memory barriers to let the RCU core know about it, regardless of what
230 * this CPU might (or might not) do in the near future.
231 *
232 * We inform the RCU core by emulating a zero-duration dyntick-idle
233 * period, which we in turn do by incrementing the ->dynticks counter
234 * by two.
235 */
236 static void rcu_momentary_dyntick_idle(void)
237 {
238 unsigned long flags;
239 struct rcu_data *rdp;
240 struct rcu_dynticks *rdtp;
241 int resched_mask;
242 struct rcu_state *rsp;
243
244 local_irq_save(flags);
245
246 /*
247 * Yes, we can lose flag-setting operations. This is OK, because
248 * the flag will be set again after some delay.
249 */
250 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
251 raw_cpu_write(rcu_sched_qs_mask, 0);
252
253 /* Find the flavor that needs a quiescent state. */
254 for_each_rcu_flavor(rsp) {
255 rdp = raw_cpu_ptr(rsp->rda);
256 if (!(resched_mask & rsp->flavor_mask))
257 continue;
258 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
259 if (ACCESS_ONCE(rdp->mynode->completed) !=
260 ACCESS_ONCE(rdp->cond_resched_completed))
261 continue;
262
263 /*
264 * Pretend to be momentarily idle for the quiescent state.
265 * This allows the grace-period kthread to record the
266 * quiescent state, with no need for this CPU to do anything
267 * further.
268 */
269 rdtp = this_cpu_ptr(&rcu_dynticks);
270 smp_mb__before_atomic(); /* Earlier stuff before QS. */
271 atomic_add(2, &rdtp->dynticks); /* QS. */
272 smp_mb__after_atomic(); /* Later stuff after QS. */
273 break;
274 }
275 local_irq_restore(flags);
276 }
277
278 /*
279 * Note a context switch. This is a quiescent state for RCU-sched,
280 * and requires special handling for preemptible RCU.
281 * The caller must have disabled preemption.
282 */
283 void rcu_note_context_switch(void)
284 {
285 trace_rcu_utilization(TPS("Start context switch"));
286 rcu_sched_qs();
287 rcu_preempt_note_context_switch();
288 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
289 rcu_momentary_dyntick_idle();
290 trace_rcu_utilization(TPS("End context switch"));
291 }
292 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
293
294 /*
295 * Register a quiesecent state for all RCU flavors. If there is an
296 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
297 * dyntick-idle quiescent state visible to other CPUs (but only for those
298 * RCU flavors in desparate need of a quiescent state, which will normally
299 * be none of them). Either way, do a lightweight quiescent state for
300 * all RCU flavors.
301 */
302 void rcu_all_qs(void)
303 {
304 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
305 rcu_momentary_dyntick_idle();
306 this_cpu_inc(rcu_qs_ctr);
307 }
308 EXPORT_SYMBOL_GPL(rcu_all_qs);
309
310 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
311 static long qhimark = 10000; /* If this many pending, ignore blimit. */
312 static long qlowmark = 100; /* Once only this many pending, use blimit. */
313
314 module_param(blimit, long, 0444);
315 module_param(qhimark, long, 0444);
316 module_param(qlowmark, long, 0444);
317
318 static ulong jiffies_till_first_fqs = ULONG_MAX;
319 static ulong jiffies_till_next_fqs = ULONG_MAX;
320
321 module_param(jiffies_till_first_fqs, ulong, 0644);
322 module_param(jiffies_till_next_fqs, ulong, 0644);
323
324 /*
325 * How long the grace period must be before we start recruiting
326 * quiescent-state help from rcu_note_context_switch().
327 */
328 static ulong jiffies_till_sched_qs = HZ / 20;
329 module_param(jiffies_till_sched_qs, ulong, 0644);
330
331 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
332 struct rcu_data *rdp);
333 static void force_qs_rnp(struct rcu_state *rsp,
334 int (*f)(struct rcu_data *rsp, bool *isidle,
335 unsigned long *maxj),
336 bool *isidle, unsigned long *maxj);
337 static void force_quiescent_state(struct rcu_state *rsp);
338 static int rcu_pending(void);
339
340 /*
341 * Return the number of RCU batches started thus far for debug & stats.
342 */
343 unsigned long rcu_batches_started(void)
344 {
345 return rcu_state_p->gpnum;
346 }
347 EXPORT_SYMBOL_GPL(rcu_batches_started);
348
349 /*
350 * Return the number of RCU-sched batches started thus far for debug & stats.
351 */
352 unsigned long rcu_batches_started_sched(void)
353 {
354 return rcu_sched_state.gpnum;
355 }
356 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
357
358 /*
359 * Return the number of RCU BH batches started thus far for debug & stats.
360 */
361 unsigned long rcu_batches_started_bh(void)
362 {
363 return rcu_bh_state.gpnum;
364 }
365 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
366
367 /*
368 * Return the number of RCU batches completed thus far for debug & stats.
369 */
370 unsigned long rcu_batches_completed(void)
371 {
372 return rcu_state_p->completed;
373 }
374 EXPORT_SYMBOL_GPL(rcu_batches_completed);
375
376 /*
377 * Return the number of RCU-sched batches completed thus far for debug & stats.
378 */
379 unsigned long rcu_batches_completed_sched(void)
380 {
381 return rcu_sched_state.completed;
382 }
383 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
384
385 /*
386 * Return the number of RCU BH batches completed thus far for debug & stats.
387 */
388 unsigned long rcu_batches_completed_bh(void)
389 {
390 return rcu_bh_state.completed;
391 }
392 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
393
394 /*
395 * Force a quiescent state.
396 */
397 void rcu_force_quiescent_state(void)
398 {
399 force_quiescent_state(rcu_state_p);
400 }
401 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
402
403 /*
404 * Force a quiescent state for RCU BH.
405 */
406 void rcu_bh_force_quiescent_state(void)
407 {
408 force_quiescent_state(&rcu_bh_state);
409 }
410 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
411
412 /*
413 * Show the state of the grace-period kthreads.
414 */
415 void show_rcu_gp_kthreads(void)
416 {
417 struct rcu_state *rsp;
418
419 for_each_rcu_flavor(rsp) {
420 pr_info("%s: wait state: %d ->state: %#lx\n",
421 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
422 /* sched_show_task(rsp->gp_kthread); */
423 }
424 }
425 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
426
427 /*
428 * Record the number of times rcutorture tests have been initiated and
429 * terminated. This information allows the debugfs tracing stats to be
430 * correlated to the rcutorture messages, even when the rcutorture module
431 * is being repeatedly loaded and unloaded. In other words, we cannot
432 * store this state in rcutorture itself.
433 */
434 void rcutorture_record_test_transition(void)
435 {
436 rcutorture_testseq++;
437 rcutorture_vernum = 0;
438 }
439 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
440
441 /*
442 * Send along grace-period-related data for rcutorture diagnostics.
443 */
444 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
445 unsigned long *gpnum, unsigned long *completed)
446 {
447 struct rcu_state *rsp = NULL;
448
449 switch (test_type) {
450 case RCU_FLAVOR:
451 rsp = rcu_state_p;
452 break;
453 case RCU_BH_FLAVOR:
454 rsp = &rcu_bh_state;
455 break;
456 case RCU_SCHED_FLAVOR:
457 rsp = &rcu_sched_state;
458 break;
459 default:
460 break;
461 }
462 if (rsp != NULL) {
463 *flags = ACCESS_ONCE(rsp->gp_flags);
464 *gpnum = ACCESS_ONCE(rsp->gpnum);
465 *completed = ACCESS_ONCE(rsp->completed);
466 return;
467 }
468 *flags = 0;
469 *gpnum = 0;
470 *completed = 0;
471 }
472 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
473
474 /*
475 * Record the number of writer passes through the current rcutorture test.
476 * This is also used to correlate debugfs tracing stats with the rcutorture
477 * messages.
478 */
479 void rcutorture_record_progress(unsigned long vernum)
480 {
481 rcutorture_vernum++;
482 }
483 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
484
485 /*
486 * Force a quiescent state for RCU-sched.
487 */
488 void rcu_sched_force_quiescent_state(void)
489 {
490 force_quiescent_state(&rcu_sched_state);
491 }
492 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
493
494 /*
495 * Does the CPU have callbacks ready to be invoked?
496 */
497 static int
498 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
499 {
500 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
501 rdp->nxttail[RCU_DONE_TAIL] != NULL;
502 }
503
504 /*
505 * Return the root node of the specified rcu_state structure.
506 */
507 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
508 {
509 return &rsp->node[0];
510 }
511
512 /*
513 * Is there any need for future grace periods?
514 * Interrupts must be disabled. If the caller does not hold the root
515 * rnp_node structure's ->lock, the results are advisory only.
516 */
517 static int rcu_future_needs_gp(struct rcu_state *rsp)
518 {
519 struct rcu_node *rnp = rcu_get_root(rsp);
520 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
521 int *fp = &rnp->need_future_gp[idx];
522
523 return ACCESS_ONCE(*fp);
524 }
525
526 /*
527 * Does the current CPU require a not-yet-started grace period?
528 * The caller must have disabled interrupts to prevent races with
529 * normal callback registry.
530 */
531 static int
532 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
533 {
534 int i;
535
536 if (rcu_gp_in_progress(rsp))
537 return 0; /* No, a grace period is already in progress. */
538 if (rcu_future_needs_gp(rsp))
539 return 1; /* Yes, a no-CBs CPU needs one. */
540 if (!rdp->nxttail[RCU_NEXT_TAIL])
541 return 0; /* No, this is a no-CBs (or offline) CPU. */
542 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
543 return 1; /* Yes, this CPU has newly registered callbacks. */
544 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
545 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
546 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
547 rdp->nxtcompleted[i]))
548 return 1; /* Yes, CBs for future grace period. */
549 return 0; /* No grace period needed. */
550 }
551
552 /*
553 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
554 *
555 * If the new value of the ->dynticks_nesting counter now is zero,
556 * we really have entered idle, and must do the appropriate accounting.
557 * The caller must have disabled interrupts.
558 */
559 static void rcu_eqs_enter_common(long long oldval, bool user)
560 {
561 struct rcu_state *rsp;
562 struct rcu_data *rdp;
563 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
564
565 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
566 if (!user && !is_idle_task(current)) {
567 struct task_struct *idle __maybe_unused =
568 idle_task(smp_processor_id());
569
570 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
571 ftrace_dump(DUMP_ORIG);
572 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
573 current->pid, current->comm,
574 idle->pid, idle->comm); /* must be idle task! */
575 }
576 for_each_rcu_flavor(rsp) {
577 rdp = this_cpu_ptr(rsp->rda);
578 do_nocb_deferred_wakeup(rdp);
579 }
580 rcu_prepare_for_idle();
581 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
582 smp_mb__before_atomic(); /* See above. */
583 atomic_inc(&rdtp->dynticks);
584 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
585 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
586 rcu_dynticks_task_enter();
587
588 /*
589 * It is illegal to enter an extended quiescent state while
590 * in an RCU read-side critical section.
591 */
592 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
593 "Illegal idle entry in RCU read-side critical section.");
594 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
595 "Illegal idle entry in RCU-bh read-side critical section.");
596 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
597 "Illegal idle entry in RCU-sched read-side critical section.");
598 }
599
600 /*
601 * Enter an RCU extended quiescent state, which can be either the
602 * idle loop or adaptive-tickless usermode execution.
603 */
604 static void rcu_eqs_enter(bool user)
605 {
606 long long oldval;
607 struct rcu_dynticks *rdtp;
608
609 rdtp = this_cpu_ptr(&rcu_dynticks);
610 oldval = rdtp->dynticks_nesting;
611 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
612 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
613 rdtp->dynticks_nesting = 0;
614 rcu_eqs_enter_common(oldval, user);
615 } else {
616 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
617 }
618 }
619
620 /**
621 * rcu_idle_enter - inform RCU that current CPU is entering idle
622 *
623 * Enter idle mode, in other words, -leave- the mode in which RCU
624 * read-side critical sections can occur. (Though RCU read-side
625 * critical sections can occur in irq handlers in idle, a possibility
626 * handled by irq_enter() and irq_exit().)
627 *
628 * We crowbar the ->dynticks_nesting field to zero to allow for
629 * the possibility of usermode upcalls having messed up our count
630 * of interrupt nesting level during the prior busy period.
631 */
632 void rcu_idle_enter(void)
633 {
634 unsigned long flags;
635
636 local_irq_save(flags);
637 rcu_eqs_enter(false);
638 rcu_sysidle_enter(0);
639 local_irq_restore(flags);
640 }
641 EXPORT_SYMBOL_GPL(rcu_idle_enter);
642
643 #ifdef CONFIG_RCU_USER_QS
644 /**
645 * rcu_user_enter - inform RCU that we are resuming userspace.
646 *
647 * Enter RCU idle mode right before resuming userspace. No use of RCU
648 * is permitted between this call and rcu_user_exit(). This way the
649 * CPU doesn't need to maintain the tick for RCU maintenance purposes
650 * when the CPU runs in userspace.
651 */
652 void rcu_user_enter(void)
653 {
654 rcu_eqs_enter(1);
655 }
656 #endif /* CONFIG_RCU_USER_QS */
657
658 /**
659 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
660 *
661 * Exit from an interrupt handler, which might possibly result in entering
662 * idle mode, in other words, leaving the mode in which read-side critical
663 * sections can occur.
664 *
665 * This code assumes that the idle loop never does anything that might
666 * result in unbalanced calls to irq_enter() and irq_exit(). If your
667 * architecture violates this assumption, RCU will give you what you
668 * deserve, good and hard. But very infrequently and irreproducibly.
669 *
670 * Use things like work queues to work around this limitation.
671 *
672 * You have been warned.
673 */
674 void rcu_irq_exit(void)
675 {
676 unsigned long flags;
677 long long oldval;
678 struct rcu_dynticks *rdtp;
679
680 local_irq_save(flags);
681 rdtp = this_cpu_ptr(&rcu_dynticks);
682 oldval = rdtp->dynticks_nesting;
683 rdtp->dynticks_nesting--;
684 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
685 if (rdtp->dynticks_nesting)
686 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
687 else
688 rcu_eqs_enter_common(oldval, true);
689 rcu_sysidle_enter(1);
690 local_irq_restore(flags);
691 }
692
693 /*
694 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
695 *
696 * If the new value of the ->dynticks_nesting counter was previously zero,
697 * we really have exited idle, and must do the appropriate accounting.
698 * The caller must have disabled interrupts.
699 */
700 static void rcu_eqs_exit_common(long long oldval, int user)
701 {
702 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
703
704 rcu_dynticks_task_exit();
705 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
706 atomic_inc(&rdtp->dynticks);
707 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
708 smp_mb__after_atomic(); /* See above. */
709 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
710 rcu_cleanup_after_idle();
711 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
712 if (!user && !is_idle_task(current)) {
713 struct task_struct *idle __maybe_unused =
714 idle_task(smp_processor_id());
715
716 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
717 oldval, rdtp->dynticks_nesting);
718 ftrace_dump(DUMP_ORIG);
719 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
720 current->pid, current->comm,
721 idle->pid, idle->comm); /* must be idle task! */
722 }
723 }
724
725 /*
726 * Exit an RCU extended quiescent state, which can be either the
727 * idle loop or adaptive-tickless usermode execution.
