arm64: dts: uniphier: change cpu-release-address
[deliverable/linux.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 /*
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
78 */
79 #ifdef CONFIG_TRACING
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
84 #else
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #endif
88
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 .level = { &sname##_state.node[0] }, \
94 .rda = &sname##_data, \
95 .call = cr, \
96 .gp_state = RCU_GP_IDLE, \
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
104 .abbr = sabbr, \
105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 }
108
109 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
110 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
111
112 static struct rcu_state *const rcu_state_p;
113 LIST_HEAD(rcu_struct_flavors);
114
115 /* Dump rcu_node combining tree at boot to verify correct setup. */
116 static bool dump_tree;
117 module_param(dump_tree, bool, 0444);
118 /* Control rcu_node-tree auto-balancing at boot time. */
119 static bool rcu_fanout_exact;
120 module_param(rcu_fanout_exact, bool, 0444);
121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123 module_param(rcu_fanout_leaf, int, 0444);
124 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 /* Number of rcu_nodes at specified level. */
126 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
129 /*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
133 * optimize synchronize_sched() to a simple barrier(). When this variable
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
141 /*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153 static int rcu_scheduler_fully_active __read_mostly;
154
155 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
158 static void invoke_rcu_core(void);
159 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
160 static void rcu_report_exp_rdp(struct rcu_state *rsp,
161 struct rcu_data *rdp, bool wake);
162
163 /* rcuc/rcub kthread realtime priority */
164 #ifdef CONFIG_RCU_KTHREAD_PRIO
165 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
166 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
167 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
168 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
169 module_param(kthread_prio, int, 0644);
170
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
172
173 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
174 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
175 module_param(gp_preinit_delay, int, 0644);
176 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
177 static const int gp_preinit_delay;
178 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
179
180 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
181 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
182 module_param(gp_init_delay, int, 0644);
183 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
184 static const int gp_init_delay;
185 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
186
187 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
188 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
189 module_param(gp_cleanup_delay, int, 0644);
190 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
191 static const int gp_cleanup_delay;
192 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
193
194 /*
195 * Number of grace periods between delays, normalized by the duration of
196 * the delay. The longer the the delay, the more the grace periods between
197 * each delay. The reason for this normalization is that it means that,
198 * for non-zero delays, the overall slowdown of grace periods is constant
199 * regardless of the duration of the delay. This arrangement balances
200 * the need for long delays to increase some race probabilities with the
201 * need for fast grace periods to increase other race probabilities.
202 */
203 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
204
205 /*
206 * Track the rcutorture test sequence number and the update version
207 * number within a given test. The rcutorture_testseq is incremented
208 * on every rcutorture module load and unload, so has an odd value
209 * when a test is running. The rcutorture_vernum is set to zero
210 * when rcutorture starts and is incremented on each rcutorture update.
211 * These variables enable correlating rcutorture output with the
212 * RCU tracing information.
213 */
214 unsigned long rcutorture_testseq;
215 unsigned long rcutorture_vernum;
216
217 /*
218 * Compute the mask of online CPUs for the specified rcu_node structure.
219 * This will not be stable unless the rcu_node structure's ->lock is
220 * held, but the bit corresponding to the current CPU will be stable
221 * in most contexts.
222 */
223 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
224 {
225 return READ_ONCE(rnp->qsmaskinitnext);
226 }
227
228 /*
229 * Return true if an RCU grace period is in progress. The READ_ONCE()s
230 * permit this function to be invoked without holding the root rcu_node
231 * structure's ->lock, but of course results can be subject to change.
232 */
233 static int rcu_gp_in_progress(struct rcu_state *rsp)
234 {
235 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
236 }
237
238 /*
239 * Note a quiescent state. Because we do not need to know
240 * how many quiescent states passed, just if there was at least
241 * one since the start of the grace period, this just sets a flag.
242 * The caller must have disabled preemption.
243 */
244 void rcu_sched_qs(void)
245 {
246 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
247 return;
248 trace_rcu_grace_period(TPS("rcu_sched"),
249 __this_cpu_read(rcu_sched_data.gpnum),
250 TPS("cpuqs"));
251 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
252 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
253 return;
254 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
255 rcu_report_exp_rdp(&rcu_sched_state,
256 this_cpu_ptr(&rcu_sched_data), true);
257 }
258
259 void rcu_bh_qs(void)
260 {
261 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
262 trace_rcu_grace_period(TPS("rcu_bh"),
263 __this_cpu_read(rcu_bh_data.gpnum),
264 TPS("cpuqs"));
265 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
266 }
267 }
268
269 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
270
271 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
272 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
273 .dynticks = ATOMIC_INIT(1),
274 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
275 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
276 .dynticks_idle = ATOMIC_INIT(1),
277 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
278 };
279
280 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
281 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
282
283 /*
284 * Let the RCU core know that this CPU has gone through the scheduler,
285 * which is a quiescent state. This is called when the need for a
286 * quiescent state is urgent, so we burn an atomic operation and full
287 * memory barriers to let the RCU core know about it, regardless of what
288 * this CPU might (or might not) do in the near future.
289 *
290 * We inform the RCU core by emulating a zero-duration dyntick-idle
291 * period, which we in turn do by incrementing the ->dynticks counter
292 * by two.
293 *
294 * The caller must have disabled interrupts.
295 */
296 static void rcu_momentary_dyntick_idle(void)
297 {
298 struct rcu_data *rdp;
299 struct rcu_dynticks *rdtp;
300 int resched_mask;
301 struct rcu_state *rsp;
302
303 /*
304 * Yes, we can lose flag-setting operations. This is OK, because
305 * the flag will be set again after some delay.
306 */
307 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
308 raw_cpu_write(rcu_sched_qs_mask, 0);
309
310 /* Find the flavor that needs a quiescent state. */
311 for_each_rcu_flavor(rsp) {
312 rdp = raw_cpu_ptr(rsp->rda);
313 if (!(resched_mask & rsp->flavor_mask))
314 continue;
315 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
316 if (READ_ONCE(rdp->mynode->completed) !=
317 READ_ONCE(rdp->cond_resched_completed))
318 continue;
319
320 /*
321 * Pretend to be momentarily idle for the quiescent state.
322 * This allows the grace-period kthread to record the
323 * quiescent state, with no need for this CPU to do anything
324 * further.
325 */
326 rdtp = this_cpu_ptr(&rcu_dynticks);
327 smp_mb__before_atomic(); /* Earlier stuff before QS. */
328 atomic_add(2, &rdtp->dynticks); /* QS. */
329 smp_mb__after_atomic(); /* Later stuff after QS. */
330 break;
331 }
332 }
333
334 /*
335 * Note a context switch. This is a quiescent state for RCU-sched,
336 * and requires special handling for preemptible RCU.
337 * The caller must have disabled interrupts.
338 */
339 void rcu_note_context_switch(void)
340 {
341 barrier(); /* Avoid RCU read-side critical sections leaking down. */
342 trace_rcu_utilization(TPS("Start context switch"));
343 rcu_sched_qs();
344 rcu_preempt_note_context_switch();
345 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
346 rcu_momentary_dyntick_idle();
347 trace_rcu_utilization(TPS("End context switch"));
348 barrier(); /* Avoid RCU read-side critical sections leaking up. */
349 }
350 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
351
352 /*
353 * Register a quiescent state for all RCU flavors. If there is an
354 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
355 * dyntick-idle quiescent state visible to other CPUs (but only for those
356 * RCU flavors in desperate need of a quiescent state, which will normally
357 * be none of them). Either way, do a lightweight quiescent state for
358 * all RCU flavors.
359 *
360 * The barrier() calls are redundant in the common case when this is
361 * called externally, but just in case this is called from within this
362 * file.
363 *
364 */
365 void rcu_all_qs(void)
366 {
367 unsigned long flags;
368
369 barrier(); /* Avoid RCU read-side critical sections leaking down. */
370 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
371 local_irq_save(flags);
372 rcu_momentary_dyntick_idle();
373 local_irq_restore(flags);
374 }
375 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
376 /*
377 * Yes, we just checked a per-CPU variable with preemption
378 * enabled, so we might be migrated to some other CPU at
379 * this point. That is OK because in that case, the
380 * migration will supply the needed quiescent state.
381 * We might end up needlessly disabling preemption and
382 * invoking rcu_sched_qs() on the destination CPU, but
383 * the probability and cost are both quite low, so this
384 * should not be a problem in practice.
385 */
386 preempt_disable();
387 rcu_sched_qs();
388 preempt_enable();
389 }
390 this_cpu_inc(rcu_qs_ctr);
391 barrier(); /* Avoid RCU read-side critical sections leaking up. */
392 }
393 EXPORT_SYMBOL_GPL(rcu_all_qs);
394
395 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
396 static long qhimark = 10000; /* If this many pending, ignore blimit. */
397 static long qlowmark = 100; /* Once only this many pending, use blimit. */
398
399 module_param(blimit, long, 0444);
400 module_param(qhimark, long, 0444);
401 module_param(qlowmark, long, 0444);
402
403 static ulong jiffies_till_first_fqs = ULONG_MAX;
404 static ulong jiffies_till_next_fqs = ULONG_MAX;
405 static bool rcu_kick_kthreads;
406
407 module_param(jiffies_till_first_fqs, ulong, 0644);
408 module_param(jiffies_till_next_fqs, ulong, 0644);
409 module_param(rcu_kick_kthreads, bool, 0644);
410
411 /*
412 * How long the grace period must be before we start recruiting
413 * quiescent-state help from rcu_note_context_switch().
414 */
415 static ulong jiffies_till_sched_qs = HZ / 20;
416 module_param(jiffies_till_sched_qs, ulong, 0644);
417
418 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
419 struct rcu_data *rdp);
420 static void force_qs_rnp(struct rcu_state *rsp,
421 int (*f)(struct rcu_data *rsp, bool *isidle,
422 unsigned long *maxj),
423 bool *isidle, unsigned long *maxj);
424 static void force_quiescent_state(struct rcu_state *rsp);
425 static int rcu_pending(void);
426
427 /*
428 * Return the number of RCU batches started thus far for debug & stats.
429 */
430 unsigned long rcu_batches_started(void)
431 {
432 return rcu_state_p->gpnum;
433 }
434 EXPORT_SYMBOL_GPL(rcu_batches_started);
435
436 /*
437 * Return the number of RCU-sched batches started thus far for debug & stats.
438 */
439 unsigned long rcu_batches_started_sched(void)
440 {
441 return rcu_sched_state.gpnum;
442 }
443 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
444
445 /*
446 * Return the number of RCU BH batches started thus far for debug & stats.
447 */
448 unsigned long rcu_batches_started_bh(void)
449 {
450 return rcu_bh_state.gpnum;
451 }
452 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
453
454 /*
455 * Return the number of RCU batches completed thus far for debug & stats.
456 */
457 unsigned long rcu_batches_completed(void)
458 {
459 return rcu_state_p->completed;
460 }
461 EXPORT_SYMBOL_GPL(rcu_batches_completed);
462
463 /*
464 * Return the number of RCU-sched batches completed thus far for debug & stats.
465 */
466 unsigned long rcu_batches_completed_sched(void)
467 {
468 return rcu_sched_state.completed;
469 }
470 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
471
472 /*
473 * Return the number of RCU BH batches completed thus far for debug & stats.
474 */
475 unsigned long rcu_batches_completed_bh(void)
476 {
477 return rcu_bh_state.completed;
478 }
479 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
480
481 /*
482 * Return the number of RCU expedited batches completed thus far for
483 * debug & stats. Odd numbers mean that a batch is in progress, even
484 * numbers mean idle. The value returned will thus be roughly double
485 * the cumulative batches since boot.
486 */
487 unsigned long rcu_exp_batches_completed(void)
488 {
489 return rcu_state_p->expedited_sequence;
490 }
491 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
492
493 /*
494 * Return the number of RCU-sched expedited batches completed thus far
495 * for debug & stats. Similar to rcu_exp_batches_completed().
496 */
497 unsigned long rcu_exp_batches_completed_sched(void)
498 {
499 return rcu_sched_state.expedited_sequence;
500 }
501 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
502
503 /*
504 * Force a quiescent state.
505 */
506 void rcu_force_quiescent_state(void)
507 {
508 force_quiescent_state(rcu_state_p);
509 }
510 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
511
512 /*
513 * Force a quiescent state for RCU BH.
514 */
515 void rcu_bh_force_quiescent_state(void)
516 {
517 force_quiescent_state(&rcu_bh_state);
518 }
519 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
520
521 /*
522 * Force a quiescent state for RCU-sched.
523 */
524 void rcu_sched_force_quiescent_state(void)
525 {
526 force_quiescent_state(&rcu_sched_state);
527 }
528 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
529
530 /*
531 * Show the state of the grace-period kthreads.
532 */
533 void show_rcu_gp_kthreads(void)
534 {
535 struct rcu_state *rsp;
536
537 for_each_rcu_flavor(rsp) {
538 pr_info("%s: wait state: %d ->state: %#lx\n",
539 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
540 /* sched_show_task(rsp->gp_kthread); */
541 }
542 }
543 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
544
545 /*
546 * Record the number of times rcutorture tests have been initiated and
547 * terminated. This information allows the debugfs tracing stats to be
548 * correlated to the rcutorture messages, even when the rcutorture module
549 * is being repeatedly loaded and unloaded. In other words, we cannot
550 * store this state in rcutorture itself.
551 */
552 void rcutorture_record_test_transition(void)
553 {
554 rcutorture_testseq++;
555 rcutorture_vernum = 0;
556 }
557 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
558
559 /*
560 * Send along grace-period-related data for rcutorture diagnostics.
561 */
562 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
563 unsigned long *gpnum, unsigned long *completed)
564 {
565 struct rcu_state *rsp = NULL;
566
567 switch (test_type) {
568 case RCU_FLAVOR:
569 rsp = rcu_state_p;
570 break;
571 case RCU_BH_FLAVOR:
572 rsp = &rcu_bh_state;
573 break;
574 case RCU_SCHED_FLAVOR:
575 rsp = &rcu_sched_state;
576 break;
577 default:
578 break;
579 }
580 if (rsp != NULL) {
581 *flags = READ_ONCE(rsp->gp_flags);
582 *gpnum = READ_ONCE(rsp->gpnum);
583 *completed = READ_ONCE(rsp->completed);
584 return;
585 }
586 *flags = 0;
587 *gpnum = 0;
588 *completed = 0;
589 }
590 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
591
592 /*
593 * Record the number of writer passes through the current rcutorture test.
594 * This is also used to correlate debugfs tracing stats with the rcutorture
595 * messages.
596 */
597 void rcutorture_record_progress(unsigned long vernum)
598 {
599 rcutorture_vernum++;
600 }
601 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
602
603 /*
604 * Does the CPU have callbacks ready to be invoked?
605 */
606 static int
607 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
608 {
609 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
610 rdp->nxttail[RCU_DONE_TAIL] != NULL;
611 }
612
613 /*
614 * Return the root node of the specified rcu_state structure.
615 */
616 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
617 {
618 return &rsp->node[0];
619 }
620
621 /*
622 * Is there any need for future grace periods?
623 * Interrupts must be disabled. If the caller does not hold the root
624 * rnp_node structure's ->lock, the results are advisory only.
625 */
626 static int rcu_future_needs_gp(struct rcu_state *rsp)
627 {
628 struct rcu_node *rnp = rcu_get_root(rsp);
629 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
630 int *fp = &rnp->need_future_gp[idx];
631
632 return READ_ONCE(*fp);
633 }
634
635 /*
636 * Does the current CPU require a not-yet-started grace period?
637 * The caller must have disabled interrupts to prevent races with
638 * normal callback registry.
639 */
640 static bool
641 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
642 {
643 int i;
644
645 if (rcu_gp_in_progress(rsp))
646 return false; /* No, a grace period is already in progress. */
647 if (rcu_future_needs_gp(rsp))
648 return true; /* Yes, a no-CBs CPU needs one. */
649 if (!rdp->nxttail[RCU_NEXT_TAIL])
650 return false; /* No, this is a no-CBs (or offline) CPU. */
651 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
652 return true; /* Yes, CPU has newly registered callbacks. */
653 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
654 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
655 ULONG_CMP_LT(READ_ONCE(rsp->completed),
656 rdp->nxtcompleted[i]))
657 return true; /* Yes, CBs for future grace period. */
658 return false; /* No grace period needed. */
659 }
660
661 /*
662 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
663 *
664 * If the new value of the ->dynticks_nesting counter now is zero,
665 * we really have entered idle, and must do the appropriate accounting.
666 * The caller must have disabled interrupts.
667 */
668 static void rcu_eqs_enter_common(long long oldval, bool user)
669 {
670 struct rcu_state *rsp;
671 struct rcu_data *rdp;
672 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
673
674 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
675 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
676 !user && !is_idle_task(current)) {
677 struct task_struct *idle __maybe_unused =
678 idle_task(smp_processor_id());
679
680 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
681 rcu_ftrace_dump(DUMP_ORIG);
682 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
683 current->pid, current->comm,
684 idle->pid, idle->comm); /* must be idle task! */
685 }
686 for_each_rcu_flavor(rsp) {
687 rdp = this_cpu_ptr(rsp->rda);
688 do_nocb_deferred_wakeup(rdp);
689 }
690 rcu_prepare_for_idle();
691 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
692 smp_mb__before_atomic(); /* See above. */
693 atomic_inc(&rdtp->dynticks);
694 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
695 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
696 atomic_read(&rdtp->dynticks) & 0x1);
697 rcu_dynticks_task_enter();
698
699 /*
700 * It is illegal to enter an extended quiescent state while
701 * in an RCU read-side critical section.
702 */
703 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
704 "Illegal idle entry in RCU read-side critical section.");
705 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
706 "Illegal idle entry in RCU-bh read-side critical section.");
707 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
708 "Illegal idle entry in RCU-sched read-side critical section.");
709 }
710
711 /*
712 * Enter an RCU extended quiescent state, which can be either the
713 * idle loop or adaptive-tickless usermode execution.
714 */
715 static void rcu_eqs_enter(bool user)
716 {
717 long long oldval;
718 struct rcu_dynticks *rdtp;
719
720 rdtp = this_cpu_ptr(&rcu_dynticks);
721 oldval = rdtp->dynticks_nesting;
722 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
723 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
724 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
725 rdtp->dynticks_nesting = 0;
726 rcu_eqs_enter_common(oldval, user);
727 } else {
728 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
729 }
730 }
731
732 /**
733 * rcu_idle_enter - inform RCU that current CPU is entering idle
734 *
735 * Enter idle mode, in other words, -leave- the mode in which RCU
736 * read-side critical sections can occur. (Though RCU read-side
737 * critical sections can occur in irq handlers in idle, a possibility
738 * handled by irq_enter() and irq_exit().)
