a2147d7b51c04aab30a593d4b2f82c6cbaa9c06e
[deliverable/linux.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74 /*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82 #ifdef CONFIG_TRACING
83 # define DEFINE_RCU_TPS(sname) \
84 static char sname##_varname[] = #sname; \
85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86 # define RCU_STATE_NAME(sname) sname##_varname
87 #else
88 # define DEFINE_RCU_TPS(sname)
89 # define RCU_STATE_NAME(sname) __stringify(sname)
90 #endif
91
92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93 DEFINE_RCU_TPS(sname) \
94 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
95 struct rcu_state sname##_state = { \
96 .level = { &sname##_state.node[0] }, \
97 .rda = &sname##_data, \
98 .call = cr, \
99 .fqs_state = RCU_GP_IDLE, \
100 .gpnum = 0UL - 300UL, \
101 .completed = 0UL - 300UL, \
102 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
103 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
104 .orphan_donetail = &sname##_state.orphan_donelist, \
105 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
106 .name = RCU_STATE_NAME(sname), \
107 .abbr = sabbr, \
108 }
109
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113 static struct rcu_state *const rcu_state_p;
114 static struct rcu_data __percpu *const rcu_data_p;
115 LIST_HEAD(rcu_struct_flavors);
116
117 /* Dump rcu_node combining tree at boot to verify correct setup. */
118 static bool dump_tree;
119 module_param(dump_tree, bool, 0444);
120 /* Control rcu_node-tree auto-balancing at boot time. */
121 static bool rcu_fanout_exact;
122 module_param(rcu_fanout_exact, bool, 0444);
123 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
124 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
125 module_param(rcu_fanout_leaf, int, 0444);
126 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
127 /* Number of rcu_nodes at specified level. */
128 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
129 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
130
131 /*
132 * The rcu_scheduler_active variable transitions from zero to one just
133 * before the first task is spawned. So when this variable is zero, RCU
134 * can assume that there is but one task, allowing RCU to (for example)
135 * optimize synchronize_sched() to a simple barrier(). When this variable
136 * is one, RCU must actually do all the hard work required to detect real
137 * grace periods. This variable is also used to suppress boot-time false
138 * positives from lockdep-RCU error checking.
139 */
140 int rcu_scheduler_active __read_mostly;
141 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
142
143 /*
144 * The rcu_scheduler_fully_active variable transitions from zero to one
145 * during the early_initcall() processing, which is after the scheduler
146 * is capable of creating new tasks. So RCU processing (for example,
147 * creating tasks for RCU priority boosting) must be delayed until after
148 * rcu_scheduler_fully_active transitions from zero to one. We also
149 * currently delay invocation of any RCU callbacks until after this point.
150 *
151 * It might later prove better for people registering RCU callbacks during
152 * early boot to take responsibility for these callbacks, but one step at
153 * a time.
154 */
155 static int rcu_scheduler_fully_active __read_mostly;
156
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
160 static void invoke_rcu_core(void);
161 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
162
163 /* rcuc/rcub kthread realtime priority */
164 #ifdef CONFIG_RCU_KTHREAD_PRIO
165 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
166 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
167 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
168 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
169 module_param(kthread_prio, int, 0644);
170
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
172
173 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
174 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
175 module_param(gp_preinit_delay, int, 0644);
176 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
177 static const int gp_preinit_delay;
178 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
179
180 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
181 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
182 module_param(gp_init_delay, int, 0644);
183 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
184 static const int gp_init_delay;
185 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
186
187 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
188 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
189 module_param(gp_cleanup_delay, int, 0644);
190 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
191 static const int gp_cleanup_delay;
192 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
193
194 /*
195 * Number of grace periods between delays, normalized by the duration of
196 * the delay. The longer the the delay, the more the grace periods between
197 * each delay. The reason for this normalization is that it means that,
198 * for non-zero delays, the overall slowdown of grace periods is constant
199 * regardless of the duration of the delay. This arrangement balances
200 * the need for long delays to increase some race probabilities with the
201 * need for fast grace periods to increase other race probabilities.
202 */
203 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
204
205 /*
206 * Track the rcutorture test sequence number and the update version
207 * number within a given test. The rcutorture_testseq is incremented
208 * on every rcutorture module load and unload, so has an odd value
209 * when a test is running. The rcutorture_vernum is set to zero
210 * when rcutorture starts and is incremented on each rcutorture update.
211 * These variables enable correlating rcutorture output with the
212 * RCU tracing information.
213 */
214 unsigned long rcutorture_testseq;
215 unsigned long rcutorture_vernum;
216
217 /*
218 * Compute the mask of online CPUs for the specified rcu_node structure.
219 * This will not be stable unless the rcu_node structure's ->lock is
220 * held, but the bit corresponding to the current CPU will be stable
221 * in most contexts.
222 */
223 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
224 {
225 return READ_ONCE(rnp->qsmaskinitnext);
226 }
227
228 /*
229 * Return true if an RCU grace period is in progress. The READ_ONCE()s
230 * permit this function to be invoked without holding the root rcu_node
231 * structure's ->lock, but of course results can be subject to change.
232 */
233 static int rcu_gp_in_progress(struct rcu_state *rsp)
234 {
235 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
236 }
237
238 /*
239 * Note a quiescent state. Because we do not need to know
240 * how many quiescent states passed, just if there was at least
241 * one since the start of the grace period, this just sets a flag.
242 * The caller must have disabled preemption.
243 */
244 void rcu_sched_qs(void)
245 {
246 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
247 trace_rcu_grace_period(TPS("rcu_sched"),
248 __this_cpu_read(rcu_sched_data.gpnum),
249 TPS("cpuqs"));
250 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
251 }
252 }
253
254 void rcu_bh_qs(void)
255 {
256 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
257 trace_rcu_grace_period(TPS("rcu_bh"),
258 __this_cpu_read(rcu_bh_data.gpnum),
259 TPS("cpuqs"));
260 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
261 }
262 }
263
264 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
265
266 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
267 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
268 .dynticks = ATOMIC_INIT(1),
269 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
270 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
271 .dynticks_idle = ATOMIC_INIT(1),
272 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
273 };
274
275 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
276 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
277
278 /*
279 * Let the RCU core know that this CPU has gone through the scheduler,
280 * which is a quiescent state. This is called when the need for a
281 * quiescent state is urgent, so we burn an atomic operation and full
282 * memory barriers to let the RCU core know about it, regardless of what
283 * this CPU might (or might not) do in the near future.
284 *
285 * We inform the RCU core by emulating a zero-duration dyntick-idle
286 * period, which we in turn do by incrementing the ->dynticks counter
287 * by two.
288 */
289 static void rcu_momentary_dyntick_idle(void)
290 {
291 unsigned long flags;
292 struct rcu_data *rdp;
293 struct rcu_dynticks *rdtp;
294 int resched_mask;
295 struct rcu_state *rsp;
296
297 local_irq_save(flags);
298
299 /*
300 * Yes, we can lose flag-setting operations. This is OK, because
301 * the flag will be set again after some delay.
302 */
303 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
304 raw_cpu_write(rcu_sched_qs_mask, 0);
305
306 /* Find the flavor that needs a quiescent state. */
307 for_each_rcu_flavor(rsp) {
308 rdp = raw_cpu_ptr(rsp->rda);
309 if (!(resched_mask & rsp->flavor_mask))
310 continue;
311 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
312 if (READ_ONCE(rdp->mynode->completed) !=
313 READ_ONCE(rdp->cond_resched_completed))
314 continue;
315
316 /*
317 * Pretend to be momentarily idle for the quiescent state.
318 * This allows the grace-period kthread to record the
319 * quiescent state, with no need for this CPU to do anything
320 * further.
321 */
322 rdtp = this_cpu_ptr(&rcu_dynticks);
323 smp_mb__before_atomic(); /* Earlier stuff before QS. */
324 atomic_add(2, &rdtp->dynticks); /* QS. */
325 smp_mb__after_atomic(); /* Later stuff after QS. */
326 break;
327 }
328 local_irq_restore(flags);
329 }
330
331 /*
332 * Note a context switch. This is a quiescent state for RCU-sched,
333 * and requires special handling for preemptible RCU.
334 * The caller must have disabled preemption.
335 */
336 void rcu_note_context_switch(void)
337 {
338 trace_rcu_utilization(TPS("Start context switch"));
339 rcu_sched_qs();
340 rcu_preempt_note_context_switch();
341 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
342 rcu_momentary_dyntick_idle();
343 trace_rcu_utilization(TPS("End context switch"));
344 }
345 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
346
347 /*
348 * Register a quiescent state for all RCU flavors. If there is an
349 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
350 * dyntick-idle quiescent state visible to other CPUs (but only for those
351 * RCU flavors in desperate need of a quiescent state, which will normally
352 * be none of them). Either way, do a lightweight quiescent state for
353 * all RCU flavors.
354 */
355 void rcu_all_qs(void)
356 {
357 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
358 rcu_momentary_dyntick_idle();
359 this_cpu_inc(rcu_qs_ctr);
360 }
361 EXPORT_SYMBOL_GPL(rcu_all_qs);
362
363 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
364 static long qhimark = 10000; /* If this many pending, ignore blimit. */
365 static long qlowmark = 100; /* Once only this many pending, use blimit. */
366
367 module_param(blimit, long, 0444);
368 module_param(qhimark, long, 0444);
369 module_param(qlowmark, long, 0444);
370
371 static ulong jiffies_till_first_fqs = ULONG_MAX;
372 static ulong jiffies_till_next_fqs = ULONG_MAX;
373
374 module_param(jiffies_till_first_fqs, ulong, 0644);
375 module_param(jiffies_till_next_fqs, ulong, 0644);
376
377 /*
378 * How long the grace period must be before we start recruiting
379 * quiescent-state help from rcu_note_context_switch().
380 */
381 static ulong jiffies_till_sched_qs = HZ / 20;
382 module_param(jiffies_till_sched_qs, ulong, 0644);
383
384 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
385 struct rcu_data *rdp);
386 static void force_qs_rnp(struct rcu_state *rsp,
387 int (*f)(struct rcu_data *rsp, bool *isidle,
388 unsigned long *maxj),
389 bool *isidle, unsigned long *maxj);
390 static void force_quiescent_state(struct rcu_state *rsp);
391 static int rcu_pending(void);
392
393 /*
394 * Return the number of RCU batches started thus far for debug & stats.
395 */
396 unsigned long rcu_batches_started(void)
397 {
398 return rcu_state_p->gpnum;
399 }
400 EXPORT_SYMBOL_GPL(rcu_batches_started);
401
402 /*
403 * Return the number of RCU-sched batches started thus far for debug & stats.
404 */
405 unsigned long rcu_batches_started_sched(void)
406 {
407 return rcu_sched_state.gpnum;
408 }
409 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
410
411 /*
412 * Return the number of RCU BH batches started thus far for debug & stats.
413 */
414 unsigned long rcu_batches_started_bh(void)
415 {
416 return rcu_bh_state.gpnum;
417 }
418 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
419
420 /*
421 * Return the number of RCU batches completed thus far for debug & stats.
422 */
423 unsigned long rcu_batches_completed(void)
424 {
425 return rcu_state_p->completed;
426 }
427 EXPORT_SYMBOL_GPL(rcu_batches_completed);
428
429 /*
430 * Return the number of RCU-sched batches completed thus far for debug & stats.
431 */
432 unsigned long rcu_batches_completed_sched(void)
433 {
434 return rcu_sched_state.completed;
435 }
436 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
437
438 /*
439 * Return the number of RCU BH batches completed thus far for debug & stats.
440 */
441 unsigned long rcu_batches_completed_bh(void)
442 {
443 return rcu_bh_state.completed;
444 }
445 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
446
447 /*
448 * Force a quiescent state.
449 */
450 void rcu_force_quiescent_state(void)
451 {
452 force_quiescent_state(rcu_state_p);
453 }
454 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
455
456 /*
457 * Force a quiescent state for RCU BH.
458 */
459 void rcu_bh_force_quiescent_state(void)
460 {
461 force_quiescent_state(&rcu_bh_state);
462 }
463 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
464
465 /*
466 * Force a quiescent state for RCU-sched.
467 */
468 void rcu_sched_force_quiescent_state(void)
469 {
470 force_quiescent_state(&rcu_sched_state);
471 }
472 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
473
474 /*
475 * Show the state of the grace-period kthreads.
476 */
477 void show_rcu_gp_kthreads(void)
478 {
479 struct rcu_state *rsp;
480
481 for_each_rcu_flavor(rsp) {
482 pr_info("%s: wait state: %d ->state: %#lx\n",
483 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
484 /* sched_show_task(rsp->gp_kthread); */
485 }
486 }
487 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
488
489 /*
490 * Record the number of times rcutorture tests have been initiated and
491 * terminated. This information allows the debugfs tracing stats to be
492 * correlated to the rcutorture messages, even when the rcutorture module
493 * is being repeatedly loaded and unloaded. In other words, we cannot
494 * store this state in rcutorture itself.
495 */
496 void rcutorture_record_test_transition(void)
497 {
498 rcutorture_testseq++;
499 rcutorture_vernum = 0;
500 }
501 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
502
503 /*
504 * Send along grace-period-related data for rcutorture diagnostics.
505 */
506 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
507 unsigned long *gpnum, unsigned long *completed)
508 {
509 struct rcu_state *rsp = NULL;
510
511 switch (test_type) {
512 case RCU_FLAVOR:
513 rsp = rcu_state_p;
514 break;
515 case RCU_BH_FLAVOR:
516 rsp = &rcu_bh_state;
517 break;
518 case RCU_SCHED_FLAVOR:
519 rsp = &rcu_sched_state;
520 break;
521 default:
522 break;
523 }
524 if (rsp != NULL) {
525 *flags = READ_ONCE(rsp->gp_flags);
526 *gpnum = READ_ONCE(rsp->gpnum);
527 *completed = READ_ONCE(rsp->completed);
528 return;
529 }
530 *flags = 0;
531 *gpnum = 0;
532 *completed = 0;
533 }
534 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
535
536 /*
537 * Record the number of writer passes through the current rcutorture test.
538 * This is also used to correlate debugfs tracing stats with the rcutorture
539 * messages.
540 */
541 void rcutorture_record_progress(unsigned long vernum)
542 {
543 rcutorture_vernum++;
544 }
545 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
546
547 /*
548 * Does the CPU have callbacks ready to be invoked?
549 */
550 static int
551 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
552 {
553 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
554 rdp->nxttail[RCU_DONE_TAIL] != NULL;
555 }
556
557 /*
558 * Return the root node of the specified rcu_state structure.
559 */
560 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
561 {
562 return &rsp->node[0];
563 }
564
565 /*
566 * Is there any need for future grace periods?
567 * Interrupts must be disabled. If the caller does not hold the root
568 * rnp_node structure's ->lock, the results are advisory only.
569 */
570 static int rcu_future_needs_gp(struct rcu_state *rsp)
571 {
572 struct rcu_node *rnp = rcu_get_root(rsp);
573 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
574 int *fp = &rnp->need_future_gp[idx];
575
576 return READ_ONCE(*fp);
577 }
578
579 /*
580 * Does the current CPU require a not-yet-started grace period?
581 * The caller must have disabled interrupts to prevent races with
582 * normal callback registry.
583 */
584 static int
585 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
586 {
587 int i;
588
589 if (rcu_gp_in_progress(rsp))
590 return 0; /* No, a grace period is already in progress. */
591 if (rcu_future_needs_gp(rsp))
592 return 1; /* Yes, a no-CBs CPU needs one. */
593 if (!rdp->nxttail[RCU_NEXT_TAIL])
594 return 0; /* No, this is a no-CBs (or offline) CPU. */
595 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
596 return 1; /* Yes, this CPU has newly registered callbacks. */
597 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
598 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
599 ULONG_CMP_LT(READ_ONCE(rsp->completed),
600 rdp->nxtcompleted[i]))
601 return 1; /* Yes, CBs for future grace period. */
602 return 0; /* No grace period needed. */
603 }
604
605 /*
606 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
607 *
608 * If the new value of the ->dynticks_nesting counter now is zero,
609 * we really have entered idle, and must do the appropriate accounting.
610 * The caller must have disabled interrupts.