728 */
729 static void rcu_eqs_exit(bool user)
730 {
731 struct rcu_dynticks *rdtp;
732 long long oldval;
733
734 rdtp = this_cpu_ptr(&rcu_dynticks);
735 oldval = rdtp->dynticks_nesting;
736 WARN_ON_ONCE(oldval < 0);
737 if (oldval & DYNTICK_TASK_NEST_MASK) {
738 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
739 } else {
740 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
741 rcu_eqs_exit_common(oldval, user);
742 }
743 }
744
745 /**
746 * rcu_idle_exit - inform RCU that current CPU is leaving idle
747 *
748 * Exit idle mode, in other words, -enter- the mode in which RCU
749 * read-side critical sections can occur.
750 *
751 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
752 * allow for the possibility of usermode upcalls messing up our count
753 * of interrupt nesting level during the busy period that is just
754 * now starting.
755 */
756 void rcu_idle_exit(void)
757 {
758 unsigned long flags;
759
760 local_irq_save(flags);
761 rcu_eqs_exit(false);
762 rcu_sysidle_exit(0);
763 local_irq_restore(flags);
764 }
765 EXPORT_SYMBOL_GPL(rcu_idle_exit);
766
767 #ifdef CONFIG_RCU_USER_QS
768 /**
769 * rcu_user_exit - inform RCU that we are exiting userspace.
770 *
771 * Exit RCU idle mode while entering the kernel because it can
772 * run a RCU read side critical section anytime.
773 */
774 void rcu_user_exit(void)
775 {
776 rcu_eqs_exit(1);
777 }
778 #endif /* CONFIG_RCU_USER_QS */
779
780 /**
781 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
782 *
783 * Enter an interrupt handler, which might possibly result in exiting
784 * idle mode, in other words, entering the mode in which read-side critical
785 * sections can occur.
786 *
787 * Note that the Linux kernel is fully capable of entering an interrupt
788 * handler that it never exits, for example when doing upcalls to
789 * user mode! This code assumes that the idle loop never does upcalls to
790 * user mode. If your architecture does do upcalls from the idle loop (or
791 * does anything else that results in unbalanced calls to the irq_enter()
792 * and irq_exit() functions), RCU will give you what you deserve, good
793 * and hard. But very infrequently and irreproducibly.
794 *
795 * Use things like work queues to work around this limitation.
796 *
797 * You have been warned.
798 */
799 void rcu_irq_enter(void)
800 {
801 unsigned long flags;
802 struct rcu_dynticks *rdtp;
803 long long oldval;
804
805 local_irq_save(flags);
806 rdtp = this_cpu_ptr(&rcu_dynticks);
807 oldval = rdtp->dynticks_nesting;
808 rdtp->dynticks_nesting++;
809 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
810 if (oldval)
811 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
812 else
813 rcu_eqs_exit_common(oldval, true);
814 rcu_sysidle_exit(1);
815 local_irq_restore(flags);
816 }
817
818 /**
819 * rcu_nmi_enter - inform RCU of entry to NMI context
820 *
821 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
822 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
823 * that the CPU is active. This implementation permits nested NMIs, as
824 * long as the nesting level does not overflow an int. (You will probably
825 * run out of stack space first.)
826 */
827 void rcu_nmi_enter(void)
828 {
829 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
830 int incby = 2;
831
832 /* Complain about underflow. */
833 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
834
835 /*
836 * If idle from RCU viewpoint, atomically increment ->dynticks
837 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
838 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
839 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
840 * to be in the outermost NMI handler that interrupted an RCU-idle
841 * period (observation due to Andy Lutomirski).
842 */
843 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
844 smp_mb__before_atomic(); /* Force delay from prior write. */
845 atomic_inc(&rdtp->dynticks);
846 /* atomic_inc() before later RCU read-side crit sects */
847 smp_mb__after_atomic(); /* See above. */
848 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
849 incby = 1;
850 }
851 rdtp->dynticks_nmi_nesting += incby;
852 barrier();
853 }
854
855 /**
856 * rcu_nmi_exit - inform RCU of exit from NMI context
857 *
858 * If we are returning from the outermost NMI handler that interrupted an
859 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
860 * to let the RCU grace-period handling know that the CPU is back to
861 * being RCU-idle.
862 */
863 void rcu_nmi_exit(void)
864 {
865 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
866
867 /*
868 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
869 * (We are exiting an NMI handler, so RCU better be paying attention
870 * to us!)
871 */
872 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
873 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
874
875 /*
876 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
877 * leave it in non-RCU-idle state.
878 */
879 if (rdtp->dynticks_nmi_nesting != 1) {
880 rdtp->dynticks_nmi_nesting -= 2;
881 return;
882 }
883
884 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
885 rdtp->dynticks_nmi_nesting = 0;
886 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
887 smp_mb__before_atomic(); /* See above. */
888 atomic_inc(&rdtp->dynticks);
889 smp_mb__after_atomic(); /* Force delay to next write. */
890 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
891 }
892
893 /**
894 * __rcu_is_watching - are RCU read-side critical sections safe?
895 *
896 * Return true if RCU is watching the running CPU, which means that
897 * this CPU can safely enter RCU read-side critical sections. Unlike
898 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
899 * least disabled preemption.
900 */
901 bool notrace __rcu_is_watching(void)
902 {
903 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
904 }
905
906 /**
907 * rcu_is_watching - see if RCU thinks that the current CPU is idle
908 *
909 * If the current CPU is in its idle loop and is neither in an interrupt
910 * or NMI handler, return true.
911 */
912 bool notrace rcu_is_watching(void)
913 {
914 bool ret;
915
916 preempt_disable();
917 ret = __rcu_is_watching();
918 preempt_enable();
919 return ret;
920 }
921 EXPORT_SYMBOL_GPL(rcu_is_watching);
922
923 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
924
925 /*
926 * Is the current CPU online? Disable preemption to avoid false positives
927 * that could otherwise happen due to the current CPU number being sampled,
928 * this task being preempted, its old CPU being taken offline, resuming
929 * on some other CPU, then determining that its old CPU is now offline.
930 * It is OK to use RCU on an offline processor during initial boot, hence
931 * the check for rcu_scheduler_fully_active. Note also that it is OK
932 * for a CPU coming online to use RCU for one jiffy prior to marking itself
933 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
934 * offline to continue to use RCU for one jiffy after marking itself
935 * offline in the cpu_online_mask. This leniency is necessary given the
936 * non-atomic nature of the online and offline processing, for example,
937 * the fact that a CPU enters the scheduler after completing the CPU_DYING
938 * notifiers.
939 *
940 * This is also why RCU internally marks CPUs online during the
941 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
942 *
943 * Disable checking if in an NMI handler because we cannot safely report
944 * errors from NMI handlers anyway.
945 */
946 bool rcu_lockdep_current_cpu_online(void)
947 {
948 struct rcu_data *rdp;
949 struct rcu_node *rnp;
950 bool ret;
951
952 if (in_nmi())
953 return true;
954 preempt_disable();
955 rdp = this_cpu_ptr(&rcu_sched_data);
956 rnp = rdp->mynode;
957 ret = (rdp->grpmask & rnp->qsmaskinit) ||
958 !rcu_scheduler_fully_active;
959 preempt_enable();
960 return ret;
961 }
962 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
963
964 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
965
966 /**
967 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
968 *
969 * If the current CPU is idle or running at a first-level (not nested)
970 * interrupt from idle, return true. The caller must have at least
971 * disabled preemption.
972 */
973 static int rcu_is_cpu_rrupt_from_idle(void)
974 {
975 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
976 }
977
978 /*
979 * Snapshot the specified CPU's dynticks counter so that we can later
980 * credit them with an implicit quiescent state. Return 1 if this CPU
981 * is in dynticks idle mode, which is an extended quiescent state.
982 */
983 static int dyntick_save_progress_counter(struct rcu_data *rdp,
984 bool *isidle, unsigned long *maxj)
985 {
986 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
987 rcu_sysidle_check_cpu(rdp, isidle, maxj);
988 if ((rdp->dynticks_snap & 0x1) == 0) {
989 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
990 return 1;
991 } else {
992 if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
993 rdp->mynode->gpnum))
994 ACCESS_ONCE(rdp->gpwrap) = true;
995 return 0;
996 }
997 }
998
999 /*
1000 * Return true if the specified CPU has passed through a quiescent
1001 * state by virtue of being in or having passed through an dynticks
1002 * idle state since the last call to dyntick_save_progress_counter()
1003 * for this same CPU, or by virtue of having been offline.
1004 */
1005 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1006 bool *isidle, unsigned long *maxj)
1007 {
1008 unsigned int curr;
1009 int *rcrmp;
1010 unsigned int snap;
1011
1012 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1013 snap = (unsigned int)rdp->dynticks_snap;
1014
1015 /*
1016 * If the CPU passed through or entered a dynticks idle phase with
1017 * no active irq/NMI handlers, then we can safely pretend that the CPU
1018 * already acknowledged the request to pass through a quiescent
1019 * state. Either way, that CPU cannot possibly be in an RCU
1020 * read-side critical section that started before the beginning
1021 * of the current RCU grace period.
1022 */
1023 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1024 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1025 rdp->dynticks_fqs++;
1026 return 1;
1027 }
1028
1029 /*
1030 * Check for the CPU being offline, but only if the grace period
1031 * is old enough. We don't need to worry about the CPU changing
1032 * state: If we see it offline even once, it has been through a
1033 * quiescent state.
1034 *
1035 * The reason for insisting that the grace period be at least
1036 * one jiffy old is that CPUs that are not quite online and that
1037 * have just gone offline can still execute RCU read-side critical
1038 * sections.
1039 */
1040 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1041 return 0; /* Grace period is not old enough. */
1042 barrier();
1043 if (cpu_is_offline(rdp->cpu)) {
1044 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1045 rdp->offline_fqs++;
1046 return 1;
1047 }
1048
1049 /*
1050 * A CPU running for an extended time within the kernel can
1051 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1052 * even context-switching back and forth between a pair of
1053 * in-kernel CPU-bound tasks cannot advance grace periods.
1054 * So if the grace period is old enough, make the CPU pay attention.
1055 * Note that the unsynchronized assignments to the per-CPU
1056 * rcu_sched_qs_mask variable are safe. Yes, setting of
1057 * bits can be lost, but they will be set again on the next
1058 * force-quiescent-state pass. So lost bit sets do not result
1059 * in incorrect behavior, merely in a grace period lasting
1060 * a few jiffies longer than it might otherwise. Because
1061 * there are at most four threads involved, and because the
1062 * updates are only once every few jiffies, the probability of
1063 * lossage (and thus of slight grace-period extension) is
1064 * quite low.
1065 *
1066 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1067 * is set too high, we override with half of the RCU CPU stall
1068 * warning delay.
1069 */
1070 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1071 if (ULONG_CMP_GE(jiffies,
1072 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1073 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1074 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1075 ACCESS_ONCE(rdp->cond_resched_completed) =
1076 ACCESS_ONCE(rdp->mynode->completed);
1077 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1078 ACCESS_ONCE(*rcrmp) =
1079 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1080 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1081 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1082 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1083 /* Time to beat on that CPU again! */
1084 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1085 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1086 }
1087 }
1088
1089 return 0;
1090 }
1091
1092 static void record_gp_stall_check_time(struct rcu_state *rsp)
1093 {
1094 unsigned long j = jiffies;
1095 unsigned long j1;
1096
1097 rsp->gp_start = j;
1098 smp_wmb(); /* Record start time before stall time. */
1099 j1 = rcu_jiffies_till_stall_check();
1100 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1101 rsp->jiffies_resched = j + j1 / 2;
1102 rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
1103 }
1104
1105 /*
1106 * Complain about starvation of grace-period kthread.
1107 */
1108 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1109 {
1110 unsigned long gpa;
1111 unsigned long j;
1112
1113 j = jiffies;
1114 gpa = ACCESS_ONCE(rsp->gp_activity);
1115 if (j - gpa > 2 * HZ)
1116 pr_err("%s kthread starved for %ld jiffies!\n",
1117 rsp->name, j - gpa);
1118 }
1119
1120 /*
1121 * Dump stacks of all tasks running on stalled CPUs.
1122 */
1123 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1124 {
1125 int cpu;
1126 unsigned long flags;
1127 struct rcu_node *rnp;
1128
1129 rcu_for_each_leaf_node(rsp, rnp) {
1130 raw_spin_lock_irqsave(&rnp->lock, flags);
1131 if (rnp->qsmask != 0) {
1132 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1133 if (rnp->qsmask & (1UL << cpu))
1134 dump_cpu_task(rnp->grplo + cpu);
1135 }
1136 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1137 }
1138 }
1139
1140 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1141 {
1142 int cpu;
1143 long delta;
1144 unsigned long flags;
1145 unsigned long gpa;
1146 unsigned long j;
1147 int ndetected = 0;
1148 struct rcu_node *rnp = rcu_get_root(rsp);
1149 long totqlen = 0;
1150
1151 /* Only let one CPU complain about others per time interval. */
1152
1153 raw_spin_lock_irqsave(&rnp->lock, flags);
1154 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1155 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1156 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1157 return;
1158 }
1159 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1160 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1161
1162 /*
1163 * OK, time to rat on our buddy...
1164 * See Documentation/RCU/stallwarn.txt for info on how to debug
1165 * RCU CPU stall warnings.
1166 */
1167 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1168 rsp->name);
1169 print_cpu_stall_info_begin();
1170 rcu_for_each_leaf_node(rsp, rnp) {
1171 raw_spin_lock_irqsave(&rnp->lock, flags);
1172 ndetected += rcu_print_task_stall(rnp);
1173 if (rnp->qsmask != 0) {
1174 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1175 if (rnp->qsmask & (1UL << cpu)) {
1176 print_cpu_stall_info(rsp,
1177 rnp->grplo + cpu);
1178 ndetected++;
1179 }
1180 }
1181 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1182 }
1183
1184 print_cpu_stall_info_end();
1185 for_each_possible_cpu(cpu)
1186 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1187 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1188 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1189 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1190 if (ndetected) {
1191 rcu_dump_cpu_stacks(rsp);
1192 } else {
1193 if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
1194 ACCESS_ONCE(rsp->completed) == gpnum) {
1195 pr_err("INFO: Stall ended before state dump start\n");
1196 } else {
1197 j = jiffies;
1198 gpa = ACCESS_ONCE(rsp->gp_activity);
1199 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld\n",
1200 rsp->name, j - gpa, j, gpa,
1201 jiffies_till_next_fqs);
1202 /* In this case, the current CPU might be at fault. */
1203 sched_show_task(current);
1204 }
1205 }
1206
1207 /* Complain about tasks blocking the grace period. */
1208 rcu_print_detail_task_stall(rsp);
1209
1210 rcu_check_gp_kthread_starvation(rsp);
1211
1212 force_quiescent_state(rsp); /* Kick them all. */
1213 }
1214
1215 static void print_cpu_stall(struct rcu_state *rsp)
1216 {
1217 int cpu;
1218 unsigned long flags;
1219 struct rcu_node *rnp = rcu_get_root(rsp);
1220 long totqlen = 0;
1221
1222 /*
1223 * OK, time to rat on ourselves...