739 *
740 * We crowbar the ->dynticks_nesting field to zero to allow for
741 * the possibility of usermode upcalls having messed up our count
742 * of interrupt nesting level during the prior busy period.
743 */
744 void rcu_idle_enter(void)
745 {
746 unsigned long flags;
747
748 local_irq_save(flags);
749 rcu_eqs_enter(false);
750 rcu_sysidle_enter(0);
751 local_irq_restore(flags);
752 }
753 EXPORT_SYMBOL_GPL(rcu_idle_enter);
754
755 #ifdef CONFIG_NO_HZ_FULL
756 /**
757 * rcu_user_enter - inform RCU that we are resuming userspace.
758 *
759 * Enter RCU idle mode right before resuming userspace. No use of RCU
760 * is permitted between this call and rcu_user_exit(). This way the
761 * CPU doesn't need to maintain the tick for RCU maintenance purposes
762 * when the CPU runs in userspace.
763 */
764 void rcu_user_enter(void)
765 {
766 rcu_eqs_enter(1);
767 }
768 #endif /* CONFIG_NO_HZ_FULL */
769
770 /**
771 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
772 *
773 * Exit from an interrupt handler, which might possibly result in entering
774 * idle mode, in other words, leaving the mode in which read-side critical
775 * sections can occur. The caller must have disabled interrupts.
776 *
777 * This code assumes that the idle loop never does anything that might
778 * result in unbalanced calls to irq_enter() and irq_exit(). If your
779 * architecture violates this assumption, RCU will give you what you
780 * deserve, good and hard. But very infrequently and irreproducibly.
781 *
782 * Use things like work queues to work around this limitation.
783 *
784 * You have been warned.
785 */
786 void rcu_irq_exit(void)
787 {
788 long long oldval;
789 struct rcu_dynticks *rdtp;
790
791 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
792 rdtp = this_cpu_ptr(&rcu_dynticks);
793 oldval = rdtp->dynticks_nesting;
794 rdtp->dynticks_nesting--;
795 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
796 rdtp->dynticks_nesting < 0);
797 if (rdtp->dynticks_nesting)
798 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
799 else
800 rcu_eqs_enter_common(oldval, true);
801 rcu_sysidle_enter(1);
802 }
803
804 /*
805 * Wrapper for rcu_irq_exit() where interrupts are enabled.
806 */
807 void rcu_irq_exit_irqson(void)
808 {
809 unsigned long flags;
810
811 local_irq_save(flags);
812 rcu_irq_exit();
813 local_irq_restore(flags);
814 }
815
816 /*
817 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
818 *
819 * If the new value of the ->dynticks_nesting counter was previously zero,
820 * we really have exited idle, and must do the appropriate accounting.
821 * The caller must have disabled interrupts.
822 */
823 static void rcu_eqs_exit_common(long long oldval, int user)
824 {
825 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
826
827 rcu_dynticks_task_exit();
828 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
829 atomic_inc(&rdtp->dynticks);
830 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
831 smp_mb__after_atomic(); /* See above. */
832 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
833 !(atomic_read(&rdtp->dynticks) & 0x1));
834 rcu_cleanup_after_idle();
835 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
836 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
837 !user && !is_idle_task(current)) {
838 struct task_struct *idle __maybe_unused =
839 idle_task(smp_processor_id());
840
841 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
842 oldval, rdtp->dynticks_nesting);
843 rcu_ftrace_dump(DUMP_ORIG);
844 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
845 current->pid, current->comm,
846 idle->pid, idle->comm); /* must be idle task! */
847 }
848 }
849
850 /*
851 * Exit an RCU extended quiescent state, which can be either the
852 * idle loop or adaptive-tickless usermode execution.
853 */
854 static void rcu_eqs_exit(bool user)
855 {
856 struct rcu_dynticks *rdtp;
857 long long oldval;
858
859 rdtp = this_cpu_ptr(&rcu_dynticks);
860 oldval = rdtp->dynticks_nesting;
861 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
862 if (oldval & DYNTICK_TASK_NEST_MASK) {
863 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
864 } else {
865 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
866 rcu_eqs_exit_common(oldval, user);
867 }
868 }
869
870 /**
871 * rcu_idle_exit - inform RCU that current CPU is leaving idle
872 *
873 * Exit idle mode, in other words, -enter- the mode in which RCU
874 * read-side critical sections can occur.
875 *
876 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
877 * allow for the possibility of usermode upcalls messing up our count
878 * of interrupt nesting level during the busy period that is just
879 * now starting.
880 */
881 void rcu_idle_exit(void)
882 {
883 unsigned long flags;
884
885 local_irq_save(flags);
886 rcu_eqs_exit(false);
887 rcu_sysidle_exit(0);
888 local_irq_restore(flags);
889 }
890 EXPORT_SYMBOL_GPL(rcu_idle_exit);
891
892 #ifdef CONFIG_NO_HZ_FULL
893 /**
894 * rcu_user_exit - inform RCU that we are exiting userspace.
895 *
896 * Exit RCU idle mode while entering the kernel because it can
897 * run a RCU read side critical section anytime.
898 */
899 void rcu_user_exit(void)
900 {
901 rcu_eqs_exit(1);
902 }
903 #endif /* CONFIG_NO_HZ_FULL */
904
905 /**
906 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
907 *
908 * Enter an interrupt handler, which might possibly result in exiting
909 * idle mode, in other words, entering the mode in which read-side critical
910 * sections can occur. The caller must have disabled interrupts.
911 *
912 * Note that the Linux kernel is fully capable of entering an interrupt
913 * handler that it never exits, for example when doing upcalls to
914 * user mode! This code assumes that the idle loop never does upcalls to
915 * user mode. If your architecture does do upcalls from the idle loop (or
916 * does anything else that results in unbalanced calls to the irq_enter()
917 * and irq_exit() functions), RCU will give you what you deserve, good
918 * and hard. But very infrequently and irreproducibly.
919 *
920 * Use things like work queues to work around this limitation.
921 *
922 * You have been warned.
923 */
924 void rcu_irq_enter(void)
925 {
926 struct rcu_dynticks *rdtp;
927 long long oldval;
928
929 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
930 rdtp = this_cpu_ptr(&rcu_dynticks);
931 oldval = rdtp->dynticks_nesting;
932 rdtp->dynticks_nesting++;
933 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
934 rdtp->dynticks_nesting == 0);
935 if (oldval)
936 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
937 else
938 rcu_eqs_exit_common(oldval, true);
939 rcu_sysidle_exit(1);
940 }
941
942 /*
943 * Wrapper for rcu_irq_enter() where interrupts are enabled.
944 */
945 void rcu_irq_enter_irqson(void)
946 {
947 unsigned long flags;
948
949 local_irq_save(flags);
950 rcu_irq_enter();
951 local_irq_restore(flags);
952 }
953
954 /**
955 * rcu_nmi_enter - inform RCU of entry to NMI context
956 *
957 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
958 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
959 * that the CPU is active. This implementation permits nested NMIs, as
960 * long as the nesting level does not overflow an int. (You will probably
961 * run out of stack space first.)
962 */
963 void rcu_nmi_enter(void)
964 {
965 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
966 int incby = 2;
967
968 /* Complain about underflow. */
969 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
970
971 /*
972 * If idle from RCU viewpoint, atomically increment ->dynticks
973 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
974 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
975 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
976 * to be in the outermost NMI handler that interrupted an RCU-idle
977 * period (observation due to Andy Lutomirski).
978 */
979 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
980 smp_mb__before_atomic(); /* Force delay from prior write. */
981 atomic_inc(&rdtp->dynticks);
982 /* atomic_inc() before later RCU read-side crit sects */
983 smp_mb__after_atomic(); /* See above. */
984 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
985 incby = 1;
986 }
987 rdtp->dynticks_nmi_nesting += incby;
988 barrier();
989 }
990
991 /**
992 * rcu_nmi_exit - inform RCU of exit from NMI context
993 *
994 * If we are returning from the outermost NMI handler that interrupted an
995 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
996 * to let the RCU grace-period handling know that the CPU is back to
997 * being RCU-idle.
998 */
999 void rcu_nmi_exit(void)
1000 {
1001 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1002
1003 /*
1004 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1005 * (We are exiting an NMI handler, so RCU better be paying attention
1006 * to us!)
1007 */
1008 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1009 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1010
1011 /*
1012 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1013 * leave it in non-RCU-idle state.
1014 */
1015 if (rdtp->dynticks_nmi_nesting != 1) {
1016 rdtp->dynticks_nmi_nesting -= 2;
1017 return;
1018 }
1019
1020 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1021 rdtp->dynticks_nmi_nesting = 0;
1022 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1023 smp_mb__before_atomic(); /* See above. */
1024 atomic_inc(&rdtp->dynticks);
1025 smp_mb__after_atomic(); /* Force delay to next write. */
1026 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1027 }
1028
1029 /**
1030 * __rcu_is_watching - are RCU read-side critical sections safe?
1031 *
1032 * Return true if RCU is watching the running CPU, which means that
1033 * this CPU can safely enter RCU read-side critical sections. Unlike
1034 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1035 * least disabled preemption.
1036 */
1037 bool notrace __rcu_is_watching(void)
1038 {
1039 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1040 }
1041
1042 /**
1043 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1044 *
1045 * If the current CPU is in its idle loop and is neither in an interrupt
1046 * or NMI handler, return true.
1047 */
1048 bool notrace rcu_is_watching(void)
1049 {
1050 bool ret;
1051
1052 preempt_disable_notrace();
1053 ret = __rcu_is_watching();
1054 preempt_enable_notrace();
1055 return ret;
1056 }
1057 EXPORT_SYMBOL_GPL(rcu_is_watching);
1058
1059 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1060
1061 /*
1062 * Is the current CPU online? Disable preemption to avoid false positives
1063 * that could otherwise happen due to the current CPU number being sampled,
1064 * this task being preempted, its old CPU being taken offline, resuming
1065 * on some other CPU, then determining that its old CPU is now offline.
1066 * It is OK to use RCU on an offline processor during initial boot, hence
1067 * the check for rcu_scheduler_fully_active. Note also that it is OK
1068 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1069 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1070 * offline to continue to use RCU for one jiffy after marking itself
1071 * offline in the cpu_online_mask. This leniency is necessary given the
1072 * non-atomic nature of the online and offline processing, for example,
1073 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1074 * notifiers.
1075 *
1076 * This is also why RCU internally marks CPUs online during the
1077 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1078 *
1079 * Disable checking if in an NMI handler because we cannot safely report
1080 * errors from NMI handlers anyway.
1081 */
1082 bool rcu_lockdep_current_cpu_online(void)
1083 {
1084 struct rcu_data *rdp;
1085 struct rcu_node *rnp;
1086 bool ret;
1087
1088 if (in_nmi())
1089 return true;
1090 preempt_disable();
1091 rdp = this_cpu_ptr(&rcu_sched_data);
1092 rnp = rdp->mynode;
1093 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1094 !rcu_scheduler_fully_active;
1095 preempt_enable();
1096 return ret;
1097 }
1098 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1099
1100 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1101
1102 /**
1103 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1104 *
1105 * If the current CPU is idle or running at a first-level (not nested)
1106 * interrupt from idle, return true. The caller must have at least
1107 * disabled preemption.
1108 */
1109 static int rcu_is_cpu_rrupt_from_idle(void)
1110 {
1111 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1112 }
1113
1114 /*
1115 * Snapshot the specified CPU's dynticks counter so that we can later
1116 * credit them with an implicit quiescent state. Return 1 if this CPU
1117 * is in dynticks idle mode, which is an extended quiescent state.
1118 */
1119 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1120 bool *isidle, unsigned long *maxj)
1121 {
1122 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1123 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1124 if ((rdp->dynticks_snap & 0x1) == 0) {
1125 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1126 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1127 rdp->mynode->gpnum))
1128 WRITE_ONCE(rdp->gpwrap, true);
1129 return 1;
1130 }
1131 return 0;
1132 }
1133
1134 /*
1135 * Return true if the specified CPU has passed through a quiescent
1136 * state by virtue of being in or having passed through an dynticks
1137 * idle state since the last call to dyntick_save_progress_counter()
1138 * for this same CPU, or by virtue of having been offline.
1139 */
1140 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1141 bool *isidle, unsigned long *maxj)
1142 {
1143 unsigned int curr;
1144 int *rcrmp;
1145 unsigned int snap;
1146
1147 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1148 snap = (unsigned int)rdp->dynticks_snap;
1149
1150 /*
1151 * If the CPU passed through or entered a dynticks idle phase with
1152 * no active irq/NMI handlers, then we can safely pretend that the CPU
1153 * already acknowledged the request to pass through a quiescent
1154 * state. Either way, that CPU cannot possibly be in an RCU
1155 * read-side critical section that started before the beginning
1156 * of the current RCU grace period.
1157 */
1158 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1159 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1160 rdp->dynticks_fqs++;
1161 return 1;
1162 }
1163
1164 /*
1165 * Check for the CPU being offline, but only if the grace period
1166 * is old enough. We don't need to worry about the CPU changing
1167 * state: If we see it offline even once, it has been through a
1168 * quiescent state.
1169 *
1170 * The reason for insisting that the grace period be at least
1171 * one jiffy old is that CPUs that are not quite online and that
1172 * have just gone offline can still execute RCU read-side critical
1173 * sections.
1174 */
1175 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1176 return 0; /* Grace period is not old enough. */
1177 barrier();
1178 if (cpu_is_offline(rdp->cpu)) {
1179 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1180 rdp->offline_fqs++;
1181 return 1;
1182 }
1183
1184 /*
1185 * A CPU running for an extended time within the kernel can
1186 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1187 * even context-switching back and forth between a pair of
1188 * in-kernel CPU-bound tasks cannot advance grace periods.
1189 * So if the grace period is old enough, make the CPU pay attention.
1190 * Note that the unsynchronized assignments to the per-CPU
1191 * rcu_sched_qs_mask variable are safe. Yes, setting of
1192 * bits can be lost, but they will be set again on the next
1193 * force-quiescent-state pass. So lost bit sets do not result
1194 * in incorrect behavior, merely in a grace period lasting
1195 * a few jiffies longer than it might otherwise. Because
1196 * there are at most four threads involved, and because the
1197 * updates are only once every few jiffies, the probability of
1198 * lossage (and thus of slight grace-period extension) is
1199 * quite low.
1200 *
1201 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1202 * is set too high, we override with half of the RCU CPU stall
1203 * warning delay.
1204 */
1205 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1206 if (ULONG_CMP_GE(jiffies,
1207 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1208 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1209 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1210 WRITE_ONCE(rdp->cond_resched_completed,
1211 READ_ONCE(rdp->mynode->completed));
1212 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1213 WRITE_ONCE(*rcrmp,
1214 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1215 }
1216 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1217 }
1218
1219 /* And if it has been a really long time, kick the CPU as well. */
1220 if (ULONG_CMP_GE(jiffies,
1221 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1222 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1223 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1224
1225 return 0;
1226 }
1227
1228 static void record_gp_stall_check_time(struct rcu_state *rsp)
1229 {
1230 unsigned long j = jiffies;
1231 unsigned long j1;
1232
1233 rsp->gp_start = j;
1234 smp_wmb(); /* Record start time before stall time. */
1235 j1 = rcu_jiffies_till_stall_check();
1236 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1237 rsp->jiffies_resched = j + j1 / 2;
1238 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1239 }
1240
1241 /*
1242 * Convert a ->gp_state value to a character string.
1243 */
1244 static const char *gp_state_getname(short gs)
1245 {
1246 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1247 return "???";
1248 return gp_state_names[gs];
1249 }
1250
1251 /*
1252 * Complain about starvation of grace-period kthread.
1253 */
1254 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1255 {
1256 unsigned long gpa;
1257 unsigned long j;
1258
1259 j = jiffies;
1260 gpa = READ_ONCE(rsp->gp_activity);
1261 if (j - gpa > 2 * HZ) {
1262 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1263 rsp->name, j - gpa,
1264 rsp->gpnum, rsp->completed,
1265 rsp->gp_flags,
1266 gp_state_getname(rsp->gp_state), rsp->gp_state,
1267 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1268 if (rsp->gp_kthread) {
1269 sched_show_task(rsp->gp_kthread);
1270 wake_up_process(rsp->gp_kthread);
1271 }
1272 }
1273 }
1274
1275 /*
1276 * Dump stacks of all tasks running on stalled CPUs.
1277 */
1278 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1279 {
1280 int cpu;
1281 unsigned long flags;
1282 struct rcu_node *rnp;
1283
1284 rcu_for_each_leaf_node(rsp, rnp) {
1285 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1286 if (rnp->qsmask != 0) {
1287 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1288 if (rnp->qsmask & (1UL << cpu))
1289 dump_cpu_task(rnp->grplo + cpu);
1290 }
1291 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1292 }
1293 }
1294
1295 /*
1296 * If too much time has passed in the current grace period, and if
1297 * so configured, go kick the relevant kthreads.
1298 */
1299 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1300 {
1301 unsigned long j;
1302
1303 if (!rcu_kick_kthreads)
1304 return;
1305 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1306 if (time_after(jiffies, j) && rsp->gp_kthread) {
1307 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1308 rcu_ftrace_dump(DUMP_ALL);
1309 wake_up_process(rsp->gp_kthread);
1310 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1311 }
1312 }
1313
1314 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1315 {
1316 int cpu;
1317 long delta;
1318 unsigned long flags;
1319 unsigned long gpa;
1320 unsigned long j;
1321 int ndetected = 0;
1322 struct rcu_node *rnp = rcu_get_root(rsp);
1323 long totqlen = 0;
1324
1325 /* Kick and suppress, if so configured. */
1326 rcu_stall_kick_kthreads(rsp);
1327 if (rcu_cpu_stall_suppress)
1328 return;
1329
1330 /* Only let one CPU complain about others per time interval. */
1331
1332 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1333 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1334 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1335 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1336 return;
1337 }
1338 WRITE_ONCE(rsp->jiffies_stall,
1339 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1340 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1341
1342 /*
1343 * OK, time to rat on our buddy...