611 */
612 static void rcu_eqs_enter_common(long long oldval, bool user)
613 {
614 struct rcu_state *rsp;
615 struct rcu_data *rdp;
616 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
617
618 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
619 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
620 !user && !is_idle_task(current)) {
621 struct task_struct *idle __maybe_unused =
622 idle_task(smp_processor_id());
623
624 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
625 ftrace_dump(DUMP_ORIG);
626 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
627 current->pid, current->comm,
628 idle->pid, idle->comm); /* must be idle task! */
629 }
630 for_each_rcu_flavor(rsp) {
631 rdp = this_cpu_ptr(rsp->rda);
632 do_nocb_deferred_wakeup(rdp);
633 }
634 rcu_prepare_for_idle();
635 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
636 smp_mb__before_atomic(); /* See above. */
637 atomic_inc(&rdtp->dynticks);
638 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
639 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
640 atomic_read(&rdtp->dynticks) & 0x1);
641 rcu_dynticks_task_enter();
642
643 /*
644 * It is illegal to enter an extended quiescent state while
645 * in an RCU read-side critical section.
646 */
647 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
648 "Illegal idle entry in RCU read-side critical section.");
649 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
650 "Illegal idle entry in RCU-bh read-side critical section.");
651 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
652 "Illegal idle entry in RCU-sched read-side critical section.");
653 }
654
655 /*
656 * Enter an RCU extended quiescent state, which can be either the
657 * idle loop or adaptive-tickless usermode execution.
658 */
659 static void rcu_eqs_enter(bool user)
660 {
661 long long oldval;
662 struct rcu_dynticks *rdtp;
663
664 rdtp = this_cpu_ptr(&rcu_dynticks);
665 oldval = rdtp->dynticks_nesting;
666 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
667 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
668 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
669 rdtp->dynticks_nesting = 0;
670 rcu_eqs_enter_common(oldval, user);
671 } else {
672 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
673 }
674 }
675
676 /**
677 * rcu_idle_enter - inform RCU that current CPU is entering idle
678 *
679 * Enter idle mode, in other words, -leave- the mode in which RCU
680 * read-side critical sections can occur. (Though RCU read-side
681 * critical sections can occur in irq handlers in idle, a possibility
682 * handled by irq_enter() and irq_exit().)
683 *
684 * We crowbar the ->dynticks_nesting field to zero to allow for
685 * the possibility of usermode upcalls having messed up our count
686 * of interrupt nesting level during the prior busy period.
687 */
688 void rcu_idle_enter(void)
689 {
690 unsigned long flags;
691
692 local_irq_save(flags);
693 rcu_eqs_enter(false);
694 rcu_sysidle_enter(0);
695 local_irq_restore(flags);
696 }
697 EXPORT_SYMBOL_GPL(rcu_idle_enter);
698
699 #ifdef CONFIG_RCU_USER_QS
700 /**
701 * rcu_user_enter - inform RCU that we are resuming userspace.
702 *
703 * Enter RCU idle mode right before resuming userspace. No use of RCU
704 * is permitted between this call and rcu_user_exit(). This way the
705 * CPU doesn't need to maintain the tick for RCU maintenance purposes
706 * when the CPU runs in userspace.
707 */
708 void rcu_user_enter(void)
709 {
710 rcu_eqs_enter(1);
711 }
712 #endif /* CONFIG_RCU_USER_QS */
713
714 /**
715 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
716 *
717 * Exit from an interrupt handler, which might possibly result in entering
718 * idle mode, in other words, leaving the mode in which read-side critical
719 * sections can occur.
720 *
721 * This code assumes that the idle loop never does anything that might
722 * result in unbalanced calls to irq_enter() and irq_exit(). If your
723 * architecture violates this assumption, RCU will give you what you
724 * deserve, good and hard. But very infrequently and irreproducibly.
725 *
726 * Use things like work queues to work around this limitation.
727 *
728 * You have been warned.
729 */
730 void rcu_irq_exit(void)
731 {
732 unsigned long flags;
733 long long oldval;
734 struct rcu_dynticks *rdtp;
735
736 local_irq_save(flags);
737 rdtp = this_cpu_ptr(&rcu_dynticks);
738 oldval = rdtp->dynticks_nesting;
739 rdtp->dynticks_nesting--;
740 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
741 rdtp->dynticks_nesting < 0);
742 if (rdtp->dynticks_nesting)
743 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
744 else
745 rcu_eqs_enter_common(oldval, true);
746 rcu_sysidle_enter(1);
747 local_irq_restore(flags);
748 }
749
750 /*
751 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
752 *
753 * If the new value of the ->dynticks_nesting counter was previously zero,
754 * we really have exited idle, and must do the appropriate accounting.
755 * The caller must have disabled interrupts.
756 */
757 static void rcu_eqs_exit_common(long long oldval, int user)
758 {
759 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
760
761 rcu_dynticks_task_exit();
762 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
763 atomic_inc(&rdtp->dynticks);
764 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
765 smp_mb__after_atomic(); /* See above. */
766 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
767 !(atomic_read(&rdtp->dynticks) & 0x1));
768 rcu_cleanup_after_idle();
769 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
770 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
771 !user && !is_idle_task(current)) {
772 struct task_struct *idle __maybe_unused =
773 idle_task(smp_processor_id());
774
775 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
776 oldval, rdtp->dynticks_nesting);
777 ftrace_dump(DUMP_ORIG);
778 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
779 current->pid, current->comm,
780 idle->pid, idle->comm); /* must be idle task! */
781 }
782 }
783
784 /*
785 * Exit an RCU extended quiescent state, which can be either the
786 * idle loop or adaptive-tickless usermode execution.
787 */
788 static void rcu_eqs_exit(bool user)
789 {
790 struct rcu_dynticks *rdtp;
791 long long oldval;
792
793 rdtp = this_cpu_ptr(&rcu_dynticks);
794 oldval = rdtp->dynticks_nesting;
795 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
796 if (oldval & DYNTICK_TASK_NEST_MASK) {
797 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
798 } else {
799 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
800 rcu_eqs_exit_common(oldval, user);
801 }
802 }
803
804 /**
805 * rcu_idle_exit - inform RCU that current CPU is leaving idle
806 *
807 * Exit idle mode, in other words, -enter- the mode in which RCU
808 * read-side critical sections can occur.
809 *
810 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
811 * allow for the possibility of usermode upcalls messing up our count
812 * of interrupt nesting level during the busy period that is just
813 * now starting.
814 */
815 void rcu_idle_exit(void)
816 {
817 unsigned long flags;
818
819 local_irq_save(flags);
820 rcu_eqs_exit(false);
821 rcu_sysidle_exit(0);
822 local_irq_restore(flags);
823 }
824 EXPORT_SYMBOL_GPL(rcu_idle_exit);
825
826 #ifdef CONFIG_RCU_USER_QS
827 /**
828 * rcu_user_exit - inform RCU that we are exiting userspace.
829 *
830 * Exit RCU idle mode while entering the kernel because it can
831 * run a RCU read side critical section anytime.
832 */
833 void rcu_user_exit(void)
834 {
835 rcu_eqs_exit(1);
836 }
837 #endif /* CONFIG_RCU_USER_QS */
838
839 /**
840 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
841 *
842 * Enter an interrupt handler, which might possibly result in exiting
843 * idle mode, in other words, entering the mode in which read-side critical
844 * sections can occur.
845 *
846 * Note that the Linux kernel is fully capable of entering an interrupt
847 * handler that it never exits, for example when doing upcalls to
848 * user mode! This code assumes that the idle loop never does upcalls to
849 * user mode. If your architecture does do upcalls from the idle loop (or
850 * does anything else that results in unbalanced calls to the irq_enter()
851 * and irq_exit() functions), RCU will give you what you deserve, good
852 * and hard. But very infrequently and irreproducibly.
853 *
854 * Use things like work queues to work around this limitation.
855 *
856 * You have been warned.
857 */
858 void rcu_irq_enter(void)
859 {
860 unsigned long flags;
861 struct rcu_dynticks *rdtp;
862 long long oldval;
863
864 local_irq_save(flags);
865 rdtp = this_cpu_ptr(&rcu_dynticks);
866 oldval = rdtp->dynticks_nesting;
867 rdtp->dynticks_nesting++;
868 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
869 rdtp->dynticks_nesting == 0);
870 if (oldval)
871 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
872 else
873 rcu_eqs_exit_common(oldval, true);
874 rcu_sysidle_exit(1);
875 local_irq_restore(flags);
876 }
877
878 /**
879 * rcu_nmi_enter - inform RCU of entry to NMI context
880 *
881 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
882 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
883 * that the CPU is active. This implementation permits nested NMIs, as
884 * long as the nesting level does not overflow an int. (You will probably
885 * run out of stack space first.)
886 */
887 void rcu_nmi_enter(void)
888 {
889 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
890 int incby = 2;
891
892 /* Complain about underflow. */
893 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
894
895 /*
896 * If idle from RCU viewpoint, atomically increment ->dynticks
897 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
898 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
899 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
900 * to be in the outermost NMI handler that interrupted an RCU-idle
901 * period (observation due to Andy Lutomirski).
902 */
903 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
904 smp_mb__before_atomic(); /* Force delay from prior write. */
905 atomic_inc(&rdtp->dynticks);
906 /* atomic_inc() before later RCU read-side crit sects */
907 smp_mb__after_atomic(); /* See above. */
908 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
909 incby = 1;
910 }
911 rdtp->dynticks_nmi_nesting += incby;
912 barrier();
913 }
914
915 /**
916 * rcu_nmi_exit - inform RCU of exit from NMI context
917 *
918 * If we are returning from the outermost NMI handler that interrupted an
919 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
920 * to let the RCU grace-period handling know that the CPU is back to
921 * being RCU-idle.
922 */
923 void rcu_nmi_exit(void)
924 {
925 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
926
927 /*
928 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
929 * (We are exiting an NMI handler, so RCU better be paying attention
930 * to us!)
931 */
932 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
933 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
934
935 /*
936 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
937 * leave it in non-RCU-idle state.
938 */
939 if (rdtp->dynticks_nmi_nesting != 1) {
940 rdtp->dynticks_nmi_nesting -= 2;
941 return;
942 }
943
944 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
945 rdtp->dynticks_nmi_nesting = 0;
946 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
947 smp_mb__before_atomic(); /* See above. */
948 atomic_inc(&rdtp->dynticks);
949 smp_mb__after_atomic(); /* Force delay to next write. */
950 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
951 }
952
953 /**
954 * __rcu_is_watching - are RCU read-side critical sections safe?
955 *
956 * Return true if RCU is watching the running CPU, which means that
957 * this CPU can safely enter RCU read-side critical sections. Unlike
958 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
959 * least disabled preemption.
960 */
961 bool notrace __rcu_is_watching(void)
962 {
963 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
964 }
965
966 /**
967 * rcu_is_watching - see if RCU thinks that the current CPU is idle
968 *
969 * If the current CPU is in its idle loop and is neither in an interrupt
970 * or NMI handler, return true.
971 */
972 bool notrace rcu_is_watching(void)
973 {
974 bool ret;
975
976 preempt_disable();
977 ret = __rcu_is_watching();
978 preempt_enable();
979 return ret;
980 }
981 EXPORT_SYMBOL_GPL(rcu_is_watching);
982
983 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
984
985 /*
986 * Is the current CPU online? Disable preemption to avoid false positives
987 * that could otherwise happen due to the current CPU number being sampled,
988 * this task being preempted, its old CPU being taken offline, resuming
989 * on some other CPU, then determining that its old CPU is now offline.
990 * It is OK to use RCU on an offline processor during initial boot, hence
991 * the check for rcu_scheduler_fully_active. Note also that it is OK
992 * for a CPU coming online to use RCU for one jiffy prior to marking itself
993 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
994 * offline to continue to use RCU for one jiffy after marking itself
995 * offline in the cpu_online_mask. This leniency is necessary given the
996 * non-atomic nature of the online and offline processing, for example,
997 * the fact that a CPU enters the scheduler after completing the CPU_DYING
998 * notifiers.
999 *
1000 * This is also why RCU internally marks CPUs online during the
1001 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1002 *
1003 * Disable checking if in an NMI handler because we cannot safely report
1004 * errors from NMI handlers anyway.
1005 */
1006 bool rcu_lockdep_current_cpu_online(void)
1007 {
1008 struct rcu_data *rdp;
1009 struct rcu_node *rnp;
1010 bool ret;
1011
1012 if (in_nmi())
1013 return true;
1014 preempt_disable();
1015 rdp = this_cpu_ptr(&rcu_sched_data);
1016 rnp = rdp->mynode;
1017 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1018 !rcu_scheduler_fully_active;
1019 preempt_enable();
1020 return ret;
1021 }
1022 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1023
1024 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1025
1026 /**
1027 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1028 *
1029 * If the current CPU is idle or running at a first-level (not nested)
1030 * interrupt from idle, return true. The caller must have at least
1031 * disabled preemption.
1032 */
1033 static int rcu_is_cpu_rrupt_from_idle(void)
1034 {
1035 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1036 }
1037
1038 /*
1039 * Snapshot the specified CPU's dynticks counter so that we can later
1040 * credit them with an implicit quiescent state. Return 1 if this CPU
1041 * is in dynticks idle mode, which is an extended quiescent state.
1042 */
1043 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1044 bool *isidle, unsigned long *maxj)
1045 {
1046 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1047 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1048 if ((rdp->dynticks_snap & 0x1) == 0) {
1049 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1050 return 1;
1051 } else {
1052 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1053 rdp->mynode->gpnum))
1054 WRITE_ONCE(rdp->gpwrap, true);
1055 return 0;
1056 }
1057 }
1058
1059 /*
1060 * Return true if the specified CPU has passed through a quiescent
1061 * state by virtue of being in or having passed through an dynticks
1062 * idle state since the last call to dyntick_save_progress_counter()
1063 * for this same CPU, or by virtue of having been offline.
1064 */
1065 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1066 bool *isidle, unsigned long *maxj)
1067 {
1068 unsigned int curr;
1069 int *rcrmp;
1070 unsigned int snap;
1071
1072 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1073 snap = (unsigned int)rdp->dynticks_snap;
1074
1075 /*
1076 * If the CPU passed through or entered a dynticks idle phase with
1077 * no active irq/NMI handlers, then we can safely pretend that the CPU
1078 * already acknowledged the request to pass through a quiescent
1079 * state. Either way, that CPU cannot possibly be in an RCU
1080 * read-side critical section that started before the beginning
1081 * of the current RCU grace period.
1082 */
1083 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1084 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1085 rdp->dynticks_fqs++;
1086 return 1;
1087 }
1088
1089 /*
1090 * Check for the CPU being offline, but only if the grace period
1091 * is old enough. We don't need to worry about the CPU changing
1092 * state: If we see it offline even once, it has been through a
1093 * quiescent state.
1094 *
1095 * The reason for insisting that the grace period be at least
1096 * one jiffy old is that CPUs that are not quite online and that
1097 * have just gone offline can still execute RCU read-side critical
1098 * sections.
1099 */
1100 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1101 return 0; /* Grace period is not old enough. */
1102 barrier();
1103 if (cpu_is_offline(rdp->cpu)) {
1104 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1105 rdp->offline_fqs++;
1106 return 1;
1107 }
1108
1109 /*
1110 * A CPU running for an extended time within the kernel can
1111 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1112 * even context-switching back and forth between a pair of
1113 * in-kernel CPU-bound tasks cannot advance grace periods.
1114 * So if the grace period is old enough, make the CPU pay attention.
1115 * Note that the unsynchronized assignments to the per-CPU
1116 * rcu_sched_qs_mask variable are safe. Yes, setting of
1117 * bits can be lost, but they will be set again on the next
1118 * force-quiescent-state pass. So lost bit sets do not result
1119 * in incorrect behavior, merely in a grace period lasting
1120 * a few jiffies longer than it might otherwise. Because
1121 * there are at most four threads involved, and because the
1122 * updates are only once every few jiffies, the probability of
1123 * lossage (and thus of slight grace-period extension) is
1124 * quite low.
1125 *
1126 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1127 * is set too high, we override with half of the RCU CPU stall
1128 * warning delay.
1129 */
1130 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1131 if (ULONG_CMP_GE(jiffies,
1132 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1133 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1134 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1135 WRITE_ONCE(rdp->cond_resched_completed,
1136 READ_ONCE(rdp->mynode->completed));
1137 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1138 WRITE_ONCE(*rcrmp,
1139 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1140 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1141 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1142 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1143 /* Time to beat on that CPU again! */
1144 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1145 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1146 }
1147 }
1148
1149 return 0;
1150 }
1151
1152 static void record_gp_stall_check_time(struct rcu_state *rsp)
1153 {
1154 unsigned long j = jiffies;
1155 unsigned long j1;
1156
1157 rsp->gp_start = j;
1158 smp_wmb(); /* Record start time before stall time. */
1159 j1 = rcu_jiffies_till_stall_check();
1160 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1161 rsp->jiffies_resched = j + j1 / 2;
1162 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1163 }
1164
1165 /*
1166 * Complain about starvation of grace-period kthread.