1224 * See Documentation/RCU/stallwarn.txt for info on how to debug
1225 * RCU CPU stall warnings.
1226 */
1227 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1228 print_cpu_stall_info_begin();
1229 print_cpu_stall_info(rsp, smp_processor_id());
1230 print_cpu_stall_info_end();
1231 for_each_possible_cpu(cpu)
1232 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1233 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1234 jiffies - rsp->gp_start,
1235 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1236
1237 rcu_check_gp_kthread_starvation(rsp);
1238
1239 rcu_dump_cpu_stacks(rsp);
1240
1241 raw_spin_lock_irqsave(&rnp->lock, flags);
1242 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1243 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1244 3 * rcu_jiffies_till_stall_check() + 3;
1245 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1246
1247 /*
1248 * Attempt to revive the RCU machinery by forcing a context switch.
1249 *
1250 * A context switch would normally allow the RCU state machine to make
1251 * progress and it could be we're stuck in kernel space without context
1252 * switches for an entirely unreasonable amount of time.
1253 */
1254 resched_cpu(smp_processor_id());
1255 }
1256
1257 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1258 {
1259 unsigned long completed;
1260 unsigned long gpnum;
1261 unsigned long gps;
1262 unsigned long j;
1263 unsigned long js;
1264 struct rcu_node *rnp;
1265
1266 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1267 return;
1268 j = jiffies;
1269
1270 /*
1271 * Lots of memory barriers to reject false positives.
1272 *
1273 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1274 * then rsp->gp_start, and finally rsp->completed. These values
1275 * are updated in the opposite order with memory barriers (or
1276 * equivalent) during grace-period initialization and cleanup.
1277 * Now, a false positive can occur if we get an new value of
1278 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1279 * the memory barriers, the only way that this can happen is if one
1280 * grace period ends and another starts between these two fetches.
1281 * Detect this by comparing rsp->completed with the previous fetch
1282 * from rsp->gpnum.
1283 *
1284 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1285 * and rsp->gp_start suffice to forestall false positives.
1286 */
1287 gpnum = ACCESS_ONCE(rsp->gpnum);
1288 smp_rmb(); /* Pick up ->gpnum first... */
1289 js = ACCESS_ONCE(rsp->jiffies_stall);
1290 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1291 gps = ACCESS_ONCE(rsp->gp_start);
1292 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1293 completed = ACCESS_ONCE(rsp->completed);
1294 if (ULONG_CMP_GE(completed, gpnum) ||
1295 ULONG_CMP_LT(j, js) ||
1296 ULONG_CMP_GE(gps, js))
1297 return; /* No stall or GP completed since entering function. */
1298 rnp = rdp->mynode;
1299 if (rcu_gp_in_progress(rsp) &&
1300 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1301
1302 /* We haven't checked in, so go dump stack. */
1303 print_cpu_stall(rsp);
1304
1305 } else if (rcu_gp_in_progress(rsp) &&
1306 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1307
1308 /* They had a few time units to dump stack, so complain. */
1309 print_other_cpu_stall(rsp, gpnum);
1310 }
1311 }
1312
1313 /**
1314 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1315 *
1316 * Set the stall-warning timeout way off into the future, thus preventing
1317 * any RCU CPU stall-warning messages from appearing in the current set of
1318 * RCU grace periods.
1319 *
1320 * The caller must disable hard irqs.
1321 */
1322 void rcu_cpu_stall_reset(void)
1323 {
1324 struct rcu_state *rsp;
1325
1326 for_each_rcu_flavor(rsp)
1327 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1328 }
1329
1330 /*
1331 * Initialize the specified rcu_data structure's callback list to empty.
1332 */
1333 static void init_callback_list(struct rcu_data *rdp)
1334 {
1335 int i;
1336
1337 if (init_nocb_callback_list(rdp))
1338 return;
1339 rdp->nxtlist = NULL;
1340 for (i = 0; i < RCU_NEXT_SIZE; i++)
1341 rdp->nxttail[i] = &rdp->nxtlist;
1342 }
1343
1344 /*
1345 * Determine the value that ->completed will have at the end of the
1346 * next subsequent grace period. This is used to tag callbacks so that
1347 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1348 * been dyntick-idle for an extended period with callbacks under the
1349 * influence of RCU_FAST_NO_HZ.
1350 *
1351 * The caller must hold rnp->lock with interrupts disabled.
1352 */
1353 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1354 struct rcu_node *rnp)
1355 {
1356 /*
1357 * If RCU is idle, we just wait for the next grace period.
1358 * But we can only be sure that RCU is idle if we are looking
1359 * at the root rcu_node structure -- otherwise, a new grace
1360 * period might have started, but just not yet gotten around
1361 * to initializing the current non-root rcu_node structure.
1362 */
1363 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1364 return rnp->completed + 1;
1365
1366 /*
1367 * Otherwise, wait for a possible partial grace period and
1368 * then the subsequent full grace period.
1369 */
1370 return rnp->completed + 2;
1371 }
1372
1373 /*
1374 * Trace-event helper function for rcu_start_future_gp() and
1375 * rcu_nocb_wait_gp().
1376 */
1377 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1378 unsigned long c, const char *s)
1379 {
1380 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1381 rnp->completed, c, rnp->level,
1382 rnp->grplo, rnp->grphi, s);
1383 }
1384
1385 /*
1386 * Start some future grace period, as needed to handle newly arrived
1387 * callbacks. The required future grace periods are recorded in each
1388 * rcu_node structure's ->need_future_gp field. Returns true if there
1389 * is reason to awaken the grace-period kthread.
1390 *
1391 * The caller must hold the specified rcu_node structure's ->lock.
1392 */
1393 static bool __maybe_unused
1394 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1395 unsigned long *c_out)
1396 {
1397 unsigned long c;
1398 int i;
1399 bool ret = false;
1400 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1401
1402 /*
1403 * Pick up grace-period number for new callbacks. If this
1404 * grace period is already marked as needed, return to the caller.
1405 */
1406 c = rcu_cbs_completed(rdp->rsp, rnp);
1407 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1408 if (rnp->need_future_gp[c & 0x1]) {
1409 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1410 goto out;
1411 }
1412
1413 /*
1414 * If either this rcu_node structure or the root rcu_node structure
1415 * believe that a grace period is in progress, then we must wait
1416 * for the one following, which is in "c". Because our request
1417 * will be noticed at the end of the current grace period, we don't
1418 * need to explicitly start one. We only do the lockless check
1419 * of rnp_root's fields if the current rcu_node structure thinks
1420 * there is no grace period in flight, and because we hold rnp->lock,
1421 * the only possible change is when rnp_root's two fields are
1422 * equal, in which case rnp_root->gpnum might be concurrently
1423 * incremented. But that is OK, as it will just result in our
1424 * doing some extra useless work.
1425 */
1426 if (rnp->gpnum != rnp->completed ||
1427 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1428 rnp->need_future_gp[c & 0x1]++;
1429 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1430 goto out;
1431 }
1432
1433 /*
1434 * There might be no grace period in progress. If we don't already
1435 * hold it, acquire the root rcu_node structure's lock in order to
1436 * start one (if needed).
1437 */
1438 if (rnp != rnp_root) {
1439 raw_spin_lock(&rnp_root->lock);
1440 smp_mb__after_unlock_lock();
1441 }
1442
1443 /*
1444 * Get a new grace-period number. If there really is no grace
1445 * period in progress, it will be smaller than the one we obtained
1446 * earlier. Adjust callbacks as needed. Note that even no-CBs
1447 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1448 */
1449 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1450 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1451 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1452 rdp->nxtcompleted[i] = c;
1453
1454 /*
1455 * If the needed for the required grace period is already
1456 * recorded, trace and leave.
1457 */
1458 if (rnp_root->need_future_gp[c & 0x1]) {
1459 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1460 goto unlock_out;
1461 }
1462
1463 /* Record the need for the future grace period. */
1464 rnp_root->need_future_gp[c & 0x1]++;
1465
1466 /* If a grace period is not already in progress, start one. */
1467 if (rnp_root->gpnum != rnp_root->completed) {
1468 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1469 } else {
1470 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1471 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1472 }
1473 unlock_out:
1474 if (rnp != rnp_root)
1475 raw_spin_unlock(&rnp_root->lock);
1476 out:
1477 if (c_out != NULL)
1478 *c_out = c;
1479 return ret;
1480 }
1481
1482 /*
1483 * Clean up any old requests for the just-ended grace period. Also return
1484 * whether any additional grace periods have been requested. Also invoke
1485 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1486 * waiting for this grace period to complete.
1487 */
1488 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1489 {
1490 int c = rnp->completed;
1491 int needmore;
1492 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1493
1494 rcu_nocb_gp_cleanup(rsp, rnp);
1495 rnp->need_future_gp[c & 0x1] = 0;
1496 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1497 trace_rcu_future_gp(rnp, rdp, c,
1498 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1499 return needmore;
1500 }
1501
1502 /*
1503 * Awaken the grace-period kthread for the specified flavor of RCU.
1504 * Don't do a self-awaken, and don't bother awakening when there is
1505 * nothing for the grace-period kthread to do (as in several CPUs
1506 * raced to awaken, and we lost), and finally don't try to awaken
1507 * a kthread that has not yet been created.
1508 */
1509 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1510 {
1511 if (current == rsp->gp_kthread ||
1512 !ACCESS_ONCE(rsp->gp_flags) ||
1513 !rsp->gp_kthread)
1514 return;
1515 wake_up(&rsp->gp_wq);
1516 }
1517
1518 /*
1519 * If there is room, assign a ->completed number to any callbacks on
1520 * this CPU that have not already been assigned. Also accelerate any
1521 * callbacks that were previously assigned a ->completed number that has
1522 * since proven to be too conservative, which can happen if callbacks get
1523 * assigned a ->completed number while RCU is idle, but with reference to
1524 * a non-root rcu_node structure. This function is idempotent, so it does
1525 * not hurt to call it repeatedly. Returns an flag saying that we should
1526 * awaken the RCU grace-period kthread.
1527 *
1528 * The caller must hold rnp->lock with interrupts disabled.
1529 */
1530 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1531 struct rcu_data *rdp)
1532 {
1533 unsigned long c;
1534 int i;
1535 bool ret;
1536
1537 /* If the CPU has no callbacks, nothing to do. */
1538 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1539 return false;
1540
1541 /*
1542 * Starting from the sublist containing the callbacks most
1543 * recently assigned a ->completed number and working down, find the
1544 * first sublist that is not assignable to an upcoming grace period.
1545 * Such a sublist has something in it (first two tests) and has
1546 * a ->completed number assigned that will complete sooner than
1547 * the ->completed number for newly arrived callbacks (last test).
1548 *
1549 * The key point is that any later sublist can be assigned the
1550 * same ->completed number as the newly arrived callbacks, which
1551 * means that the callbacks in any of these later sublist can be
1552 * grouped into a single sublist, whether or not they have already
1553 * been assigned a ->completed number.
1554 */
1555 c = rcu_cbs_completed(rsp, rnp);
1556 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1557 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1558 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1559 break;
1560
1561 /*
1562 * If there are no sublist for unassigned callbacks, leave.
1563 * At the same time, advance "i" one sublist, so that "i" will
1564 * index into the sublist where all the remaining callbacks should
1565 * be grouped into.
1566 */
1567 if (++i >= RCU_NEXT_TAIL)
1568 return false;
1569
1570 /*
1571 * Assign all subsequent callbacks' ->completed number to the next
1572 * full grace period and group them all in the sublist initially
1573 * indexed by "i".
1574 */
1575 for (; i <= RCU_NEXT_TAIL; i++) {
1576 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1577 rdp->nxtcompleted[i] = c;
1578 }
1579 /* Record any needed additional grace periods. */
1580 ret = rcu_start_future_gp(rnp, rdp, NULL);
1581
1582 /* Trace depending on how much we were able to accelerate. */
1583 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1584 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1585 else
1586 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1587 return ret;
1588 }
1589
1590 /*
1591 * Move any callbacks whose grace period has completed to the
1592 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1593 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1594 * sublist. This function is idempotent, so it does not hurt to
1595 * invoke it repeatedly. As long as it is not invoked -too- often...
1596 * Returns true if the RCU grace-period kthread needs to be awakened.
1597 *
1598 * The caller must hold rnp->lock with interrupts disabled.
1599 */
1600 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1601 struct rcu_data *rdp)
1602 {
1603 int i, j;
1604
1605 /* If the CPU has no callbacks, nothing to do. */
1606 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1607 return false;
1608
1609 /*
1610 * Find all callbacks whose ->completed numbers indicate that they
1611 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1612 */
1613 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1614 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1615 break;
1616 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1617 }
1618 /* Clean up any sublist tail pointers that were misordered above. */
1619 for (j = RCU_WAIT_TAIL; j < i; j++)
1620 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1621
1622 /* Copy down callbacks to fill in empty sublists. */
1623 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1624 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1625 break;
1626 rdp->nxttail[j] = rdp->nxttail[i];
1627 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1628 }
1629
1630 /* Classify any remaining callbacks. */
1631 return rcu_accelerate_cbs(rsp, rnp, rdp);
1632 }
1633
1634 /*
1635 * Update CPU-local rcu_data state to record the beginnings and ends of
1636 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1637 * structure corresponding to the current CPU, and must have irqs disabled.
1638 * Returns true if the grace-period kthread needs to be awakened.
1639 */
1640 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1641 struct rcu_data *rdp)
1642 {
1643 bool ret;
1644
1645 /* Handle the ends of any preceding grace periods first. */
1646 if (rdp->completed == rnp->completed &&
1647 !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1648
1649 /* No grace period end, so just accelerate recent callbacks. */
1650 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1651
1652 } else {
1653
1654 /* Advance callbacks. */
1655 ret = rcu_advance_cbs(rsp, rnp, rdp);
1656
1657 /* Remember that we saw this grace-period completion. */
1658 rdp->completed = rnp->completed;
1659 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1660 }
1661
1662 if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1663 /*
1664 * If the current grace period is waiting for this CPU,
1665 * set up to detect a quiescent state, otherwise don't
1666 * go looking for one.