1344 * See Documentation/RCU/stallwarn.txt for info on how to debug
1345 * RCU CPU stall warnings.
1346 */
1347 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1348 rsp->name);
1349 print_cpu_stall_info_begin();
1350 rcu_for_each_leaf_node(rsp, rnp) {
1351 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1352 ndetected += rcu_print_task_stall(rnp);
1353 if (rnp->qsmask != 0) {
1354 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1355 if (rnp->qsmask & (1UL << cpu)) {
1356 print_cpu_stall_info(rsp,
1357 rnp->grplo + cpu);
1358 ndetected++;
1359 }
1360 }
1361 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1362 }
1363
1364 print_cpu_stall_info_end();
1365 for_each_possible_cpu(cpu)
1366 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1367 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1368 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1369 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1370 if (ndetected) {
1371 rcu_dump_cpu_stacks(rsp);
1372 } else {
1373 if (READ_ONCE(rsp->gpnum) != gpnum ||
1374 READ_ONCE(rsp->completed) == gpnum) {
1375 pr_err("INFO: Stall ended before state dump start\n");
1376 } else {
1377 j = jiffies;
1378 gpa = READ_ONCE(rsp->gp_activity);
1379 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1380 rsp->name, j - gpa, j, gpa,
1381 jiffies_till_next_fqs,
1382 rcu_get_root(rsp)->qsmask);
1383 /* In this case, the current CPU might be at fault. */
1384 sched_show_task(current);
1385 }
1386 }
1387
1388 /* Complain about tasks blocking the grace period. */
1389 rcu_print_detail_task_stall(rsp);
1390
1391 rcu_check_gp_kthread_starvation(rsp);
1392
1393 force_quiescent_state(rsp); /* Kick them all. */
1394 }
1395
1396 static void print_cpu_stall(struct rcu_state *rsp)
1397 {
1398 int cpu;
1399 unsigned long flags;
1400 struct rcu_node *rnp = rcu_get_root(rsp);
1401 long totqlen = 0;
1402
1403 /* Kick and suppress, if so configured. */
1404 rcu_stall_kick_kthreads(rsp);
1405 if (rcu_cpu_stall_suppress)
1406 return;
1407
1408 /*
1409 * OK, time to rat on ourselves...
1410 * See Documentation/RCU/stallwarn.txt for info on how to debug
1411 * RCU CPU stall warnings.
1412 */
1413 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1414 print_cpu_stall_info_begin();
1415 print_cpu_stall_info(rsp, smp_processor_id());
1416 print_cpu_stall_info_end();
1417 for_each_possible_cpu(cpu)
1418 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1419 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1420 jiffies - rsp->gp_start,
1421 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1422
1423 rcu_check_gp_kthread_starvation(rsp);
1424
1425 rcu_dump_cpu_stacks(rsp);
1426
1427 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1428 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1429 WRITE_ONCE(rsp->jiffies_stall,
1430 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1431 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1432
1433 /*
1434 * Attempt to revive the RCU machinery by forcing a context switch.
1435 *
1436 * A context switch would normally allow the RCU state machine to make
1437 * progress and it could be we're stuck in kernel space without context
1438 * switches for an entirely unreasonable amount of time.
1439 */
1440 resched_cpu(smp_processor_id());
1441 }
1442
1443 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1444 {
1445 unsigned long completed;
1446 unsigned long gpnum;
1447 unsigned long gps;
1448 unsigned long j;
1449 unsigned long js;
1450 struct rcu_node *rnp;
1451
1452 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1453 !rcu_gp_in_progress(rsp))
1454 return;
1455 rcu_stall_kick_kthreads(rsp);
1456 j = jiffies;
1457
1458 /*
1459 * Lots of memory barriers to reject false positives.
1460 *
1461 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1462 * then rsp->gp_start, and finally rsp->completed. These values
1463 * are updated in the opposite order with memory barriers (or
1464 * equivalent) during grace-period initialization and cleanup.
1465 * Now, a false positive can occur if we get an new value of
1466 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1467 * the memory barriers, the only way that this can happen is if one
1468 * grace period ends and another starts between these two fetches.
1469 * Detect this by comparing rsp->completed with the previous fetch
1470 * from rsp->gpnum.
1471 *
1472 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1473 * and rsp->gp_start suffice to forestall false positives.
1474 */
1475 gpnum = READ_ONCE(rsp->gpnum);
1476 smp_rmb(); /* Pick up ->gpnum first... */
1477 js = READ_ONCE(rsp->jiffies_stall);
1478 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1479 gps = READ_ONCE(rsp->gp_start);
1480 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1481 completed = READ_ONCE(rsp->completed);
1482 if (ULONG_CMP_GE(completed, gpnum) ||
1483 ULONG_CMP_LT(j, js) ||
1484 ULONG_CMP_GE(gps, js))
1485 return; /* No stall or GP completed since entering function. */
1486 rnp = rdp->mynode;
1487 if (rcu_gp_in_progress(rsp) &&
1488 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1489
1490 /* We haven't checked in, so go dump stack. */
1491 print_cpu_stall(rsp);
1492
1493 } else if (rcu_gp_in_progress(rsp) &&
1494 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1495
1496 /* They had a few time units to dump stack, so complain. */
1497 print_other_cpu_stall(rsp, gpnum);
1498 }
1499 }
1500
1501 /**
1502 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1503 *
1504 * Set the stall-warning timeout way off into the future, thus preventing
1505 * any RCU CPU stall-warning messages from appearing in the current set of
1506 * RCU grace periods.
1507 *
1508 * The caller must disable hard irqs.
1509 */
1510 void rcu_cpu_stall_reset(void)
1511 {
1512 struct rcu_state *rsp;
1513
1514 for_each_rcu_flavor(rsp)
1515 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1516 }
1517
1518 /*
1519 * Initialize the specified rcu_data structure's default callback list
1520 * to empty. The default callback list is the one that is not used by
1521 * no-callbacks CPUs.
1522 */
1523 static void init_default_callback_list(struct rcu_data *rdp)
1524 {
1525 int i;
1526
1527 rdp->nxtlist = NULL;
1528 for (i = 0; i < RCU_NEXT_SIZE; i++)
1529 rdp->nxttail[i] = &rdp->nxtlist;
1530 }
1531
1532 /*
1533 * Initialize the specified rcu_data structure's callback list to empty.
1534 */
1535 static void init_callback_list(struct rcu_data *rdp)
1536 {
1537 if (init_nocb_callback_list(rdp))
1538 return;
1539 init_default_callback_list(rdp);
1540 }
1541
1542 /*
1543 * Determine the value that ->completed will have at the end of the
1544 * next subsequent grace period. This is used to tag callbacks so that
1545 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1546 * been dyntick-idle for an extended period with callbacks under the
1547 * influence of RCU_FAST_NO_HZ.
1548 *
1549 * The caller must hold rnp->lock with interrupts disabled.
1550 */
1551 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1552 struct rcu_node *rnp)
1553 {
1554 /*
1555 * If RCU is idle, we just wait for the next grace period.
1556 * But we can only be sure that RCU is idle if we are looking
1557 * at the root rcu_node structure -- otherwise, a new grace
1558 * period might have started, but just not yet gotten around
1559 * to initializing the current non-root rcu_node structure.
1560 */
1561 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1562 return rnp->completed + 1;
1563
1564 /*
1565 * Otherwise, wait for a possible partial grace period and
1566 * then the subsequent full grace period.
1567 */
1568 return rnp->completed + 2;
1569 }
1570
1571 /*
1572 * Trace-event helper function for rcu_start_future_gp() and
1573 * rcu_nocb_wait_gp().
1574 */
1575 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1576 unsigned long c, const char *s)
1577 {
1578 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1579 rnp->completed, c, rnp->level,
1580 rnp->grplo, rnp->grphi, s);
1581 }
1582
1583 /*
1584 * Start some future grace period, as needed to handle newly arrived
1585 * callbacks. The required future grace periods are recorded in each
1586 * rcu_node structure's ->need_future_gp field. Returns true if there
1587 * is reason to awaken the grace-period kthread.
1588 *
1589 * The caller must hold the specified rcu_node structure's ->lock.
1590 */
1591 static bool __maybe_unused
1592 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1593 unsigned long *c_out)
1594 {
1595 unsigned long c;
1596 int i;
1597 bool ret = false;
1598 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1599
1600 /*
1601 * Pick up grace-period number for new callbacks. If this
1602 * grace period is already marked as needed, return to the caller.
1603 */
1604 c = rcu_cbs_completed(rdp->rsp, rnp);
1605 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1606 if (rnp->need_future_gp[c & 0x1]) {
1607 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1608 goto out;
1609 }
1610
1611 /*
1612 * If either this rcu_node structure or the root rcu_node structure
1613 * believe that a grace period is in progress, then we must wait
1614 * for the one following, which is in "c". Because our request
1615 * will be noticed at the end of the current grace period, we don't
1616 * need to explicitly start one. We only do the lockless check
1617 * of rnp_root's fields if the current rcu_node structure thinks
1618 * there is no grace period in flight, and because we hold rnp->lock,
1619 * the only possible change is when rnp_root's two fields are
1620 * equal, in which case rnp_root->gpnum might be concurrently
1621 * incremented. But that is OK, as it will just result in our
1622 * doing some extra useless work.
1623 */
1624 if (rnp->gpnum != rnp->completed ||
1625 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1626 rnp->need_future_gp[c & 0x1]++;
1627 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1628 goto out;
1629 }
1630
1631 /*
1632 * There might be no grace period in progress. If we don't already
1633 * hold it, acquire the root rcu_node structure's lock in order to
1634 * start one (if needed).
1635 */
1636 if (rnp != rnp_root)
1637 raw_spin_lock_rcu_node(rnp_root);
1638
1639 /*
1640 * Get a new grace-period number. If there really is no grace
1641 * period in progress, it will be smaller than the one we obtained
1642 * earlier. Adjust callbacks as needed. Note that even no-CBs
1643 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1644 */
1645 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1646 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1647 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1648 rdp->nxtcompleted[i] = c;
1649
1650 /*
1651 * If the needed for the required grace period is already
1652 * recorded, trace and leave.
1653 */
1654 if (rnp_root->need_future_gp[c & 0x1]) {
1655 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1656 goto unlock_out;
1657 }
1658
1659 /* Record the need for the future grace period. */
1660 rnp_root->need_future_gp[c & 0x1]++;
1661
1662 /* If a grace period is not already in progress, start one. */
1663 if (rnp_root->gpnum != rnp_root->completed) {
1664 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1665 } else {
1666 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1667 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1668 }
1669 unlock_out:
1670 if (rnp != rnp_root)
1671 raw_spin_unlock_rcu_node(rnp_root);
1672 out:
1673 if (c_out != NULL)
1674 *c_out = c;
1675 return ret;
1676 }
1677
1678 /*
1679 * Clean up any old requests for the just-ended grace period. Also return
1680 * whether any additional grace periods have been requested. Also invoke
1681 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1682 * waiting for this grace period to complete.
1683 */
1684 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1685 {
1686 int c = rnp->completed;
1687 int needmore;
1688 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1689
1690 rnp->need_future_gp[c & 0x1] = 0;
1691 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1692 trace_rcu_future_gp(rnp, rdp, c,
1693 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1694 return needmore;
1695 }
1696
1697 /*
1698 * Awaken the grace-period kthread for the specified flavor of RCU.
1699 * Don't do a self-awaken, and don't bother awakening when there is
1700 * nothing for the grace-period kthread to do (as in several CPUs
1701 * raced to awaken, and we lost), and finally don't try to awaken
1702 * a kthread that has not yet been created.
1703 */
1704 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1705 {
1706 if (current == rsp->gp_kthread ||
1707 !READ_ONCE(rsp->gp_flags) ||
1708 !rsp->gp_kthread)
1709 return;
1710 swake_up(&rsp->gp_wq);
1711 }
1712
1713 /*
1714 * If there is room, assign a ->completed number to any callbacks on
1715 * this CPU that have not already been assigned. Also accelerate any
1716 * callbacks that were previously assigned a ->completed number that has
1717 * since proven to be too conservative, which can happen if callbacks get
1718 * assigned a ->completed number while RCU is idle, but with reference to
1719 * a non-root rcu_node structure. This function is idempotent, so it does
1720 * not hurt to call it repeatedly. Returns an flag saying that we should
1721 * awaken the RCU grace-period kthread.
1722 *
1723 * The caller must hold rnp->lock with interrupts disabled.
1724 */
1725 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1726 struct rcu_data *rdp)
1727 {
1728 unsigned long c;
1729 int i;
1730 bool ret;
1731
1732 /* If the CPU has no callbacks, nothing to do. */
1733 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1734 return false;
1735
1736 /*
1737 * Starting from the sublist containing the callbacks most
1738 * recently assigned a ->completed number and working down, find the
1739 * first sublist that is not assignable to an upcoming grace period.
1740 * Such a sublist has something in it (first two tests) and has
1741 * a ->completed number assigned that will complete sooner than
1742 * the ->completed number for newly arrived callbacks (last test).
1743 *
1744 * The key point is that any later sublist can be assigned the
1745 * same ->completed number as the newly arrived callbacks, which
1746 * means that the callbacks in any of these later sublist can be
1747 * grouped into a single sublist, whether or not they have already
1748 * been assigned a ->completed number.
1749 */
1750 c = rcu_cbs_completed(rsp, rnp);
1751 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1752 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1753 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1754 break;
1755
1756 /*
1757 * If there are no sublist for unassigned callbacks, leave.
1758 * At the same time, advance "i" one sublist, so that "i" will
1759 * index into the sublist where all the remaining callbacks should
1760 * be grouped into.
1761 */
1762 if (++i >= RCU_NEXT_TAIL)
1763 return false;
1764
1765 /*
1766 * Assign all subsequent callbacks' ->completed number to the next
1767 * full grace period and group them all in the sublist initially
1768 * indexed by "i".
1769 */
1770 for (; i <= RCU_NEXT_TAIL; i++) {
1771 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1772 rdp->nxtcompleted[i] = c;
1773 }
1774 /* Record any needed additional grace periods. */
1775 ret = rcu_start_future_gp(rnp, rdp, NULL);
1776
1777 /* Trace depending on how much we were able to accelerate. */
1778 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1779 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1780 else
1781 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1782 return ret;
1783 }
1784
1785 /*
1786 * Move any callbacks whose grace period has completed to the
1787 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1788 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1789 * sublist. This function is idempotent, so it does not hurt to
1790 * invoke it repeatedly. As long as it is not invoked -too- often...
1791 * Returns true if the RCU grace-period kthread needs to be awakened.
1792 *
1793 * The caller must hold rnp->lock with interrupts disabled.
1794 */
1795 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1796 struct rcu_data *rdp)
1797 {
1798 int i, j;
1799
1800 /* If the CPU has no callbacks, nothing to do. */
1801 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1802 return false;
1803
1804 /*
1805 * Find all callbacks whose ->completed numbers indicate that they
1806 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1807 */
1808 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1809 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1810 break;
1811 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1812 }
1813 /* Clean up any sublist tail pointers that were misordered above. */
1814 for (j = RCU_WAIT_TAIL; j < i; j++)
1815 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1816
1817 /* Copy down callbacks to fill in empty sublists. */
1818 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1819 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1820 break;
1821 rdp->nxttail[j] = rdp->nxttail[i];
1822 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1823 }
1824
1825 /* Classify any remaining callbacks. */
1826 return rcu_accelerate_cbs(rsp, rnp, rdp);
1827 }
1828
1829 /*
1830 * Update CPU-local rcu_data state to record the beginnings and ends of
1831 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1832 * structure corresponding to the current CPU, and must have irqs disabled.
1833 * Returns true if the grace-period kthread needs to be awakened.
1834 */
1835 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1836 struct rcu_data *rdp)
1837 {
1838 bool ret;
1839
1840 /* Handle the ends of any preceding grace periods first. */
1841 if (rdp->completed == rnp->completed &&
1842 !unlikely(READ_ONCE(rdp->gpwrap))) {
1843
1844 /* No grace period end, so just accelerate recent callbacks. */
1845 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1846
1847 } else {
1848
1849 /* Advance callbacks. */
1850 ret = rcu_advance_cbs(rsp, rnp, rdp);
1851
1852 /* Remember that we saw this grace-period completion. */
1853 rdp->completed = rnp->completed;
1854 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1855 }
1856
1857 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1858 /*
1859 * If the current grace period is waiting for this CPU,
1860 * set up to detect a quiescent state, otherwise don't
1861 * go looking for one.
1862 */
1863 rdp->gpnum = rnp->gpnum;
1864 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1865 rdp->cpu_no_qs.b.norm = true;
1866 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1867 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1868 zero_cpu_stall_ticks(rdp);
1869 WRITE_ONCE(rdp->gpwrap, false);
1870 }
1871 return ret;
1872 }
1873
1874 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1875 {
1876 unsigned long flags;
1877 bool needwake;
1878 struct rcu_node *rnp;
1879
1880 local_irq_save(flags);
1881 rnp = rdp->mynode;
1882 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1883 rdp->completed == READ_ONCE(rnp->completed) &&
1884 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1885 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1886 local_irq_restore(flags);
1887 return;
1888 }
1889 needwake = __note_gp_changes(rsp, rnp, rdp);
1890 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1891 if (needwake)
1892 rcu_gp_kthread_wake(rsp);
1893 }
1894
1895 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1896 {
1897 if (delay > 0 &&
1898 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1899 schedule_timeout_uninterruptible(delay);
1900 }
1901
1902 /*
1903 * Initialize a new grace period. Return false if no grace period required.
1904 */
1905 static bool rcu_gp_init(struct rcu_state *rsp)
1906 {
1907 unsigned long oldmask;
1908 struct rcu_data *rdp;
1909 struct rcu_node *rnp = rcu_get_root(rsp);
1910
1911 WRITE_ONCE(rsp->gp_activity, jiffies);
1912 raw_spin_lock_irq_rcu_node(rnp);
1913 if (!READ_ONCE(rsp->gp_flags)) {
1914 /* Spurious wakeup, tell caller to go back to sleep. */
1915 raw_spin_unlock_irq_rcu_node(rnp);
1916 return false;
1917 }
1918 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1919
1920 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1921 /*
1922 * Grace period already in progress, don't start another.
1923 * Not supposed to be able to happen.