1167 */
1168 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1169 {
1170 unsigned long gpa;
1171 unsigned long j;
1172
1173 j = jiffies;
1174 gpa = READ_ONCE(rsp->gp_activity);
1175 if (j - gpa > 2 * HZ)
1176 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
1177 rsp->name, j - gpa,
1178 rsp->gpnum, rsp->completed,
1179 rsp->gp_flags, rsp->gp_state,
1180 rsp->gp_kthread ? rsp->gp_kthread->state : 0);
1181 }
1182
1183 /*
1184 * Dump stacks of all tasks running on stalled CPUs.
1185 */
1186 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1187 {
1188 int cpu;
1189 unsigned long flags;
1190 struct rcu_node *rnp;
1191
1192 rcu_for_each_leaf_node(rsp, rnp) {
1193 raw_spin_lock_irqsave(&rnp->lock, flags);
1194 if (rnp->qsmask != 0) {
1195 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1196 if (rnp->qsmask & (1UL << cpu))
1197 dump_cpu_task(rnp->grplo + cpu);
1198 }
1199 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1200 }
1201 }
1202
1203 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1204 {
1205 int cpu;
1206 long delta;
1207 unsigned long flags;
1208 unsigned long gpa;
1209 unsigned long j;
1210 int ndetected = 0;
1211 struct rcu_node *rnp = rcu_get_root(rsp);
1212 long totqlen = 0;
1213
1214 /* Only let one CPU complain about others per time interval. */
1215
1216 raw_spin_lock_irqsave(&rnp->lock, flags);
1217 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1218 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1219 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1220 return;
1221 }
1222 WRITE_ONCE(rsp->jiffies_stall,
1223 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1224 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1225
1226 /*
1227 * OK, time to rat on our buddy...
1228 * See Documentation/RCU/stallwarn.txt for info on how to debug
1229 * RCU CPU stall warnings.
1230 */
1231 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1232 rsp->name);
1233 print_cpu_stall_info_begin();
1234 rcu_for_each_leaf_node(rsp, rnp) {
1235 raw_spin_lock_irqsave(&rnp->lock, flags);
1236 ndetected += rcu_print_task_stall(rnp);
1237 if (rnp->qsmask != 0) {
1238 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1239 if (rnp->qsmask & (1UL << cpu)) {
1240 print_cpu_stall_info(rsp,
1241 rnp->grplo + cpu);
1242 ndetected++;
1243 }
1244 }
1245 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1246 }
1247
1248 print_cpu_stall_info_end();
1249 for_each_possible_cpu(cpu)
1250 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1251 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1252 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1253 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1254 if (ndetected) {
1255 rcu_dump_cpu_stacks(rsp);
1256 } else {
1257 if (READ_ONCE(rsp->gpnum) != gpnum ||
1258 READ_ONCE(rsp->completed) == gpnum) {
1259 pr_err("INFO: Stall ended before state dump start\n");
1260 } else {
1261 j = jiffies;
1262 gpa = READ_ONCE(rsp->gp_activity);
1263 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1264 rsp->name, j - gpa, j, gpa,
1265 jiffies_till_next_fqs,
1266 rcu_get_root(rsp)->qsmask);
1267 /* In this case, the current CPU might be at fault. */
1268 sched_show_task(current);
1269 }
1270 }
1271
1272 /* Complain about tasks blocking the grace period. */
1273 rcu_print_detail_task_stall(rsp);
1274
1275 rcu_check_gp_kthread_starvation(rsp);
1276
1277 force_quiescent_state(rsp); /* Kick them all. */
1278 }
1279
1280 static void print_cpu_stall(struct rcu_state *rsp)
1281 {
1282 int cpu;
1283 unsigned long flags;
1284 struct rcu_node *rnp = rcu_get_root(rsp);
1285 long totqlen = 0;
1286
1287 /*
1288 * OK, time to rat on ourselves...
1289 * See Documentation/RCU/stallwarn.txt for info on how to debug
1290 * RCU CPU stall warnings.
1291 */
1292 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1293 print_cpu_stall_info_begin();
1294 print_cpu_stall_info(rsp, smp_processor_id());
1295 print_cpu_stall_info_end();
1296 for_each_possible_cpu(cpu)
1297 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1298 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1299 jiffies - rsp->gp_start,
1300 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1301
1302 rcu_check_gp_kthread_starvation(rsp);
1303
1304 rcu_dump_cpu_stacks(rsp);
1305
1306 raw_spin_lock_irqsave(&rnp->lock, flags);
1307 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1308 WRITE_ONCE(rsp->jiffies_stall,
1309 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1310 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1311
1312 /*
1313 * Attempt to revive the RCU machinery by forcing a context switch.
1314 *
1315 * A context switch would normally allow the RCU state machine to make
1316 * progress and it could be we're stuck in kernel space without context
1317 * switches for an entirely unreasonable amount of time.
1318 */
1319 resched_cpu(smp_processor_id());
1320 }
1321
1322 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1323 {
1324 unsigned long completed;
1325 unsigned long gpnum;
1326 unsigned long gps;
1327 unsigned long j;
1328 unsigned long js;
1329 struct rcu_node *rnp;
1330
1331 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1332 return;
1333 j = jiffies;
1334
1335 /*
1336 * Lots of memory barriers to reject false positives.
1337 *
1338 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1339 * then rsp->gp_start, and finally rsp->completed. These values
1340 * are updated in the opposite order with memory barriers (or
1341 * equivalent) during grace-period initialization and cleanup.
1342 * Now, a false positive can occur if we get an new value of
1343 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1344 * the memory barriers, the only way that this can happen is if one
1345 * grace period ends and another starts between these two fetches.
1346 * Detect this by comparing rsp->completed with the previous fetch
1347 * from rsp->gpnum.
1348 *
1349 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1350 * and rsp->gp_start suffice to forestall false positives.
1351 */
1352 gpnum = READ_ONCE(rsp->gpnum);
1353 smp_rmb(); /* Pick up ->gpnum first... */
1354 js = READ_ONCE(rsp->jiffies_stall);
1355 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1356 gps = READ_ONCE(rsp->gp_start);
1357 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1358 completed = READ_ONCE(rsp->completed);
1359 if (ULONG_CMP_GE(completed, gpnum) ||
1360 ULONG_CMP_LT(j, js) ||
1361 ULONG_CMP_GE(gps, js))
1362 return; /* No stall or GP completed since entering function. */
1363 rnp = rdp->mynode;
1364 if (rcu_gp_in_progress(rsp) &&
1365 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1366
1367 /* We haven't checked in, so go dump stack. */
1368 print_cpu_stall(rsp);
1369
1370 } else if (rcu_gp_in_progress(rsp) &&
1371 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1372
1373 /* They had a few time units to dump stack, so complain. */
1374 print_other_cpu_stall(rsp, gpnum);
1375 }
1376 }
1377
1378 /**
1379 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1380 *
1381 * Set the stall-warning timeout way off into the future, thus preventing
1382 * any RCU CPU stall-warning messages from appearing in the current set of
1383 * RCU grace periods.
1384 *
1385 * The caller must disable hard irqs.
1386 */
1387 void rcu_cpu_stall_reset(void)
1388 {
1389 struct rcu_state *rsp;
1390
1391 for_each_rcu_flavor(rsp)
1392 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1393 }
1394
1395 /*
1396 * Initialize the specified rcu_data structure's default callback list
1397 * to empty. The default callback list is the one that is not used by
1398 * no-callbacks CPUs.
1399 */
1400 static void init_default_callback_list(struct rcu_data *rdp)
1401 {
1402 int i;
1403
1404 rdp->nxtlist = NULL;
1405 for (i = 0; i < RCU_NEXT_SIZE; i++)
1406 rdp->nxttail[i] = &rdp->nxtlist;
1407 }
1408
1409 /*
1410 * Initialize the specified rcu_data structure's callback list to empty.
1411 */
1412 static void init_callback_list(struct rcu_data *rdp)
1413 {
1414 if (init_nocb_callback_list(rdp))
1415 return;
1416 init_default_callback_list(rdp);
1417 }
1418
1419 /*
1420 * Determine the value that ->completed will have at the end of the
1421 * next subsequent grace period. This is used to tag callbacks so that
1422 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1423 * been dyntick-idle for an extended period with callbacks under the
1424 * influence of RCU_FAST_NO_HZ.
1425 *
1426 * The caller must hold rnp->lock with interrupts disabled.
1427 */
1428 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1429 struct rcu_node *rnp)
1430 {
1431 /*
1432 * If RCU is idle, we just wait for the next grace period.
1433 * But we can only be sure that RCU is idle if we are looking
1434 * at the root rcu_node structure -- otherwise, a new grace
1435 * period might have started, but just not yet gotten around
1436 * to initializing the current non-root rcu_node structure.
1437 */
1438 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1439 return rnp->completed + 1;
1440
1441 /*
1442 * Otherwise, wait for a possible partial grace period and
1443 * then the subsequent full grace period.
1444 */
1445 return rnp->completed + 2;
1446 }
1447
1448 /*
1449 * Trace-event helper function for rcu_start_future_gp() and
1450 * rcu_nocb_wait_gp().
1451 */
1452 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1453 unsigned long c, const char *s)
1454 {
1455 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1456 rnp->completed, c, rnp->level,
1457 rnp->grplo, rnp->grphi, s);
1458 }
1459
1460 /*
1461 * Start some future grace period, as needed to handle newly arrived
1462 * callbacks. The required future grace periods are recorded in each
1463 * rcu_node structure's ->need_future_gp field. Returns true if there
1464 * is reason to awaken the grace-period kthread.
1465 *
1466 * The caller must hold the specified rcu_node structure's ->lock.
1467 */
1468 static bool __maybe_unused
1469 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1470 unsigned long *c_out)
1471 {
1472 unsigned long c;
1473 int i;
1474 bool ret = false;
1475 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1476
1477 /*
1478 * Pick up grace-period number for new callbacks. If this
1479 * grace period is already marked as needed, return to the caller.
1480 */
1481 c = rcu_cbs_completed(rdp->rsp, rnp);
1482 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1483 if (rnp->need_future_gp[c & 0x1]) {
1484 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1485 goto out;
1486 }
1487
1488 /*
1489 * If either this rcu_node structure or the root rcu_node structure
1490 * believe that a grace period is in progress, then we must wait
1491 * for the one following, which is in "c". Because our request
1492 * will be noticed at the end of the current grace period, we don't
1493 * need to explicitly start one. We only do the lockless check
1494 * of rnp_root's fields if the current rcu_node structure thinks
1495 * there is no grace period in flight, and because we hold rnp->lock,
1496 * the only possible change is when rnp_root's two fields are
1497 * equal, in which case rnp_root->gpnum might be concurrently
1498 * incremented. But that is OK, as it will just result in our
1499 * doing some extra useless work.
1500 */
1501 if (rnp->gpnum != rnp->completed ||
1502 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1503 rnp->need_future_gp[c & 0x1]++;
1504 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1505 goto out;
1506 }
1507
1508 /*
1509 * There might be no grace period in progress. If we don't already
1510 * hold it, acquire the root rcu_node structure's lock in order to
1511 * start one (if needed).
1512 */
1513 if (rnp != rnp_root) {
1514 raw_spin_lock(&rnp_root->lock);
1515 smp_mb__after_unlock_lock();
1516 }
1517
1518 /*
1519 * Get a new grace-period number. If there really is no grace
1520 * period in progress, it will be smaller than the one we obtained
1521 * earlier. Adjust callbacks as needed. Note that even no-CBs
1522 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1523 */
1524 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1525 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1526 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1527 rdp->nxtcompleted[i] = c;
1528
1529 /*
1530 * If the needed for the required grace period is already
1531 * recorded, trace and leave.
1532 */
1533 if (rnp_root->need_future_gp[c & 0x1]) {
1534 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1535 goto unlock_out;
1536 }
1537
1538 /* Record the need for the future grace period. */
1539 rnp_root->need_future_gp[c & 0x1]++;
1540
1541 /* If a grace period is not already in progress, start one. */
1542 if (rnp_root->gpnum != rnp_root->completed) {
1543 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1544 } else {
1545 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1546 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1547 }
1548 unlock_out:
1549 if (rnp != rnp_root)
1550 raw_spin_unlock(&rnp_root->lock);
1551 out:
1552 if (c_out != NULL)
1553 *c_out = c;
1554 return ret;
1555 }
1556
1557 /*
1558 * Clean up any old requests for the just-ended grace period. Also return
1559 * whether any additional grace periods have been requested. Also invoke
1560 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1561 * waiting for this grace period to complete.
1562 */
1563 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1564 {
1565 int c = rnp->completed;
1566 int needmore;
1567 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1568
1569 rcu_nocb_gp_cleanup(rsp, rnp);
1570 rnp->need_future_gp[c & 0x1] = 0;
1571 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1572 trace_rcu_future_gp(rnp, rdp, c,
1573 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1574 return needmore;
1575 }
1576
1577 /*
1578 * Awaken the grace-period kthread for the specified flavor of RCU.
1579 * Don't do a self-awaken, and don't bother awakening when there is
1580 * nothing for the grace-period kthread to do (as in several CPUs
1581 * raced to awaken, and we lost), and finally don't try to awaken
1582 * a kthread that has not yet been created.
1583 */
1584 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1585 {
1586 if (current == rsp->gp_kthread ||
1587 !READ_ONCE(rsp->gp_flags) ||
1588 !rsp->gp_kthread)
1589 return;
1590 wake_up(&rsp->gp_wq);
1591 }
1592
1593 /*
1594 * If there is room, assign a ->completed number to any callbacks on
1595 * this CPU that have not already been assigned. Also accelerate any
1596 * callbacks that were previously assigned a ->completed number that has
1597 * since proven to be too conservative, which can happen if callbacks get
1598 * assigned a ->completed number while RCU is idle, but with reference to
1599 * a non-root rcu_node structure. This function is idempotent, so it does
1600 * not hurt to call it repeatedly. Returns an flag saying that we should
1601 * awaken the RCU grace-period kthread.
1602 *
1603 * The caller must hold rnp->lock with interrupts disabled.
1604 */
1605 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1606 struct rcu_data *rdp)
1607 {
1608 unsigned long c;
1609 int i;
1610 bool ret;
1611
1612 /* If the CPU has no callbacks, nothing to do. */
1613 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1614 return false;
1615
1616 /*
1617 * Starting from the sublist containing the callbacks most
1618 * recently assigned a ->completed number and working down, find the
1619 * first sublist that is not assignable to an upcoming grace period.
1620 * Such a sublist has something in it (first two tests) and has
1621 * a ->completed number assigned that will complete sooner than
1622 * the ->completed number for newly arrived callbacks (last test).
1623 *
1624 * The key point is that any later sublist can be assigned the
1625 * same ->completed number as the newly arrived callbacks, which
1626 * means that the callbacks in any of these later sublist can be
1627 * grouped into a single sublist, whether or not they have already
1628 * been assigned a ->completed number.
1629 */
1630 c = rcu_cbs_completed(rsp, rnp);
1631 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1632 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1633 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1634 break;
1635
1636 /*
1637 * If there are no sublist for unassigned callbacks, leave.
1638 * At the same time, advance "i" one sublist, so that "i" will
1639 * index into the sublist where all the remaining callbacks should
1640 * be grouped into.
1641 */
1642 if (++i >= RCU_NEXT_TAIL)
1643 return false;
1644
1645 /*
1646 * Assign all subsequent callbacks' ->completed number to the next
1647 * full grace period and group them all in the sublist initially
1648 * indexed by "i".
1649 */
1650 for (; i <= RCU_NEXT_TAIL; i++) {
1651 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1652 rdp->nxtcompleted[i] = c;
1653 }
1654 /* Record any needed additional grace periods. */
1655 ret = rcu_start_future_gp(rnp, rdp, NULL);
1656
1657 /* Trace depending on how much we were able to accelerate. */
1658 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1659 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1660 else
1661 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1662 return ret;
1663 }
1664
1665 /*
1666 * Move any callbacks whose grace period has completed to the
1667 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1668 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1669 * sublist. This function is idempotent, so it does not hurt to
1670 * invoke it repeatedly. As long as it is not invoked -too- often...