1667 */
1668 rdp->gpnum = rnp->gpnum;
1669 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1670 rdp->passed_quiesce = 0;
1671 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1672 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1673 zero_cpu_stall_ticks(rdp);
1674 ACCESS_ONCE(rdp->gpwrap) = false;
1675 }
1676 return ret;
1677 }
1678
1679 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1680 {
1681 unsigned long flags;
1682 bool needwake;
1683 struct rcu_node *rnp;
1684
1685 local_irq_save(flags);
1686 rnp = rdp->mynode;
1687 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1688 rdp->completed == ACCESS_ONCE(rnp->completed) &&
1689 !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
1690 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1691 local_irq_restore(flags);
1692 return;
1693 }
1694 smp_mb__after_unlock_lock();
1695 needwake = __note_gp_changes(rsp, rnp, rdp);
1696 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1697 if (needwake)
1698 rcu_gp_kthread_wake(rsp);
1699 }
1700
1701 /*
1702 * Initialize a new grace period. Return 0 if no grace period required.
1703 */
1704 static int rcu_gp_init(struct rcu_state *rsp)
1705 {
1706 struct rcu_data *rdp;
1707 struct rcu_node *rnp = rcu_get_root(rsp);
1708
1709 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1710 rcu_bind_gp_kthread();
1711 raw_spin_lock_irq(&rnp->lock);
1712 smp_mb__after_unlock_lock();
1713 if (!ACCESS_ONCE(rsp->gp_flags)) {
1714 /* Spurious wakeup, tell caller to go back to sleep. */
1715 raw_spin_unlock_irq(&rnp->lock);
1716 return 0;
1717 }
1718 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1719
1720 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1721 /*
1722 * Grace period already in progress, don't start another.
1723 * Not supposed to be able to happen.
1724 */
1725 raw_spin_unlock_irq(&rnp->lock);
1726 return 0;
1727 }
1728
1729 /* Advance to a new grace period and initialize state. */
1730 record_gp_stall_check_time(rsp);
1731 /* Record GP times before starting GP, hence smp_store_release(). */
1732 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1733 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1734 raw_spin_unlock_irq(&rnp->lock);
1735
1736 /* Exclude any concurrent CPU-hotplug operations. */
1737 mutex_lock(&rsp->onoff_mutex);
1738 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1739
1740 /*
1741 * Set the quiescent-state-needed bits in all the rcu_node
1742 * structures for all currently online CPUs in breadth-first order,
1743 * starting from the root rcu_node structure, relying on the layout
1744 * of the tree within the rsp->node[] array. Note that other CPUs
1745 * will access only the leaves of the hierarchy, thus seeing that no
1746 * grace period is in progress, at least until the corresponding
1747 * leaf node has been initialized. In addition, we have excluded
1748 * CPU-hotplug operations.
1749 *
1750 * The grace period cannot complete until the initialization
1751 * process finishes, because this kthread handles both.
1752 */
1753 rcu_for_each_node_breadth_first(rsp, rnp) {
1754 raw_spin_lock_irq(&rnp->lock);
1755 smp_mb__after_unlock_lock();
1756 rdp = this_cpu_ptr(rsp->rda);
1757 rcu_preempt_check_blocked_tasks(rnp);
1758 rnp->qsmask = rnp->qsmaskinit;
1759 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1760 WARN_ON_ONCE(rnp->completed != rsp->completed);
1761 ACCESS_ONCE(rnp->completed) = rsp->completed;
1762 if (rnp == rdp->mynode)
1763 (void)__note_gp_changes(rsp, rnp, rdp);
1764 rcu_preempt_boost_start_gp(rnp);
1765 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1766 rnp->level, rnp->grplo,
1767 rnp->grphi, rnp->qsmask);
1768 raw_spin_unlock_irq(&rnp->lock);
1769 cond_resched_rcu_qs();
1770 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1771 }
1772
1773 mutex_unlock(&rsp->onoff_mutex);
1774 return 1;
1775 }
1776
1777 /*
1778 * Do one round of quiescent-state forcing.
1779 */
1780 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1781 {
1782 int fqs_state = fqs_state_in;
1783 bool isidle = false;
1784 unsigned long maxj;
1785 struct rcu_node *rnp = rcu_get_root(rsp);
1786
1787 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1788 rsp->n_force_qs++;
1789 if (fqs_state == RCU_SAVE_DYNTICK) {
1790 /* Collect dyntick-idle snapshots. */
1791 if (is_sysidle_rcu_state(rsp)) {
1792 isidle = true;
1793 maxj = jiffies - ULONG_MAX / 4;
1794 }
1795 force_qs_rnp(rsp, dyntick_save_progress_counter,
1796 &isidle, &maxj);
1797 rcu_sysidle_report_gp(rsp, isidle, maxj);
1798 fqs_state = RCU_FORCE_QS;
1799 } else {
1800 /* Handle dyntick-idle and offline CPUs. */
1801 isidle = false;
1802 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1803 }
1804 /* Clear flag to prevent immediate re-entry. */
1805 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1806 raw_spin_lock_irq(&rnp->lock);
1807 smp_mb__after_unlock_lock();
1808 ACCESS_ONCE(rsp->gp_flags) =
1809 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1810 raw_spin_unlock_irq(&rnp->lock);
1811 }
1812 return fqs_state;
1813 }
1814
1815 /*
1816 * Clean up after the old grace period.
1817 */
1818 static void rcu_gp_cleanup(struct rcu_state *rsp)
1819 {
1820 unsigned long gp_duration;
1821 bool needgp = false;
1822 int nocb = 0;
1823 struct rcu_data *rdp;
1824 struct rcu_node *rnp = rcu_get_root(rsp);
1825
1826 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1827 raw_spin_lock_irq(&rnp->lock);
1828 smp_mb__after_unlock_lock();
1829 gp_duration = jiffies - rsp->gp_start;
1830 if (gp_duration > rsp->gp_max)
1831 rsp->gp_max = gp_duration;
1832
1833 /*
1834 * We know the grace period is complete, but to everyone else
1835 * it appears to still be ongoing. But it is also the case
1836 * that to everyone else it looks like there is nothing that
1837 * they can do to advance the grace period. It is therefore
1838 * safe for us to drop the lock in order to mark the grace
1839 * period as completed in all of the rcu_node structures.
1840 */
1841 raw_spin_unlock_irq(&rnp->lock);
1842
1843 /*
1844 * Propagate new ->completed value to rcu_node structures so
1845 * that other CPUs don't have to wait until the start of the next
1846 * grace period to process their callbacks. This also avoids
1847 * some nasty RCU grace-period initialization races by forcing
1848 * the end of the current grace period to be completely recorded in
1849 * all of the rcu_node structures before the beginning of the next
1850 * grace period is recorded in any of the rcu_node structures.
1851 */
1852 rcu_for_each_node_breadth_first(rsp, rnp) {
1853 raw_spin_lock_irq(&rnp->lock);
1854 smp_mb__after_unlock_lock();
1855 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1856 rdp = this_cpu_ptr(rsp->rda);
1857 if (rnp == rdp->mynode)
1858 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1859 /* smp_mb() provided by prior unlock-lock pair. */
1860 nocb += rcu_future_gp_cleanup(rsp, rnp);
1861 raw_spin_unlock_irq(&rnp->lock);
1862 cond_resched_rcu_qs();
1863 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1864 }
1865 rnp = rcu_get_root(rsp);
1866 raw_spin_lock_irq(&rnp->lock);
1867 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1868 rcu_nocb_gp_set(rnp, nocb);
1869
1870 /* Declare grace period done. */
1871 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1872 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1873 rsp->fqs_state = RCU_GP_IDLE;
1874 rdp = this_cpu_ptr(rsp->rda);
1875 /* Advance CBs to reduce false positives below. */
1876 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1877 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1878 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1879 trace_rcu_grace_period(rsp->name,
1880 ACCESS_ONCE(rsp->gpnum),
1881 TPS("newreq"));
1882 }
1883 raw_spin_unlock_irq(&rnp->lock);
1884 }
1885
1886 /*
1887 * Body of kthread that handles grace periods.
1888 */
1889 static int __noreturn rcu_gp_kthread(void *arg)
1890 {
1891 int fqs_state;
1892 int gf;
1893 unsigned long j;
1894 int ret;
1895 struct rcu_state *rsp = arg;
1896 struct rcu_node *rnp = rcu_get_root(rsp);
1897
1898 for (;;) {
1899
1900 /* Handle grace-period start. */
1901 for (;;) {
1902 trace_rcu_grace_period(rsp->name,
1903 ACCESS_ONCE(rsp->gpnum),
1904 TPS("reqwait"));
1905 rsp->gp_state = RCU_GP_WAIT_GPS;
1906 wait_event_interruptible(rsp->gp_wq,
1907 ACCESS_ONCE(rsp->gp_flags) &
1908 RCU_GP_FLAG_INIT);
1909 /* Locking provides needed memory barrier. */
1910 if (rcu_gp_init(rsp))
1911 break;
1912 cond_resched_rcu_qs();
1913 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1914 WARN_ON(signal_pending(current));
1915 trace_rcu_grace_period(rsp->name,
1916 ACCESS_ONCE(rsp->gpnum),
1917 TPS("reqwaitsig"));
1918 }
1919
1920 /* Handle quiescent-state forcing. */
1921 fqs_state = RCU_SAVE_DYNTICK;
1922 j = jiffies_till_first_fqs;
1923 if (j > HZ) {
1924 j = HZ;
1925 jiffies_till_first_fqs = HZ;
1926 }
1927 ret = 0;
1928 for (;;) {
1929 if (!ret)
1930 rsp->jiffies_force_qs = jiffies + j;
1931 trace_rcu_grace_period(rsp->name,
1932 ACCESS_ONCE(rsp->gpnum),
1933 TPS("fqswait"));
1934 rsp->gp_state = RCU_GP_WAIT_FQS;
1935 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1936 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1937 RCU_GP_FLAG_FQS) ||
1938 (!ACCESS_ONCE(rnp->qsmask) &&
1939 !rcu_preempt_blocked_readers_cgp(rnp)),
1940 j);
1941 /* Locking provides needed memory barriers. */
1942 /* If grace period done, leave loop. */
1943 if (!ACCESS_ONCE(rnp->qsmask) &&
1944 !rcu_preempt_blocked_readers_cgp(rnp))
1945 break;
1946 /* If time for quiescent-state forcing, do it. */
1947 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1948 (gf & RCU_GP_FLAG_FQS)) {
1949 trace_rcu_grace_period(rsp->name,
1950 ACCESS_ONCE(rsp->gpnum),
1951 TPS("fqsstart"));
1952 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1953 trace_rcu_grace_period(rsp->name,
1954 ACCESS_ONCE(rsp->gpnum),
1955 TPS("fqsend"));
1956 cond_resched_rcu_qs();
1957 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1958 } else {
1959 /* Deal with stray signal. */
1960 cond_resched_rcu_qs();
1961 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1962 WARN_ON(signal_pending(current));
1963 trace_rcu_grace_period(rsp->name,
1964 ACCESS_ONCE(rsp->gpnum),
1965 TPS("fqswaitsig"));
1966 }
1967 j = jiffies_till_next_fqs;
1968 if (j > HZ) {
1969 j = HZ;
1970 jiffies_till_next_fqs = HZ;
1971 } else if (j < 1) {
1972 j = 1;
1973 jiffies_till_next_fqs = 1;
1974 }
1975 }
1976
1977 /* Handle grace-period end. */
1978 rcu_gp_cleanup(rsp);
1979 }
1980 }
1981
1982 /*
1983 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1984 * in preparation for detecting the next grace period. The caller must hold
1985 * the root node's ->lock and hard irqs must be disabled.
1986 *
1987 * Note that it is legal for a dying CPU (which is marked as offline) to
1988 * invoke this function. This can happen when the dying CPU reports its
1989 * quiescent state.
1990 *
1991 * Returns true if the grace-period kthread must be awakened.
1992 */
1993 static bool
1994 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1995 struct rcu_data *rdp)
1996 {
1997 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1998 /*
1999 * Either we have not yet spawned the grace-period
2000 * task, this CPU does not need another grace period,
2001 * or a grace period is already in progress.
2002 * Either way, don't start a new grace period.
2003 */
2004 return false;
2005 }
2006 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
2007 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
2008 TPS("newreq"));
2009
2010 /*
2011 * We can't do wakeups while holding the rnp->lock, as that
2012 * could cause possible deadlocks with the rq->lock. Defer
2013 * the wakeup to our caller.
2014 */
2015 return true;
2016 }
2017
2018 /*
2019 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2020 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2021 * is invoked indirectly from rcu_advance_cbs(), which would result in
2022 * endless recursion -- or would do so if it wasn't for the self-deadlock
2023 * that is encountered beforehand.
2024 *
2025 * Returns true if the grace-period kthread needs to be awakened.
2026 */
2027 static bool rcu_start_gp(struct rcu_state *rsp)
2028 {
2029 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2030 struct rcu_node *rnp = rcu_get_root(rsp);
2031 bool ret = false;
2032
2033 /*
2034 * If there is no grace period in progress right now, any
2035 * callbacks we have up to this point will be satisfied by the
2036 * next grace period. Also, advancing the callbacks reduces the
2037 * probability of false positives from cpu_needs_another_gp()
2038 * resulting in pointless grace periods. So, advance callbacks
2039 * then start the grace period!
2040 */
2041 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2042 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2043 return ret;
2044 }
2045
2046 /*
2047 * Report a full set of quiescent states to the specified rcu_state
2048 * data structure. This involves cleaning up after the prior grace
2049 * period and letting rcu_start_gp() start up the next grace period
2050 * if one is needed. Note that the caller must hold rnp->lock, which
2051 * is released before return.
2052 */
2053 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2054 __releases(rcu_get_root(rsp)->lock)
2055 {
2056 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2057 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2058 rcu_gp_kthread_wake(rsp);
2059 }
2060
2061 /*
2062 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2063 * Allows quiescent states for a group of CPUs to be reported at one go
2064 * to the specified rcu_node structure, though all the CPUs in the group
2065 * must be represented by the same rcu_node structure (which need not be
2066 * a leaf rcu_node structure, though it often will be). That structure's
2067 * lock must be held upon entry, and it is released before return.
2068 */
2069 static void
2070 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2071 struct rcu_node *rnp, unsigned long flags)
2072 __releases(rnp->lock)
2073 {
2074 struct rcu_node *rnp_c;
2075
2076 /* Walk up the rcu_node hierarchy. */
2077 for (;;) {
2078 if (!(rnp->qsmask & mask)) {
2079
2080 /* Our bit has already been cleared, so done. */
2081 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2082 return;
2083 }
2084 rnp->qsmask &= ~mask;
2085 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2086 mask, rnp->qsmask, rnp->level,
2087 rnp->grplo, rnp->grphi,
2088 !!rnp->gp_tasks);
2089 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2090
2091 /* Other bits still set at this level, so done. */
2092 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2093 return;
2094 }
2095 mask = rnp->grpmask;
2096 if (rnp->parent == NULL) {
2097
2098 /* No more levels. Exit loop holding root lock. */
2099
2100 break;
2101 }
2102 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2103 rnp_c = rnp;
2104 rnp = rnp->parent;
2105 raw_spin_lock_irqsave(&rnp->lock, flags);
2106 smp_mb__after_unlock_lock();
2107 WARN_ON_ONCE(rnp_c->qsmask);
2108 }
2109
2110 /*
2111 * Get here if we are the last CPU to pass through a quiescent
2112 * state for this grace period. Invoke rcu_report_qs_rsp()
2113 * to clean up and start the next grace period if one is needed.