1924 */
1925 raw_spin_unlock_irq_rcu_node(rnp);
1926 return false;
1927 }
1928
1929 /* Advance to a new grace period and initialize state. */
1930 record_gp_stall_check_time(rsp);
1931 /* Record GP times before starting GP, hence smp_store_release(). */
1932 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1933 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1934 raw_spin_unlock_irq_rcu_node(rnp);
1935
1936 /*
1937 * Apply per-leaf buffered online and offline operations to the
1938 * rcu_node tree. Note that this new grace period need not wait
1939 * for subsequent online CPUs, and that quiescent-state forcing
1940 * will handle subsequent offline CPUs.
1941 */
1942 rcu_for_each_leaf_node(rsp, rnp) {
1943 rcu_gp_slow(rsp, gp_preinit_delay);
1944 raw_spin_lock_irq_rcu_node(rnp);
1945 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1946 !rnp->wait_blkd_tasks) {
1947 /* Nothing to do on this leaf rcu_node structure. */
1948 raw_spin_unlock_irq_rcu_node(rnp);
1949 continue;
1950 }
1951
1952 /* Record old state, apply changes to ->qsmaskinit field. */
1953 oldmask = rnp->qsmaskinit;
1954 rnp->qsmaskinit = rnp->qsmaskinitnext;
1955
1956 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1957 if (!oldmask != !rnp->qsmaskinit) {
1958 if (!oldmask) /* First online CPU for this rcu_node. */
1959 rcu_init_new_rnp(rnp);
1960 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1961 rnp->wait_blkd_tasks = true;
1962 else /* Last offline CPU and can propagate. */
1963 rcu_cleanup_dead_rnp(rnp);
1964 }
1965
1966 /*
1967 * If all waited-on tasks from prior grace period are
1968 * done, and if all this rcu_node structure's CPUs are
1969 * still offline, propagate up the rcu_node tree and
1970 * clear ->wait_blkd_tasks. Otherwise, if one of this
1971 * rcu_node structure's CPUs has since come back online,
1972 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1973 * checks for this, so just call it unconditionally).
1974 */
1975 if (rnp->wait_blkd_tasks &&
1976 (!rcu_preempt_has_tasks(rnp) ||
1977 rnp->qsmaskinit)) {
1978 rnp->wait_blkd_tasks = false;
1979 rcu_cleanup_dead_rnp(rnp);
1980 }
1981
1982 raw_spin_unlock_irq_rcu_node(rnp);
1983 }
1984
1985 /*
1986 * Set the quiescent-state-needed bits in all the rcu_node
1987 * structures for all currently online CPUs in breadth-first order,
1988 * starting from the root rcu_node structure, relying on the layout
1989 * of the tree within the rsp->node[] array. Note that other CPUs
1990 * will access only the leaves of the hierarchy, thus seeing that no
1991 * grace period is in progress, at least until the corresponding
1992 * leaf node has been initialized. In addition, we have excluded
1993 * CPU-hotplug operations.
1994 *
1995 * The grace period cannot complete until the initialization
1996 * process finishes, because this kthread handles both.
1997 */
1998 rcu_for_each_node_breadth_first(rsp, rnp) {
1999 rcu_gp_slow(rsp, gp_init_delay);
2000 raw_spin_lock_irq_rcu_node(rnp);
2001 rdp = this_cpu_ptr(rsp->rda);
2002 rcu_preempt_check_blocked_tasks(rnp);
2003 rnp->qsmask = rnp->qsmaskinit;
2004 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2005 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2006 WRITE_ONCE(rnp->completed, rsp->completed);
2007 if (rnp == rdp->mynode)
2008 (void)__note_gp_changes(rsp, rnp, rdp);
2009 rcu_preempt_boost_start_gp(rnp);
2010 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2011 rnp->level, rnp->grplo,
2012 rnp->grphi, rnp->qsmask);
2013 raw_spin_unlock_irq_rcu_node(rnp);
2014 cond_resched_rcu_qs();
2015 WRITE_ONCE(rsp->gp_activity, jiffies);
2016 }
2017
2018 return true;
2019 }
2020
2021 /*
2022 * Helper function for wait_event_interruptible_timeout() wakeup
2023 * at force-quiescent-state time.
2024 */
2025 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2026 {
2027 struct rcu_node *rnp = rcu_get_root(rsp);
2028
2029 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2030 *gfp = READ_ONCE(rsp->gp_flags);
2031 if (*gfp & RCU_GP_FLAG_FQS)
2032 return true;
2033
2034 /* The current grace period has completed. */
2035 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2036 return true;
2037
2038 return false;
2039 }
2040
2041 /*
2042 * Do one round of quiescent-state forcing.
2043 */
2044 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2045 {
2046 bool isidle = false;
2047 unsigned long maxj;
2048 struct rcu_node *rnp = rcu_get_root(rsp);
2049
2050 WRITE_ONCE(rsp->gp_activity, jiffies);
2051 rsp->n_force_qs++;
2052 if (first_time) {
2053 /* Collect dyntick-idle snapshots. */
2054 if (is_sysidle_rcu_state(rsp)) {
2055 isidle = true;
2056 maxj = jiffies - ULONG_MAX / 4;
2057 }
2058 force_qs_rnp(rsp, dyntick_save_progress_counter,
2059 &isidle, &maxj);
2060 rcu_sysidle_report_gp(rsp, isidle, maxj);
2061 } else {
2062 /* Handle dyntick-idle and offline CPUs. */
2063 isidle = true;
2064 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2065 }
2066 /* Clear flag to prevent immediate re-entry. */
2067 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2068 raw_spin_lock_irq_rcu_node(rnp);
2069 WRITE_ONCE(rsp->gp_flags,
2070 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2071 raw_spin_unlock_irq_rcu_node(rnp);
2072 }
2073 }
2074
2075 /*
2076 * Clean up after the old grace period.
2077 */
2078 static void rcu_gp_cleanup(struct rcu_state *rsp)
2079 {
2080 unsigned long gp_duration;
2081 bool needgp = false;
2082 int nocb = 0;
2083 struct rcu_data *rdp;
2084 struct rcu_node *rnp = rcu_get_root(rsp);
2085 struct swait_queue_head *sq;
2086
2087 WRITE_ONCE(rsp->gp_activity, jiffies);
2088 raw_spin_lock_irq_rcu_node(rnp);
2089 gp_duration = jiffies - rsp->gp_start;
2090 if (gp_duration > rsp->gp_max)
2091 rsp->gp_max = gp_duration;
2092
2093 /*
2094 * We know the grace period is complete, but to everyone else
2095 * it appears to still be ongoing. But it is also the case
2096 * that to everyone else it looks like there is nothing that
2097 * they can do to advance the grace period. It is therefore
2098 * safe for us to drop the lock in order to mark the grace
2099 * period as completed in all of the rcu_node structures.
2100 */
2101 raw_spin_unlock_irq_rcu_node(rnp);
2102
2103 /*
2104 * Propagate new ->completed value to rcu_node structures so
2105 * that other CPUs don't have to wait until the start of the next
2106 * grace period to process their callbacks. This also avoids
2107 * some nasty RCU grace-period initialization races by forcing
2108 * the end of the current grace period to be completely recorded in
2109 * all of the rcu_node structures before the beginning of the next
2110 * grace period is recorded in any of the rcu_node structures.
2111 */
2112 rcu_for_each_node_breadth_first(rsp, rnp) {
2113 raw_spin_lock_irq_rcu_node(rnp);
2114 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2115 WARN_ON_ONCE(rnp->qsmask);
2116 WRITE_ONCE(rnp->completed, rsp->gpnum);
2117 rdp = this_cpu_ptr(rsp->rda);
2118 if (rnp == rdp->mynode)
2119 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2120 /* smp_mb() provided by prior unlock-lock pair. */
2121 nocb += rcu_future_gp_cleanup(rsp, rnp);
2122 sq = rcu_nocb_gp_get(rnp);
2123 raw_spin_unlock_irq_rcu_node(rnp);
2124 rcu_nocb_gp_cleanup(sq);
2125 cond_resched_rcu_qs();
2126 WRITE_ONCE(rsp->gp_activity, jiffies);
2127 rcu_gp_slow(rsp, gp_cleanup_delay);
2128 }
2129 rnp = rcu_get_root(rsp);
2130 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2131 rcu_nocb_gp_set(rnp, nocb);
2132
2133 /* Declare grace period done. */
2134 WRITE_ONCE(rsp->completed, rsp->gpnum);
2135 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2136 rsp->gp_state = RCU_GP_IDLE;
2137 rdp = this_cpu_ptr(rsp->rda);
2138 /* Advance CBs to reduce false positives below. */
2139 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2140 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2141 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2142 trace_rcu_grace_period(rsp->name,
2143 READ_ONCE(rsp->gpnum),
2144 TPS("newreq"));
2145 }
2146 raw_spin_unlock_irq_rcu_node(rnp);
2147 }
2148
2149 /*
2150 * Body of kthread that handles grace periods.
2151 */
2152 static int __noreturn rcu_gp_kthread(void *arg)
2153 {
2154 bool first_gp_fqs;
2155 int gf;
2156 unsigned long j;
2157 int ret;
2158 struct rcu_state *rsp = arg;
2159 struct rcu_node *rnp = rcu_get_root(rsp);
2160
2161 rcu_bind_gp_kthread();
2162 for (;;) {
2163
2164 /* Handle grace-period start. */
2165 for (;;) {
2166 trace_rcu_grace_period(rsp->name,
2167 READ_ONCE(rsp->gpnum),
2168 TPS("reqwait"));
2169 rsp->gp_state = RCU_GP_WAIT_GPS;
2170 swait_event_interruptible(rsp->gp_wq,
2171 READ_ONCE(rsp->gp_flags) &
2172 RCU_GP_FLAG_INIT);
2173 rsp->gp_state = RCU_GP_DONE_GPS;
2174 /* Locking provides needed memory barrier. */
2175 if (rcu_gp_init(rsp))
2176 break;
2177 cond_resched_rcu_qs();
2178 WRITE_ONCE(rsp->gp_activity, jiffies);
2179 WARN_ON(signal_pending(current));
2180 trace_rcu_grace_period(rsp->name,
2181 READ_ONCE(rsp->gpnum),
2182 TPS("reqwaitsig"));
2183 }
2184
2185 /* Handle quiescent-state forcing. */
2186 first_gp_fqs = true;
2187 j = jiffies_till_first_fqs;
2188 if (j > HZ) {
2189 j = HZ;
2190 jiffies_till_first_fqs = HZ;
2191 }
2192 ret = 0;
2193 for (;;) {
2194 if (!ret) {
2195 rsp->jiffies_force_qs = jiffies + j;
2196 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2197 jiffies + 3 * j);
2198 }
2199 trace_rcu_grace_period(rsp->name,
2200 READ_ONCE(rsp->gpnum),
2201 TPS("fqswait"));
2202 rsp->gp_state = RCU_GP_WAIT_FQS;
2203 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2204 rcu_gp_fqs_check_wake(rsp, &gf), j);
2205 rsp->gp_state = RCU_GP_DOING_FQS;
2206 /* Locking provides needed memory barriers. */
2207 /* If grace period done, leave loop. */
2208 if (!READ_ONCE(rnp->qsmask) &&
2209 !rcu_preempt_blocked_readers_cgp(rnp))
2210 break;
2211 /* If time for quiescent-state forcing, do it. */
2212 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2213 (gf & RCU_GP_FLAG_FQS)) {
2214 trace_rcu_grace_period(rsp->name,
2215 READ_ONCE(rsp->gpnum),
2216 TPS("fqsstart"));
2217 rcu_gp_fqs(rsp, first_gp_fqs);
2218 first_gp_fqs = false;
2219 trace_rcu_grace_period(rsp->name,
2220 READ_ONCE(rsp->gpnum),
2221 TPS("fqsend"));
2222 cond_resched_rcu_qs();
2223 WRITE_ONCE(rsp->gp_activity, jiffies);
2224 ret = 0; /* Force full wait till next FQS. */
2225 j = jiffies_till_next_fqs;
2226 if (j > HZ) {
2227 j = HZ;
2228 jiffies_till_next_fqs = HZ;
2229 } else if (j < 1) {
2230 j = 1;
2231 jiffies_till_next_fqs = 1;
2232 }
2233 } else {
2234 /* Deal with stray signal. */
2235 cond_resched_rcu_qs();
2236 WRITE_ONCE(rsp->gp_activity, jiffies);
2237 WARN_ON(signal_pending(current));
2238 trace_rcu_grace_period(rsp->name,
2239 READ_ONCE(rsp->gpnum),
2240 TPS("fqswaitsig"));
2241 ret = 1; /* Keep old FQS timing. */
2242 j = jiffies;
2243 if (time_after(jiffies, rsp->jiffies_force_qs))
2244 j = 1;
2245 else
2246 j = rsp->jiffies_force_qs - j;
2247 }
2248 }
2249
2250 /* Handle grace-period end. */
2251 rsp->gp_state = RCU_GP_CLEANUP;
2252 rcu_gp_cleanup(rsp);
2253 rsp->gp_state = RCU_GP_CLEANED;
2254 }
2255 }
2256
2257 /*
2258 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2259 * in preparation for detecting the next grace period. The caller must hold
2260 * the root node's ->lock and hard irqs must be disabled.
2261 *
2262 * Note that it is legal for a dying CPU (which is marked as offline) to
2263 * invoke this function. This can happen when the dying CPU reports its
2264 * quiescent state.
2265 *
2266 * Returns true if the grace-period kthread must be awakened.
2267 */
2268 static bool
2269 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2270 struct rcu_data *rdp)
2271 {
2272 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2273 /*
2274 * Either we have not yet spawned the grace-period
2275 * task, this CPU does not need another grace period,
2276 * or a grace period is already in progress.
2277 * Either way, don't start a new grace period.
2278 */
2279 return false;
2280 }
2281 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2282 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2283 TPS("newreq"));
2284
2285 /*
2286 * We can't do wakeups while holding the rnp->lock, as that
2287 * could cause possible deadlocks with the rq->lock. Defer
2288 * the wakeup to our caller.
2289 */
2290 return true;
2291 }
2292
2293 /*
2294 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2295 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2296 * is invoked indirectly from rcu_advance_cbs(), which would result in
2297 * endless recursion -- or would do so if it wasn't for the self-deadlock
2298 * that is encountered beforehand.
2299 *
2300 * Returns true if the grace-period kthread needs to be awakened.
2301 */
2302 static bool rcu_start_gp(struct rcu_state *rsp)
2303 {
2304 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2305 struct rcu_node *rnp = rcu_get_root(rsp);
2306 bool ret = false;
2307
2308 /*
2309 * If there is no grace period in progress right now, any
2310 * callbacks we have up to this point will be satisfied by the
2311 * next grace period. Also, advancing the callbacks reduces the
2312 * probability of false positives from cpu_needs_another_gp()
2313 * resulting in pointless grace periods. So, advance callbacks
2314 * then start the grace period!
2315 */
2316 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2317 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2318 return ret;
2319 }
2320
2321 /*
2322 * Report a full set of quiescent states to the specified rcu_state data
2323 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2324 * kthread if another grace period is required. Whether we wake
2325 * the grace-period kthread or it awakens itself for the next round
2326 * of quiescent-state forcing, that kthread will clean up after the
2327 * just-completed grace period. Note that the caller must hold rnp->lock,
2328 * which is released before return.
2329 */
2330 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2331 __releases(rcu_get_root(rsp)->lock)
2332 {
2333 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2334 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2335 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2336 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2337 }
2338
2339 /*
2340 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2341 * Allows quiescent states for a group of CPUs to be reported at one go
2342 * to the specified rcu_node structure, though all the CPUs in the group
2343 * must be represented by the same rcu_node structure (which need not be a
2344 * leaf rcu_node structure, though it often will be). The gps parameter
2345 * is the grace-period snapshot, which means that the quiescent states
2346 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2347 * must be held upon entry, and it is released before return.
2348 */
2349 static void
2350 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2351 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2352 __releases(rnp->lock)
2353 {
2354 unsigned long oldmask = 0;
2355 struct rcu_node *rnp_c;
2356
2357 /* Walk up the rcu_node hierarchy. */
2358 for (;;) {
2359 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2360
2361 /*
2362 * Our bit has already been cleared, or the
2363 * relevant grace period is already over, so done.
2364 */
2365 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2366 return;
2367 }
2368 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2369 rnp->qsmask &= ~mask;
2370 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2371 mask, rnp->qsmask, rnp->level,
2372 rnp->grplo, rnp->grphi,
2373 !!rnp->gp_tasks);
2374 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2375
2376 /* Other bits still set at this level, so done. */
2377 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2378 return;
2379 }
2380 mask = rnp->grpmask;
2381 if (rnp->parent == NULL) {
2382
2383 /* No more levels. Exit loop holding root lock. */
2384
2385 break;
2386 }
2387 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2388 rnp_c = rnp;
2389 rnp = rnp->parent;
2390 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2391 oldmask = rnp_c->qsmask;
2392 }
2393
2394 /*
2395 * Get here if we are the last CPU to pass through a quiescent
2396 * state for this grace period. Invoke rcu_report_qs_rsp()
2397 * to clean up and start the next grace period if one is needed.
2398 */
2399 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2400 }
2401
2402 /*
2403 * Record a quiescent state for all tasks that were previously queued
2404 * on the specified rcu_node structure and that were blocking the current
2405 * RCU grace period. The caller must hold the specified rnp->lock with
2406 * irqs disabled, and this lock is released upon return, but irqs remain
2407 * disabled.
2408 */
2409 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2410 struct rcu_node *rnp, unsigned long flags)
2411 __releases(rnp->lock)
2412 {
2413 unsigned long gps;
2414 unsigned long mask;
2415 struct rcu_node *rnp_p;
2416
2417 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2418 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2419 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2420 return; /* Still need more quiescent states! */
2421 }
2422
2423 rnp_p = rnp->parent;
2424 if (rnp_p == NULL) {
2425 /*
2426 * Only one rcu_node structure in the tree, so don't
2427 * try to report up to its nonexistent parent!
2428 */
2429 rcu_report_qs_rsp(rsp, flags);
2430 return;
2431 }
2432
2433 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2434 gps = rnp->gpnum;
2435 mask = rnp->grpmask;
2436 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2437 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2438 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2439 }
2440
2441 /*
2442 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2443 * structure. This must be called from the specified CPU.