1671 * Returns true if the RCU grace-period kthread needs to be awakened.
1672 *
1673 * The caller must hold rnp->lock with interrupts disabled.
1674 */
1675 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1676 struct rcu_data *rdp)
1677 {
1678 int i, j;
1679
1680 /* If the CPU has no callbacks, nothing to do. */
1681 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1682 return false;
1683
1684 /*
1685 * Find all callbacks whose ->completed numbers indicate that they
1686 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1687 */
1688 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1689 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1690 break;
1691 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1692 }
1693 /* Clean up any sublist tail pointers that were misordered above. */
1694 for (j = RCU_WAIT_TAIL; j < i; j++)
1695 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1696
1697 /* Copy down callbacks to fill in empty sublists. */
1698 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1699 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1700 break;
1701 rdp->nxttail[j] = rdp->nxttail[i];
1702 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1703 }
1704
1705 /* Classify any remaining callbacks. */
1706 return rcu_accelerate_cbs(rsp, rnp, rdp);
1707 }
1708
1709 /*
1710 * Update CPU-local rcu_data state to record the beginnings and ends of
1711 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1712 * structure corresponding to the current CPU, and must have irqs disabled.
1713 * Returns true if the grace-period kthread needs to be awakened.
1714 */
1715 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1716 struct rcu_data *rdp)
1717 {
1718 bool ret;
1719
1720 /* Handle the ends of any preceding grace periods first. */
1721 if (rdp->completed == rnp->completed &&
1722 !unlikely(READ_ONCE(rdp->gpwrap))) {
1723
1724 /* No grace period end, so just accelerate recent callbacks. */
1725 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1726
1727 } else {
1728
1729 /* Advance callbacks. */
1730 ret = rcu_advance_cbs(rsp, rnp, rdp);
1731
1732 /* Remember that we saw this grace-period completion. */
1733 rdp->completed = rnp->completed;
1734 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1735 }
1736
1737 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1738 /*
1739 * If the current grace period is waiting for this CPU,
1740 * set up to detect a quiescent state, otherwise don't
1741 * go looking for one.
1742 */
1743 rdp->gpnum = rnp->gpnum;
1744 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1745 rdp->passed_quiesce = 0;
1746 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1747 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1748 zero_cpu_stall_ticks(rdp);
1749 WRITE_ONCE(rdp->gpwrap, false);
1750 }
1751 return ret;
1752 }
1753
1754 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1755 {
1756 unsigned long flags;
1757 bool needwake;
1758 struct rcu_node *rnp;
1759
1760 local_irq_save(flags);
1761 rnp = rdp->mynode;
1762 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1763 rdp->completed == READ_ONCE(rnp->completed) &&
1764 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1765 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1766 local_irq_restore(flags);
1767 return;
1768 }
1769 smp_mb__after_unlock_lock();
1770 needwake = __note_gp_changes(rsp, rnp, rdp);
1771 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1772 if (needwake)
1773 rcu_gp_kthread_wake(rsp);
1774 }
1775
1776 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1777 {
1778 if (delay > 0 &&
1779 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1780 schedule_timeout_uninterruptible(delay);
1781 }
1782
1783 /*
1784 * Initialize a new grace period. Return 0 if no grace period required.
1785 */
1786 static int rcu_gp_init(struct rcu_state *rsp)
1787 {
1788 unsigned long oldmask;
1789 struct rcu_data *rdp;
1790 struct rcu_node *rnp = rcu_get_root(rsp);
1791
1792 WRITE_ONCE(rsp->gp_activity, jiffies);
1793 raw_spin_lock_irq(&rnp->lock);
1794 smp_mb__after_unlock_lock();
1795 if (!READ_ONCE(rsp->gp_flags)) {
1796 /* Spurious wakeup, tell caller to go back to sleep. */
1797 raw_spin_unlock_irq(&rnp->lock);
1798 return 0;
1799 }
1800 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1801
1802 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1803 /*
1804 * Grace period already in progress, don't start another.
1805 * Not supposed to be able to happen.
1806 */
1807 raw_spin_unlock_irq(&rnp->lock);
1808 return 0;
1809 }
1810
1811 /* Advance to a new grace period and initialize state. */
1812 record_gp_stall_check_time(rsp);
1813 /* Record GP times before starting GP, hence smp_store_release(). */
1814 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1815 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1816 raw_spin_unlock_irq(&rnp->lock);
1817
1818 /*
1819 * Apply per-leaf buffered online and offline operations to the
1820 * rcu_node tree. Note that this new grace period need not wait
1821 * for subsequent online CPUs, and that quiescent-state forcing
1822 * will handle subsequent offline CPUs.
1823 */
1824 rcu_for_each_leaf_node(rsp, rnp) {
1825 rcu_gp_slow(rsp, gp_preinit_delay);
1826 raw_spin_lock_irq(&rnp->lock);
1827 smp_mb__after_unlock_lock();
1828 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1829 !rnp->wait_blkd_tasks) {
1830 /* Nothing to do on this leaf rcu_node structure. */
1831 raw_spin_unlock_irq(&rnp->lock);
1832 continue;
1833 }
1834
1835 /* Record old state, apply changes to ->qsmaskinit field. */
1836 oldmask = rnp->qsmaskinit;
1837 rnp->qsmaskinit = rnp->qsmaskinitnext;
1838
1839 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1840 if (!oldmask != !rnp->qsmaskinit) {
1841 if (!oldmask) /* First online CPU for this rcu_node. */
1842 rcu_init_new_rnp(rnp);
1843 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1844 rnp->wait_blkd_tasks = true;
1845 else /* Last offline CPU and can propagate. */
1846 rcu_cleanup_dead_rnp(rnp);
1847 }
1848
1849 /*
1850 * If all waited-on tasks from prior grace period are
1851 * done, and if all this rcu_node structure's CPUs are
1852 * still offline, propagate up the rcu_node tree and
1853 * clear ->wait_blkd_tasks. Otherwise, if one of this
1854 * rcu_node structure's CPUs has since come back online,
1855 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1856 * checks for this, so just call it unconditionally).
1857 */
1858 if (rnp->wait_blkd_tasks &&
1859 (!rcu_preempt_has_tasks(rnp) ||
1860 rnp->qsmaskinit)) {
1861 rnp->wait_blkd_tasks = false;
1862 rcu_cleanup_dead_rnp(rnp);
1863 }
1864
1865 raw_spin_unlock_irq(&rnp->lock);
1866 }
1867
1868 /*
1869 * Set the quiescent-state-needed bits in all the rcu_node
1870 * structures for all currently online CPUs in breadth-first order,
1871 * starting from the root rcu_node structure, relying on the layout
1872 * of the tree within the rsp->node[] array. Note that other CPUs
1873 * will access only the leaves of the hierarchy, thus seeing that no
1874 * grace period is in progress, at least until the corresponding
1875 * leaf node has been initialized. In addition, we have excluded
1876 * CPU-hotplug operations.
1877 *
1878 * The grace period cannot complete until the initialization
1879 * process finishes, because this kthread handles both.
1880 */
1881 rcu_for_each_node_breadth_first(rsp, rnp) {
1882 rcu_gp_slow(rsp, gp_init_delay);
1883 raw_spin_lock_irq(&rnp->lock);
1884 smp_mb__after_unlock_lock();
1885 rdp = this_cpu_ptr(rsp->rda);
1886 rcu_preempt_check_blocked_tasks(rnp);
1887 rnp->qsmask = rnp->qsmaskinit;
1888 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1889 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1890 WRITE_ONCE(rnp->completed, rsp->completed);
1891 if (rnp == rdp->mynode)
1892 (void)__note_gp_changes(rsp, rnp, rdp);
1893 rcu_preempt_boost_start_gp(rnp);
1894 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1895 rnp->level, rnp->grplo,
1896 rnp->grphi, rnp->qsmask);
1897 raw_spin_unlock_irq(&rnp->lock);
1898 cond_resched_rcu_qs();
1899 WRITE_ONCE(rsp->gp_activity, jiffies);
1900 }
1901
1902 return 1;
1903 }
1904
1905 /*
1906 * Do one round of quiescent-state forcing.
1907 */
1908 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1909 {
1910 int fqs_state = fqs_state_in;
1911 bool isidle = false;
1912 unsigned long maxj;
1913 struct rcu_node *rnp = rcu_get_root(rsp);
1914
1915 WRITE_ONCE(rsp->gp_activity, jiffies);
1916 rsp->n_force_qs++;
1917 if (fqs_state == RCU_SAVE_DYNTICK) {
1918 /* Collect dyntick-idle snapshots. */
1919 if (is_sysidle_rcu_state(rsp)) {
1920 isidle = true;
1921 maxj = jiffies - ULONG_MAX / 4;
1922 }
1923 force_qs_rnp(rsp, dyntick_save_progress_counter,
1924 &isidle, &maxj);
1925 rcu_sysidle_report_gp(rsp, isidle, maxj);
1926 fqs_state = RCU_FORCE_QS;
1927 } else {
1928 /* Handle dyntick-idle and offline CPUs. */
1929 isidle = true;
1930 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1931 }
1932 /* Clear flag to prevent immediate re-entry. */
1933 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1934 raw_spin_lock_irq(&rnp->lock);
1935 smp_mb__after_unlock_lock();
1936 WRITE_ONCE(rsp->gp_flags,
1937 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1938 raw_spin_unlock_irq(&rnp->lock);
1939 }
1940 return fqs_state;
1941 }
1942
1943 /*
1944 * Clean up after the old grace period.
1945 */
1946 static void rcu_gp_cleanup(struct rcu_state *rsp)
1947 {
1948 unsigned long gp_duration;
1949 bool needgp = false;
1950 int nocb = 0;
1951 struct rcu_data *rdp;
1952 struct rcu_node *rnp = rcu_get_root(rsp);
1953
1954 WRITE_ONCE(rsp->gp_activity, jiffies);
1955 raw_spin_lock_irq(&rnp->lock);
1956 smp_mb__after_unlock_lock();
1957 gp_duration = jiffies - rsp->gp_start;
1958 if (gp_duration > rsp->gp_max)
1959 rsp->gp_max = gp_duration;
1960
1961 /*
1962 * We know the grace period is complete, but to everyone else
1963 * it appears to still be ongoing. But it is also the case
1964 * that to everyone else it looks like there is nothing that
1965 * they can do to advance the grace period. It is therefore
1966 * safe for us to drop the lock in order to mark the grace
1967 * period as completed in all of the rcu_node structures.
1968 */
1969 raw_spin_unlock_irq(&rnp->lock);
1970
1971 /*
1972 * Propagate new ->completed value to rcu_node structures so
1973 * that other CPUs don't have to wait until the start of the next
1974 * grace period to process their callbacks. This also avoids
1975 * some nasty RCU grace-period initialization races by forcing
1976 * the end of the current grace period to be completely recorded in
1977 * all of the rcu_node structures before the beginning of the next
1978 * grace period is recorded in any of the rcu_node structures.
1979 */
1980 rcu_for_each_node_breadth_first(rsp, rnp) {
1981 raw_spin_lock_irq(&rnp->lock);
1982 smp_mb__after_unlock_lock();
1983 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
1984 WARN_ON_ONCE(rnp->qsmask);
1985 WRITE_ONCE(rnp->completed, rsp->gpnum);
1986 rdp = this_cpu_ptr(rsp->rda);
1987 if (rnp == rdp->mynode)
1988 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1989 /* smp_mb() provided by prior unlock-lock pair. */
1990 nocb += rcu_future_gp_cleanup(rsp, rnp);
1991 raw_spin_unlock_irq(&rnp->lock);
1992 cond_resched_rcu_qs();
1993 WRITE_ONCE(rsp->gp_activity, jiffies);
1994 rcu_gp_slow(rsp, gp_cleanup_delay);
1995 }
1996 rnp = rcu_get_root(rsp);
1997 raw_spin_lock_irq(&rnp->lock);
1998 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1999 rcu_nocb_gp_set(rnp, nocb);
2000
2001 /* Declare grace period done. */
2002 WRITE_ONCE(rsp->completed, rsp->gpnum);
2003 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2004 rsp->fqs_state = RCU_GP_IDLE;
2005 rdp = this_cpu_ptr(rsp->rda);
2006 /* Advance CBs to reduce false positives below. */
2007 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2008 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2009 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2010 trace_rcu_grace_period(rsp->name,
2011 READ_ONCE(rsp->gpnum),
2012 TPS("newreq"));
2013 }
2014 raw_spin_unlock_irq(&rnp->lock);
2015 }
2016
2017 /*
2018 * Body of kthread that handles grace periods.
2019 */
2020 static int __noreturn rcu_gp_kthread(void *arg)
2021 {
2022 int fqs_state;
2023 int gf;
2024 unsigned long j;
2025 int ret;
2026 struct rcu_state *rsp = arg;
2027 struct rcu_node *rnp = rcu_get_root(rsp);
2028
2029 rcu_bind_gp_kthread();
2030 for (;;) {
2031
2032 /* Handle grace-period start. */
2033 for (;;) {
2034 trace_rcu_grace_period(rsp->name,
2035 READ_ONCE(rsp->gpnum),
2036 TPS("reqwait"));
2037 rsp->gp_state = RCU_GP_WAIT_GPS;
2038 wait_event_interruptible(rsp->gp_wq,
2039 READ_ONCE(rsp->gp_flags) &
2040 RCU_GP_FLAG_INIT);
2041 rsp->gp_state = RCU_GP_DONE_GPS;
2042 /* Locking provides needed memory barrier. */
2043 if (rcu_gp_init(rsp))
2044 break;
2045 cond_resched_rcu_qs();
2046 WRITE_ONCE(rsp->gp_activity, jiffies);
2047 WARN_ON(signal_pending(current));
2048 trace_rcu_grace_period(rsp->name,
2049 READ_ONCE(rsp->gpnum),
2050 TPS("reqwaitsig"));
2051 }
2052
2053 /* Handle quiescent-state forcing. */
2054 fqs_state = RCU_SAVE_DYNTICK;
2055 j = jiffies_till_first_fqs;
2056 if (j > HZ) {
2057 j = HZ;
2058 jiffies_till_first_fqs = HZ;
2059 }
2060 ret = 0;
2061 for (;;) {
2062 if (!ret)
2063 rsp->jiffies_force_qs = jiffies + j;
2064 trace_rcu_grace_period(rsp->name,
2065 READ_ONCE(rsp->gpnum),
2066 TPS("fqswait"));
2067 rsp->gp_state = RCU_GP_WAIT_FQS;
2068 ret = wait_event_interruptible_timeout(rsp->gp_wq,
2069 ((gf = READ_ONCE(rsp->gp_flags)) &
2070 RCU_GP_FLAG_FQS) ||
2071 (!READ_ONCE(rnp->qsmask) &&
2072 !rcu_preempt_blocked_readers_cgp(rnp)),
2073 j);
2074 rsp->gp_state = RCU_GP_DONE_FQS;
2075 /* Locking provides needed memory barriers. */
2076 /* If grace period done, leave loop. */
2077 if (!READ_ONCE(rnp->qsmask) &&
2078 !rcu_preempt_blocked_readers_cgp(rnp))
2079 break;
2080 /* If time for quiescent-state forcing, do it. */
2081 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2082 (gf & RCU_GP_FLAG_FQS)) {
2083 trace_rcu_grace_period(rsp->name,
2084 READ_ONCE(rsp->gpnum),
2085 TPS("fqsstart"));
2086 fqs_state = rcu_gp_fqs(rsp, fqs_state);
2087 trace_rcu_grace_period(rsp->name,
2088 READ_ONCE(rsp->gpnum),
2089 TPS("fqsend"));
2090 cond_resched_rcu_qs();
2091 WRITE_ONCE(rsp->gp_activity, jiffies);
2092 } else {
2093 /* Deal with stray signal. */
2094 cond_resched_rcu_qs();
2095 WRITE_ONCE(rsp->gp_activity, jiffies);
2096 WARN_ON(signal_pending(current));
2097 trace_rcu_grace_period(rsp->name,
2098 READ_ONCE(rsp->gpnum),
2099 TPS("fqswaitsig"));
2100 }
2101 j = jiffies_till_next_fqs;
2102 if (j > HZ) {
2103 j = HZ;
2104 jiffies_till_next_fqs = HZ;
2105 } else if (j < 1) {
2106 j = 1;
2107 jiffies_till_next_fqs = 1;
2108 }
2109 }
2110
2111 /* Handle grace-period end. */
2112 rsp->gp_state = RCU_GP_CLEANUP;
2113 rcu_gp_cleanup(rsp);
2114 rsp->gp_state = RCU_GP_CLEANED;
2115 }
2116 }
2117
2118 /*
2119 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2120 * in preparation for detecting the next grace period. The caller must hold
2121 * the root node's ->lock and hard irqs must be disabled.