2114 */
2115 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2116 }
2117
2118 /*
2119 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2120 * structure. This must be either called from the specified CPU, or
2121 * called when the specified CPU is known to be offline (and when it is
2122 * also known that no other CPU is concurrently trying to help the offline
2123 * CPU). The lastcomp argument is used to make sure we are still in the
2124 * grace period of interest. We don't want to end the current grace period
2125 * based on quiescent states detected in an earlier grace period!
2126 */
2127 static void
2128 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2129 {
2130 unsigned long flags;
2131 unsigned long mask;
2132 bool needwake;
2133 struct rcu_node *rnp;
2134
2135 rnp = rdp->mynode;
2136 raw_spin_lock_irqsave(&rnp->lock, flags);
2137 smp_mb__after_unlock_lock();
2138 if ((rdp->passed_quiesce == 0 &&
2139 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2140 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2141 rdp->gpwrap) {
2142
2143 /*
2144 * The grace period in which this quiescent state was
2145 * recorded has ended, so don't report it upwards.
2146 * We will instead need a new quiescent state that lies
2147 * within the current grace period.
2148 */
2149 rdp->passed_quiesce = 0; /* need qs for new gp. */
2150 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2151 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2152 return;
2153 }
2154 mask = rdp->grpmask;
2155 if ((rnp->qsmask & mask) == 0) {
2156 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2157 } else {
2158 rdp->qs_pending = 0;
2159
2160 /*
2161 * This GP can't end until cpu checks in, so all of our
2162 * callbacks can be processed during the next GP.
2163 */
2164 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2165
2166 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
2167 if (needwake)
2168 rcu_gp_kthread_wake(rsp);
2169 }
2170 }
2171
2172 /*
2173 * Check to see if there is a new grace period of which this CPU
2174 * is not yet aware, and if so, set up local rcu_data state for it.
2175 * Otherwise, see if this CPU has just passed through its first
2176 * quiescent state for this grace period, and record that fact if so.
2177 */
2178 static void
2179 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2180 {
2181 /* Check for grace-period ends and beginnings. */
2182 note_gp_changes(rsp, rdp);
2183
2184 /*
2185 * Does this CPU still need to do its part for current grace period?
2186 * If no, return and let the other CPUs do their part as well.
2187 */
2188 if (!rdp->qs_pending)
2189 return;
2190
2191 /*
2192 * Was there a quiescent state since the beginning of the grace
2193 * period? If no, then exit and wait for the next call.
2194 */
2195 if (!rdp->passed_quiesce &&
2196 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2197 return;
2198
2199 /*
2200 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2201 * judge of that).
2202 */
2203 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2204 }
2205
2206 #ifdef CONFIG_HOTPLUG_CPU
2207
2208 /*
2209 * Send the specified CPU's RCU callbacks to the orphanage. The
2210 * specified CPU must be offline, and the caller must hold the
2211 * ->orphan_lock.
2212 */
2213 static void
2214 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2215 struct rcu_node *rnp, struct rcu_data *rdp)
2216 {
2217 /* No-CBs CPUs do not have orphanable callbacks. */
2218 if (rcu_is_nocb_cpu(rdp->cpu))
2219 return;
2220
2221 /*
2222 * Orphan the callbacks. First adjust the counts. This is safe
2223 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2224 * cannot be running now. Thus no memory barrier is required.
2225 */
2226 if (rdp->nxtlist != NULL) {
2227 rsp->qlen_lazy += rdp->qlen_lazy;
2228 rsp->qlen += rdp->qlen;
2229 rdp->n_cbs_orphaned += rdp->qlen;
2230 rdp->qlen_lazy = 0;
2231 ACCESS_ONCE(rdp->qlen) = 0;
2232 }
2233
2234 /*
2235 * Next, move those callbacks still needing a grace period to
2236 * the orphanage, where some other CPU will pick them up.
2237 * Some of the callbacks might have gone partway through a grace
2238 * period, but that is too bad. They get to start over because we
2239 * cannot assume that grace periods are synchronized across CPUs.
2240 * We don't bother updating the ->nxttail[] array yet, instead
2241 * we just reset the whole thing later on.
2242 */
2243 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2244 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2245 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2246 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2247 }
2248
2249 /*
2250 * Then move the ready-to-invoke callbacks to the orphanage,
2251 * where some other CPU will pick them up. These will not be
2252 * required to pass though another grace period: They are done.
2253 */
2254 if (rdp->nxtlist != NULL) {
2255 *rsp->orphan_donetail = rdp->nxtlist;
2256 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2257 }
2258
2259 /* Finally, initialize the rcu_data structure's list to empty. */
2260 init_callback_list(rdp);
2261 }
2262
2263 /*
2264 * Adopt the RCU callbacks from the specified rcu_state structure's
2265 * orphanage. The caller must hold the ->orphan_lock.
2266 */
2267 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2268 {
2269 int i;
2270 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2271
2272 /* No-CBs CPUs are handled specially. */
2273 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2274 return;
2275
2276 /* Do the accounting first. */
2277 rdp->qlen_lazy += rsp->qlen_lazy;
2278 rdp->qlen += rsp->qlen;
2279 rdp->n_cbs_adopted += rsp->qlen;
2280 if (rsp->qlen_lazy != rsp->qlen)
2281 rcu_idle_count_callbacks_posted();
2282 rsp->qlen_lazy = 0;
2283 rsp->qlen = 0;
2284
2285 /*
2286 * We do not need a memory barrier here because the only way we
2287 * can get here if there is an rcu_barrier() in flight is if
2288 * we are the task doing the rcu_barrier().
2289 */
2290
2291 /* First adopt the ready-to-invoke callbacks. */
2292 if (rsp->orphan_donelist != NULL) {
2293 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2294 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2295 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2296 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2297 rdp->nxttail[i] = rsp->orphan_donetail;
2298 rsp->orphan_donelist = NULL;
2299 rsp->orphan_donetail = &rsp->orphan_donelist;
2300 }
2301
2302 /* And then adopt the callbacks that still need a grace period. */
2303 if (rsp->orphan_nxtlist != NULL) {
2304 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2305 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2306 rsp->orphan_nxtlist = NULL;
2307 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2308 }
2309 }
2310
2311 /*
2312 * Trace the fact that this CPU is going offline.
2313 */
2314 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2315 {
2316 RCU_TRACE(unsigned long mask);
2317 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2318 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2319
2320 RCU_TRACE(mask = rdp->grpmask);
2321 trace_rcu_grace_period(rsp->name,
2322 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2323 TPS("cpuofl"));
2324 }
2325
2326 /*
2327 * All CPUs for the specified rcu_node structure have gone offline,
2328 * and all tasks that were preempted within an RCU read-side critical
2329 * section while running on one of those CPUs have since exited their RCU
2330 * read-side critical section. Some other CPU is reporting this fact with
2331 * the specified rcu_node structure's ->lock held and interrupts disabled.
2332 * This function therefore goes up the tree of rcu_node structures,
2333 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2334 * the leaf rcu_node structure's ->qsmaskinit field has already been
2335 * updated
2336 *
2337 * This function does check that the specified rcu_node structure has
2338 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2339 * prematurely. That said, invoking it after the fact will cost you
2340 * a needless lock acquisition. So once it has done its work, don't
2341 * invoke it again.
2342 */
2343 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2344 {
2345 long mask;
2346 struct rcu_node *rnp = rnp_leaf;
2347
2348 if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2349 return;
2350 for (;;) {
2351 mask = rnp->grpmask;
2352 rnp = rnp->parent;
2353 if (!rnp)
2354 break;
2355 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2356 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2357 rnp->qsmaskinit &= ~mask;
2358 if (rnp->qsmaskinit) {
2359 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2360 return;
2361 }
2362 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2363 }
2364 }
2365
2366 /*
2367 * The CPU has been completely removed, and some other CPU is reporting
2368 * this fact from process context. Do the remainder of the cleanup,
2369 * including orphaning the outgoing CPU's RCU callbacks, and also
2370 * adopting them. There can only be one CPU hotplug operation at a time,
2371 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2372 */
2373 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2374 {
2375 unsigned long flags;
2376 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2377 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2378
2379 /* Adjust any no-longer-needed kthreads. */
2380 rcu_boost_kthread_setaffinity(rnp, -1);
2381
2382 /* Exclude any attempts to start a new grace period. */
2383 mutex_lock(&rsp->onoff_mutex);
2384 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2385
2386 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2387 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2388 rcu_adopt_orphan_cbs(rsp, flags);
2389 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2390
2391 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2392 raw_spin_lock_irqsave(&rnp->lock, flags);
2393 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2394 rnp->qsmaskinit &= ~rdp->grpmask;
2395 if (rnp->qsmaskinit == 0 && !rcu_preempt_has_tasks(rnp))
2396 rcu_cleanup_dead_rnp(rnp);
2397 rcu_report_qs_rnp(rdp->grpmask, rsp, rnp, flags); /* Rlses rnp->lock. */
2398 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2399 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2400 cpu, rdp->qlen, rdp->nxtlist);
2401 init_callback_list(rdp);
2402 /* Disallow further callbacks on this CPU. */
2403 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2404 mutex_unlock(&rsp->onoff_mutex);
2405 }
2406
2407 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2408
2409 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2410 {
2411 }
2412
2413 static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2414 {
2415 }
2416
2417 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2418 {
2419 }
2420
2421 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2422
2423 /*
2424 * Invoke any RCU callbacks that have made it to the end of their grace
2425 * period. Thottle as specified by rdp->blimit.
2426 */
2427 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2428 {
2429 unsigned long flags;
2430 struct rcu_head *next, *list, **tail;
2431 long bl, count, count_lazy;
2432 int i;
2433
2434 /* If no callbacks are ready, just return. */
2435 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2436 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2437 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2438 need_resched(), is_idle_task(current),
2439 rcu_is_callbacks_kthread());
2440 return;
2441 }
2442
2443 /*
2444 * Extract the list of ready callbacks, disabling to prevent
2445 * races with call_rcu() from interrupt handlers.
2446 */
2447 local_irq_save(flags);
2448 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2449 bl = rdp->blimit;
2450 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2451 list = rdp->nxtlist;
2452 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2453 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2454 tail = rdp->nxttail[RCU_DONE_TAIL];
2455 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2456 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2457 rdp->nxttail[i] = &rdp->nxtlist;
2458 local_irq_restore(flags);
2459
2460 /* Invoke callbacks. */
2461 count = count_lazy = 0;
2462 while (list) {
2463 next = list->next;
2464 prefetch(next);
2465 debug_rcu_head_unqueue(list);
2466 if (__rcu_reclaim(rsp->name, list))
2467 count_lazy++;
2468 list = next;
2469 /* Stop only if limit reached and CPU has something to do. */
2470 if (++count >= bl &&
2471 (need_resched() ||
2472 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2473 break;
2474 }
2475
2476 local_irq_save(flags);
2477 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2478 is_idle_task(current),
2479 rcu_is_callbacks_kthread());
2480
2481 /* Update count, and requeue any remaining callbacks. */
2482 if (list != NULL) {
2483 *tail = rdp->nxtlist;
2484 rdp->nxtlist = list;
2485 for (i = 0; i < RCU_NEXT_SIZE; i++)
2486 if (&rdp->nxtlist == rdp->nxttail[i])
2487 rdp->nxttail[i] = tail;
2488 else
2489 break;
2490 }
2491 smp_mb(); /* List handling before counting for rcu_barrier(). */
2492 rdp->qlen_lazy -= count_lazy;
2493 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2494 rdp->n_cbs_invoked += count;
2495
2496 /* Reinstate batch limit if we have worked down the excess. */
2497 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2498 rdp->blimit = blimit;
2499
2500 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2501 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2502 rdp->qlen_last_fqs_check = 0;
2503 rdp->n_force_qs_snap = rsp->n_force_qs;
2504 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2505 rdp->qlen_last_fqs_check = rdp->qlen;
2506 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2507
2508 local_irq_restore(flags);
2509
2510 /* Re-invoke RCU core processing if there are callbacks remaining. */
2511 if (cpu_has_callbacks_ready_to_invoke(rdp))
2512 invoke_rcu_core();
2513 }
2514
2515 /*
2516 * Check to see if this CPU is in a non-context-switch quiescent state
2517 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2518 * Also schedule RCU core processing.
2519 *
2520 * This function must be called from hardirq context. It is normally
2521 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2522 * false, there is no point in invoking rcu_check_callbacks().
2523 */
2524 void rcu_check_callbacks(int user)
2525 {
2526 trace_rcu_utilization(TPS("Start scheduler-tick"));
2527 increment_cpu_stall_ticks();
2528 if (user || rcu_is_cpu_rrupt_from_idle()) {
2529
2530 /*
2531 * Get here if this CPU took its interrupt from user
2532 * mode or from the idle loop, and if this is not a
2533 * nested interrupt. In this case, the CPU is in
2534 * a quiescent state, so note it.
2535 *
2536 * No memory barrier is required here because both
2537 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2538 * variables that other CPUs neither access nor modify,
2539 * at least not while the corresponding CPU is online.
2540 */
2541
2542 rcu_sched_qs();
2543 rcu_bh_qs();
2544
2545 } else if (!in_softirq()) {
2546
2547 /*
2548 * Get here if this CPU did not take its interrupt from
2549 * softirq, in other words, if it is not interrupting
2550 * a rcu_bh read-side critical section. This is an _bh
2551 * critical section, so note it.
2552 */
2553
2554 rcu_bh_qs();
2555 }
2556 rcu_preempt_check_callbacks();
2557 if (rcu_pending())
2558 invoke_rcu_core();
2559 if (user)
2560 rcu_note_voluntary_context_switch(current);
2561 trace_rcu_utilization(TPS("End scheduler-tick"));
2562 }
2563
2564 /*
2565 * Scan the leaf rcu_node structures, processing dyntick state for any that
2566 * have not yet encountered a quiescent state, using the function specified.
2567 * Also initiate boosting for any threads blocked on the root rcu_node.
2568 *
2569 * The caller must have suppressed start of new grace periods.