2444 */
2445 static void
2446 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2447 {
2448 unsigned long flags;
2449 unsigned long mask;
2450 bool needwake;
2451 struct rcu_node *rnp;
2452
2453 rnp = rdp->mynode;
2454 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2455 if ((rdp->cpu_no_qs.b.norm &&
2456 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2457 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2458 rdp->gpwrap) {
2459
2460 /*
2461 * The grace period in which this quiescent state was
2462 * recorded has ended, so don't report it upwards.
2463 * We will instead need a new quiescent state that lies
2464 * within the current grace period.
2465 */
2466 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2467 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2468 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2469 return;
2470 }
2471 mask = rdp->grpmask;
2472 if ((rnp->qsmask & mask) == 0) {
2473 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2474 } else {
2475 rdp->core_needs_qs = false;
2476
2477 /*
2478 * This GP can't end until cpu checks in, so all of our
2479 * callbacks can be processed during the next GP.
2480 */
2481 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2482
2483 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2484 /* ^^^ Released rnp->lock */
2485 if (needwake)
2486 rcu_gp_kthread_wake(rsp);
2487 }
2488 }
2489
2490 /*
2491 * Check to see if there is a new grace period of which this CPU
2492 * is not yet aware, and if so, set up local rcu_data state for it.
2493 * Otherwise, see if this CPU has just passed through its first
2494 * quiescent state for this grace period, and record that fact if so.
2495 */
2496 static void
2497 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2498 {
2499 /* Check for grace-period ends and beginnings. */
2500 note_gp_changes(rsp, rdp);
2501
2502 /*
2503 * Does this CPU still need to do its part for current grace period?
2504 * If no, return and let the other CPUs do their part as well.
2505 */
2506 if (!rdp->core_needs_qs)
2507 return;
2508
2509 /*
2510 * Was there a quiescent state since the beginning of the grace
2511 * period? If no, then exit and wait for the next call.
2512 */
2513 if (rdp->cpu_no_qs.b.norm &&
2514 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2515 return;
2516
2517 /*
2518 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2519 * judge of that).
2520 */
2521 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2522 }
2523
2524 /*
2525 * Send the specified CPU's RCU callbacks to the orphanage. The
2526 * specified CPU must be offline, and the caller must hold the
2527 * ->orphan_lock.
2528 */
2529 static void
2530 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2531 struct rcu_node *rnp, struct rcu_data *rdp)
2532 {
2533 /* No-CBs CPUs do not have orphanable callbacks. */
2534 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2535 return;
2536
2537 /*
2538 * Orphan the callbacks. First adjust the counts. This is safe
2539 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2540 * cannot be running now. Thus no memory barrier is required.
2541 */
2542 if (rdp->nxtlist != NULL) {
2543 rsp->qlen_lazy += rdp->qlen_lazy;
2544 rsp->qlen += rdp->qlen;
2545 rdp->n_cbs_orphaned += rdp->qlen;
2546 rdp->qlen_lazy = 0;
2547 WRITE_ONCE(rdp->qlen, 0);
2548 }
2549
2550 /*
2551 * Next, move those callbacks still needing a grace period to
2552 * the orphanage, where some other CPU will pick them up.
2553 * Some of the callbacks might have gone partway through a grace
2554 * period, but that is too bad. They get to start over because we
2555 * cannot assume that grace periods are synchronized across CPUs.
2556 * We don't bother updating the ->nxttail[] array yet, instead
2557 * we just reset the whole thing later on.
2558 */
2559 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2560 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2561 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2562 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2563 }
2564
2565 /*
2566 * Then move the ready-to-invoke callbacks to the orphanage,
2567 * where some other CPU will pick them up. These will not be
2568 * required to pass though another grace period: They are done.
2569 */
2570 if (rdp->nxtlist != NULL) {
2571 *rsp->orphan_donetail = rdp->nxtlist;
2572 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2573 }
2574
2575 /*
2576 * Finally, initialize the rcu_data structure's list to empty and
2577 * disallow further callbacks on this CPU.
2578 */
2579 init_callback_list(rdp);
2580 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2581 }
2582
2583 /*
2584 * Adopt the RCU callbacks from the specified rcu_state structure's
2585 * orphanage. The caller must hold the ->orphan_lock.
2586 */
2587 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2588 {
2589 int i;
2590 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2591
2592 /* No-CBs CPUs are handled specially. */
2593 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2594 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2595 return;
2596
2597 /* Do the accounting first. */
2598 rdp->qlen_lazy += rsp->qlen_lazy;
2599 rdp->qlen += rsp->qlen;
2600 rdp->n_cbs_adopted += rsp->qlen;
2601 if (rsp->qlen_lazy != rsp->qlen)
2602 rcu_idle_count_callbacks_posted();
2603 rsp->qlen_lazy = 0;
2604 rsp->qlen = 0;
2605
2606 /*
2607 * We do not need a memory barrier here because the only way we
2608 * can get here if there is an rcu_barrier() in flight is if
2609 * we are the task doing the rcu_barrier().
2610 */
2611
2612 /* First adopt the ready-to-invoke callbacks. */
2613 if (rsp->orphan_donelist != NULL) {
2614 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2615 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2616 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2617 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2618 rdp->nxttail[i] = rsp->orphan_donetail;
2619 rsp->orphan_donelist = NULL;
2620 rsp->orphan_donetail = &rsp->orphan_donelist;
2621 }
2622
2623 /* And then adopt the callbacks that still need a grace period. */
2624 if (rsp->orphan_nxtlist != NULL) {
2625 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2626 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2627 rsp->orphan_nxtlist = NULL;
2628 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2629 }
2630 }
2631
2632 /*
2633 * Trace the fact that this CPU is going offline.
2634 */
2635 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2636 {
2637 RCU_TRACE(unsigned long mask);
2638 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2639 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2640
2641 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2642 return;
2643
2644 RCU_TRACE(mask = rdp->grpmask);
2645 trace_rcu_grace_period(rsp->name,
2646 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2647 TPS("cpuofl"));
2648 }
2649
2650 /*
2651 * All CPUs for the specified rcu_node structure have gone offline,
2652 * and all tasks that were preempted within an RCU read-side critical
2653 * section while running on one of those CPUs have since exited their RCU
2654 * read-side critical section. Some other CPU is reporting this fact with
2655 * the specified rcu_node structure's ->lock held and interrupts disabled.
2656 * This function therefore goes up the tree of rcu_node structures,
2657 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2658 * the leaf rcu_node structure's ->qsmaskinit field has already been
2659 * updated
2660 *
2661 * This function does check that the specified rcu_node structure has
2662 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2663 * prematurely. That said, invoking it after the fact will cost you
2664 * a needless lock acquisition. So once it has done its work, don't
2665 * invoke it again.
2666 */
2667 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2668 {
2669 long mask;
2670 struct rcu_node *rnp = rnp_leaf;
2671
2672 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2673 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2674 return;
2675 for (;;) {
2676 mask = rnp->grpmask;
2677 rnp = rnp->parent;
2678 if (!rnp)
2679 break;
2680 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2681 rnp->qsmaskinit &= ~mask;
2682 rnp->qsmask &= ~mask;
2683 if (rnp->qsmaskinit) {
2684 raw_spin_unlock_rcu_node(rnp);
2685 /* irqs remain disabled. */
2686 return;
2687 }
2688 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2689 }
2690 }
2691
2692 /*
2693 * The CPU has been completely removed, and some other CPU is reporting
2694 * this fact from process context. Do the remainder of the cleanup,
2695 * including orphaning the outgoing CPU's RCU callbacks, and also
2696 * adopting them. There can only be one CPU hotplug operation at a time,
2697 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2698 */
2699 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2700 {
2701 unsigned long flags;
2702 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2703 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2704
2705 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2706 return;
2707
2708 /* Adjust any no-longer-needed kthreads. */
2709 rcu_boost_kthread_setaffinity(rnp, -1);
2710
2711 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2712 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2713 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2714 rcu_adopt_orphan_cbs(rsp, flags);
2715 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2716
2717 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2718 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2719 cpu, rdp->qlen, rdp->nxtlist);
2720 }
2721
2722 /*
2723 * Invoke any RCU callbacks that have made it to the end of their grace
2724 * period. Thottle as specified by rdp->blimit.
2725 */
2726 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2727 {
2728 unsigned long flags;
2729 struct rcu_head *next, *list, **tail;
2730 long bl, count, count_lazy;
2731 int i;
2732
2733 /* If no callbacks are ready, just return. */
2734 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2735 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2736 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2737 need_resched(), is_idle_task(current),
2738 rcu_is_callbacks_kthread());
2739 return;
2740 }
2741
2742 /*
2743 * Extract the list of ready callbacks, disabling to prevent
2744 * races with call_rcu() from interrupt handlers.
2745 */
2746 local_irq_save(flags);
2747 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2748 bl = rdp->blimit;
2749 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2750 list = rdp->nxtlist;
2751 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2752 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2753 tail = rdp->nxttail[RCU_DONE_TAIL];
2754 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2755 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2756 rdp->nxttail[i] = &rdp->nxtlist;
2757 local_irq_restore(flags);
2758
2759 /* Invoke callbacks. */
2760 count = count_lazy = 0;
2761 while (list) {
2762 next = list->next;
2763 prefetch(next);
2764 debug_rcu_head_unqueue(list);
2765 if (__rcu_reclaim(rsp->name, list))
2766 count_lazy++;
2767 list = next;
2768 /* Stop only if limit reached and CPU has something to do. */
2769 if (++count >= bl &&
2770 (need_resched() ||
2771 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2772 break;
2773 }
2774
2775 local_irq_save(flags);
2776 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2777 is_idle_task(current),
2778 rcu_is_callbacks_kthread());
2779
2780 /* Update count, and requeue any remaining callbacks. */
2781 if (list != NULL) {
2782 *tail = rdp->nxtlist;
2783 rdp->nxtlist = list;
2784 for (i = 0; i < RCU_NEXT_SIZE; i++)
2785 if (&rdp->nxtlist == rdp->nxttail[i])
2786 rdp->nxttail[i] = tail;
2787 else
2788 break;
2789 }
2790 smp_mb(); /* List handling before counting for rcu_barrier(). */
2791 rdp->qlen_lazy -= count_lazy;
2792 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2793 rdp->n_cbs_invoked += count;
2794
2795 /* Reinstate batch limit if we have worked down the excess. */
2796 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2797 rdp->blimit = blimit;
2798
2799 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2800 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2801 rdp->qlen_last_fqs_check = 0;
2802 rdp->n_force_qs_snap = rsp->n_force_qs;
2803 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2804 rdp->qlen_last_fqs_check = rdp->qlen;
2805 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2806
2807 local_irq_restore(flags);
2808
2809 /* Re-invoke RCU core processing if there are callbacks remaining. */
2810 if (cpu_has_callbacks_ready_to_invoke(rdp))
2811 invoke_rcu_core();
2812 }
2813
2814 /*
2815 * Check to see if this CPU is in a non-context-switch quiescent state
2816 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2817 * Also schedule RCU core processing.
2818 *
2819 * This function must be called from hardirq context. It is normally
2820 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2821 * false, there is no point in invoking rcu_check_callbacks().
2822 */
2823 void rcu_check_callbacks(int user)
2824 {
2825 trace_rcu_utilization(TPS("Start scheduler-tick"));
2826 increment_cpu_stall_ticks();
2827 if (user || rcu_is_cpu_rrupt_from_idle()) {
2828
2829 /*
2830 * Get here if this CPU took its interrupt from user
2831 * mode or from the idle loop, and if this is not a
2832 * nested interrupt. In this case, the CPU is in
2833 * a quiescent state, so note it.
2834 *
2835 * No memory barrier is required here because both
2836 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2837 * variables that other CPUs neither access nor modify,
2838 * at least not while the corresponding CPU is online.
2839 */
2840
2841 rcu_sched_qs();
2842 rcu_bh_qs();
2843
2844 } else if (!in_softirq()) {
2845
2846 /*
2847 * Get here if this CPU did not take its interrupt from
2848 * softirq, in other words, if it is not interrupting
2849 * a rcu_bh read-side critical section. This is an _bh
2850 * critical section, so note it.
2851 */
2852
2853 rcu_bh_qs();
2854 }
2855 rcu_preempt_check_callbacks();
2856 if (rcu_pending())
2857 invoke_rcu_core();
2858 if (user)
2859 rcu_note_voluntary_context_switch(current);
2860 trace_rcu_utilization(TPS("End scheduler-tick"));
2861 }
2862
2863 /*
2864 * Scan the leaf rcu_node structures, processing dyntick state for any that
2865 * have not yet encountered a quiescent state, using the function specified.
2866 * Also initiate boosting for any threads blocked on the root rcu_node.
2867 *
2868 * The caller must have suppressed start of new grace periods.
2869 */
2870 static void force_qs_rnp(struct rcu_state *rsp,
2871 int (*f)(struct rcu_data *rsp, bool *isidle,
2872 unsigned long *maxj),
2873 bool *isidle, unsigned long *maxj)
2874 {
2875 unsigned long bit;
2876 int cpu;
2877 unsigned long flags;
2878 unsigned long mask;
2879 struct rcu_node *rnp;
2880
2881 rcu_for_each_leaf_node(rsp, rnp) {
2882 cond_resched_rcu_qs();
2883 mask = 0;
2884 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2885 if (rnp->qsmask == 0) {
2886 if (rcu_state_p == &rcu_sched_state ||
2887 rsp != rcu_state_p ||
2888 rcu_preempt_blocked_readers_cgp(rnp)) {
2889 /*
2890 * No point in scanning bits because they
2891 * are all zero. But we might need to
2892 * priority-boost blocked readers.
2893 */
2894 rcu_initiate_boost(rnp, flags);
2895 /* rcu_initiate_boost() releases rnp->lock */
2896 continue;
2897 }
2898 if (rnp->parent &&
2899 (rnp->parent->qsmask & rnp->grpmask)) {
2900 /*
2901 * Race between grace-period
2902 * initialization and task exiting RCU
2903 * read-side critical section: Report.
2904 */
2905 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2906 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2907 continue;
2908 }
2909 }
2910 cpu = rnp->grplo;
2911 bit = 1;
2912 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2913 if ((rnp->qsmask & bit) != 0) {
2914 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2915 mask |= bit;
2916 }
2917 }
2918 if (mask != 0) {
2919 /* Idle/offline CPUs, report (releases rnp->lock. */
2920 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2921 } else {
2922 /* Nothing to do here, so just drop the lock. */
2923 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2924 }
2925 }
2926 }
2927
2928 /*
2929 * Force quiescent states on reluctant CPUs, and also detect which
2930 * CPUs are in dyntick-idle mode.
2931 */
2932 static void force_quiescent_state(struct rcu_state *rsp)
2933 {
2934 unsigned long flags;
2935 bool ret;
2936 struct rcu_node *rnp;
2937 struct rcu_node *rnp_old = NULL;
2938
2939 /* Funnel through hierarchy to reduce memory contention. */
2940 rnp = __this_cpu_read(rsp->rda->mynode);
2941 for (; rnp != NULL; rnp = rnp->parent) {
2942 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2943 !raw_spin_trylock(&rnp->fqslock);
2944 if (rnp_old != NULL)
2945 raw_spin_unlock(&rnp_old->fqslock);
2946 if (ret) {
2947 rsp->n_force_qs_lh++;
2948 return;
2949 }
2950 rnp_old = rnp;
2951 }
2952 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2953
2954 /* Reached the root of the rcu_node tree, acquire lock. */
2955 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2956 raw_spin_unlock(&rnp_old->fqslock);
2957 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2958 rsp->n_force_qs_lh++;
2959 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2960 return; /* Someone beat us to it. */
2961 }
2962 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2963 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2964 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2965 }
2966
2967 /*
2968 * This does the RCU core processing work for the specified rcu_state
2969 * and rcu_data structures. This may be called only from the CPU to
2970 * whom the rdp belongs.
2971 */
2972 static void
2973 __rcu_process_callbacks(struct rcu_state *rsp)
2974 {
2975 unsigned long flags;
2976 bool needwake;
2977 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2978
2979 WARN_ON_ONCE(rdp->beenonline == 0);
2980
2981 /* Update RCU state based on any recent quiescent states. */
2982 rcu_check_quiescent_state(rsp, rdp);
2983
2984 /* Does this CPU require a not-yet-started grace period? */
2985 local_irq_save(flags);
2986 if (cpu_needs_another_gp(rsp, rdp)) {
2987 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2988 needwake = rcu_start_gp(rsp);
2989 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2990 if (needwake)
2991 rcu_gp_kthread_wake(rsp);
2992 } else {
2993 local_irq_restore(flags);
2994 }
2995
2996 /* If there are callbacks ready, invoke them. */
2997 if (cpu_has_callbacks_ready_to_invoke(rdp))
2998 invoke_rcu_callbacks(rsp, rdp);
2999
3000 /* Do any needed deferred wakeups of rcuo kthreads. */
3001 do_nocb_deferred_wakeup(rdp);
3002 }
3003
3004 /*
3005 * Do RCU core processing for the current CPU.
3006 */
3007 static void rcu_process_callbacks(struct softirq_action *unused)
3008 {
3009 struct rcu_state *rsp;
3010
3011 if (cpu_is_offline(smp_processor_id()))
3012 return;
3013 trace_rcu_utilization(TPS("Start RCU core"));
3014 for_each_rcu_flavor(rsp)
3015 __rcu_process_callbacks(rsp);
3016 trace_rcu_utilization(TPS("End RCU core"));
3017 }
3018
3019 /*
3020 * Schedule RCU callback invocation. If the specified type of RCU
3021 * does not support RCU priority boosting, just do a direct call,
3022 * otherwise wake up the per-CPU kernel kthread. Note that because we
3023 * are running on the current CPU with softirqs disabled, the
3024 * rcu_cpu_kthread_task cannot disappear out from under us.
3025 */
3026 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3027 {
3028 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3029 return;
3030 if (likely(!rsp->boost)) {
3031 rcu_do_batch(rsp, rdp);
3032 return;
3033 }
3034 invoke_rcu_callbacks_kthread();
3035 }
3036
3037 static void invoke_rcu_core(void)
3038 {
3039 if (cpu_online(smp_processor_id()))
3040 raise_softirq(RCU_SOFTIRQ);
3041 }
3042
3043 /*
3044 * Handle any core-RCU processing required by a call_rcu() invocation.