2122 *
2123 * Note that it is legal for a dying CPU (which is marked as offline) to
2124 * invoke this function. This can happen when the dying CPU reports its
2125 * quiescent state.
2126 *
2127 * Returns true if the grace-period kthread must be awakened.
2128 */
2129 static bool
2130 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2131 struct rcu_data *rdp)
2132 {
2133 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2134 /*
2135 * Either we have not yet spawned the grace-period
2136 * task, this CPU does not need another grace period,
2137 * or a grace period is already in progress.
2138 * Either way, don't start a new grace period.
2139 */
2140 return false;
2141 }
2142 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2143 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2144 TPS("newreq"));
2145
2146 /*
2147 * We can't do wakeups while holding the rnp->lock, as that
2148 * could cause possible deadlocks with the rq->lock. Defer
2149 * the wakeup to our caller.
2150 */
2151 return true;
2152 }
2153
2154 /*
2155 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2156 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2157 * is invoked indirectly from rcu_advance_cbs(), which would result in
2158 * endless recursion -- or would do so if it wasn't for the self-deadlock
2159 * that is encountered beforehand.
2160 *
2161 * Returns true if the grace-period kthread needs to be awakened.
2162 */
2163 static bool rcu_start_gp(struct rcu_state *rsp)
2164 {
2165 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2166 struct rcu_node *rnp = rcu_get_root(rsp);
2167 bool ret = false;
2168
2169 /*
2170 * If there is no grace period in progress right now, any
2171 * callbacks we have up to this point will be satisfied by the
2172 * next grace period. Also, advancing the callbacks reduces the
2173 * probability of false positives from cpu_needs_another_gp()
2174 * resulting in pointless grace periods. So, advance callbacks
2175 * then start the grace period!
2176 */
2177 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2178 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2179 return ret;
2180 }
2181
2182 /*
2183 * Report a full set of quiescent states to the specified rcu_state
2184 * data structure. This involves cleaning up after the prior grace
2185 * period and letting rcu_start_gp() start up the next grace period
2186 * if one is needed. Note that the caller must hold rnp->lock, which
2187 * is released before return.
2188 */
2189 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2190 __releases(rcu_get_root(rsp)->lock)
2191 {
2192 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2193 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2194 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2195 rcu_gp_kthread_wake(rsp);
2196 }
2197
2198 /*
2199 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2200 * Allows quiescent states for a group of CPUs to be reported at one go
2201 * to the specified rcu_node structure, though all the CPUs in the group
2202 * must be represented by the same rcu_node structure (which need not be a
2203 * leaf rcu_node structure, though it often will be). The gps parameter
2204 * is the grace-period snapshot, which means that the quiescent states
2205 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2206 * must be held upon entry, and it is released before return.
2207 */
2208 static void
2209 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2210 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2211 __releases(rnp->lock)
2212 {
2213 unsigned long oldmask = 0;
2214 struct rcu_node *rnp_c;
2215
2216 /* Walk up the rcu_node hierarchy. */
2217 for (;;) {
2218 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2219
2220 /*
2221 * Our bit has already been cleared, or the
2222 * relevant grace period is already over, so done.
2223 */
2224 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2225 return;
2226 }
2227 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2228 rnp->qsmask &= ~mask;
2229 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2230 mask, rnp->qsmask, rnp->level,
2231 rnp->grplo, rnp->grphi,
2232 !!rnp->gp_tasks);
2233 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2234
2235 /* Other bits still set at this level, so done. */
2236 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2237 return;
2238 }
2239 mask = rnp->grpmask;
2240 if (rnp->parent == NULL) {
2241
2242 /* No more levels. Exit loop holding root lock. */
2243
2244 break;
2245 }
2246 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2247 rnp_c = rnp;
2248 rnp = rnp->parent;
2249 raw_spin_lock_irqsave(&rnp->lock, flags);
2250 smp_mb__after_unlock_lock();
2251 oldmask = rnp_c->qsmask;
2252 }
2253
2254 /*
2255 * Get here if we are the last CPU to pass through a quiescent
2256 * state for this grace period. Invoke rcu_report_qs_rsp()
2257 * to clean up and start the next grace period if one is needed.
2258 */
2259 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2260 }
2261
2262 /*
2263 * Record a quiescent state for all tasks that were previously queued
2264 * on the specified rcu_node structure and that were blocking the current
2265 * RCU grace period. The caller must hold the specified rnp->lock with
2266 * irqs disabled, and this lock is released upon return, but irqs remain
2267 * disabled.
2268 */
2269 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2270 struct rcu_node *rnp, unsigned long flags)
2271 __releases(rnp->lock)
2272 {
2273 unsigned long gps;
2274 unsigned long mask;
2275 struct rcu_node *rnp_p;
2276
2277 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2278 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2279 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2280 return; /* Still need more quiescent states! */
2281 }
2282
2283 rnp_p = rnp->parent;
2284 if (rnp_p == NULL) {
2285 /*
2286 * Only one rcu_node structure in the tree, so don't
2287 * try to report up to its nonexistent parent!
2288 */
2289 rcu_report_qs_rsp(rsp, flags);
2290 return;
2291 }
2292
2293 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2294 gps = rnp->gpnum;
2295 mask = rnp->grpmask;
2296 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2297 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2298 smp_mb__after_unlock_lock();
2299 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2300 }
2301
2302 /*
2303 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2304 * structure. This must be either called from the specified CPU, or
2305 * called when the specified CPU is known to be offline (and when it is
2306 * also known that no other CPU is concurrently trying to help the offline
2307 * CPU). The lastcomp argument is used to make sure we are still in the
2308 * grace period of interest. We don't want to end the current grace period
2309 * based on quiescent states detected in an earlier grace period!
2310 */
2311 static void
2312 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2313 {
2314 unsigned long flags;
2315 unsigned long mask;
2316 bool needwake;
2317 struct rcu_node *rnp;
2318
2319 rnp = rdp->mynode;
2320 raw_spin_lock_irqsave(&rnp->lock, flags);
2321 smp_mb__after_unlock_lock();
2322 if ((rdp->passed_quiesce == 0 &&
2323 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2324 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2325 rdp->gpwrap) {
2326
2327 /*
2328 * The grace period in which this quiescent state was
2329 * recorded has ended, so don't report it upwards.
2330 * We will instead need a new quiescent state that lies
2331 * within the current grace period.
2332 */
2333 rdp->passed_quiesce = 0; /* need qs for new gp. */
2334 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2335 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2336 return;
2337 }
2338 mask = rdp->grpmask;
2339 if ((rnp->qsmask & mask) == 0) {
2340 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2341 } else {
2342 rdp->qs_pending = 0;
2343
2344 /*
2345 * This GP can't end until cpu checks in, so all of our
2346 * callbacks can be processed during the next GP.
2347 */
2348 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2349
2350 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2351 /* ^^^ Released rnp->lock */
2352 if (needwake)
2353 rcu_gp_kthread_wake(rsp);
2354 }
2355 }
2356
2357 /*
2358 * Check to see if there is a new grace period of which this CPU
2359 * is not yet aware, and if so, set up local rcu_data state for it.
2360 * Otherwise, see if this CPU has just passed through its first
2361 * quiescent state for this grace period, and record that fact if so.
2362 */
2363 static void
2364 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2365 {
2366 /* Check for grace-period ends and beginnings. */
2367 note_gp_changes(rsp, rdp);
2368
2369 /*
2370 * Does this CPU still need to do its part for current grace period?
2371 * If no, return and let the other CPUs do their part as well.
2372 */
2373 if (!rdp->qs_pending)
2374 return;
2375
2376 /*
2377 * Was there a quiescent state since the beginning of the grace
2378 * period? If no, then exit and wait for the next call.
2379 */
2380 if (!rdp->passed_quiesce &&
2381 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2382 return;
2383
2384 /*
2385 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2386 * judge of that).
2387 */
2388 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2389 }
2390
2391 /*
2392 * Send the specified CPU's RCU callbacks to the orphanage. The
2393 * specified CPU must be offline, and the caller must hold the
2394 * ->orphan_lock.
2395 */
2396 static void
2397 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2398 struct rcu_node *rnp, struct rcu_data *rdp)
2399 {
2400 /* No-CBs CPUs do not have orphanable callbacks. */
2401 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2402 return;
2403
2404 /*
2405 * Orphan the callbacks. First adjust the counts. This is safe
2406 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2407 * cannot be running now. Thus no memory barrier is required.
2408 */
2409 if (rdp->nxtlist != NULL) {
2410 rsp->qlen_lazy += rdp->qlen_lazy;
2411 rsp->qlen += rdp->qlen;
2412 rdp->n_cbs_orphaned += rdp->qlen;
2413 rdp->qlen_lazy = 0;
2414 WRITE_ONCE(rdp->qlen, 0);
2415 }
2416
2417 /*
2418 * Next, move those callbacks still needing a grace period to
2419 * the orphanage, where some other CPU will pick them up.
2420 * Some of the callbacks might have gone partway through a grace
2421 * period, but that is too bad. They get to start over because we
2422 * cannot assume that grace periods are synchronized across CPUs.
2423 * We don't bother updating the ->nxttail[] array yet, instead
2424 * we just reset the whole thing later on.
2425 */
2426 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2427 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2428 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2429 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2430 }
2431
2432 /*
2433 * Then move the ready-to-invoke callbacks to the orphanage,
2434 * where some other CPU will pick them up. These will not be
2435 * required to pass though another grace period: They are done.
2436 */
2437 if (rdp->nxtlist != NULL) {
2438 *rsp->orphan_donetail = rdp->nxtlist;
2439 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2440 }
2441
2442 /*
2443 * Finally, initialize the rcu_data structure's list to empty and
2444 * disallow further callbacks on this CPU.
2445 */
2446 init_callback_list(rdp);
2447 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2448 }
2449
2450 /*
2451 * Adopt the RCU callbacks from the specified rcu_state structure's
2452 * orphanage. The caller must hold the ->orphan_lock.
2453 */
2454 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2455 {
2456 int i;
2457 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2458
2459 /* No-CBs CPUs are handled specially. */
2460 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2461 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2462 return;
2463
2464 /* Do the accounting first. */
2465 rdp->qlen_lazy += rsp->qlen_lazy;
2466 rdp->qlen += rsp->qlen;
2467 rdp->n_cbs_adopted += rsp->qlen;
2468 if (rsp->qlen_lazy != rsp->qlen)
2469 rcu_idle_count_callbacks_posted();
2470 rsp->qlen_lazy = 0;
2471 rsp->qlen = 0;
2472
2473 /*
2474 * We do not need a memory barrier here because the only way we
2475 * can get here if there is an rcu_barrier() in flight is if
2476 * we are the task doing the rcu_barrier().
2477 */
2478
2479 /* First adopt the ready-to-invoke callbacks. */
2480 if (rsp->orphan_donelist != NULL) {
2481 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2482 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2483 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2484 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2485 rdp->nxttail[i] = rsp->orphan_donetail;
2486 rsp->orphan_donelist = NULL;
2487 rsp->orphan_donetail = &rsp->orphan_donelist;
2488 }
2489
2490 /* And then adopt the callbacks that still need a grace period. */
2491 if (rsp->orphan_nxtlist != NULL) {
2492 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2493 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2494 rsp->orphan_nxtlist = NULL;
2495 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2496 }
2497 }
2498
2499 /*
2500 * Trace the fact that this CPU is going offline.
2501 */
2502 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2503 {
2504 RCU_TRACE(unsigned long mask);
2505 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2506 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2507
2508 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2509 return;
2510
2511 RCU_TRACE(mask = rdp->grpmask);
2512 trace_rcu_grace_period(rsp->name,
2513 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2514 TPS("cpuofl"));
2515 }
2516
2517 /*
2518 * All CPUs for the specified rcu_node structure have gone offline,
2519 * and all tasks that were preempted within an RCU read-side critical
2520 * section while running on one of those CPUs have since exited their RCU
2521 * read-side critical section. Some other CPU is reporting this fact with
2522 * the specified rcu_node structure's ->lock held and interrupts disabled.
2523 * This function therefore goes up the tree of rcu_node structures,
2524 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2525 * the leaf rcu_node structure's ->qsmaskinit field has already been
2526 * updated
2527 *
2528 * This function does check that the specified rcu_node structure has
2529 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2530 * prematurely. That said, invoking it after the fact will cost you
2531 * a needless lock acquisition. So once it has done its work, don't
2532 * invoke it again.
2533 */
2534 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2535 {
2536 long mask;
2537 struct rcu_node *rnp = rnp_leaf;
2538
2539 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2540 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2541 return;
2542 for (;;) {
2543 mask = rnp->grpmask;
2544 rnp = rnp->parent;
2545 if (!rnp)
2546 break;
2547 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2548 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2549 rnp->qsmaskinit &= ~mask;
2550 rnp->qsmask &= ~mask;
2551 if (rnp->qsmaskinit) {
2552 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2553 return;
2554 }
2555 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2556 }
2557 }
2558
2559 /*
2560 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2561 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2562 * bit masks.
2563 */
2564 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2565 {
2566 unsigned long flags;
2567 unsigned long mask;
2568 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2569 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2570
2571 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2572 return;
2573
2574 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2575 mask = rdp->grpmask;
2576 raw_spin_lock_irqsave(&rnp->lock, flags);
2577 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2578 rnp->qsmaskinitnext &= ~mask;
2579 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2580 }
2581
2582 /*
2583 * The CPU has been completely removed, and some other CPU is reporting
2584 * this fact from process context. Do the remainder of the cleanup,
2585 * including orphaning the outgoing CPU's RCU callbacks, and also
2586 * adopting them. There can only be one CPU hotplug operation at a time,
2587 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2588 */
2589 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2590 {
2591 unsigned long flags;
2592 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2593 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2594
2595 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2596 return;
2597
2598 /* Adjust any no-longer-needed kthreads. */
2599 rcu_boost_kthread_setaffinity(rnp, -1);
2600
2601 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2602 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2603 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2604 rcu_adopt_orphan_cbs(rsp, flags);
2605 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2606
2607 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2608 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2609 cpu, rdp->qlen, rdp->nxtlist);
2610 }
2611
2612 /*
2613 * Invoke any RCU callbacks that have made it to the end of their grace
2614 * period. Thottle as specified by rdp->blimit.
2615 */
2616 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2617 {
2618 unsigned long flags;
2619 struct rcu_head *next, *list, **tail;
2620 long bl, count, count_lazy;
2621 int i;
2622
2623 /* If no callbacks are ready, just return. */
2624 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2625 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2626 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2627 need_resched(), is_idle_task(current),
2628 rcu_is_callbacks_kthread());
2629 return;
2630 }
2631
2632 /*
2633 * Extract the list of ready callbacks, disabling to prevent
2634 * races with call_rcu() from interrupt handlers.
2635 */
2636 local_irq_save(flags);
2637 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2638 bl = rdp->blimit;
2639 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2640 list = rdp->nxtlist;
2641 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2642 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2643 tail = rdp->nxttail[RCU_DONE_TAIL];
2644 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2645 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2646 rdp->nxttail[i] = &rdp->nxtlist;
2647 local_irq_restore(flags);
2648
2649 /* Invoke callbacks. */
2650 count = count_lazy = 0;
2651 while (list) {
2652 next = list->next;
2653 prefetch(next);
2654 debug_rcu_head_unqueue(list);
2655 if (__rcu_reclaim(rsp->name, list))
2656 count_lazy++;
2657 list = next;
2658 /* Stop only if limit reached and CPU has something to do. */
2659 if (++count >= bl &&
2660 (need_resched() ||
2661 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2662 break;
2663 }
2664
2665 local_irq_save(flags);
2666 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2667 is_idle_task(current),
2668 rcu_is_callbacks_kthread());
2669
2670 /* Update count, and requeue any remaining callbacks. */
2671 if (list != NULL) {
2672 *tail = rdp->nxtlist;
2673 rdp->nxtlist = list;
2674 for (i = 0; i < RCU_NEXT_SIZE; i++)
2675 if (&rdp->nxtlist == rdp->nxttail[i])
2676 rdp->nxttail[i] = tail;
2677 else
2678 break;
2679 }
2680 smp_mb(); /* List handling before counting for rcu_barrier(). */
2681 rdp->qlen_lazy -= count_lazy;
2682 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2683 rdp->n_cbs_invoked += count;
2684
2685 /* Reinstate batch limit if we have worked down the excess. */
2686 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2687 rdp->blimit = blimit;
2688
2689 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2690 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2691 rdp->qlen_last_fqs_check = 0;
2692 rdp->n_force_qs_snap = rsp->n_force_qs;
2693 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2694 rdp->qlen_last_fqs_check = rdp->qlen;
2695 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2696
2697 local_irq_restore(flags);
2698
2699 /* Re-invoke RCU core processing if there are callbacks remaining. */
2700 if (cpu_has_callbacks_ready_to_invoke(rdp))
2701 invoke_rcu_core();
2702 }
2703
2704 /*
2705 * Check to see if this CPU is in a non-context-switch quiescent state
2706 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2707 * Also schedule RCU core processing.