2570 */
2571 static void force_qs_rnp(struct rcu_state *rsp,
2572 int (*f)(struct rcu_data *rsp, bool *isidle,
2573 unsigned long *maxj),
2574 bool *isidle, unsigned long *maxj)
2575 {
2576 unsigned long bit;
2577 int cpu;
2578 unsigned long flags;
2579 unsigned long mask;
2580 struct rcu_node *rnp;
2581
2582 rcu_for_each_leaf_node(rsp, rnp) {
2583 cond_resched_rcu_qs();
2584 mask = 0;
2585 raw_spin_lock_irqsave(&rnp->lock, flags);
2586 smp_mb__after_unlock_lock();
2587 if (!rcu_gp_in_progress(rsp)) {
2588 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2589 return;
2590 }
2591 if (rnp->qsmask == 0) {
2592 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2593 continue;
2594 }
2595 cpu = rnp->grplo;
2596 bit = 1;
2597 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2598 if ((rnp->qsmask & bit) != 0) {
2599 if ((rnp->qsmaskinit & bit) != 0)
2600 *isidle = false;
2601 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2602 mask |= bit;
2603 }
2604 }
2605 if (mask != 0) {
2606
2607 /* rcu_report_qs_rnp() releases rnp->lock. */
2608 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2609 continue;
2610 }
2611 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2612 }
2613 }
2614
2615 /*
2616 * Force quiescent states on reluctant CPUs, and also detect which
2617 * CPUs are in dyntick-idle mode.
2618 */
2619 static void force_quiescent_state(struct rcu_state *rsp)
2620 {
2621 unsigned long flags;
2622 bool ret;
2623 struct rcu_node *rnp;
2624 struct rcu_node *rnp_old = NULL;
2625
2626 /* Funnel through hierarchy to reduce memory contention. */
2627 rnp = __this_cpu_read(rsp->rda->mynode);
2628 for (; rnp != NULL; rnp = rnp->parent) {
2629 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2630 !raw_spin_trylock(&rnp->fqslock);
2631 if (rnp_old != NULL)
2632 raw_spin_unlock(&rnp_old->fqslock);
2633 if (ret) {
2634 rsp->n_force_qs_lh++;
2635 return;
2636 }
2637 rnp_old = rnp;
2638 }
2639 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2640
2641 /* Reached the root of the rcu_node tree, acquire lock. */
2642 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2643 smp_mb__after_unlock_lock();
2644 raw_spin_unlock(&rnp_old->fqslock);
2645 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2646 rsp->n_force_qs_lh++;
2647 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2648 return; /* Someone beat us to it. */
2649 }
2650 ACCESS_ONCE(rsp->gp_flags) =
2651 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2652 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2653 rcu_gp_kthread_wake(rsp);
2654 }
2655
2656 /*
2657 * This does the RCU core processing work for the specified rcu_state
2658 * and rcu_data structures. This may be called only from the CPU to
2659 * whom the rdp belongs.
2660 */
2661 static void
2662 __rcu_process_callbacks(struct rcu_state *rsp)
2663 {
2664 unsigned long flags;
2665 bool needwake;
2666 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2667
2668 WARN_ON_ONCE(rdp->beenonline == 0);
2669
2670 /* Update RCU state based on any recent quiescent states. */
2671 rcu_check_quiescent_state(rsp, rdp);
2672
2673 /* Does this CPU require a not-yet-started grace period? */
2674 local_irq_save(flags);
2675 if (cpu_needs_another_gp(rsp, rdp)) {
2676 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2677 needwake = rcu_start_gp(rsp);
2678 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2679 if (needwake)
2680 rcu_gp_kthread_wake(rsp);
2681 } else {
2682 local_irq_restore(flags);
2683 }
2684
2685 /* If there are callbacks ready, invoke them. */
2686 if (cpu_has_callbacks_ready_to_invoke(rdp))
2687 invoke_rcu_callbacks(rsp, rdp);
2688
2689 /* Do any needed deferred wakeups of rcuo kthreads. */
2690 do_nocb_deferred_wakeup(rdp);
2691 }
2692
2693 /*
2694 * Do RCU core processing for the current CPU.
2695 */
2696 static void rcu_process_callbacks(struct softirq_action *unused)
2697 {
2698 struct rcu_state *rsp;
2699
2700 if (cpu_is_offline(smp_processor_id()))
2701 return;
2702 trace_rcu_utilization(TPS("Start RCU core"));
2703 for_each_rcu_flavor(rsp)
2704 __rcu_process_callbacks(rsp);
2705 trace_rcu_utilization(TPS("End RCU core"));
2706 }
2707
2708 /*
2709 * Schedule RCU callback invocation. If the specified type of RCU
2710 * does not support RCU priority boosting, just do a direct call,
2711 * otherwise wake up the per-CPU kernel kthread. Note that because we
2712 * are running on the current CPU with softirqs disabled, the
2713 * rcu_cpu_kthread_task cannot disappear out from under us.
2714 */
2715 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2716 {
2717 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2718 return;
2719 if (likely(!rsp->boost)) {
2720 rcu_do_batch(rsp, rdp);
2721 return;
2722 }
2723 invoke_rcu_callbacks_kthread();
2724 }
2725
2726 static void invoke_rcu_core(void)
2727 {
2728 if (cpu_online(smp_processor_id()))
2729 raise_softirq(RCU_SOFTIRQ);
2730 }
2731
2732 /*
2733 * Handle any core-RCU processing required by a call_rcu() invocation.
2734 */
2735 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2736 struct rcu_head *head, unsigned long flags)
2737 {
2738 bool needwake;
2739
2740 /*
2741 * If called from an extended quiescent state, invoke the RCU
2742 * core in order to force a re-evaluation of RCU's idleness.
2743 */
2744 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2745 invoke_rcu_core();
2746
2747 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2748 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2749 return;
2750
2751 /*
2752 * Force the grace period if too many callbacks or too long waiting.
2753 * Enforce hysteresis, and don't invoke force_quiescent_state()
2754 * if some other CPU has recently done so. Also, don't bother
2755 * invoking force_quiescent_state() if the newly enqueued callback
2756 * is the only one waiting for a grace period to complete.
2757 */
2758 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2759
2760 /* Are we ignoring a completed grace period? */
2761 note_gp_changes(rsp, rdp);
2762
2763 /* Start a new grace period if one not already started. */
2764 if (!rcu_gp_in_progress(rsp)) {
2765 struct rcu_node *rnp_root = rcu_get_root(rsp);
2766
2767 raw_spin_lock(&rnp_root->lock);
2768 smp_mb__after_unlock_lock();
2769 needwake = rcu_start_gp(rsp);
2770 raw_spin_unlock(&rnp_root->lock);
2771 if (needwake)
2772 rcu_gp_kthread_wake(rsp);
2773 } else {
2774 /* Give the grace period a kick. */
2775 rdp->blimit = LONG_MAX;
2776 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2777 *rdp->nxttail[RCU_DONE_TAIL] != head)
2778 force_quiescent_state(rsp);
2779 rdp->n_force_qs_snap = rsp->n_force_qs;
2780 rdp->qlen_last_fqs_check = rdp->qlen;
2781 }
2782 }
2783 }
2784
2785 /*
2786 * RCU callback function to leak a callback.
2787 */
2788 static void rcu_leak_callback(struct rcu_head *rhp)
2789 {
2790 }
2791
2792 /*
2793 * Helper function for call_rcu() and friends. The cpu argument will
2794 * normally be -1, indicating "currently running CPU". It may specify
2795 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2796 * is expected to specify a CPU.
2797 */
2798 static void
2799 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2800 struct rcu_state *rsp, int cpu, bool lazy)
2801 {
2802 unsigned long flags;
2803 struct rcu_data *rdp;
2804
2805 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2806 if (debug_rcu_head_queue(head)) {
2807 /* Probable double call_rcu(), so leak the callback. */
2808 ACCESS_ONCE(head->func) = rcu_leak_callback;
2809 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2810 return;
2811 }
2812 head->func = func;
2813 head->next = NULL;
2814
2815 /*
2816 * Opportunistically note grace-period endings and beginnings.
2817 * Note that we might see a beginning right after we see an
2818 * end, but never vice versa, since this CPU has to pass through
2819 * a quiescent state betweentimes.
2820 */
2821 local_irq_save(flags);
2822 rdp = this_cpu_ptr(rsp->rda);
2823
2824 /* Add the callback to our list. */
2825 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2826 int offline;
2827
2828 if (cpu != -1)
2829 rdp = per_cpu_ptr(rsp->rda, cpu);
2830 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2831 WARN_ON_ONCE(offline);
2832 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2833 local_irq_restore(flags);
2834 return;
2835 }
2836 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
2837 if (lazy)
2838 rdp->qlen_lazy++;
2839 else
2840 rcu_idle_count_callbacks_posted();
2841 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2842 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2843 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2844
2845 if (__is_kfree_rcu_offset((unsigned long)func))
2846 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2847 rdp->qlen_lazy, rdp->qlen);
2848 else
2849 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2850
2851 /* Go handle any RCU core processing required. */
2852 __call_rcu_core(rsp, rdp, head, flags);
2853 local_irq_restore(flags);
2854 }
2855
2856 /*
2857 * Queue an RCU-sched callback for invocation after a grace period.
2858 */
2859 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2860 {
2861 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2862 }
2863 EXPORT_SYMBOL_GPL(call_rcu_sched);
2864
2865 /*
2866 * Queue an RCU callback for invocation after a quicker grace period.
2867 */
2868 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2869 {
2870 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2871 }
2872 EXPORT_SYMBOL_GPL(call_rcu_bh);
2873
2874 /*
2875 * Queue an RCU callback for lazy invocation after a grace period.
2876 * This will likely be later named something like "call_rcu_lazy()",
2877 * but this change will require some way of tagging the lazy RCU
2878 * callbacks in the list of pending callbacks. Until then, this
2879 * function may only be called from __kfree_rcu().
2880 */
2881 void kfree_call_rcu(struct rcu_head *head,
2882 void (*func)(struct rcu_head *rcu))
2883 {
2884 __call_rcu(head, func, rcu_state_p, -1, 1);
2885 }
2886 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2887
2888 /*
2889 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2890 * any blocking grace-period wait automatically implies a grace period
2891 * if there is only one CPU online at any point time during execution
2892 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2893 * occasionally incorrectly indicate that there are multiple CPUs online
2894 * when there was in fact only one the whole time, as this just adds
2895 * some overhead: RCU still operates correctly.
2896 */
2897 static inline int rcu_blocking_is_gp(void)
2898 {
2899 int ret;
2900
2901 might_sleep(); /* Check for RCU read-side critical section. */
2902 preempt_disable();
2903 ret = num_online_cpus() <= 1;
2904 preempt_enable();
2905 return ret;
2906 }
2907
2908 /**
2909 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2910 *
2911 * Control will return to the caller some time after a full rcu-sched
2912 * grace period has elapsed, in other words after all currently executing
2913 * rcu-sched read-side critical sections have completed. These read-side
2914 * critical sections are delimited by rcu_read_lock_sched() and
2915 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2916 * local_irq_disable(), and so on may be used in place of
2917 * rcu_read_lock_sched().
2918 *
2919 * This means that all preempt_disable code sequences, including NMI and
2920 * non-threaded hardware-interrupt handlers, in progress on entry will
2921 * have completed before this primitive returns. However, this does not
2922 * guarantee that softirq handlers will have completed, since in some
2923 * kernels, these handlers can run in process context, and can block.
2924 *
2925 * Note that this guarantee implies further memory-ordering guarantees.
2926 * On systems with more than one CPU, when synchronize_sched() returns,
2927 * each CPU is guaranteed to have executed a full memory barrier since the
2928 * end of its last RCU-sched read-side critical section whose beginning
2929 * preceded the call to synchronize_sched(). In addition, each CPU having
2930 * an RCU read-side critical section that extends beyond the return from
2931 * synchronize_sched() is guaranteed to have executed a full memory barrier
2932 * after the beginning of synchronize_sched() and before the beginning of
2933 * that RCU read-side critical section. Note that these guarantees include
2934 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2935 * that are executing in the kernel.
2936 *
2937 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2938 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2939 * to have executed a full memory barrier during the execution of
2940 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2941 * again only if the system has more than one CPU).
2942 *
2943 * This primitive provides the guarantees made by the (now removed)
2944 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2945 * guarantees that rcu_read_lock() sections will have completed.
2946 * In "classic RCU", these two guarantees happen to be one and
2947 * the same, but can differ in realtime RCU implementations.
2948 */
2949 void synchronize_sched(void)
2950 {
2951 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2952 !lock_is_held(&rcu_lock_map) &&
2953 !lock_is_held(&rcu_sched_lock_map),
2954 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2955 if (rcu_blocking_is_gp())
2956 return;
2957 if (rcu_expedited)
2958 synchronize_sched_expedited();
2959 else
2960 wait_rcu_gp(call_rcu_sched);
2961 }
2962 EXPORT_SYMBOL_GPL(synchronize_sched);
2963
2964 /**
2965 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2966 *
2967 * Control will return to the caller some time after a full rcu_bh grace
2968 * period has elapsed, in other words after all currently executing rcu_bh
2969 * read-side critical sections have completed. RCU read-side critical
2970 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2971 * and may be nested.
2972 *
2973 * See the description of synchronize_sched() for more detailed information
2974 * on memory ordering guarantees.
2975 */
2976 void synchronize_rcu_bh(void)
2977 {
2978 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2979 !lock_is_held(&rcu_lock_map) &&
2980 !lock_is_held(&rcu_sched_lock_map),
2981 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2982 if (rcu_blocking_is_gp())
2983 return;
2984 if (rcu_expedited)
2985 synchronize_rcu_bh_expedited();
2986 else
2987 wait_rcu_gp(call_rcu_bh);
2988 }
2989 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2990
2991 /**
2992 * get_state_synchronize_rcu - Snapshot current RCU state
2993 *
2994 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2995 * to determine whether or not a full grace period has elapsed in the
2996 * meantime.
2997 */
2998 unsigned long get_state_synchronize_rcu(void)
2999 {
3000 /*
3001 * Any prior manipulation of RCU-protected data must happen
3002 * before the load from ->gpnum.
3003 */
3004 smp_mb(); /* ^^^ */
3005
3006 /*
3007 * Make sure this load happens before the purportedly
3008 * time-consuming work between get_state_synchronize_rcu()
3009 * and cond_synchronize_rcu().
3010 */
3011 return smp_load_acquire(&rcu_state_p->gpnum);
3012 }
3013 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3014
3015 /**
3016 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3017 *
3018 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3019 *
3020 * If a full RCU grace period has elapsed since the earlier call to
3021 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3022 * synchronize_rcu() to wait for a full grace period.
3023 *
3024 * Yes, this function does not take counter wrap into account. But
3025 * counter wrap is harmless. If the counter wraps, we have waited for
3026 * more than 2 billion grace periods (and way more on a 64-bit system!),
3027 * so waiting for one additional grace period should be just fine.
3028 */
3029 void cond_synchronize_rcu(unsigned long oldstate)
3030 {
3031 unsigned long newstate;
3032
3033 /*
3034 * Ensure that this load happens before any RCU-destructive
3035 * actions the caller might carry out after we return.
3036 */
3037 newstate = smp_load_acquire(&rcu_state_p->completed);
3038 if (ULONG_CMP_GE(oldstate, newstate))
3039 synchronize_rcu();
3040 }
3041 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3042
3043 static int synchronize_sched_expedited_cpu_stop(void *data)
3044 {
3045 /*
3046 * There must be a full memory barrier on each affected CPU
3047 * between the time that try_stop_cpus() is called and the
3048 * time that it returns.