3045 */
3046 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3047 struct rcu_head *head, unsigned long flags)
3048 {
3049 bool needwake;
3050
3051 /*
3052 * If called from an extended quiescent state, invoke the RCU
3053 * core in order to force a re-evaluation of RCU's idleness.
3054 */
3055 if (!rcu_is_watching())
3056 invoke_rcu_core();
3057
3058 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3059 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3060 return;
3061
3062 /*
3063 * Force the grace period if too many callbacks or too long waiting.
3064 * Enforce hysteresis, and don't invoke force_quiescent_state()
3065 * if some other CPU has recently done so. Also, don't bother
3066 * invoking force_quiescent_state() if the newly enqueued callback
3067 * is the only one waiting for a grace period to complete.
3068 */
3069 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3070
3071 /* Are we ignoring a completed grace period? */
3072 note_gp_changes(rsp, rdp);
3073
3074 /* Start a new grace period if one not already started. */
3075 if (!rcu_gp_in_progress(rsp)) {
3076 struct rcu_node *rnp_root = rcu_get_root(rsp);
3077
3078 raw_spin_lock_rcu_node(rnp_root);
3079 needwake = rcu_start_gp(rsp);
3080 raw_spin_unlock_rcu_node(rnp_root);
3081 if (needwake)
3082 rcu_gp_kthread_wake(rsp);
3083 } else {
3084 /* Give the grace period a kick. */
3085 rdp->blimit = LONG_MAX;
3086 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3087 *rdp->nxttail[RCU_DONE_TAIL] != head)
3088 force_quiescent_state(rsp);
3089 rdp->n_force_qs_snap = rsp->n_force_qs;
3090 rdp->qlen_last_fqs_check = rdp->qlen;
3091 }
3092 }
3093 }
3094
3095 /*
3096 * RCU callback function to leak a callback.
3097 */
3098 static void rcu_leak_callback(struct rcu_head *rhp)
3099 {
3100 }
3101
3102 /*
3103 * Helper function for call_rcu() and friends. The cpu argument will
3104 * normally be -1, indicating "currently running CPU". It may specify
3105 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3106 * is expected to specify a CPU.
3107 */
3108 static void
3109 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3110 struct rcu_state *rsp, int cpu, bool lazy)
3111 {
3112 unsigned long flags;
3113 struct rcu_data *rdp;
3114
3115 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3116 if (debug_rcu_head_queue(head)) {
3117 /* Probable double call_rcu(), so leak the callback. */
3118 WRITE_ONCE(head->func, rcu_leak_callback);
3119 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3120 return;
3121 }
3122 head->func = func;
3123 head->next = NULL;
3124
3125 /*
3126 * Opportunistically note grace-period endings and beginnings.
3127 * Note that we might see a beginning right after we see an
3128 * end, but never vice versa, since this CPU has to pass through
3129 * a quiescent state betweentimes.
3130 */
3131 local_irq_save(flags);
3132 rdp = this_cpu_ptr(rsp->rda);
3133
3134 /* Add the callback to our list. */
3135 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3136 int offline;
3137
3138 if (cpu != -1)
3139 rdp = per_cpu_ptr(rsp->rda, cpu);
3140 if (likely(rdp->mynode)) {
3141 /* Post-boot, so this should be for a no-CBs CPU. */
3142 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3143 WARN_ON_ONCE(offline);
3144 /* Offline CPU, _call_rcu() illegal, leak callback. */
3145 local_irq_restore(flags);
3146 return;
3147 }
3148 /*
3149 * Very early boot, before rcu_init(). Initialize if needed
3150 * and then drop through to queue the callback.
3151 */
3152 BUG_ON(cpu != -1);
3153 WARN_ON_ONCE(!rcu_is_watching());
3154 if (!likely(rdp->nxtlist))
3155 init_default_callback_list(rdp);
3156 }
3157 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3158 if (lazy)
3159 rdp->qlen_lazy++;
3160 else
3161 rcu_idle_count_callbacks_posted();
3162 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3163 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3164 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3165
3166 if (__is_kfree_rcu_offset((unsigned long)func))
3167 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3168 rdp->qlen_lazy, rdp->qlen);
3169 else
3170 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3171
3172 /* Go handle any RCU core processing required. */
3173 __call_rcu_core(rsp, rdp, head, flags);
3174 local_irq_restore(flags);
3175 }
3176
3177 /*
3178 * Queue an RCU-sched callback for invocation after a grace period.
3179 */
3180 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3181 {
3182 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3183 }
3184 EXPORT_SYMBOL_GPL(call_rcu_sched);
3185
3186 /*
3187 * Queue an RCU callback for invocation after a quicker grace period.
3188 */
3189 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3190 {
3191 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3192 }
3193 EXPORT_SYMBOL_GPL(call_rcu_bh);
3194
3195 /*
3196 * Queue an RCU callback for lazy invocation after a grace period.
3197 * This will likely be later named something like "call_rcu_lazy()",
3198 * but this change will require some way of tagging the lazy RCU
3199 * callbacks in the list of pending callbacks. Until then, this
3200 * function may only be called from __kfree_rcu().
3201 */
3202 void kfree_call_rcu(struct rcu_head *head,
3203 rcu_callback_t func)
3204 {
3205 __call_rcu(head, func, rcu_state_p, -1, 1);
3206 }
3207 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3208
3209 /*
3210 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3211 * any blocking grace-period wait automatically implies a grace period
3212 * if there is only one CPU online at any point time during execution
3213 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3214 * occasionally incorrectly indicate that there are multiple CPUs online
3215 * when there was in fact only one the whole time, as this just adds
3216 * some overhead: RCU still operates correctly.
3217 */
3218 static inline int rcu_blocking_is_gp(void)
3219 {
3220 int ret;
3221
3222 might_sleep(); /* Check for RCU read-side critical section. */
3223 preempt_disable();
3224 ret = num_online_cpus() <= 1;
3225 preempt_enable();
3226 return ret;
3227 }
3228
3229 /**
3230 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3231 *
3232 * Control will return to the caller some time after a full rcu-sched
3233 * grace period has elapsed, in other words after all currently executing
3234 * rcu-sched read-side critical sections have completed. These read-side
3235 * critical sections are delimited by rcu_read_lock_sched() and
3236 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3237 * local_irq_disable(), and so on may be used in place of
3238 * rcu_read_lock_sched().
3239 *
3240 * This means that all preempt_disable code sequences, including NMI and
3241 * non-threaded hardware-interrupt handlers, in progress on entry will
3242 * have completed before this primitive returns. However, this does not
3243 * guarantee that softirq handlers will have completed, since in some
3244 * kernels, these handlers can run in process context, and can block.
3245 *
3246 * Note that this guarantee implies further memory-ordering guarantees.
3247 * On systems with more than one CPU, when synchronize_sched() returns,
3248 * each CPU is guaranteed to have executed a full memory barrier since the
3249 * end of its last RCU-sched read-side critical section whose beginning
3250 * preceded the call to synchronize_sched(). In addition, each CPU having
3251 * an RCU read-side critical section that extends beyond the return from
3252 * synchronize_sched() is guaranteed to have executed a full memory barrier
3253 * after the beginning of synchronize_sched() and before the beginning of
3254 * that RCU read-side critical section. Note that these guarantees include
3255 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3256 * that are executing in the kernel.
3257 *
3258 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3259 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3260 * to have executed a full memory barrier during the execution of
3261 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3262 * again only if the system has more than one CPU).
3263 *
3264 * This primitive provides the guarantees made by the (now removed)
3265 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3266 * guarantees that rcu_read_lock() sections will have completed.
3267 * In "classic RCU", these two guarantees happen to be one and
3268 * the same, but can differ in realtime RCU implementations.
3269 */
3270 void synchronize_sched(void)
3271 {
3272 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3273 lock_is_held(&rcu_lock_map) ||
3274 lock_is_held(&rcu_sched_lock_map),
3275 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3276 if (rcu_blocking_is_gp())
3277 return;
3278 if (rcu_gp_is_expedited())
3279 synchronize_sched_expedited();
3280 else
3281 wait_rcu_gp(call_rcu_sched);
3282 }
3283 EXPORT_SYMBOL_GPL(synchronize_sched);
3284
3285 /**
3286 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3287 *
3288 * Control will return to the caller some time after a full rcu_bh grace
3289 * period has elapsed, in other words after all currently executing rcu_bh
3290 * read-side critical sections have completed. RCU read-side critical
3291 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3292 * and may be nested.
3293 *
3294 * See the description of synchronize_sched() for more detailed information
3295 * on memory ordering guarantees.
3296 */
3297 void synchronize_rcu_bh(void)
3298 {
3299 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3300 lock_is_held(&rcu_lock_map) ||
3301 lock_is_held(&rcu_sched_lock_map),
3302 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3303 if (rcu_blocking_is_gp())
3304 return;
3305 if (rcu_gp_is_expedited())
3306 synchronize_rcu_bh_expedited();
3307 else
3308 wait_rcu_gp(call_rcu_bh);
3309 }
3310 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3311
3312 /**
3313 * get_state_synchronize_rcu - Snapshot current RCU state
3314 *
3315 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3316 * to determine whether or not a full grace period has elapsed in the
3317 * meantime.
3318 */
3319 unsigned long get_state_synchronize_rcu(void)
3320 {
3321 /*
3322 * Any prior manipulation of RCU-protected data must happen
3323 * before the load from ->gpnum.
3324 */
3325 smp_mb(); /* ^^^ */
3326
3327 /*
3328 * Make sure this load happens before the purportedly
3329 * time-consuming work between get_state_synchronize_rcu()
3330 * and cond_synchronize_rcu().
3331 */
3332 return smp_load_acquire(&rcu_state_p->gpnum);
3333 }
3334 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3335
3336 /**
3337 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3338 *
3339 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3340 *
3341 * If a full RCU grace period has elapsed since the earlier call to
3342 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3343 * synchronize_rcu() to wait for a full grace period.
3344 *
3345 * Yes, this function does not take counter wrap into account. But
3346 * counter wrap is harmless. If the counter wraps, we have waited for
3347 * more than 2 billion grace periods (and way more on a 64-bit system!),
3348 * so waiting for one additional grace period should be just fine.
3349 */
3350 void cond_synchronize_rcu(unsigned long oldstate)
3351 {
3352 unsigned long newstate;
3353
3354 /*
3355 * Ensure that this load happens before any RCU-destructive
3356 * actions the caller might carry out after we return.
3357 */
3358 newstate = smp_load_acquire(&rcu_state_p->completed);
3359 if (ULONG_CMP_GE(oldstate, newstate))
3360 synchronize_rcu();
3361 }
3362 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3363
3364 /**
3365 * get_state_synchronize_sched - Snapshot current RCU-sched state
3366 *
3367 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3368 * to determine whether or not a full grace period has elapsed in the
3369 * meantime.
3370 */
3371 unsigned long get_state_synchronize_sched(void)
3372 {
3373 /*
3374 * Any prior manipulation of RCU-protected data must happen
3375 * before the load from ->gpnum.
3376 */
3377 smp_mb(); /* ^^^ */
3378
3379 /*
3380 * Make sure this load happens before the purportedly
3381 * time-consuming work between get_state_synchronize_sched()
3382 * and cond_synchronize_sched().
3383 */
3384 return smp_load_acquire(&rcu_sched_state.gpnum);
3385 }
3386 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3387
3388 /**
3389 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3390 *
3391 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3392 *
3393 * If a full RCU-sched grace period has elapsed since the earlier call to
3394 * get_state_synchronize_sched(), just return. Otherwise, invoke
3395 * synchronize_sched() to wait for a full grace period.
3396 *
3397 * Yes, this function does not take counter wrap into account. But
3398 * counter wrap is harmless. If the counter wraps, we have waited for
3399 * more than 2 billion grace periods (and way more on a 64-bit system!),
3400 * so waiting for one additional grace period should be just fine.
3401 */
3402 void cond_synchronize_sched(unsigned long oldstate)
3403 {
3404 unsigned long newstate;
3405
3406 /*
3407 * Ensure that this load happens before any RCU-destructive
3408 * actions the caller might carry out after we return.
3409 */
3410 newstate = smp_load_acquire(&rcu_sched_state.completed);
3411 if (ULONG_CMP_GE(oldstate, newstate))
3412 synchronize_sched();
3413 }
3414 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3415
3416 /* Adjust sequence number for start of update-side operation. */
3417 static void rcu_seq_start(unsigned long *sp)
3418 {
3419 WRITE_ONCE(*sp, *sp + 1);
3420 smp_mb(); /* Ensure update-side operation after counter increment. */
3421 WARN_ON_ONCE(!(*sp & 0x1));
3422 }
3423
3424 /* Adjust sequence number for end of update-side operation. */
3425 static void rcu_seq_end(unsigned long *sp)
3426 {
3427 smp_mb(); /* Ensure update-side operation before counter increment. */
3428 WRITE_ONCE(*sp, *sp + 1);
3429 WARN_ON_ONCE(*sp & 0x1);
3430 }
3431
3432 /* Take a snapshot of the update side's sequence number. */
3433 static unsigned long rcu_seq_snap(unsigned long *sp)
3434 {
3435 unsigned long s;
3436
3437 s = (READ_ONCE(*sp) + 3) & ~0x1;
3438 smp_mb(); /* Above access must not bleed into critical section. */
3439 return s;
3440 }
3441
3442 /*
3443 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3444 * full update-side operation has occurred.
3445 */
3446 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3447 {
3448 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3449 }
3450
3451 /* Wrapper functions for expedited grace periods. */
3452 static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3453 {
3454 rcu_seq_start(&rsp->expedited_sequence);
3455 }
3456 static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3457 {
3458 rcu_seq_end(&rsp->expedited_sequence);
3459 smp_mb(); /* Ensure that consecutive grace periods serialize. */
3460 }
3461 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3462 {
3463 unsigned long s;
3464
3465 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3466 s = rcu_seq_snap(&rsp->expedited_sequence);
3467 trace_rcu_exp_grace_period(rsp->name, s, TPS("snap"));
3468 return s;
3469 }
3470 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3471 {
3472 return rcu_seq_done(&rsp->expedited_sequence, s);
3473 }
3474
3475 /*
3476 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3477 * recent CPU-online activity. Note that these masks are not cleared
3478 * when CPUs go offline, so they reflect the union of all CPUs that have
3479 * ever been online. This means that this function normally takes its
3480 * no-work-to-do fastpath.
3481 */
3482 static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3483 {
3484 bool done;
3485 unsigned long flags;
3486 unsigned long mask;
3487 unsigned long oldmask;
3488 int ncpus = READ_ONCE(rsp->ncpus);
3489 struct rcu_node *rnp;
3490 struct rcu_node *rnp_up;
3491
3492 /* If no new CPUs onlined since last time, nothing to do. */
3493 if (likely(ncpus == rsp->ncpus_snap))
3494 return;
3495 rsp->ncpus_snap = ncpus;
3496
3497 /*
3498 * Each pass through the following loop propagates newly onlined
3499 * CPUs for the current rcu_node structure up the rcu_node tree.
3500 */
3501 rcu_for_each_leaf_node(rsp, rnp) {
3502 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3503 if (rnp->expmaskinit == rnp->expmaskinitnext) {
3504 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3505 continue; /* No new CPUs, nothing to do. */
3506 }
3507
3508 /* Update this node's mask, track old value for propagation. */
3509 oldmask = rnp->expmaskinit;
3510 rnp->expmaskinit = rnp->expmaskinitnext;
3511 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3512
3513 /* If was already nonzero, nothing to propagate. */
3514 if (oldmask)
3515 continue;
3516
3517 /* Propagate the new CPU up the tree. */
3518 mask = rnp->grpmask;
3519 rnp_up = rnp->parent;
3520 done = false;
3521 while (rnp_up) {
3522 raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3523 if (rnp_up->expmaskinit)
3524 done = true;
3525 rnp_up->expmaskinit |= mask;
3526 raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
3527 if (done)
3528 break;
3529 mask = rnp_up->grpmask;
3530 rnp_up = rnp_up->parent;
3531 }
3532 }
3533 }
3534
3535 /*
3536 * Reset the ->expmask values in the rcu_node tree in preparation for
3537 * a new expedited grace period.
3538 */
3539 static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3540 {
3541 unsigned long flags;
3542 struct rcu_node *rnp;
3543
3544 sync_exp_reset_tree_hotplug(rsp);
3545 rcu_for_each_node_breadth_first(rsp, rnp) {
3546 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3547 WARN_ON_ONCE(rnp->expmask);
3548 rnp->expmask = rnp->expmaskinit;
3549 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3550 }
3551 }
3552
3553 /*
3554 * Return non-zero if there is no RCU expedited grace period in progress
3555 * for the specified rcu_node structure, in other words, if all CPUs and
3556 * tasks covered by the specified rcu_node structure have done their bit
3557 * for the current expedited grace period. Works only for preemptible
3558 * RCU -- other RCU implementation use other means.
3559 *
3560 * Caller must hold the rcu_state's exp_mutex.
3561 */
3562 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3563 {
3564 return rnp->exp_tasks == NULL &&
3565 READ_ONCE(rnp->expmask) == 0;
3566 }
3567
3568 /*
3569 * Report the exit from RCU read-side critical section for the last task
3570 * that queued itself during or before the current expedited preemptible-RCU
3571 * grace period. This event is reported either to the rcu_node structure on
3572 * which the task was queued or to one of that rcu_node structure's ancestors,
3573 * recursively up the tree. (Calm down, calm down, we do the recursion
3574 * iteratively!)
3575 *
3576 * Caller must hold the rcu_state's exp_mutex and the specified rcu_node
3577 * structure's ->lock.
3578 */
3579 static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3580 bool wake, unsigned long flags)
3581 __releases(rnp->lock)
3582 {
3583 unsigned long mask;
3584
3585 for (;;) {
3586 if (!sync_rcu_preempt_exp_done(rnp)) {
3587 if (!rnp->expmask)
3588 rcu_initiate_boost(rnp, flags);
3589 else
3590 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3591 break;
3592 }
3593 if (rnp->parent == NULL) {
3594 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3595 if (wake) {
3596 smp_mb(); /* EGP done before wake_up(). */
3597 swake_up(&rsp->expedited_wq);
3598 }
3599 break;
3600 }
3601 mask = rnp->grpmask;
3602 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
3603 rnp = rnp->parent;
3604 raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3605 WARN_ON_ONCE(!(rnp->expmask & mask));
3606 rnp->expmask &= ~mask;
3607 }
3608 }
3609
3610 /*
3611 * Report expedited quiescent state for specified node. This is a
3612 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3613 *
3614 * Caller must hold the rcu_state's exp_mutex.