2708 *
2709 * This function must be called from hardirq context. It is normally
2710 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2711 * false, there is no point in invoking rcu_check_callbacks().
2712 */
2713 void rcu_check_callbacks(int user)
2714 {
2715 trace_rcu_utilization(TPS("Start scheduler-tick"));
2716 increment_cpu_stall_ticks();
2717 if (user || rcu_is_cpu_rrupt_from_idle()) {
2718
2719 /*
2720 * Get here if this CPU took its interrupt from user
2721 * mode or from the idle loop, and if this is not a
2722 * nested interrupt. In this case, the CPU is in
2723 * a quiescent state, so note it.
2724 *
2725 * No memory barrier is required here because both
2726 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2727 * variables that other CPUs neither access nor modify,
2728 * at least not while the corresponding CPU is online.
2729 */
2730
2731 rcu_sched_qs();
2732 rcu_bh_qs();
2733
2734 } else if (!in_softirq()) {
2735
2736 /*
2737 * Get here if this CPU did not take its interrupt from
2738 * softirq, in other words, if it is not interrupting
2739 * a rcu_bh read-side critical section. This is an _bh
2740 * critical section, so note it.
2741 */
2742
2743 rcu_bh_qs();
2744 }
2745 rcu_preempt_check_callbacks();
2746 if (rcu_pending())
2747 invoke_rcu_core();
2748 if (user)
2749 rcu_note_voluntary_context_switch(current);
2750 trace_rcu_utilization(TPS("End scheduler-tick"));
2751 }
2752
2753 /*
2754 * Scan the leaf rcu_node structures, processing dyntick state for any that
2755 * have not yet encountered a quiescent state, using the function specified.
2756 * Also initiate boosting for any threads blocked on the root rcu_node.
2757 *
2758 * The caller must have suppressed start of new grace periods.
2759 */
2760 static void force_qs_rnp(struct rcu_state *rsp,
2761 int (*f)(struct rcu_data *rsp, bool *isidle,
2762 unsigned long *maxj),
2763 bool *isidle, unsigned long *maxj)
2764 {
2765 unsigned long bit;
2766 int cpu;
2767 unsigned long flags;
2768 unsigned long mask;
2769 struct rcu_node *rnp;
2770
2771 rcu_for_each_leaf_node(rsp, rnp) {
2772 cond_resched_rcu_qs();
2773 mask = 0;
2774 raw_spin_lock_irqsave(&rnp->lock, flags);
2775 smp_mb__after_unlock_lock();
2776 if (rnp->qsmask == 0) {
2777 if (rcu_state_p == &rcu_sched_state ||
2778 rsp != rcu_state_p ||
2779 rcu_preempt_blocked_readers_cgp(rnp)) {
2780 /*
2781 * No point in scanning bits because they
2782 * are all zero. But we might need to
2783 * priority-boost blocked readers.
2784 */
2785 rcu_initiate_boost(rnp, flags);
2786 /* rcu_initiate_boost() releases rnp->lock */
2787 continue;
2788 }
2789 if (rnp->parent &&
2790 (rnp->parent->qsmask & rnp->grpmask)) {
2791 /*
2792 * Race between grace-period
2793 * initialization and task exiting RCU
2794 * read-side critical section: Report.
2795 */
2796 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2797 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2798 continue;
2799 }
2800 }
2801 cpu = rnp->grplo;
2802 bit = 1;
2803 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2804 if ((rnp->qsmask & bit) != 0) {
2805 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2806 mask |= bit;
2807 }
2808 }
2809 if (mask != 0) {
2810 /* Idle/offline CPUs, report (releases rnp->lock. */
2811 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2812 } else {
2813 /* Nothing to do here, so just drop the lock. */
2814 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2815 }
2816 }
2817 }
2818
2819 /*
2820 * Force quiescent states on reluctant CPUs, and also detect which
2821 * CPUs are in dyntick-idle mode.
2822 */
2823 static void force_quiescent_state(struct rcu_state *rsp)
2824 {
2825 unsigned long flags;
2826 bool ret;
2827 struct rcu_node *rnp;
2828 struct rcu_node *rnp_old = NULL;
2829
2830 /* Funnel through hierarchy to reduce memory contention. */
2831 rnp = __this_cpu_read(rsp->rda->mynode);
2832 for (; rnp != NULL; rnp = rnp->parent) {
2833 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2834 !raw_spin_trylock(&rnp->fqslock);
2835 if (rnp_old != NULL)
2836 raw_spin_unlock(&rnp_old->fqslock);
2837 if (ret) {
2838 rsp->n_force_qs_lh++;
2839 return;
2840 }
2841 rnp_old = rnp;
2842 }
2843 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2844
2845 /* Reached the root of the rcu_node tree, acquire lock. */
2846 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2847 smp_mb__after_unlock_lock();
2848 raw_spin_unlock(&rnp_old->fqslock);
2849 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2850 rsp->n_force_qs_lh++;
2851 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2852 return; /* Someone beat us to it. */
2853 }
2854 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2855 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2856 rcu_gp_kthread_wake(rsp);
2857 }
2858
2859 /*
2860 * This does the RCU core processing work for the specified rcu_state
2861 * and rcu_data structures. This may be called only from the CPU to
2862 * whom the rdp belongs.
2863 */
2864 static void
2865 __rcu_process_callbacks(struct rcu_state *rsp)
2866 {
2867 unsigned long flags;
2868 bool needwake;
2869 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2870
2871 WARN_ON_ONCE(rdp->beenonline == 0);
2872
2873 /* Update RCU state based on any recent quiescent states. */
2874 rcu_check_quiescent_state(rsp, rdp);
2875
2876 /* Does this CPU require a not-yet-started grace period? */
2877 local_irq_save(flags);
2878 if (cpu_needs_another_gp(rsp, rdp)) {
2879 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2880 needwake = rcu_start_gp(rsp);
2881 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2882 if (needwake)
2883 rcu_gp_kthread_wake(rsp);
2884 } else {
2885 local_irq_restore(flags);
2886 }
2887
2888 /* If there are callbacks ready, invoke them. */
2889 if (cpu_has_callbacks_ready_to_invoke(rdp))
2890 invoke_rcu_callbacks(rsp, rdp);
2891
2892 /* Do any needed deferred wakeups of rcuo kthreads. */
2893 do_nocb_deferred_wakeup(rdp);
2894 }
2895
2896 /*
2897 * Do RCU core processing for the current CPU.
2898 */
2899 static void rcu_process_callbacks(struct softirq_action *unused)
2900 {
2901 struct rcu_state *rsp;
2902
2903 if (cpu_is_offline(smp_processor_id()))
2904 return;
2905 trace_rcu_utilization(TPS("Start RCU core"));
2906 for_each_rcu_flavor(rsp)
2907 __rcu_process_callbacks(rsp);
2908 trace_rcu_utilization(TPS("End RCU core"));
2909 }
2910
2911 /*
2912 * Schedule RCU callback invocation. If the specified type of RCU
2913 * does not support RCU priority boosting, just do a direct call,
2914 * otherwise wake up the per-CPU kernel kthread. Note that because we
2915 * are running on the current CPU with softirqs disabled, the
2916 * rcu_cpu_kthread_task cannot disappear out from under us.
2917 */
2918 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2919 {
2920 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2921 return;
2922 if (likely(!rsp->boost)) {
2923 rcu_do_batch(rsp, rdp);
2924 return;
2925 }
2926 invoke_rcu_callbacks_kthread();
2927 }
2928
2929 static void invoke_rcu_core(void)
2930 {
2931 if (cpu_online(smp_processor_id()))
2932 raise_softirq(RCU_SOFTIRQ);
2933 }
2934
2935 /*
2936 * Handle any core-RCU processing required by a call_rcu() invocation.
2937 */
2938 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2939 struct rcu_head *head, unsigned long flags)
2940 {
2941 bool needwake;
2942
2943 /*
2944 * If called from an extended quiescent state, invoke the RCU
2945 * core in order to force a re-evaluation of RCU's idleness.
2946 */
2947 if (!rcu_is_watching())
2948 invoke_rcu_core();
2949
2950 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2951 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2952 return;
2953
2954 /*
2955 * Force the grace period if too many callbacks or too long waiting.
2956 * Enforce hysteresis, and don't invoke force_quiescent_state()
2957 * if some other CPU has recently done so. Also, don't bother
2958 * invoking force_quiescent_state() if the newly enqueued callback
2959 * is the only one waiting for a grace period to complete.
2960 */
2961 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2962
2963 /* Are we ignoring a completed grace period? */
2964 note_gp_changes(rsp, rdp);
2965
2966 /* Start a new grace period if one not already started. */
2967 if (!rcu_gp_in_progress(rsp)) {
2968 struct rcu_node *rnp_root = rcu_get_root(rsp);
2969
2970 raw_spin_lock(&rnp_root->lock);
2971 smp_mb__after_unlock_lock();
2972 needwake = rcu_start_gp(rsp);
2973 raw_spin_unlock(&rnp_root->lock);
2974 if (needwake)
2975 rcu_gp_kthread_wake(rsp);
2976 } else {
2977 /* Give the grace period a kick. */
2978 rdp->blimit = LONG_MAX;
2979 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2980 *rdp->nxttail[RCU_DONE_TAIL] != head)
2981 force_quiescent_state(rsp);
2982 rdp->n_force_qs_snap = rsp->n_force_qs;
2983 rdp->qlen_last_fqs_check = rdp->qlen;
2984 }
2985 }
2986 }
2987
2988 /*
2989 * RCU callback function to leak a callback.
2990 */
2991 static void rcu_leak_callback(struct rcu_head *rhp)
2992 {
2993 }
2994
2995 /*
2996 * Helper function for call_rcu() and friends. The cpu argument will
2997 * normally be -1, indicating "currently running CPU". It may specify
2998 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2999 * is expected to specify a CPU.
3000 */
3001 static void
3002 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3003 struct rcu_state *rsp, int cpu, bool lazy)
3004 {
3005 unsigned long flags;
3006 struct rcu_data *rdp;
3007
3008 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3009 if (debug_rcu_head_queue(head)) {
3010 /* Probable double call_rcu(), so leak the callback. */
3011 WRITE_ONCE(head->func, rcu_leak_callback);
3012 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3013 return;
3014 }
3015 head->func = func;
3016 head->next = NULL;
3017
3018 /*
3019 * Opportunistically note grace-period endings and beginnings.
3020 * Note that we might see a beginning right after we see an
3021 * end, but never vice versa, since this CPU has to pass through
3022 * a quiescent state betweentimes.
3023 */
3024 local_irq_save(flags);
3025 rdp = this_cpu_ptr(rsp->rda);
3026
3027 /* Add the callback to our list. */
3028 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3029 int offline;
3030
3031 if (cpu != -1)
3032 rdp = per_cpu_ptr(rsp->rda, cpu);
3033 if (likely(rdp->mynode)) {
3034 /* Post-boot, so this should be for a no-CBs CPU. */
3035 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3036 WARN_ON_ONCE(offline);
3037 /* Offline CPU, _call_rcu() illegal, leak callback. */
3038 local_irq_restore(flags);
3039 return;
3040 }
3041 /*
3042 * Very early boot, before rcu_init(). Initialize if needed
3043 * and then drop through to queue the callback.
3044 */
3045 BUG_ON(cpu != -1);
3046 WARN_ON_ONCE(!rcu_is_watching());
3047 if (!likely(rdp->nxtlist))
3048 init_default_callback_list(rdp);
3049 }
3050 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3051 if (lazy)
3052 rdp->qlen_lazy++;
3053 else
3054 rcu_idle_count_callbacks_posted();
3055 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3056 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3057 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3058
3059 if (__is_kfree_rcu_offset((unsigned long)func))
3060 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3061 rdp->qlen_lazy, rdp->qlen);
3062 else
3063 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3064
3065 /* Go handle any RCU core processing required. */
3066 __call_rcu_core(rsp, rdp, head, flags);
3067 local_irq_restore(flags);
3068 }
3069
3070 /*
3071 * Queue an RCU-sched callback for invocation after a grace period.
3072 */
3073 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3074 {
3075 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3076 }
3077 EXPORT_SYMBOL_GPL(call_rcu_sched);
3078
3079 /*
3080 * Queue an RCU callback for invocation after a quicker grace period.
3081 */
3082 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3083 {
3084 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3085 }
3086 EXPORT_SYMBOL_GPL(call_rcu_bh);
3087
3088 /*
3089 * Queue an RCU callback for lazy invocation after a grace period.
3090 * This will likely be later named something like "call_rcu_lazy()",
3091 * but this change will require some way of tagging the lazy RCU
3092 * callbacks in the list of pending callbacks. Until then, this
3093 * function may only be called from __kfree_rcu().
3094 */
3095 void kfree_call_rcu(struct rcu_head *head,
3096 void (*func)(struct rcu_head *rcu))
3097 {
3098 __call_rcu(head, func, rcu_state_p, -1, 1);
3099 }
3100 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3101
3102 /*
3103 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3104 * any blocking grace-period wait automatically implies a grace period
3105 * if there is only one CPU online at any point time during execution
3106 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3107 * occasionally incorrectly indicate that there are multiple CPUs online
3108 * when there was in fact only one the whole time, as this just adds
3109 * some overhead: RCU still operates correctly.
3110 */
3111 static inline int rcu_blocking_is_gp(void)
3112 {
3113 int ret;
3114
3115 might_sleep(); /* Check for RCU read-side critical section. */
3116 preempt_disable();
3117 ret = num_online_cpus() <= 1;
3118 preempt_enable();
3119 return ret;
3120 }
3121
3122 /**
3123 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3124 *
3125 * Control will return to the caller some time after a full rcu-sched
3126 * grace period has elapsed, in other words after all currently executing
3127 * rcu-sched read-side critical sections have completed. These read-side
3128 * critical sections are delimited by rcu_read_lock_sched() and
3129 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3130 * local_irq_disable(), and so on may be used in place of
3131 * rcu_read_lock_sched().
3132 *
3133 * This means that all preempt_disable code sequences, including NMI and
3134 * non-threaded hardware-interrupt handlers, in progress on entry will
3135 * have completed before this primitive returns. However, this does not
3136 * guarantee that softirq handlers will have completed, since in some
3137 * kernels, these handlers can run in process context, and can block.
3138 *
3139 * Note that this guarantee implies further memory-ordering guarantees.
3140 * On systems with more than one CPU, when synchronize_sched() returns,
3141 * each CPU is guaranteed to have executed a full memory barrier since the
3142 * end of its last RCU-sched read-side critical section whose beginning
3143 * preceded the call to synchronize_sched(). In addition, each CPU having
3144 * an RCU read-side critical section that extends beyond the return from
3145 * synchronize_sched() is guaranteed to have executed a full memory barrier
3146 * after the beginning of synchronize_sched() and before the beginning of
3147 * that RCU read-side critical section. Note that these guarantees include
3148 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3149 * that are executing in the kernel.
3150 *
3151 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3152 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3153 * to have executed a full memory barrier during the execution of
3154 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3155 * again only if the system has more than one CPU).
3156 *
3157 * This primitive provides the guarantees made by the (now removed)
3158 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3159 * guarantees that rcu_read_lock() sections will have completed.
3160 * In "classic RCU", these two guarantees happen to be one and
3161 * the same, but can differ in realtime RCU implementations.
3162 */
3163 void synchronize_sched(void)
3164 {
3165 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3166 !lock_is_held(&rcu_lock_map) &&
3167 !lock_is_held(&rcu_sched_lock_map),
3168 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3169 if (rcu_blocking_is_gp())
3170 return;
3171 if (rcu_gp_is_expedited())
3172 synchronize_sched_expedited();
3173 else
3174 wait_rcu_gp(call_rcu_sched);
3175 }
3176 EXPORT_SYMBOL_GPL(synchronize_sched);
3177
3178 /**
3179 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3180 *
3181 * Control will return to the caller some time after a full rcu_bh grace
3182 * period has elapsed, in other words after all currently executing rcu_bh
3183 * read-side critical sections have completed. RCU read-side critical
3184 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3185 * and may be nested.