3049 *
3050 * In the current initial implementation of cpu_stop, the
3051 * above condition is already met when the control reaches
3052 * this point and the following smp_mb() is not strictly
3053 * necessary. Do smp_mb() anyway for documentation and
3054 * robustness against future implementation changes.
3055 */
3056 smp_mb(); /* See above comment block. */
3057 return 0;
3058 }
3059
3060 /**
3061 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3062 *
3063 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3064 * approach to force the grace period to end quickly. This consumes
3065 * significant time on all CPUs and is unfriendly to real-time workloads,
3066 * so is thus not recommended for any sort of common-case code. In fact,
3067 * if you are using synchronize_sched_expedited() in a loop, please
3068 * restructure your code to batch your updates, and then use a single
3069 * synchronize_sched() instead.
3070 *
3071 * This implementation can be thought of as an application of ticket
3072 * locking to RCU, with sync_sched_expedited_started and
3073 * sync_sched_expedited_done taking on the roles of the halves
3074 * of the ticket-lock word. Each task atomically increments
3075 * sync_sched_expedited_started upon entry, snapshotting the old value,
3076 * then attempts to stop all the CPUs. If this succeeds, then each
3077 * CPU will have executed a context switch, resulting in an RCU-sched
3078 * grace period. We are then done, so we use atomic_cmpxchg() to
3079 * update sync_sched_expedited_done to match our snapshot -- but
3080 * only if someone else has not already advanced past our snapshot.
3081 *
3082 * On the other hand, if try_stop_cpus() fails, we check the value
3083 * of sync_sched_expedited_done. If it has advanced past our
3084 * initial snapshot, then someone else must have forced a grace period
3085 * some time after we took our snapshot. In this case, our work is
3086 * done for us, and we can simply return. Otherwise, we try again,
3087 * but keep our initial snapshot for purposes of checking for someone
3088 * doing our work for us.
3089 *
3090 * If we fail too many times in a row, we fall back to synchronize_sched().
3091 */
3092 void synchronize_sched_expedited(void)
3093 {
3094 cpumask_var_t cm;
3095 bool cma = false;
3096 int cpu;
3097 long firstsnap, s, snap;
3098 int trycount = 0;
3099 struct rcu_state *rsp = &rcu_sched_state;
3100
3101 /*
3102 * If we are in danger of counter wrap, just do synchronize_sched().
3103 * By allowing sync_sched_expedited_started to advance no more than
3104 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3105 * that more than 3.5 billion CPUs would be required to force a
3106 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3107 * course be required on a 64-bit system.
3108 */
3109 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3110 (ulong)atomic_long_read(&rsp->expedited_done) +
3111 ULONG_MAX / 8)) {
3112 synchronize_sched();
3113 atomic_long_inc(&rsp->expedited_wrap);
3114 return;
3115 }
3116
3117 /*
3118 * Take a ticket. Note that atomic_inc_return() implies a
3119 * full memory barrier.
3120 */
3121 snap = atomic_long_inc_return(&rsp->expedited_start);
3122 firstsnap = snap;
3123 if (!try_get_online_cpus()) {
3124 /* CPU hotplug operation in flight, fall back to normal GP. */
3125 wait_rcu_gp(call_rcu_sched);
3126 atomic_long_inc(&rsp->expedited_normal);
3127 return;
3128 }
3129 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3130
3131 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3132 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3133 if (cma) {
3134 cpumask_copy(cm, cpu_online_mask);
3135 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3136 for_each_cpu(cpu, cm) {
3137 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3138
3139 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3140 cpumask_clear_cpu(cpu, cm);
3141 }
3142 if (cpumask_weight(cm) == 0)
3143 goto all_cpus_idle;
3144 }
3145
3146 /*
3147 * Each pass through the following loop attempts to force a
3148 * context switch on each CPU.
3149 */
3150 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3151 synchronize_sched_expedited_cpu_stop,
3152 NULL) == -EAGAIN) {
3153 put_online_cpus();
3154 atomic_long_inc(&rsp->expedited_tryfail);
3155
3156 /* Check to see if someone else did our work for us. */
3157 s = atomic_long_read(&rsp->expedited_done);
3158 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3159 /* ensure test happens before caller kfree */
3160 smp_mb__before_atomic(); /* ^^^ */
3161 atomic_long_inc(&rsp->expedited_workdone1);
3162 free_cpumask_var(cm);
3163 return;
3164 }
3165
3166 /* No joy, try again later. Or just synchronize_sched(). */
3167 if (trycount++ < 10) {
3168 udelay(trycount * num_online_cpus());
3169 } else {
3170 wait_rcu_gp(call_rcu_sched);
3171 atomic_long_inc(&rsp->expedited_normal);
3172 free_cpumask_var(cm);
3173 return;
3174 }
3175
3176 /* Recheck to see if someone else did our work for us. */
3177 s = atomic_long_read(&rsp->expedited_done);
3178 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3179 /* ensure test happens before caller kfree */
3180 smp_mb__before_atomic(); /* ^^^ */
3181 atomic_long_inc(&rsp->expedited_workdone2);
3182 free_cpumask_var(cm);
3183 return;
3184 }
3185
3186 /*
3187 * Refetching sync_sched_expedited_started allows later
3188 * callers to piggyback on our grace period. We retry
3189 * after they started, so our grace period works for them,
3190 * and they started after our first try, so their grace
3191 * period works for us.
3192 */
3193 if (!try_get_online_cpus()) {
3194 /* CPU hotplug operation in flight, use normal GP. */
3195 wait_rcu_gp(call_rcu_sched);
3196 atomic_long_inc(&rsp->expedited_normal);
3197 free_cpumask_var(cm);
3198 return;
3199 }
3200 snap = atomic_long_read(&rsp->expedited_start);
3201 smp_mb(); /* ensure read is before try_stop_cpus(). */
3202 }
3203 atomic_long_inc(&rsp->expedited_stoppedcpus);
3204
3205 all_cpus_idle:
3206 free_cpumask_var(cm);
3207
3208 /*
3209 * Everyone up to our most recent fetch is covered by our grace
3210 * period. Update the counter, but only if our work is still
3211 * relevant -- which it won't be if someone who started later
3212 * than we did already did their update.
3213 */
3214 do {
3215 atomic_long_inc(&rsp->expedited_done_tries);
3216 s = atomic_long_read(&rsp->expedited_done);
3217 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3218 /* ensure test happens before caller kfree */
3219 smp_mb__before_atomic(); /* ^^^ */
3220 atomic_long_inc(&rsp->expedited_done_lost);
3221 break;
3222 }
3223 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3224 atomic_long_inc(&rsp->expedited_done_exit);
3225
3226 put_online_cpus();
3227 }
3228 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3229
3230 /*
3231 * Check to see if there is any immediate RCU-related work to be done
3232 * by the current CPU, for the specified type of RCU, returning 1 if so.
3233 * The checks are in order of increasing expense: checks that can be
3234 * carried out against CPU-local state are performed first. However,
3235 * we must check for CPU stalls first, else we might not get a chance.
3236 */
3237 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3238 {
3239 struct rcu_node *rnp = rdp->mynode;
3240
3241 rdp->n_rcu_pending++;
3242
3243 /* Check for CPU stalls, if enabled. */
3244 check_cpu_stall(rsp, rdp);
3245
3246 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3247 if (rcu_nohz_full_cpu(rsp))
3248 return 0;
3249
3250 /* Is the RCU core waiting for a quiescent state from this CPU? */
3251 if (rcu_scheduler_fully_active &&
3252 rdp->qs_pending && !rdp->passed_quiesce &&
3253 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3254 rdp->n_rp_qs_pending++;
3255 } else if (rdp->qs_pending &&
3256 (rdp->passed_quiesce ||
3257 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3258 rdp->n_rp_report_qs++;
3259 return 1;
3260 }
3261
3262 /* Does this CPU have callbacks ready to invoke? */
3263 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3264 rdp->n_rp_cb_ready++;
3265 return 1;
3266 }
3267
3268 /* Has RCU gone idle with this CPU needing another grace period? */
3269 if (cpu_needs_another_gp(rsp, rdp)) {
3270 rdp->n_rp_cpu_needs_gp++;
3271 return 1;
3272 }
3273
3274 /* Has another RCU grace period completed? */
3275 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3276 rdp->n_rp_gp_completed++;
3277 return 1;
3278 }
3279
3280 /* Has a new RCU grace period started? */
3281 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
3282 unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
3283 rdp->n_rp_gp_started++;
3284 return 1;
3285 }
3286
3287 /* Does this CPU need a deferred NOCB wakeup? */
3288 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3289 rdp->n_rp_nocb_defer_wakeup++;
3290 return 1;
3291 }
3292
3293 /* nothing to do */
3294 rdp->n_rp_need_nothing++;
3295 return 0;
3296 }
3297
3298 /*
3299 * Check to see if there is any immediate RCU-related work to be done
3300 * by the current CPU, returning 1 if so. This function is part of the
3301 * RCU implementation; it is -not- an exported member of the RCU API.
3302 */
3303 static int rcu_pending(void)
3304 {
3305 struct rcu_state *rsp;
3306
3307 for_each_rcu_flavor(rsp)
3308 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3309 return 1;
3310 return 0;
3311 }
3312
3313 /*
3314 * Return true if the specified CPU has any callback. If all_lazy is
3315 * non-NULL, store an indication of whether all callbacks are lazy.
3316 * (If there are no callbacks, all of them are deemed to be lazy.)
3317 */
3318 static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3319 {
3320 bool al = true;
3321 bool hc = false;
3322 struct rcu_data *rdp;
3323 struct rcu_state *rsp;
3324
3325 for_each_rcu_flavor(rsp) {
3326 rdp = this_cpu_ptr(rsp->rda);
3327 if (!rdp->nxtlist)
3328 continue;
3329 hc = true;
3330 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3331 al = false;
3332 break;
3333 }
3334 }
3335 if (all_lazy)
3336 *all_lazy = al;
3337 return hc;
3338 }
3339
3340 /*
3341 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3342 * the compiler is expected to optimize this away.
3343 */
3344 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3345 int cpu, unsigned long done)
3346 {
3347 trace_rcu_barrier(rsp->name, s, cpu,
3348 atomic_read(&rsp->barrier_cpu_count), done);
3349 }
3350
3351 /*
3352 * RCU callback function for _rcu_barrier(). If we are last, wake
3353 * up the task executing _rcu_barrier().
3354 */
3355 static void rcu_barrier_callback(struct rcu_head *rhp)
3356 {
3357 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3358 struct rcu_state *rsp = rdp->rsp;
3359
3360 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3361 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3362 complete(&rsp->barrier_completion);
3363 } else {
3364 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3365 }
3366 }
3367
3368 /*
3369 * Called with preemption disabled, and from cross-cpu IRQ context.
3370 */
3371 static void rcu_barrier_func(void *type)
3372 {
3373 struct rcu_state *rsp = type;
3374 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3375
3376 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3377 atomic_inc(&rsp->barrier_cpu_count);
3378 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3379 }
3380
3381 /*
3382 * Orchestrate the specified type of RCU barrier, waiting for all
3383 * RCU callbacks of the specified type to complete.
3384 */
3385 static void _rcu_barrier(struct rcu_state *rsp)
3386 {
3387 int cpu;
3388 struct rcu_data *rdp;
3389 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3390 unsigned long snap_done;
3391
3392 _rcu_barrier_trace(rsp, "Begin", -1, snap);
3393
3394 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3395 mutex_lock(&rsp->barrier_mutex);
3396
3397 /*
3398 * Ensure that all prior references, including to ->n_barrier_done,
3399 * are ordered before the _rcu_barrier() machinery.
3400 */
3401 smp_mb(); /* See above block comment. */
3402
3403 /*
3404 * Recheck ->n_barrier_done to see if others did our work for us.
3405 * This means checking ->n_barrier_done for an even-to-odd-to-even
3406 * transition. The "if" expression below therefore rounds the old
3407 * value up to the next even number and adds two before comparing.
3408 */
3409 snap_done = rsp->n_barrier_done;
3410 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3411
3412 /*
3413 * If the value in snap is odd, we needed to wait for the current
3414 * rcu_barrier() to complete, then wait for the next one, in other
3415 * words, we need the value of snap_done to be three larger than
3416 * the value of snap. On the other hand, if the value in snap is
3417 * even, we only had to wait for the next rcu_barrier() to complete,
3418 * in other words, we need the value of snap_done to be only two
3419 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3420 * this for us (thank you, Linus!).
3421 */
3422 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3423 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3424 smp_mb(); /* caller's subsequent code after above check. */
3425 mutex_unlock(&rsp->barrier_mutex);
3426 return;
3427 }
3428
3429 /*
3430 * Increment ->n_barrier_done to avoid duplicate work. Use
3431 * ACCESS_ONCE() to prevent the compiler from speculating
3432 * the increment to precede the early-exit check.
3433 */
3434 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3435 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3436 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3437 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3438
3439 /*
3440 * Initialize the count to one rather than to zero in order to
3441 * avoid a too-soon return to zero in case of a short grace period
3442 * (or preemption of this task). Exclude CPU-hotplug operations
3443 * to ensure that no offline CPU has callbacks queued.
3444 */
3445 init_completion(&rsp->barrier_completion);
3446 atomic_set(&rsp->barrier_cpu_count, 1);
3447 get_online_cpus();
3448
3449 /*
3450 * Force each CPU with callbacks to register a new callback.
3451 * When that callback is invoked, we will know that all of the
3452 * corresponding CPU's preceding callbacks have been invoked.
3453 */
3454 for_each_possible_cpu(cpu) {
3455 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3456 continue;
3457 rdp = per_cpu_ptr(rsp->rda, cpu);
3458 if (rcu_is_nocb_cpu(cpu)) {
3459 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3460 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3461 rsp->n_barrier_done);
3462 } else {
3463 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3464 rsp->n_barrier_done);
3465 smp_mb__before_atomic();
3466 atomic_inc(&rsp->barrier_cpu_count);
3467 __call_rcu(&rdp->barrier_head,
3468 rcu_barrier_callback, rsp, cpu, 0);
3469 }
3470 } else if (ACCESS_ONCE(rdp->qlen)) {
3471 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3472 rsp->n_barrier_done);
3473 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3474 } else {
3475 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3476 rsp->n_barrier_done);
3477 }
3478 }
3479 put_online_cpus();
3480
3481 /*
3482 * Now that we have an rcu_barrier_callback() callback on each
3483 * CPU, and thus each counted, remove the initial count.