3615 */
3616 static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3617 struct rcu_node *rnp, bool wake)
3618 {
3619 unsigned long flags;
3620
3621 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3622 __rcu_report_exp_rnp(rsp, rnp, wake, flags);
3623 }
3624
3625 /*
3626 * Report expedited quiescent state for multiple CPUs, all covered by the
3627 * specified leaf rcu_node structure. Caller must hold the rcu_state's
3628 * exp_mutex.
3629 */
3630 static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3631 unsigned long mask, bool wake)
3632 {
3633 unsigned long flags;
3634
3635 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3636 if (!(rnp->expmask & mask)) {
3637 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3638 return;
3639 }
3640 rnp->expmask &= ~mask;
3641 __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3642 }
3643
3644 /*
3645 * Report expedited quiescent state for specified rcu_data (CPU).
3646 */
3647 static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3648 bool wake)
3649 {
3650 rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3651 }
3652
3653 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3654 static bool sync_exp_work_done(struct rcu_state *rsp, atomic_long_t *stat,
3655 unsigned long s)
3656 {
3657 if (rcu_exp_gp_seq_done(rsp, s)) {
3658 trace_rcu_exp_grace_period(rsp->name, s, TPS("done"));
3659 /* Ensure test happens before caller kfree(). */
3660 smp_mb__before_atomic(); /* ^^^ */
3661 atomic_long_inc(stat);
3662 return true;
3663 }
3664 return false;
3665 }
3666
3667 /*
3668 * Funnel-lock acquisition for expedited grace periods. Returns true
3669 * if some other task completed an expedited grace period that this task
3670 * can piggy-back on, and with no mutex held. Otherwise, returns false
3671 * with the mutex held, indicating that the caller must actually do the
3672 * expedited grace period.
3673 */
3674 static bool exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3675 {
3676 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3677 struct rcu_node *rnp = rdp->mynode;
3678 struct rcu_node *rnp_root = rcu_get_root(rsp);
3679
3680 /* Low-contention fastpath. */
3681 if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s) &&
3682 (rnp == rnp_root ||
3683 ULONG_CMP_LT(READ_ONCE(rnp_root->exp_seq_rq), s)) &&
3684 !mutex_is_locked(&rsp->exp_mutex) &&
3685 mutex_trylock(&rsp->exp_mutex))
3686 goto fastpath;
3687
3688 /*
3689 * Each pass through the following loop works its way up
3690 * the rcu_node tree, returning if others have done the work or
3691 * otherwise falls through to acquire rsp->exp_mutex. The mapping
3692 * from CPU to rcu_node structure can be inexact, as it is just
3693 * promoting locality and is not strictly needed for correctness.
3694 */
3695 for (; rnp != NULL; rnp = rnp->parent) {
3696 if (sync_exp_work_done(rsp, &rdp->exp_workdone1, s))
3697 return true;
3698
3699 /* Work not done, either wait here or go up. */
3700 spin_lock(&rnp->exp_lock);
3701 if (ULONG_CMP_GE(rnp->exp_seq_rq, s)) {
3702
3703 /* Someone else doing GP, so wait for them. */
3704 spin_unlock(&rnp->exp_lock);
3705 trace_rcu_exp_funnel_lock(rsp->name, rnp->level,
3706 rnp->grplo, rnp->grphi,
3707 TPS("wait"));
3708 wait_event(rnp->exp_wq[(s >> 1) & 0x3],
3709 sync_exp_work_done(rsp,
3710 &rdp->exp_workdone2, s));
3711 return true;
3712 }
3713 rnp->exp_seq_rq = s; /* Followers can wait on us. */
3714 spin_unlock(&rnp->exp_lock);
3715 trace_rcu_exp_funnel_lock(rsp->name, rnp->level, rnp->grplo,
3716 rnp->grphi, TPS("nxtlvl"));
3717 }
3718 mutex_lock(&rsp->exp_mutex);
3719 fastpath:
3720 if (sync_exp_work_done(rsp, &rdp->exp_workdone3, s)) {
3721 mutex_unlock(&rsp->exp_mutex);
3722 return true;
3723 }
3724 rcu_exp_gp_seq_start(rsp);
3725 trace_rcu_exp_grace_period(rsp->name, s, TPS("start"));
3726 return false;
3727 }
3728
3729 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3730 static void sync_sched_exp_handler(void *data)
3731 {
3732 struct rcu_data *rdp;
3733 struct rcu_node *rnp;
3734 struct rcu_state *rsp = data;
3735
3736 rdp = this_cpu_ptr(rsp->rda);
3737 rnp = rdp->mynode;
3738 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3739 __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3740 return;
3741 if (rcu_is_cpu_rrupt_from_idle()) {
3742 rcu_report_exp_rdp(&rcu_sched_state,
3743 this_cpu_ptr(&rcu_sched_data), true);
3744 return;
3745 }
3746 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3747 resched_cpu(smp_processor_id());
3748 }
3749
3750 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3751 static void sync_sched_exp_online_cleanup(int cpu)
3752 {
3753 struct rcu_data *rdp;
3754 int ret;
3755 struct rcu_node *rnp;
3756 struct rcu_state *rsp = &rcu_sched_state;
3757
3758 rdp = per_cpu_ptr(rsp->rda, cpu);
3759 rnp = rdp->mynode;
3760 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3761 return;
3762 ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3763 WARN_ON_ONCE(ret);
3764 }
3765
3766 /*
3767 * Select the nodes that the upcoming expedited grace period needs
3768 * to wait for.
3769 */
3770 static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3771 smp_call_func_t func)
3772 {
3773 int cpu;
3774 unsigned long flags;
3775 unsigned long mask;
3776 unsigned long mask_ofl_test;
3777 unsigned long mask_ofl_ipi;
3778 int ret;
3779 struct rcu_node *rnp;
3780
3781 sync_exp_reset_tree(rsp);
3782 rcu_for_each_leaf_node(rsp, rnp) {
3783 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3784
3785 /* Each pass checks a CPU for identity, offline, and idle. */
3786 mask_ofl_test = 0;
3787 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3788 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3789 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3790
3791 if (raw_smp_processor_id() == cpu ||
3792 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3793 mask_ofl_test |= rdp->grpmask;
3794 }
3795 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3796
3797 /*
3798 * Need to wait for any blocked tasks as well. Note that
3799 * additional blocking tasks will also block the expedited
3800 * GP until such time as the ->expmask bits are cleared.
3801 */
3802 if (rcu_preempt_has_tasks(rnp))
3803 rnp->exp_tasks = rnp->blkd_tasks.next;
3804 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3805
3806 /* IPI the remaining CPUs for expedited quiescent state. */
3807 mask = 1;
3808 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3809 if (!(mask_ofl_ipi & mask))
3810 continue;
3811 retry_ipi:
3812 ret = smp_call_function_single(cpu, func, rsp, 0);
3813 if (!ret) {
3814 mask_ofl_ipi &= ~mask;
3815 continue;
3816 }
3817 /* Failed, raced with offline. */
3818 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3819 if (cpu_online(cpu) &&
3820 (rnp->expmask & mask)) {
3821 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3822 schedule_timeout_uninterruptible(1);
3823 if (cpu_online(cpu) &&
3824 (rnp->expmask & mask))
3825 goto retry_ipi;
3826 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3827 }
3828 if (!(rnp->expmask & mask))
3829 mask_ofl_ipi &= ~mask;
3830 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3831 }
3832 /* Report quiescent states for those that went offline. */
3833 mask_ofl_test |= mask_ofl_ipi;
3834 if (mask_ofl_test)
3835 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3836 }
3837 }
3838
3839 static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3840 {
3841 int cpu;
3842 unsigned long jiffies_stall;
3843 unsigned long jiffies_start;
3844 unsigned long mask;
3845 int ndetected;
3846 struct rcu_node *rnp;
3847 struct rcu_node *rnp_root = rcu_get_root(rsp);
3848 int ret;
3849
3850 jiffies_stall = rcu_jiffies_till_stall_check();
3851 jiffies_start = jiffies;
3852
3853 for (;;) {
3854 ret = swait_event_timeout(
3855 rsp->expedited_wq,
3856 sync_rcu_preempt_exp_done(rnp_root),
3857 jiffies_stall);
3858 if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
3859 return;
3860 if (ret < 0) {
3861 /* Hit a signal, disable CPU stall warnings. */
3862 swait_event(rsp->expedited_wq,
3863 sync_rcu_preempt_exp_done(rnp_root));
3864 return;
3865 }
3866 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3867 rsp->name);
3868 ndetected = 0;
3869 rcu_for_each_leaf_node(rsp, rnp) {
3870 ndetected += rcu_print_task_exp_stall(rnp);
3871 mask = 1;
3872 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3873 struct rcu_data *rdp;
3874
3875 if (!(rnp->expmask & mask))
3876 continue;
3877 ndetected++;
3878 rdp = per_cpu_ptr(rsp->rda, cpu);
3879 pr_cont(" %d-%c%c%c", cpu,
3880 "O."[!!cpu_online(cpu)],
3881 "o."[!!(rdp->grpmask & rnp->expmaskinit)],
3882 "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3883 }
3884 mask <<= 1;
3885 }
3886 pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
3887 jiffies - jiffies_start, rsp->expedited_sequence,
3888 rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
3889 if (ndetected) {
3890 pr_err("blocking rcu_node structures:");
3891 rcu_for_each_node_breadth_first(rsp, rnp) {
3892 if (rnp == rnp_root)
3893 continue; /* printed unconditionally */
3894 if (sync_rcu_preempt_exp_done(rnp))
3895 continue;
3896 pr_cont(" l=%u:%d-%d:%#lx/%c",
3897 rnp->level, rnp->grplo, rnp->grphi,
3898 rnp->expmask,
3899 ".T"[!!rnp->exp_tasks]);
3900 }
3901 pr_cont("\n");
3902 }
3903 rcu_for_each_leaf_node(rsp, rnp) {
3904 mask = 1;
3905 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3906 if (!(rnp->expmask & mask))
3907 continue;
3908 dump_cpu_task(cpu);
3909 }
3910 }
3911 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3912 }
3913 }
3914
3915 /*
3916 * Wait for the current expedited grace period to complete, and then
3917 * wake up everyone who piggybacked on the just-completed expedited
3918 * grace period. Also update all the ->exp_seq_rq counters as needed
3919 * in order to avoid counter-wrap problems.
3920 */
3921 static void rcu_exp_wait_wake(struct rcu_state *rsp, unsigned long s)
3922 {
3923 struct rcu_node *rnp;
3924
3925 synchronize_sched_expedited_wait(rsp);
3926 rcu_exp_gp_seq_end(rsp);
3927 trace_rcu_exp_grace_period(rsp->name, s, TPS("end"));
3928
3929 /*
3930 * Switch over to wakeup mode, allowing the next GP, but -only- the
3931 * next GP, to proceed.
3932 */
3933 mutex_lock(&rsp->exp_wake_mutex);
3934 mutex_unlock(&rsp->exp_mutex);
3935
3936 rcu_for_each_node_breadth_first(rsp, rnp) {
3937 if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s)) {
3938 spin_lock(&rnp->exp_lock);
3939 /* Recheck, avoid hang in case someone just arrived. */
3940 if (ULONG_CMP_LT(rnp->exp_seq_rq, s))
3941 rnp->exp_seq_rq = s;
3942 spin_unlock(&rnp->exp_lock);
3943 }
3944 wake_up_all(&rnp->exp_wq[(rsp->expedited_sequence >> 1) & 0x3]);
3945 }
3946 trace_rcu_exp_grace_period(rsp->name, s, TPS("endwake"));
3947 mutex_unlock(&rsp->exp_wake_mutex);
3948 }
3949
3950 /**
3951 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3952 *
3953 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3954 * approach to force the grace period to end quickly. This consumes
3955 * significant time on all CPUs and is unfriendly to real-time workloads,
3956 * so is thus not recommended for any sort of common-case code. In fact,
3957 * if you are using synchronize_sched_expedited() in a loop, please
3958 * restructure your code to batch your updates, and then use a single
3959 * synchronize_sched() instead.
3960 *
3961 * This implementation can be thought of as an application of sequence
3962 * locking to expedited grace periods, but using the sequence counter to
3963 * determine when someone else has already done the work instead of for
3964 * retrying readers.
3965 */
3966 void synchronize_sched_expedited(void)
3967 {
3968 unsigned long s;
3969 struct rcu_state *rsp = &rcu_sched_state;
3970
3971 /* If only one CPU, this is automatically a grace period. */
3972 if (rcu_blocking_is_gp())
3973 return;
3974
3975 /* If expedited grace periods are prohibited, fall back to normal. */
3976 if (rcu_gp_is_normal()) {
3977 wait_rcu_gp(call_rcu_sched);
3978 return;
3979 }
3980
3981 /* Take a snapshot of the sequence number. */
3982 s = rcu_exp_gp_seq_snap(rsp);
3983 if (exp_funnel_lock(rsp, s))
3984 return; /* Someone else did our work for us. */
3985
3986 /* Initialize the rcu_node tree in preparation for the wait. */
3987 sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3988
3989 /* Wait and clean up, including waking everyone. */
3990 rcu_exp_wait_wake(rsp, s);
3991 }
3992 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3993
3994 /*
3995 * Check to see if there is any immediate RCU-related work to be done
3996 * by the current CPU, for the specified type of RCU, returning 1 if so.
3997 * The checks are in order of increasing expense: checks that can be
3998 * carried out against CPU-local state are performed first. However,
3999 * we must check for CPU stalls first, else we might not get a chance.
4000 */
4001 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
4002 {
4003 struct rcu_node *rnp = rdp->mynode;
4004
4005 rdp->n_rcu_pending++;
4006
4007 /* Check for CPU stalls, if enabled. */
4008 check_cpu_stall(rsp, rdp);
4009
4010 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
4011 if (rcu_nohz_full_cpu(rsp))
4012 return 0;
4013
4014 /* Is the RCU core waiting for a quiescent state from this CPU? */
4015 if (rcu_scheduler_fully_active &&
4016 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
4017 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
4018 rdp->n_rp_core_needs_qs++;
4019 } else if (rdp->core_needs_qs &&
4020 (!rdp->cpu_no_qs.b.norm ||
4021 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
4022 rdp->n_rp_report_qs++;
4023 return 1;
4024 }
4025
4026 /* Does this CPU have callbacks ready to invoke? */
4027 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
4028 rdp->n_rp_cb_ready++;
4029 return 1;
4030 }
4031
4032 /* Has RCU gone idle with this CPU needing another grace period? */
4033 if (cpu_needs_another_gp(rsp, rdp)) {
4034 rdp->n_rp_cpu_needs_gp++;
4035 return 1;
4036 }
4037
4038 /* Has another RCU grace period completed? */
4039 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
4040 rdp->n_rp_gp_completed++;
4041 return 1;
4042 }
4043
4044 /* Has a new RCU grace period started? */
4045 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
4046 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
4047 rdp->n_rp_gp_started++;
4048 return 1;
4049 }
4050
4051 /* Does this CPU need a deferred NOCB wakeup? */
4052 if (rcu_nocb_need_deferred_wakeup(rdp)) {
4053 rdp->n_rp_nocb_defer_wakeup++;
4054 return 1;
4055 }
4056
4057 /* nothing to do */
4058 rdp->n_rp_need_nothing++;
4059 return 0;
4060 }
4061
4062 /*
4063 * Check to see if there is any immediate RCU-related work to be done
4064 * by the current CPU, returning 1 if so. This function is part of the
4065 * RCU implementation; it is -not- an exported member of the RCU API.
4066 */
4067 static int rcu_pending(void)
4068 {
4069 struct rcu_state *rsp;
4070
4071 for_each_rcu_flavor(rsp)
4072 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
4073 return 1;
4074 return 0;
4075 }
4076
4077 /*
4078 * Return true if the specified CPU has any callback. If all_lazy is
4079 * non-NULL, store an indication of whether all callbacks are lazy.
4080 * (If there are no callbacks, all of them are deemed to be lazy.)
4081 */
4082 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
4083 {
4084 bool al = true;
4085 bool hc = false;
4086 struct rcu_data *rdp;
4087 struct rcu_state *rsp;
4088
4089 for_each_rcu_flavor(rsp) {
4090 rdp = this_cpu_ptr(rsp->rda);
4091 if (!rdp->nxtlist)
4092 continue;
4093 hc = true;
4094 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
4095 al = false;
4096 break;
4097 }
4098 }
4099 if (all_lazy)
4100 *all_lazy = al;
4101 return hc;
4102 }
4103
4104 /*
4105 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
4106 * the compiler is expected to optimize this away.
4107 */
4108 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
4109 int cpu, unsigned long done)
4110 {
4111 trace_rcu_barrier(rsp->name, s, cpu,
4112 atomic_read(&rsp->barrier_cpu_count), done);
4113 }
4114
4115 /*
4116 * RCU callback function for _rcu_barrier(). If we are last, wake
4117 * up the task executing _rcu_barrier().
4118 */
4119 static void rcu_barrier_callback(struct rcu_head *rhp)
4120 {
4121 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
4122 struct rcu_state *rsp = rdp->rsp;
4123
4124 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4125 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4126 complete(&rsp->barrier_completion);
4127 } else {
4128 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4129 }
4130 }
4131
4132 /*
4133 * Called with preemption disabled, and from cross-cpu IRQ context.
4134 */
4135 static void rcu_barrier_func(void *type)
4136 {
4137 struct rcu_state *rsp = type;
4138 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4139
4140 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4141 atomic_inc(&rsp->barrier_cpu_count);
4142 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4143 }
4144
4145 /*
4146 * Orchestrate the specified type of RCU barrier, waiting for all
4147 * RCU callbacks of the specified type to complete.
4148 */
4149 static void _rcu_barrier(struct rcu_state *rsp)
4150 {
4151 int cpu;
4152 struct rcu_data *rdp;
4153 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4154
4155 _rcu_barrier_trace(rsp, "Begin", -1, s);
4156
4157 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4158 mutex_lock(&rsp->barrier_mutex);
4159
4160 /* Did someone else do our work for us? */
4161 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4162 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4163 smp_mb(); /* caller's subsequent code after above check. */
4164 mutex_unlock(&rsp->barrier_mutex);
4165 return;
4166 }
4167
4168 /* Mark the start of the barrier operation. */
4169 rcu_seq_start(&rsp->barrier_sequence);
4170 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4171
4172 /*
4173 * Initialize the count to one rather than to zero in order to
4174 * avoid a too-soon return to zero in case of a short grace period
4175 * (or preemption of this task). Exclude CPU-hotplug operations
4176 * to ensure that no offline CPU has callbacks queued.