3186 *
3187 * See the description of synchronize_sched() for more detailed information
3188 * on memory ordering guarantees.
3189 */
3190 void synchronize_rcu_bh(void)
3191 {
3192 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3193 !lock_is_held(&rcu_lock_map) &&
3194 !lock_is_held(&rcu_sched_lock_map),
3195 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3196 if (rcu_blocking_is_gp())
3197 return;
3198 if (rcu_gp_is_expedited())
3199 synchronize_rcu_bh_expedited();
3200 else
3201 wait_rcu_gp(call_rcu_bh);
3202 }
3203 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3204
3205 /**
3206 * get_state_synchronize_rcu - Snapshot current RCU state
3207 *
3208 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3209 * to determine whether or not a full grace period has elapsed in the
3210 * meantime.
3211 */
3212 unsigned long get_state_synchronize_rcu(void)
3213 {
3214 /*
3215 * Any prior manipulation of RCU-protected data must happen
3216 * before the load from ->gpnum.
3217 */
3218 smp_mb(); /* ^^^ */
3219
3220 /*
3221 * Make sure this load happens before the purportedly
3222 * time-consuming work between get_state_synchronize_rcu()
3223 * and cond_synchronize_rcu().
3224 */
3225 return smp_load_acquire(&rcu_state_p->gpnum);
3226 }
3227 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3228
3229 /**
3230 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3231 *
3232 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3233 *
3234 * If a full RCU grace period has elapsed since the earlier call to
3235 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3236 * synchronize_rcu() to wait for a full grace period.
3237 *
3238 * Yes, this function does not take counter wrap into account. But
3239 * counter wrap is harmless. If the counter wraps, we have waited for
3240 * more than 2 billion grace periods (and way more on a 64-bit system!),
3241 * so waiting for one additional grace period should be just fine.
3242 */
3243 void cond_synchronize_rcu(unsigned long oldstate)
3244 {
3245 unsigned long newstate;
3246
3247 /*
3248 * Ensure that this load happens before any RCU-destructive
3249 * actions the caller might carry out after we return.
3250 */
3251 newstate = smp_load_acquire(&rcu_state_p->completed);
3252 if (ULONG_CMP_GE(oldstate, newstate))
3253 synchronize_rcu();
3254 }
3255 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3256
3257 static int synchronize_sched_expedited_cpu_stop(void *data)
3258 {
3259 /*
3260 * There must be a full memory barrier on each affected CPU
3261 * between the time that try_stop_cpus() is called and the
3262 * time that it returns.
3263 *
3264 * In the current initial implementation of cpu_stop, the
3265 * above condition is already met when the control reaches
3266 * this point and the following smp_mb() is not strictly
3267 * necessary. Do smp_mb() anyway for documentation and
3268 * robustness against future implementation changes.
3269 */
3270 smp_mb(); /* See above comment block. */
3271 return 0;
3272 }
3273
3274 /**
3275 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3276 *
3277 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3278 * approach to force the grace period to end quickly. This consumes
3279 * significant time on all CPUs and is unfriendly to real-time workloads,
3280 * so is thus not recommended for any sort of common-case code. In fact,
3281 * if you are using synchronize_sched_expedited() in a loop, please
3282 * restructure your code to batch your updates, and then use a single
3283 * synchronize_sched() instead.
3284 *
3285 * This implementation can be thought of as an application of ticket
3286 * locking to RCU, with sync_sched_expedited_started and
3287 * sync_sched_expedited_done taking on the roles of the halves
3288 * of the ticket-lock word. Each task atomically increments
3289 * sync_sched_expedited_started upon entry, snapshotting the old value,
3290 * then attempts to stop all the CPUs. If this succeeds, then each
3291 * CPU will have executed a context switch, resulting in an RCU-sched
3292 * grace period. We are then done, so we use atomic_cmpxchg() to
3293 * update sync_sched_expedited_done to match our snapshot -- but
3294 * only if someone else has not already advanced past our snapshot.
3295 *
3296 * On the other hand, if try_stop_cpus() fails, we check the value
3297 * of sync_sched_expedited_done. If it has advanced past our
3298 * initial snapshot, then someone else must have forced a grace period
3299 * some time after we took our snapshot. In this case, our work is
3300 * done for us, and we can simply return. Otherwise, we try again,
3301 * but keep our initial snapshot for purposes of checking for someone
3302 * doing our work for us.
3303 *
3304 * If we fail too many times in a row, we fall back to synchronize_sched().
3305 */
3306 void synchronize_sched_expedited(void)
3307 {
3308 cpumask_var_t cm;
3309 bool cma = false;
3310 int cpu;
3311 long firstsnap, s, snap;
3312 int trycount = 0;
3313 struct rcu_state *rsp = &rcu_sched_state;
3314
3315 /*
3316 * If we are in danger of counter wrap, just do synchronize_sched().
3317 * By allowing sync_sched_expedited_started to advance no more than
3318 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3319 * that more than 3.5 billion CPUs would be required to force a
3320 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3321 * course be required on a 64-bit system.
3322 */
3323 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3324 (ulong)atomic_long_read(&rsp->expedited_done) +
3325 ULONG_MAX / 8)) {
3326 wait_rcu_gp(call_rcu_sched);
3327 atomic_long_inc(&rsp->expedited_wrap);
3328 return;
3329 }
3330
3331 /*
3332 * Take a ticket. Note that atomic_inc_return() implies a
3333 * full memory barrier.
3334 */
3335 snap = atomic_long_inc_return(&rsp->expedited_start);
3336 firstsnap = snap;
3337 if (!try_get_online_cpus()) {
3338 /* CPU hotplug operation in flight, fall back to normal GP. */
3339 wait_rcu_gp(call_rcu_sched);
3340 atomic_long_inc(&rsp->expedited_normal);
3341 return;
3342 }
3343 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3344
3345 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3346 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3347 if (cma) {
3348 cpumask_copy(cm, cpu_online_mask);
3349 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3350 for_each_cpu(cpu, cm) {
3351 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3352
3353 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3354 cpumask_clear_cpu(cpu, cm);
3355 }
3356 if (cpumask_weight(cm) == 0)
3357 goto all_cpus_idle;
3358 }
3359
3360 /*
3361 * Each pass through the following loop attempts to force a
3362 * context switch on each CPU.
3363 */
3364 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3365 synchronize_sched_expedited_cpu_stop,
3366 NULL) == -EAGAIN) {
3367 put_online_cpus();
3368 atomic_long_inc(&rsp->expedited_tryfail);
3369
3370 /* Check to see if someone else did our work for us. */
3371 s = atomic_long_read(&rsp->expedited_done);
3372 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3373 /* ensure test happens before caller kfree */
3374 smp_mb__before_atomic(); /* ^^^ */
3375 atomic_long_inc(&rsp->expedited_workdone1);
3376 free_cpumask_var(cm);
3377 return;
3378 }
3379
3380 /* No joy, try again later. Or just synchronize_sched(). */
3381 if (trycount++ < 10) {
3382 udelay(trycount * num_online_cpus());
3383 } else {
3384 wait_rcu_gp(call_rcu_sched);
3385 atomic_long_inc(&rsp->expedited_normal);
3386 free_cpumask_var(cm);
3387 return;
3388 }
3389
3390 /* Recheck to see if someone else did our work for us. */
3391 s = atomic_long_read(&rsp->expedited_done);
3392 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3393 /* ensure test happens before caller kfree */
3394 smp_mb__before_atomic(); /* ^^^ */
3395 atomic_long_inc(&rsp->expedited_workdone2);
3396 free_cpumask_var(cm);
3397 return;
3398 }
3399
3400 /*
3401 * Refetching sync_sched_expedited_started allows later
3402 * callers to piggyback on our grace period. We retry
3403 * after they started, so our grace period works for them,
3404 * and they started after our first try, so their grace
3405 * period works for us.
3406 */
3407 if (!try_get_online_cpus()) {
3408 /* CPU hotplug operation in flight, use normal GP. */
3409 wait_rcu_gp(call_rcu_sched);
3410 atomic_long_inc(&rsp->expedited_normal);
3411 free_cpumask_var(cm);
3412 return;
3413 }
3414 snap = atomic_long_read(&rsp->expedited_start);
3415 smp_mb(); /* ensure read is before try_stop_cpus(). */
3416 }
3417 atomic_long_inc(&rsp->expedited_stoppedcpus);
3418
3419 all_cpus_idle:
3420 free_cpumask_var(cm);
3421
3422 /*
3423 * Everyone up to our most recent fetch is covered by our grace
3424 * period. Update the counter, but only if our work is still
3425 * relevant -- which it won't be if someone who started later
3426 * than we did already did their update.
3427 */
3428 do {
3429 atomic_long_inc(&rsp->expedited_done_tries);
3430 s = atomic_long_read(&rsp->expedited_done);
3431 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3432 /* ensure test happens before caller kfree */
3433 smp_mb__before_atomic(); /* ^^^ */
3434 atomic_long_inc(&rsp->expedited_done_lost);
3435 break;
3436 }
3437 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3438 atomic_long_inc(&rsp->expedited_done_exit);
3439
3440 put_online_cpus();
3441 }
3442 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3443
3444 /*
3445 * Check to see if there is any immediate RCU-related work to be done
3446 * by the current CPU, for the specified type of RCU, returning 1 if so.
3447 * The checks are in order of increasing expense: checks that can be
3448 * carried out against CPU-local state are performed first. However,
3449 * we must check for CPU stalls first, else we might not get a chance.
3450 */
3451 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3452 {
3453 struct rcu_node *rnp = rdp->mynode;
3454
3455 rdp->n_rcu_pending++;
3456
3457 /* Check for CPU stalls, if enabled. */
3458 check_cpu_stall(rsp, rdp);
3459
3460 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3461 if (rcu_nohz_full_cpu(rsp))
3462 return 0;
3463
3464 /* Is the RCU core waiting for a quiescent state from this CPU? */
3465 if (rcu_scheduler_fully_active &&
3466 rdp->qs_pending && !rdp->passed_quiesce &&
3467 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3468 rdp->n_rp_qs_pending++;
3469 } else if (rdp->qs_pending &&
3470 (rdp->passed_quiesce ||
3471 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3472 rdp->n_rp_report_qs++;
3473 return 1;
3474 }
3475
3476 /* Does this CPU have callbacks ready to invoke? */
3477 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3478 rdp->n_rp_cb_ready++;
3479 return 1;
3480 }
3481
3482 /* Has RCU gone idle with this CPU needing another grace period? */
3483 if (cpu_needs_another_gp(rsp, rdp)) {
3484 rdp->n_rp_cpu_needs_gp++;
3485 return 1;
3486 }
3487
3488 /* Has another RCU grace period completed? */
3489 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3490 rdp->n_rp_gp_completed++;
3491 return 1;
3492 }
3493
3494 /* Has a new RCU grace period started? */
3495 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3496 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3497 rdp->n_rp_gp_started++;
3498 return 1;
3499 }
3500
3501 /* Does this CPU need a deferred NOCB wakeup? */
3502 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3503 rdp->n_rp_nocb_defer_wakeup++;
3504 return 1;
3505 }
3506
3507 /* nothing to do */
3508 rdp->n_rp_need_nothing++;
3509 return 0;
3510 }
3511
3512 /*
3513 * Check to see if there is any immediate RCU-related work to be done
3514 * by the current CPU, returning 1 if so. This function is part of the
3515 * RCU implementation; it is -not- an exported member of the RCU API.
3516 */
3517 static int rcu_pending(void)
3518 {
3519 struct rcu_state *rsp;
3520
3521 for_each_rcu_flavor(rsp)
3522 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3523 return 1;
3524 return 0;
3525 }
3526
3527 /*
3528 * Return true if the specified CPU has any callback. If all_lazy is
3529 * non-NULL, store an indication of whether all callbacks are lazy.
3530 * (If there are no callbacks, all of them are deemed to be lazy.)
3531 */
3532 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3533 {
3534 bool al = true;
3535 bool hc = false;
3536 struct rcu_data *rdp;
3537 struct rcu_state *rsp;
3538
3539 for_each_rcu_flavor(rsp) {
3540 rdp = this_cpu_ptr(rsp->rda);
3541 if (!rdp->nxtlist)
3542 continue;
3543 hc = true;
3544 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3545 al = false;
3546 break;
3547 }
3548 }
3549 if (all_lazy)
3550 *all_lazy = al;
3551 return hc;
3552 }
3553
3554 /*
3555 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3556 * the compiler is expected to optimize this away.
3557 */
3558 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3559 int cpu, unsigned long done)
3560 {
3561 trace_rcu_barrier(rsp->name, s, cpu,
3562 atomic_read(&rsp->barrier_cpu_count), done);
3563 }
3564
3565 /*
3566 * RCU callback function for _rcu_barrier(). If we are last, wake
3567 * up the task executing _rcu_barrier().
3568 */
3569 static void rcu_barrier_callback(struct rcu_head *rhp)
3570 {
3571 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3572 struct rcu_state *rsp = rdp->rsp;
3573
3574 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3575 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3576 complete(&rsp->barrier_completion);
3577 } else {
3578 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3579 }
3580 }
3581
3582 /*
3583 * Called with preemption disabled, and from cross-cpu IRQ context.
3584 */
3585 static void rcu_barrier_func(void *type)
3586 {
3587 struct rcu_state *rsp = type;
3588 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3589
3590 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3591 atomic_inc(&rsp->barrier_cpu_count);
3592 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3593 }
3594
3595 /*
3596 * Orchestrate the specified type of RCU barrier, waiting for all
3597 * RCU callbacks of the specified type to complete.
3598 */
3599 static void _rcu_barrier(struct rcu_state *rsp)
3600 {
3601 int cpu;
3602 struct rcu_data *rdp;
3603 unsigned long snap = READ_ONCE(rsp->n_barrier_done);
3604 unsigned long snap_done;
3605
3606 _rcu_barrier_trace(rsp, "Begin", -1, snap);
3607
3608 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3609 mutex_lock(&rsp->barrier_mutex);
3610
3611 /*
3612 * Ensure that all prior references, including to ->n_barrier_done,
3613 * are ordered before the _rcu_barrier() machinery.
3614 */
3615 smp_mb(); /* See above block comment. */
3616
3617 /*
3618 * Recheck ->n_barrier_done to see if others did our work for us.
3619 * This means checking ->n_barrier_done for an even-to-odd-to-even
3620 * transition. The "if" expression below therefore rounds the old
3621 * value up to the next even number and adds two before comparing.
3622 */
3623 snap_done = rsp->n_barrier_done;
3624 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3625
3626 /*
3627 * If the value in snap is odd, we needed to wait for the current
3628 * rcu_barrier() to complete, then wait for the next one, in other
3629 * words, we need the value of snap_done to be three larger than
3630 * the value of snap. On the other hand, if the value in snap is
3631 * even, we only had to wait for the next rcu_barrier() to complete,
3632 * in other words, we need the value of snap_done to be only two
3633 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3634 * this for us (thank you, Linus!).
3635 */
3636 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3637 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3638 smp_mb(); /* caller's subsequent code after above check. */
3639 mutex_unlock(&rsp->barrier_mutex);
3640 return;
3641 }
3642
3643 /*
3644 * Increment ->n_barrier_done to avoid duplicate work. Use
3645 * WRITE_ONCE() to prevent the compiler from speculating
3646 * the increment to precede the early-exit check.
3647 */
3648 WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3649 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3650 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3651 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3652
3653 /*
3654 * Initialize the count to one rather than to zero in order to
3655 * avoid a too-soon return to zero in case of a short grace period
3656 * (or preemption of this task). Exclude CPU-hotplug operations
3657 * to ensure that no offline CPU has callbacks queued.
3658 */
3659 init_completion(&rsp->barrier_completion);
3660 atomic_set(&rsp->barrier_cpu_count, 1);
3661 get_online_cpus();
3662
3663 /*
3664 * Force each CPU with callbacks to register a new callback.
3665 * When that callback is invoked, we will know that all of the
3666 * corresponding CPU's preceding callbacks have been invoked.