3484 */
3485 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3486 complete(&rsp->barrier_completion);
3487
3488 /* Increment ->n_barrier_done to prevent duplicate work. */
3489 smp_mb(); /* Keep increment after above mechanism. */
3490 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3491 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3492 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3493 smp_mb(); /* Keep increment before caller's subsequent code. */
3494
3495 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3496 wait_for_completion(&rsp->barrier_completion);
3497
3498 /* Other rcu_barrier() invocations can now safely proceed. */
3499 mutex_unlock(&rsp->barrier_mutex);
3500 }
3501
3502 /**
3503 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3504 */
3505 void rcu_barrier_bh(void)
3506 {
3507 _rcu_barrier(&rcu_bh_state);
3508 }
3509 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3510
3511 /**
3512 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3513 */
3514 void rcu_barrier_sched(void)
3515 {
3516 _rcu_barrier(&rcu_sched_state);
3517 }
3518 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3519
3520 /*
3521 * Do boot-time initialization of a CPU's per-CPU RCU data.
3522 */
3523 static void __init
3524 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3525 {
3526 unsigned long flags;
3527 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3528 struct rcu_node *rnp = rcu_get_root(rsp);
3529
3530 /* Set up local state, ensuring consistent view of global state. */
3531 raw_spin_lock_irqsave(&rnp->lock, flags);
3532 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3533 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3534 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3535 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3536 rdp->cpu = cpu;
3537 rdp->rsp = rsp;
3538 rcu_boot_init_nocb_percpu_data(rdp);
3539 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3540 }
3541
3542 /*
3543 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3544 * offline event can be happening at a given time. Note also that we
3545 * can accept some slop in the rsp->completed access due to the fact
3546 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3547 */
3548 static void
3549 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3550 {
3551 unsigned long flags;
3552 unsigned long mask;
3553 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3554 struct rcu_node *rnp = rcu_get_root(rsp);
3555
3556 /* Exclude new grace periods. */
3557 mutex_lock(&rsp->onoff_mutex);
3558
3559 /* Set up local state, ensuring consistent view of global state. */
3560 raw_spin_lock_irqsave(&rnp->lock, flags);
3561 rdp->beenonline = 1; /* We have now been online. */
3562 rdp->qlen_last_fqs_check = 0;
3563 rdp->n_force_qs_snap = rsp->n_force_qs;
3564 rdp->blimit = blimit;
3565 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3566 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3567 rcu_sysidle_init_percpu_data(rdp->dynticks);
3568 atomic_set(&rdp->dynticks->dynticks,
3569 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3570 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3571
3572 /* Add CPU to rcu_node bitmasks. */
3573 rnp = rdp->mynode;
3574 mask = rdp->grpmask;
3575 do {
3576 /* Exclude any attempts to start a new GP on small systems. */
3577 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3578 rnp->qsmaskinit |= mask;
3579 mask = rnp->grpmask;
3580 if (rnp == rdp->mynode) {
3581 /*
3582 * If there is a grace period in progress, we will
3583 * set up to wait for it next time we run the
3584 * RCU core code.
3585 */
3586 rdp->gpnum = rnp->completed;
3587 rdp->completed = rnp->completed;
3588 rdp->passed_quiesce = 0;
3589 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3590 rdp->qs_pending = 0;
3591 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3592 }
3593 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3594 rnp = rnp->parent;
3595 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3596 local_irq_restore(flags);
3597
3598 mutex_unlock(&rsp->onoff_mutex);
3599 }
3600
3601 static void rcu_prepare_cpu(int cpu)
3602 {
3603 struct rcu_state *rsp;
3604
3605 for_each_rcu_flavor(rsp)
3606 rcu_init_percpu_data(cpu, rsp);
3607 }
3608
3609 /*
3610 * Handle CPU online/offline notification events.
3611 */
3612 static int rcu_cpu_notify(struct notifier_block *self,
3613 unsigned long action, void *hcpu)
3614 {
3615 long cpu = (long)hcpu;
3616 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3617 struct rcu_node *rnp = rdp->mynode;
3618 struct rcu_state *rsp;
3619
3620 trace_rcu_utilization(TPS("Start CPU hotplug"));
3621 switch (action) {
3622 case CPU_UP_PREPARE:
3623 case CPU_UP_PREPARE_FROZEN:
3624 rcu_prepare_cpu(cpu);
3625 rcu_prepare_kthreads(cpu);
3626 rcu_spawn_all_nocb_kthreads(cpu);
3627 break;
3628 case CPU_ONLINE:
3629 case CPU_DOWN_FAILED:
3630 rcu_boost_kthread_setaffinity(rnp, -1);
3631 break;
3632 case CPU_DOWN_PREPARE:
3633 rcu_boost_kthread_setaffinity(rnp, cpu);
3634 break;
3635 case CPU_DYING:
3636 case CPU_DYING_FROZEN:
3637 for_each_rcu_flavor(rsp)
3638 rcu_cleanup_dying_cpu(rsp);
3639 break;
3640 case CPU_DEAD:
3641 case CPU_DEAD_FROZEN:
3642 case CPU_UP_CANCELED:
3643 case CPU_UP_CANCELED_FROZEN:
3644 for_each_rcu_flavor(rsp) {
3645 rcu_cleanup_dead_cpu(cpu, rsp);
3646 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3647 }
3648 break;
3649 default:
3650 break;
3651 }
3652 trace_rcu_utilization(TPS("End CPU hotplug"));
3653 return NOTIFY_OK;
3654 }
3655
3656 static int rcu_pm_notify(struct notifier_block *self,
3657 unsigned long action, void *hcpu)
3658 {
3659 switch (action) {
3660 case PM_HIBERNATION_PREPARE:
3661 case PM_SUSPEND_PREPARE:
3662 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3663 rcu_expedited = 1;
3664 break;
3665 case PM_POST_HIBERNATION:
3666 case PM_POST_SUSPEND:
3667 rcu_expedited = 0;
3668 break;
3669 default:
3670 break;
3671 }
3672 return NOTIFY_OK;
3673 }
3674
3675 /*
3676 * Spawn the kthreads that handle each RCU flavor's grace periods.
3677 */
3678 static int __init rcu_spawn_gp_kthread(void)
3679 {
3680 unsigned long flags;
3681 int kthread_prio_in = kthread_prio;
3682 struct rcu_node *rnp;
3683 struct rcu_state *rsp;
3684 struct sched_param sp;
3685 struct task_struct *t;
3686
3687 /* Force priority into range. */
3688 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3689 kthread_prio = 1;
3690 else if (kthread_prio < 0)
3691 kthread_prio = 0;
3692 else if (kthread_prio > 99)
3693 kthread_prio = 99;
3694 if (kthread_prio != kthread_prio_in)
3695 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3696 kthread_prio, kthread_prio_in);
3697
3698 rcu_scheduler_fully_active = 1;
3699 for_each_rcu_flavor(rsp) {
3700 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3701 BUG_ON(IS_ERR(t));
3702 rnp = rcu_get_root(rsp);
3703 raw_spin_lock_irqsave(&rnp->lock, flags);
3704 rsp->gp_kthread = t;
3705 if (kthread_prio) {
3706 sp.sched_priority = kthread_prio;
3707 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3708 }
3709 wake_up_process(t);
3710 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3711 }
3712 rcu_spawn_nocb_kthreads();
3713 rcu_spawn_boost_kthreads();
3714 return 0;
3715 }
3716 early_initcall(rcu_spawn_gp_kthread);
3717
3718 /*
3719 * This function is invoked towards the end of the scheduler's initialization
3720 * process. Before this is called, the idle task might contain
3721 * RCU read-side critical sections (during which time, this idle
3722 * task is booting the system). After this function is called, the
3723 * idle tasks are prohibited from containing RCU read-side critical
3724 * sections. This function also enables RCU lockdep checking.
3725 */
3726 void rcu_scheduler_starting(void)
3727 {
3728 WARN_ON(num_online_cpus() != 1);
3729 WARN_ON(nr_context_switches() > 0);
3730 rcu_scheduler_active = 1;
3731 }
3732
3733 /*
3734 * Compute the per-level fanout, either using the exact fanout specified
3735 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3736 */
3737 #ifdef CONFIG_RCU_FANOUT_EXACT
3738 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3739 {
3740 int i;
3741
3742 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3743 for (i = rcu_num_lvls - 2; i >= 0; i--)
3744 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3745 }
3746 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3747 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3748 {
3749 int ccur;
3750 int cprv;
3751 int i;
3752
3753 cprv = nr_cpu_ids;
3754 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3755 ccur = rsp->levelcnt[i];
3756 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3757 cprv = ccur;
3758 }
3759 }
3760 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3761
3762 /*
3763 * Helper function for rcu_init() that initializes one rcu_state structure.
3764 */
3765 static void __init rcu_init_one(struct rcu_state *rsp,
3766 struct rcu_data __percpu *rda)
3767 {
3768 static const char * const buf[] = {
3769 "rcu_node_0",
3770 "rcu_node_1",
3771 "rcu_node_2",
3772 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3773 static const char * const fqs[] = {
3774 "rcu_node_fqs_0",
3775 "rcu_node_fqs_1",
3776 "rcu_node_fqs_2",
3777 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3778 static u8 fl_mask = 0x1;
3779 int cpustride = 1;
3780 int i;
3781 int j;
3782 struct rcu_node *rnp;
3783
3784 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3785
3786 /* Silence gcc 4.8 warning about array index out of range. */
3787 if (rcu_num_lvls > RCU_NUM_LVLS)
3788 panic("rcu_init_one: rcu_num_lvls overflow");
3789
3790 /* Initialize the level-tracking arrays. */
3791
3792 for (i = 0; i < rcu_num_lvls; i++)
3793 rsp->levelcnt[i] = num_rcu_lvl[i];
3794 for (i = 1; i < rcu_num_lvls; i++)
3795 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3796 rcu_init_levelspread(rsp);
3797 rsp->flavor_mask = fl_mask;
3798 fl_mask <<= 1;
3799
3800 /* Initialize the elements themselves, starting from the leaves. */
3801
3802 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3803 cpustride *= rsp->levelspread[i];
3804 rnp = rsp->level[i];
3805 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3806 raw_spin_lock_init(&rnp->lock);
3807 lockdep_set_class_and_name(&rnp->lock,
3808 &rcu_node_class[i], buf[i]);
3809 raw_spin_lock_init(&rnp->fqslock);
3810 lockdep_set_class_and_name(&rnp->fqslock,
3811 &rcu_fqs_class[i], fqs[i]);
3812 rnp->gpnum = rsp->gpnum;
3813 rnp->completed = rsp->completed;
3814 rnp->qsmask = 0;
3815 rnp->qsmaskinit = 0;
3816 rnp->grplo = j * cpustride;
3817 rnp->grphi = (j + 1) * cpustride - 1;
3818 if (rnp->grphi >= nr_cpu_ids)
3819 rnp->grphi = nr_cpu_ids - 1;
3820 if (i == 0) {
3821 rnp->grpnum = 0;
3822 rnp->grpmask = 0;
3823 rnp->parent = NULL;
3824 } else {
3825 rnp->grpnum = j % rsp->levelspread[i - 1];
3826 rnp->grpmask = 1UL << rnp->grpnum;
3827 rnp->parent = rsp->level[i - 1] +
3828 j / rsp->levelspread[i - 1];
3829 }
3830 rnp->level = i;
3831 INIT_LIST_HEAD(&rnp->blkd_tasks);
3832 rcu_init_one_nocb(rnp);
3833 }
3834 }
3835
3836 rsp->rda = rda;
3837 init_waitqueue_head(&rsp->gp_wq);
3838 rnp = rsp->level[rcu_num_lvls - 1];
3839 for_each_possible_cpu(i) {
3840 while (i > rnp->grphi)
3841 rnp++;
3842 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3843 rcu_boot_init_percpu_data(i, rsp);
3844 }
3845 list_add(&rsp->flavors, &rcu_struct_flavors);
3846 }
3847
3848 /*
3849 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3850 * replace the definitions in tree.h because those are needed to size
3851 * the ->node array in the rcu_state structure.
3852 */
3853 static void __init rcu_init_geometry(void)
3854 {
3855 ulong d;
3856 int i;
3857 int j;
3858 int n = nr_cpu_ids;
3859 int rcu_capacity[MAX_RCU_LVLS + 1];
3860
3861 /*
3862 * Initialize any unspecified boot parameters.
3863 * The default values of jiffies_till_first_fqs and
3864 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3865 * value, which is a function of HZ, then adding one for each
3866 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3867 */
3868 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3869 if (jiffies_till_first_fqs == ULONG_MAX)
3870 jiffies_till_first_fqs = d;
3871 if (jiffies_till_next_fqs == ULONG_MAX)
3872 jiffies_till_next_fqs = d;
3873
3874 /* If the compile-time values are accurate, just leave. */
3875 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3876 nr_cpu_ids == NR_CPUS)
3877 return;
3878 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3879 rcu_fanout_leaf, nr_cpu_ids);
3880
3881 /*
3882 * Compute number of nodes that can be handled an rcu_node tree
3883 * with the given number of levels. Setting rcu_capacity[0] makes
3884 * some of the arithmetic easier.
3885 */
3886 rcu_capacity[0] = 1;
3887 rcu_capacity[1] = rcu_fanout_leaf;
3888 for (i = 2; i <= MAX_RCU_LVLS; i++)
3889 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3890
3891 /*
3892 * The boot-time rcu_fanout_leaf parameter is only permitted
3893 * to increase the leaf-level fanout, not decrease it. Of course,
3894 * the leaf-level fanout cannot exceed the number of bits in
3895 * the rcu_node masks. Finally, the tree must be able to accommodate
3896 * the configured number of CPUs. Complain and fall back to the
3897 * compile-time values if these limits are exceeded.
3898 */
3899 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3900 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3901 n > rcu_capacity[MAX_RCU_LVLS]) {
3902 WARN_ON(1);
3903 return;
3904 }
3905
3906 /* Calculate the number of rcu_nodes at each level of the tree. */
3907 for (i = 1; i <= MAX_RCU_LVLS; i++)
3908 if (n <= rcu_capacity[i]) {
3909 for (j = 0; j <= i; j++)
3910 num_rcu_lvl[j] =
3911 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3912 rcu_num_lvls = i;
3913 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3914 num_rcu_lvl[j] = 0;
3915 break;
3916 }
3917
3918 /* Calculate the total number of rcu_node structures. */
3919 rcu_num_nodes = 0;
3920 for (i = 0; i <= MAX_RCU_LVLS; i++)
3921 rcu_num_nodes += num_rcu_lvl[i];
3922 rcu_num_nodes -= n;
3923 }
3924
3925 void __init rcu_init(void)
3926 {
3927 int cpu;
3928
3929 rcu_bootup_announce();
3930 rcu_init_geometry();
3931 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3932 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3933 __rcu_init_preempt();
3934 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3935
3936 /*
3937 * We don't need protection against CPU-hotplug here because
3938 * this is called early in boot, before either interrupts
3939 * or the scheduler are operational.
3940 */
3941 cpu_notifier(rcu_cpu_notify, 0);
3942 pm_notifier(rcu_pm_notify, 0);
3943 for_each_online_cpu(cpu)
3944 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3945
3946 rcu_early_boot_tests();
3947 }
3948
3949 #include "tree_plugin.h"
This page took 0.160167 seconds and 5 git commands to generate.