4177 */
4178 init_completion(&rsp->barrier_completion);
4179 atomic_set(&rsp->barrier_cpu_count, 1);
4180 get_online_cpus();
4181
4182 /*
4183 * Force each CPU with callbacks to register a new callback.
4184 * When that callback is invoked, we will know that all of the
4185 * corresponding CPU's preceding callbacks have been invoked.
4186 */
4187 for_each_possible_cpu(cpu) {
4188 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
4189 continue;
4190 rdp = per_cpu_ptr(rsp->rda, cpu);
4191 if (rcu_is_nocb_cpu(cpu)) {
4192 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4193 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4194 rsp->barrier_sequence);
4195 } else {
4196 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4197 rsp->barrier_sequence);
4198 smp_mb__before_atomic();
4199 atomic_inc(&rsp->barrier_cpu_count);
4200 __call_rcu(&rdp->barrier_head,
4201 rcu_barrier_callback, rsp, cpu, 0);
4202 }
4203 } else if (READ_ONCE(rdp->qlen)) {
4204 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4205 rsp->barrier_sequence);
4206 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4207 } else {
4208 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4209 rsp->barrier_sequence);
4210 }
4211 }
4212 put_online_cpus();
4213
4214 /*
4215 * Now that we have an rcu_barrier_callback() callback on each
4216 * CPU, and thus each counted, remove the initial count.
4217 */
4218 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4219 complete(&rsp->barrier_completion);
4220
4221 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4222 wait_for_completion(&rsp->barrier_completion);
4223
4224 /* Mark the end of the barrier operation. */
4225 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4226 rcu_seq_end(&rsp->barrier_sequence);
4227
4228 /* Other rcu_barrier() invocations can now safely proceed. */
4229 mutex_unlock(&rsp->barrier_mutex);
4230 }
4231
4232 /**
4233 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4234 */
4235 void rcu_barrier_bh(void)
4236 {
4237 _rcu_barrier(&rcu_bh_state);
4238 }
4239 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4240
4241 /**
4242 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4243 */
4244 void rcu_barrier_sched(void)
4245 {
4246 _rcu_barrier(&rcu_sched_state);
4247 }
4248 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4249
4250 /*
4251 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4252 * first CPU in a given leaf rcu_node structure coming online. The caller
4253 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4254 * disabled.
4255 */
4256 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4257 {
4258 long mask;
4259 struct rcu_node *rnp = rnp_leaf;
4260
4261 for (;;) {
4262 mask = rnp->grpmask;
4263 rnp = rnp->parent;
4264 if (rnp == NULL)
4265 return;
4266 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4267 rnp->qsmaskinit |= mask;
4268 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4269 }
4270 }
4271
4272 /*
4273 * Do boot-time initialization of a CPU's per-CPU RCU data.
4274 */
4275 static void __init
4276 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4277 {
4278 unsigned long flags;
4279 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4280 struct rcu_node *rnp = rcu_get_root(rsp);
4281
4282 /* Set up local state, ensuring consistent view of global state. */
4283 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4284 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
4285 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4286 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4287 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4288 rdp->cpu = cpu;
4289 rdp->rsp = rsp;
4290 rcu_boot_init_nocb_percpu_data(rdp);
4291 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4292 }
4293
4294 /*
4295 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4296 * offline event can be happening at a given time. Note also that we
4297 * can accept some slop in the rsp->completed access due to the fact
4298 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4299 */
4300 static void
4301 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4302 {
4303 unsigned long flags;
4304 unsigned long mask;
4305 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4306 struct rcu_node *rnp = rcu_get_root(rsp);
4307
4308 /* Set up local state, ensuring consistent view of global state. */
4309 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4310 rdp->qlen_last_fqs_check = 0;
4311 rdp->n_force_qs_snap = rsp->n_force_qs;
4312 rdp->blimit = blimit;
4313 if (!rdp->nxtlist)
4314 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
4315 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4316 rcu_sysidle_init_percpu_data(rdp->dynticks);
4317 atomic_set(&rdp->dynticks->dynticks,
4318 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
4319 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4320
4321 /*
4322 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4323 * propagation up the rcu_node tree will happen at the beginning
4324 * of the next grace period.
4325 */
4326 rnp = rdp->mynode;
4327 mask = rdp->grpmask;
4328 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4329 rnp->qsmaskinitnext |= mask;
4330 rnp->expmaskinitnext |= mask;
4331 if (!rdp->beenonline)
4332 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4333 rdp->beenonline = true; /* We have now been online. */
4334 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4335 rdp->completed = rnp->completed;
4336 rdp->cpu_no_qs.b.norm = true;
4337 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4338 rdp->core_needs_qs = false;
4339 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4340 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4341 }
4342
4343 static void rcu_prepare_cpu(int cpu)
4344 {
4345 struct rcu_state *rsp;
4346
4347 for_each_rcu_flavor(rsp)
4348 rcu_init_percpu_data(cpu, rsp);
4349 }
4350
4351 #ifdef CONFIG_HOTPLUG_CPU
4352 /*
4353 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4354 * function. We now remove it from the rcu_node tree's ->qsmaskinit
4355 * bit masks.
4356 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4357 * function. We now remove it from the rcu_node tree's ->qsmaskinit
4358 * bit masks.
4359 */
4360 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
4361 {
4362 unsigned long flags;
4363 unsigned long mask;
4364 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4365 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4366
4367 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4368 return;
4369
4370 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4371 mask = rdp->grpmask;
4372 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4373 rnp->qsmaskinitnext &= ~mask;
4374 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4375 }
4376
4377 void rcu_report_dead(unsigned int cpu)
4378 {
4379 struct rcu_state *rsp;
4380
4381 /* QS for any half-done expedited RCU-sched GP. */
4382 preempt_disable();
4383 rcu_report_exp_rdp(&rcu_sched_state,
4384 this_cpu_ptr(rcu_sched_state.rda), true);
4385 preempt_enable();
4386 for_each_rcu_flavor(rsp)
4387 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4388 }
4389 #endif
4390
4391 /*
4392 * Handle CPU online/offline notification events.
4393 */
4394 int rcu_cpu_notify(struct notifier_block *self,
4395 unsigned long action, void *hcpu)
4396 {
4397 long cpu = (long)hcpu;
4398 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4399 struct rcu_node *rnp = rdp->mynode;
4400 struct rcu_state *rsp;
4401
4402 switch (action) {
4403 case CPU_UP_PREPARE:
4404 case CPU_UP_PREPARE_FROZEN:
4405 rcu_prepare_cpu(cpu);
4406 rcu_prepare_kthreads(cpu);
4407 rcu_spawn_all_nocb_kthreads(cpu);
4408 break;
4409 case CPU_ONLINE:
4410 case CPU_DOWN_FAILED:
4411 sync_sched_exp_online_cleanup(cpu);
4412 rcu_boost_kthread_setaffinity(rnp, -1);
4413 break;
4414 case CPU_DOWN_PREPARE:
4415 rcu_boost_kthread_setaffinity(rnp, cpu);
4416 break;
4417 case CPU_DYING:
4418 case CPU_DYING_FROZEN:
4419 for_each_rcu_flavor(rsp)
4420 rcu_cleanup_dying_cpu(rsp);
4421 break;
4422 case CPU_DEAD:
4423 case CPU_DEAD_FROZEN:
4424 case CPU_UP_CANCELED:
4425 case CPU_UP_CANCELED_FROZEN:
4426 for_each_rcu_flavor(rsp) {
4427 rcu_cleanup_dead_cpu(cpu, rsp);
4428 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4429 }
4430 break;
4431 default:
4432 break;
4433 }
4434 return NOTIFY_OK;
4435 }
4436
4437 static int rcu_pm_notify(struct notifier_block *self,
4438 unsigned long action, void *hcpu)
4439 {
4440 switch (action) {
4441 case PM_HIBERNATION_PREPARE:
4442 case PM_SUSPEND_PREPARE:
4443 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4444 rcu_expedite_gp();
4445 break;
4446 case PM_POST_HIBERNATION:
4447 case PM_POST_SUSPEND:
4448 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4449 rcu_unexpedite_gp();
4450 break;
4451 default:
4452 break;
4453 }
4454 return NOTIFY_OK;
4455 }
4456
4457 /*
4458 * Spawn the kthreads that handle each RCU flavor's grace periods.
4459 */
4460 static int __init rcu_spawn_gp_kthread(void)
4461 {
4462 unsigned long flags;
4463 int kthread_prio_in = kthread_prio;
4464 struct rcu_node *rnp;
4465 struct rcu_state *rsp;
4466 struct sched_param sp;
4467 struct task_struct *t;
4468
4469 /* Force priority into range. */
4470 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4471 kthread_prio = 1;
4472 else if (kthread_prio < 0)
4473 kthread_prio = 0;
4474 else if (kthread_prio > 99)
4475 kthread_prio = 99;
4476 if (kthread_prio != kthread_prio_in)
4477 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4478 kthread_prio, kthread_prio_in);
4479
4480 rcu_scheduler_fully_active = 1;
4481 for_each_rcu_flavor(rsp) {
4482 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4483 BUG_ON(IS_ERR(t));
4484 rnp = rcu_get_root(rsp);
4485 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4486 rsp->gp_kthread = t;
4487 if (kthread_prio) {
4488 sp.sched_priority = kthread_prio;
4489 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4490 }
4491 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4492 wake_up_process(t);
4493 }
4494 rcu_spawn_nocb_kthreads();
4495 rcu_spawn_boost_kthreads();
4496 return 0;
4497 }
4498 early_initcall(rcu_spawn_gp_kthread);
4499
4500 /*
4501 * This function is invoked towards the end of the scheduler's initialization
4502 * process. Before this is called, the idle task might contain
4503 * RCU read-side critical sections (during which time, this idle
4504 * task is booting the system). After this function is called, the
4505 * idle tasks are prohibited from containing RCU read-side critical
4506 * sections. This function also enables RCU lockdep checking.
4507 */
4508 void rcu_scheduler_starting(void)
4509 {
4510 WARN_ON(num_online_cpus() != 1);
4511 WARN_ON(nr_context_switches() > 0);
4512 rcu_scheduler_active = 1;
4513 }
4514
4515 /*
4516 * Compute the per-level fanout, either using the exact fanout specified
4517 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4518 */
4519 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4520 {
4521 int i;
4522
4523 if (rcu_fanout_exact) {
4524 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4525 for (i = rcu_num_lvls - 2; i >= 0; i--)
4526 levelspread[i] = RCU_FANOUT;
4527 } else {
4528 int ccur;
4529 int cprv;
4530
4531 cprv = nr_cpu_ids;
4532 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4533 ccur = levelcnt[i];
4534 levelspread[i] = (cprv + ccur - 1) / ccur;
4535 cprv = ccur;
4536 }
4537 }
4538 }
4539
4540 /*
4541 * Helper function for rcu_init() that initializes one rcu_state structure.
4542 */
4543 static void __init rcu_init_one(struct rcu_state *rsp)
4544 {
4545 static const char * const buf[] = RCU_NODE_NAME_INIT;
4546 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4547 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4548 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4549 static u8 fl_mask = 0x1;
4550
4551 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4552 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4553 int cpustride = 1;
4554 int i;
4555 int j;
4556 struct rcu_node *rnp;
4557
4558 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4559
4560 /* Silence gcc 4.8 false positive about array index out of range. */
4561 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4562 panic("rcu_init_one: rcu_num_lvls out of range");
4563
4564 /* Initialize the level-tracking arrays. */
4565
4566 for (i = 0; i < rcu_num_lvls; i++)
4567 levelcnt[i] = num_rcu_lvl[i];
4568 for (i = 1; i < rcu_num_lvls; i++)
4569 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4570 rcu_init_levelspread(levelspread, levelcnt);
4571 rsp->flavor_mask = fl_mask;
4572 fl_mask <<= 1;
4573
4574 /* Initialize the elements themselves, starting from the leaves. */
4575
4576 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4577 cpustride *= levelspread[i];
4578 rnp = rsp->level[i];
4579 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4580 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4581 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4582 &rcu_node_class[i], buf[i]);
4583 raw_spin_lock_init(&rnp->fqslock);
4584 lockdep_set_class_and_name(&rnp->fqslock,
4585 &rcu_fqs_class[i], fqs[i]);
4586 rnp->gpnum = rsp->gpnum;
4587 rnp->completed = rsp->completed;
4588 rnp->qsmask = 0;
4589 rnp->qsmaskinit = 0;
4590 rnp->grplo = j * cpustride;
4591 rnp->grphi = (j + 1) * cpustride - 1;
4592 if (rnp->grphi >= nr_cpu_ids)
4593 rnp->grphi = nr_cpu_ids - 1;
4594 if (i == 0) {
4595 rnp->grpnum = 0;
4596 rnp->grpmask = 0;
4597 rnp->parent = NULL;
4598 } else {
4599 rnp->grpnum = j % levelspread[i - 1];
4600 rnp->grpmask = 1UL << rnp->grpnum;
4601 rnp->parent = rsp->level[i - 1] +
4602 j / levelspread[i - 1];
4603 }
4604 rnp->level = i;
4605 INIT_LIST_HEAD(&rnp->blkd_tasks);
4606 rcu_init_one_nocb(rnp);
4607 init_waitqueue_head(&rnp->exp_wq[0]);
4608 init_waitqueue_head(&rnp->exp_wq[1]);
4609 init_waitqueue_head(&rnp->exp_wq[2]);
4610 init_waitqueue_head(&rnp->exp_wq[3]);
4611 spin_lock_init(&rnp->exp_lock);
4612 }
4613 }
4614
4615 init_swait_queue_head(&rsp->gp_wq);
4616 init_swait_queue_head(&rsp->expedited_wq);
4617 rnp = rsp->level[rcu_num_lvls - 1];
4618 for_each_possible_cpu(i) {
4619 while (i > rnp->grphi)
4620 rnp++;
4621 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4622 rcu_boot_init_percpu_data(i, rsp);
4623 }
4624 list_add(&rsp->flavors, &rcu_struct_flavors);
4625 }
4626
4627 /*
4628 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4629 * replace the definitions in tree.h because those are needed to size
4630 * the ->node array in the rcu_state structure.
4631 */
4632 static void __init rcu_init_geometry(void)
4633 {
4634 ulong d;
4635 int i;
4636 int rcu_capacity[RCU_NUM_LVLS];
4637
4638 /*
4639 * Initialize any unspecified boot parameters.
4640 * The default values of jiffies_till_first_fqs and
4641 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4642 * value, which is a function of HZ, then adding one for each
4643 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4644 */
4645 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4646 if (jiffies_till_first_fqs == ULONG_MAX)
4647 jiffies_till_first_fqs = d;
4648 if (jiffies_till_next_fqs == ULONG_MAX)
4649 jiffies_till_next_fqs = d;
4650
4651 /* If the compile-time values are accurate, just leave. */
4652 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4653 nr_cpu_ids == NR_CPUS)
4654 return;
4655 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4656 rcu_fanout_leaf, nr_cpu_ids);
4657
4658 /*
4659 * The boot-time rcu_fanout_leaf parameter must be at least two
4660 * and cannot exceed the number of bits in the rcu_node masks.
4661 * Complain and fall back to the compile-time values if this
4662 * limit is exceeded.
4663 */
4664 if (rcu_fanout_leaf < 2 ||
4665 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4666 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4667 WARN_ON(1);
4668 return;
4669 }
4670
4671 /*
4672 * Compute number of nodes that can be handled an rcu_node tree
4673 * with the given number of levels.
4674 */
4675 rcu_capacity[0] = rcu_fanout_leaf;
4676 for (i = 1; i < RCU_NUM_LVLS; i++)
4677 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4678
4679 /*
4680 * The tree must be able to accommodate the configured number of CPUs.
4681 * If this limit is exceeded, fall back to the compile-time values.
4682 */
4683 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4684 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4685 WARN_ON(1);
4686 return;
4687 }
4688
4689 /* Calculate the number of levels in the tree. */
4690 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4691 }
4692 rcu_num_lvls = i + 1;
4693
4694 /* Calculate the number of rcu_nodes at each level of the tree. */
4695 for (i = 0; i < rcu_num_lvls; i++) {
4696 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4697 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4698 }
4699
4700 /* Calculate the total number of rcu_node structures. */
4701 rcu_num_nodes = 0;
4702 for (i = 0; i < rcu_num_lvls; i++)
4703 rcu_num_nodes += num_rcu_lvl[i];
4704 }
4705
4706 /*
4707 * Dump out the structure of the rcu_node combining tree associated
4708 * with the rcu_state structure referenced by rsp.
4709 */
4710 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4711 {
4712 int level = 0;
4713 struct rcu_node *rnp;
4714
4715 pr_info("rcu_node tree layout dump\n");
4716 pr_info(" ");
4717 rcu_for_each_node_breadth_first(rsp, rnp) {
4718 if (rnp->level != level) {
4719 pr_cont("\n");
4720 pr_info(" ");
4721 level = rnp->level;
4722 }
4723 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4724 }
4725 pr_cont("\n");
4726 }
4727
4728 void __init rcu_init(void)
4729 {
4730 int cpu;
4731
4732 rcu_early_boot_tests();
4733
4734 rcu_bootup_announce();
4735 rcu_init_geometry();
4736 rcu_init_one(&rcu_bh_state);
4737 rcu_init_one(&rcu_sched_state);
4738 if (dump_tree)
4739 rcu_dump_rcu_node_tree(&rcu_sched_state);
4740 __rcu_init_preempt();
4741 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4742
4743 /*
4744 * We don't need protection against CPU-hotplug here because
4745 * this is called early in boot, before either interrupts
4746 * or the scheduler are operational.
4747 */
4748 cpu_notifier(rcu_cpu_notify, 0);
4749 pm_notifier(rcu_pm_notify, 0);
4750 for_each_online_cpu(cpu)
4751 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4752 }
4753
4754 #include "tree_plugin.h"
This page took 0.132796 seconds and 5 git commands to generate.