3667 */
3668 for_each_possible_cpu(cpu) {
3669 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3670 continue;
3671 rdp = per_cpu_ptr(rsp->rda, cpu);
3672 if (rcu_is_nocb_cpu(cpu)) {
3673 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3674 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3675 rsp->n_barrier_done);
3676 } else {
3677 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3678 rsp->n_barrier_done);
3679 smp_mb__before_atomic();
3680 atomic_inc(&rsp->barrier_cpu_count);
3681 __call_rcu(&rdp->barrier_head,
3682 rcu_barrier_callback, rsp, cpu, 0);
3683 }
3684 } else if (READ_ONCE(rdp->qlen)) {
3685 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3686 rsp->n_barrier_done);
3687 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3688 } else {
3689 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3690 rsp->n_barrier_done);
3691 }
3692 }
3693 put_online_cpus();
3694
3695 /*
3696 * Now that we have an rcu_barrier_callback() callback on each
3697 * CPU, and thus each counted, remove the initial count.
3698 */
3699 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3700 complete(&rsp->barrier_completion);
3701
3702 /* Increment ->n_barrier_done to prevent duplicate work. */
3703 smp_mb(); /* Keep increment after above mechanism. */
3704 WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3705 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3706 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3707 smp_mb(); /* Keep increment before caller's subsequent code. */
3708
3709 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3710 wait_for_completion(&rsp->barrier_completion);
3711
3712 /* Other rcu_barrier() invocations can now safely proceed. */
3713 mutex_unlock(&rsp->barrier_mutex);
3714 }
3715
3716 /**
3717 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3718 */
3719 void rcu_barrier_bh(void)
3720 {
3721 _rcu_barrier(&rcu_bh_state);
3722 }
3723 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3724
3725 /**
3726 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3727 */
3728 void rcu_barrier_sched(void)
3729 {
3730 _rcu_barrier(&rcu_sched_state);
3731 }
3732 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3733
3734 /*
3735 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3736 * first CPU in a given leaf rcu_node structure coming online. The caller
3737 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3738 * disabled.
3739 */
3740 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3741 {
3742 long mask;
3743 struct rcu_node *rnp = rnp_leaf;
3744
3745 for (;;) {
3746 mask = rnp->grpmask;
3747 rnp = rnp->parent;
3748 if (rnp == NULL)
3749 return;
3750 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3751 rnp->qsmaskinit |= mask;
3752 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3753 }
3754 }
3755
3756 /*
3757 * Do boot-time initialization of a CPU's per-CPU RCU data.
3758 */
3759 static void __init
3760 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3761 {
3762 unsigned long flags;
3763 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3764 struct rcu_node *rnp = rcu_get_root(rsp);
3765
3766 /* Set up local state, ensuring consistent view of global state. */
3767 raw_spin_lock_irqsave(&rnp->lock, flags);
3768 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3769 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3770 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3771 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3772 rdp->cpu = cpu;
3773 rdp->rsp = rsp;
3774 rcu_boot_init_nocb_percpu_data(rdp);
3775 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3776 }
3777
3778 /*
3779 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3780 * offline event can be happening at a given time. Note also that we
3781 * can accept some slop in the rsp->completed access due to the fact
3782 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3783 */
3784 static void
3785 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3786 {
3787 unsigned long flags;
3788 unsigned long mask;
3789 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3790 struct rcu_node *rnp = rcu_get_root(rsp);
3791
3792 /* Set up local state, ensuring consistent view of global state. */
3793 raw_spin_lock_irqsave(&rnp->lock, flags);
3794 rdp->beenonline = 1; /* We have now been online. */
3795 rdp->qlen_last_fqs_check = 0;
3796 rdp->n_force_qs_snap = rsp->n_force_qs;
3797 rdp->blimit = blimit;
3798 if (!rdp->nxtlist)
3799 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3800 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3801 rcu_sysidle_init_percpu_data(rdp->dynticks);
3802 atomic_set(&rdp->dynticks->dynticks,
3803 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3804 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3805
3806 /*
3807 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3808 * propagation up the rcu_node tree will happen at the beginning
3809 * of the next grace period.
3810 */
3811 rnp = rdp->mynode;
3812 mask = rdp->grpmask;
3813 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3814 smp_mb__after_unlock_lock();
3815 rnp->qsmaskinitnext |= mask;
3816 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3817 rdp->completed = rnp->completed;
3818 rdp->passed_quiesce = false;
3819 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3820 rdp->qs_pending = false;
3821 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3822 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3823 }
3824
3825 static void rcu_prepare_cpu(int cpu)
3826 {
3827 struct rcu_state *rsp;
3828
3829 for_each_rcu_flavor(rsp)
3830 rcu_init_percpu_data(cpu, rsp);
3831 }
3832
3833 /*
3834 * Handle CPU online/offline notification events.
3835 */
3836 int rcu_cpu_notify(struct notifier_block *self,
3837 unsigned long action, void *hcpu)
3838 {
3839 long cpu = (long)hcpu;
3840 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3841 struct rcu_node *rnp = rdp->mynode;
3842 struct rcu_state *rsp;
3843
3844 switch (action) {
3845 case CPU_UP_PREPARE:
3846 case CPU_UP_PREPARE_FROZEN:
3847 rcu_prepare_cpu(cpu);
3848 rcu_prepare_kthreads(cpu);
3849 rcu_spawn_all_nocb_kthreads(cpu);
3850 break;
3851 case CPU_ONLINE:
3852 case CPU_DOWN_FAILED:
3853 rcu_boost_kthread_setaffinity(rnp, -1);
3854 break;
3855 case CPU_DOWN_PREPARE:
3856 rcu_boost_kthread_setaffinity(rnp, cpu);
3857 break;
3858 case CPU_DYING:
3859 case CPU_DYING_FROZEN:
3860 for_each_rcu_flavor(rsp)
3861 rcu_cleanup_dying_cpu(rsp);
3862 break;
3863 case CPU_DYING_IDLE:
3864 for_each_rcu_flavor(rsp) {
3865 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3866 }
3867 break;
3868 case CPU_DEAD:
3869 case CPU_DEAD_FROZEN:
3870 case CPU_UP_CANCELED:
3871 case CPU_UP_CANCELED_FROZEN:
3872 for_each_rcu_flavor(rsp) {
3873 rcu_cleanup_dead_cpu(cpu, rsp);
3874 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3875 }
3876 break;
3877 default:
3878 break;
3879 }
3880 return NOTIFY_OK;
3881 }
3882
3883 static int rcu_pm_notify(struct notifier_block *self,
3884 unsigned long action, void *hcpu)
3885 {
3886 switch (action) {
3887 case PM_HIBERNATION_PREPARE:
3888 case PM_SUSPEND_PREPARE:
3889 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3890 rcu_expedite_gp();
3891 break;
3892 case PM_POST_HIBERNATION:
3893 case PM_POST_SUSPEND:
3894 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3895 rcu_unexpedite_gp();
3896 break;
3897 default:
3898 break;
3899 }
3900 return NOTIFY_OK;
3901 }
3902
3903 /*
3904 * Spawn the kthreads that handle each RCU flavor's grace periods.
3905 */
3906 static int __init rcu_spawn_gp_kthread(void)
3907 {
3908 unsigned long flags;
3909 int kthread_prio_in = kthread_prio;
3910 struct rcu_node *rnp;
3911 struct rcu_state *rsp;
3912 struct sched_param sp;
3913 struct task_struct *t;
3914
3915 /* Force priority into range. */
3916 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3917 kthread_prio = 1;
3918 else if (kthread_prio < 0)
3919 kthread_prio = 0;
3920 else if (kthread_prio > 99)
3921 kthread_prio = 99;
3922 if (kthread_prio != kthread_prio_in)
3923 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3924 kthread_prio, kthread_prio_in);
3925
3926 rcu_scheduler_fully_active = 1;
3927 for_each_rcu_flavor(rsp) {
3928 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3929 BUG_ON(IS_ERR(t));
3930 rnp = rcu_get_root(rsp);
3931 raw_spin_lock_irqsave(&rnp->lock, flags);
3932 rsp->gp_kthread = t;
3933 if (kthread_prio) {
3934 sp.sched_priority = kthread_prio;
3935 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3936 }
3937 wake_up_process(t);
3938 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3939 }
3940 rcu_spawn_nocb_kthreads();
3941 rcu_spawn_boost_kthreads();
3942 return 0;
3943 }
3944 early_initcall(rcu_spawn_gp_kthread);
3945
3946 /*
3947 * This function is invoked towards the end of the scheduler's initialization
3948 * process. Before this is called, the idle task might contain
3949 * RCU read-side critical sections (during which time, this idle
3950 * task is booting the system). After this function is called, the
3951 * idle tasks are prohibited from containing RCU read-side critical
3952 * sections. This function also enables RCU lockdep checking.
3953 */
3954 void rcu_scheduler_starting(void)
3955 {
3956 WARN_ON(num_online_cpus() != 1);
3957 WARN_ON(nr_context_switches() > 0);
3958 rcu_scheduler_active = 1;
3959 }
3960
3961 /*
3962 * Compute the per-level fanout, either using the exact fanout specified
3963 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
3964 */
3965 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
3966 {
3967 int i;
3968
3969 if (rcu_fanout_exact) {
3970 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3971 for (i = rcu_num_lvls - 2; i >= 0; i--)
3972 levelspread[i] = RCU_FANOUT;
3973 } else {
3974 int ccur;
3975 int cprv;
3976
3977 cprv = nr_cpu_ids;
3978 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3979 ccur = levelcnt[i];
3980 levelspread[i] = (cprv + ccur - 1) / ccur;
3981 cprv = ccur;
3982 }
3983 }
3984 }
3985
3986 /*
3987 * Helper function for rcu_init() that initializes one rcu_state structure.
3988 */
3989 static void __init rcu_init_one(struct rcu_state *rsp,
3990 struct rcu_data __percpu *rda)
3991 {
3992 static const char * const buf[] = RCU_NODE_NAME_INIT;
3993 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3994 static u8 fl_mask = 0x1;
3995
3996 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
3997 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3998 int cpustride = 1;
3999 int i;
4000 int j;
4001 struct rcu_node *rnp;
4002
4003 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4004
4005 /* Silence gcc 4.8 false positive about array index out of range. */
4006 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4007 panic("rcu_init_one: rcu_num_lvls out of range");
4008
4009 /* Initialize the level-tracking arrays. */
4010
4011 for (i = 0; i < rcu_num_lvls; i++)
4012 levelcnt[i] = num_rcu_lvl[i];
4013 for (i = 1; i < rcu_num_lvls; i++)
4014 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4015 rcu_init_levelspread(levelspread, levelcnt);
4016 rsp->flavor_mask = fl_mask;
4017 fl_mask <<= 1;
4018
4019 /* Initialize the elements themselves, starting from the leaves. */
4020
4021 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4022 cpustride *= levelspread[i];
4023 rnp = rsp->level[i];
4024 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4025 raw_spin_lock_init(&rnp->lock);
4026 lockdep_set_class_and_name(&rnp->lock,
4027 &rcu_node_class[i], buf[i]);
4028 raw_spin_lock_init(&rnp->fqslock);
4029 lockdep_set_class_and_name(&rnp->fqslock,
4030 &rcu_fqs_class[i], fqs[i]);
4031 rnp->gpnum = rsp->gpnum;
4032 rnp->completed = rsp->completed;
4033 rnp->qsmask = 0;
4034 rnp->qsmaskinit = 0;
4035 rnp->grplo = j * cpustride;
4036 rnp->grphi = (j + 1) * cpustride - 1;
4037 if (rnp->grphi >= nr_cpu_ids)
4038 rnp->grphi = nr_cpu_ids - 1;
4039 if (i == 0) {
4040 rnp->grpnum = 0;
4041 rnp->grpmask = 0;
4042 rnp->parent = NULL;
4043 } else {
4044 rnp->grpnum = j % levelspread[i - 1];
4045 rnp->grpmask = 1UL << rnp->grpnum;
4046 rnp->parent = rsp->level[i - 1] +
4047 j / levelspread[i - 1];
4048 }
4049 rnp->level = i;
4050 INIT_LIST_HEAD(&rnp->blkd_tasks);
4051 rcu_init_one_nocb(rnp);
4052 }
4053 }
4054
4055 init_waitqueue_head(&rsp->gp_wq);
4056 rnp = rsp->level[rcu_num_lvls - 1];
4057 for_each_possible_cpu(i) {
4058 while (i > rnp->grphi)
4059 rnp++;
4060 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4061 rcu_boot_init_percpu_data(i, rsp);
4062 }
4063 list_add(&rsp->flavors, &rcu_struct_flavors);
4064 }
4065
4066 /*
4067 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4068 * replace the definitions in tree.h because those are needed to size
4069 * the ->node array in the rcu_state structure.
4070 */
4071 static void __init rcu_init_geometry(void)
4072 {
4073 ulong d;
4074 int i;
4075 int rcu_capacity[RCU_NUM_LVLS];
4076
4077 /*
4078 * Initialize any unspecified boot parameters.
4079 * The default values of jiffies_till_first_fqs and
4080 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4081 * value, which is a function of HZ, then adding one for each
4082 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4083 */
4084 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4085 if (jiffies_till_first_fqs == ULONG_MAX)
4086 jiffies_till_first_fqs = d;
4087 if (jiffies_till_next_fqs == ULONG_MAX)
4088 jiffies_till_next_fqs = d;
4089
4090 /* If the compile-time values are accurate, just leave. */
4091 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4092 nr_cpu_ids == NR_CPUS)
4093 return;
4094 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4095 rcu_fanout_leaf, nr_cpu_ids);
4096
4097 /*
4098 * The boot-time rcu_fanout_leaf parameter is only permitted
4099 * to increase the leaf-level fanout, not decrease it. Of course,
4100 * the leaf-level fanout cannot exceed the number of bits in
4101 * the rcu_node masks. Complain and fall back to the compile-
4102 * time values if these limits are exceeded.
4103 */
4104 if (rcu_fanout_leaf < RCU_FANOUT_LEAF ||
4105 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4106 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4107 WARN_ON(1);
4108 return;
4109 }
4110
4111 /*
4112 * Compute number of nodes that can be handled an rcu_node tree
4113 * with the given number of levels.
4114 */
4115 rcu_capacity[0] = rcu_fanout_leaf;
4116 for (i = 1; i < RCU_NUM_LVLS; i++)
4117 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4118
4119 /*
4120 * The tree must be able to accommodate the configured number of CPUs.
4121 * If this limit is exceeded than we have a serious problem elsewhere.
4122 */
4123 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1])
4124 panic("rcu_init_geometry: rcu_capacity[] is too small");
4125
4126 /* Calculate the number of levels in the tree. */
4127 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4128 }
4129 rcu_num_lvls = i + 1;
4130
4131 /* Calculate the number of rcu_nodes at each level of the tree. */
4132 for (i = 0; i < rcu_num_lvls; i++) {
4133 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4134 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4135 }
4136
4137 /* Calculate the total number of rcu_node structures. */
4138 rcu_num_nodes = 0;
4139 for (i = 0; i < rcu_num_lvls; i++)
4140 rcu_num_nodes += num_rcu_lvl[i];
4141 }
4142
4143 /*
4144 * Dump out the structure of the rcu_node combining tree associated
4145 * with the rcu_state structure referenced by rsp.
4146 */
4147 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4148 {
4149 int level = 0;
4150 struct rcu_node *rnp;
4151
4152 pr_info("rcu_node tree layout dump\n");
4153 pr_info(" ");
4154 rcu_for_each_node_breadth_first(rsp, rnp) {
4155 if (rnp->level != level) {
4156 pr_cont("\n");
4157 pr_info(" ");
4158 level = rnp->level;
4159 }
4160 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4161 }
4162 pr_cont("\n");
4163 }
4164
4165 void __init rcu_init(void)
4166 {
4167 int cpu;
4168
4169 rcu_early_boot_tests();
4170
4171 rcu_bootup_announce();
4172 rcu_init_geometry();
4173 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4174 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4175 if (dump_tree)
4176 rcu_dump_rcu_node_tree(&rcu_sched_state);
4177 __rcu_init_preempt();
4178 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4179
4180 /*
4181 * We don't need protection against CPU-hotplug here because
4182 * this is called early in boot, before either interrupts
4183 * or the scheduler are operational.
4184 */
4185 cpu_notifier(rcu_cpu_notify, 0);
4186 pm_notifier(rcu_pm_notify, 0);
4187 for_each_online_cpu(cpu)
4188 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4189 }
4190
4191 #include "tree_plugin.h"
This page took 0.215235 seconds and 4 git commands to generate.