f3317c18b354b15c0b0deecc2b758a8434ccdf21
[deliverable/linux.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74 /*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
83 static char sname##_varname[] = #sname; \
84 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
85 struct rcu_state sname##_state = { \
86 .level = { &sname##_state.node[0] }, \
87 .call = cr, \
88 .fqs_state = RCU_GP_IDLE, \
89 .gpnum = 0UL - 300UL, \
90 .completed = 0UL - 300UL, \
91 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
92 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
93 .orphan_donetail = &sname##_state.orphan_donelist, \
94 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
95 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
96 .name = sname##_varname, \
97 .abbr = sabbr, \
98 }; \
99 DEFINE_PER_CPU(struct rcu_data, sname##_data)
100
101 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
102 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
103
104 static struct rcu_state *rcu_state;
105 LIST_HEAD(rcu_struct_flavors);
106
107 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
108 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
109 module_param(rcu_fanout_leaf, int, 0444);
110 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
112 NUM_RCU_LVL_0,
113 NUM_RCU_LVL_1,
114 NUM_RCU_LVL_2,
115 NUM_RCU_LVL_3,
116 NUM_RCU_LVL_4,
117 };
118 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
119
120 /*
121 * The rcu_scheduler_active variable transitions from zero to one just
122 * before the first task is spawned. So when this variable is zero, RCU
123 * can assume that there is but one task, allowing RCU to (for example)
124 * optimize synchronize_sched() to a simple barrier(). When this variable
125 * is one, RCU must actually do all the hard work required to detect real
126 * grace periods. This variable is also used to suppress boot-time false
127 * positives from lockdep-RCU error checking.
128 */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
132 /*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144 static int rcu_scheduler_fully_active __read_mostly;
145
146 #ifdef CONFIG_RCU_BOOST
147
148 /*
149 * Control variables for per-CPU and per-rcu_node kthreads. These
150 * handle all flavors of RCU.
151 */
152 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
153 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
154 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
155 DEFINE_PER_CPU(char, rcu_cpu_has_work);
156
157 #endif /* #ifdef CONFIG_RCU_BOOST */
158
159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
160 static void invoke_rcu_core(void);
161 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
162
163 /*
164 * Track the rcutorture test sequence number and the update version
165 * number within a given test. The rcutorture_testseq is incremented
166 * on every rcutorture module load and unload, so has an odd value
167 * when a test is running. The rcutorture_vernum is set to zero
168 * when rcutorture starts and is incremented on each rcutorture update.
169 * These variables enable correlating rcutorture output with the
170 * RCU tracing information.
171 */
172 unsigned long rcutorture_testseq;
173 unsigned long rcutorture_vernum;
174
175 /*
176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
177 * permit this function to be invoked without holding the root rcu_node
178 * structure's ->lock, but of course results can be subject to change.
179 */
180 static int rcu_gp_in_progress(struct rcu_state *rsp)
181 {
182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183 }
184
185 /*
186 * Note a quiescent state. Because we do not need to know
187 * how many quiescent states passed, just if there was at least
188 * one since the start of the grace period, this just sets a flag.
189 * The caller must have disabled preemption.
190 */
191 void rcu_sched_qs(int cpu)
192 {
193 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
194
195 if (rdp->passed_quiesce == 0)
196 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
197 rdp->passed_quiesce = 1;
198 }
199
200 void rcu_bh_qs(int cpu)
201 {
202 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
203
204 if (rdp->passed_quiesce == 0)
205 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
206 rdp->passed_quiesce = 1;
207 }
208
209 /*
210 * Note a context switch. This is a quiescent state for RCU-sched,
211 * and requires special handling for preemptible RCU.
212 * The caller must have disabled preemption.
213 */
214 void rcu_note_context_switch(int cpu)
215 {
216 trace_rcu_utilization(TPS("Start context switch"));
217 rcu_sched_qs(cpu);
218 rcu_preempt_note_context_switch(cpu);
219 trace_rcu_utilization(TPS("End context switch"));
220 }
221 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
222
223 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
224 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
225 .dynticks = ATOMIC_INIT(1),
226 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
227 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
228 .dynticks_idle = ATOMIC_INIT(1),
229 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
230 };
231
232 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
233 static long qhimark = 10000; /* If this many pending, ignore blimit. */
234 static long qlowmark = 100; /* Once only this many pending, use blimit. */
235
236 module_param(blimit, long, 0444);
237 module_param(qhimark, long, 0444);
238 module_param(qlowmark, long, 0444);
239
240 static ulong jiffies_till_first_fqs = ULONG_MAX;
241 static ulong jiffies_till_next_fqs = ULONG_MAX;
242
243 module_param(jiffies_till_first_fqs, ulong, 0644);
244 module_param(jiffies_till_next_fqs, ulong, 0644);
245
246 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
247 struct rcu_data *rdp);
248 static void force_qs_rnp(struct rcu_state *rsp,
249 int (*f)(struct rcu_data *rsp, bool *isidle,
250 unsigned long *maxj),
251 bool *isidle, unsigned long *maxj);
252 static void force_quiescent_state(struct rcu_state *rsp);
253 static int rcu_pending(int cpu);
254
255 /*
256 * Return the number of RCU-sched batches processed thus far for debug & stats.
257 */
258 long rcu_batches_completed_sched(void)
259 {
260 return rcu_sched_state.completed;
261 }
262 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
263
264 /*
265 * Return the number of RCU BH batches processed thus far for debug & stats.
266 */
267 long rcu_batches_completed_bh(void)
268 {
269 return rcu_bh_state.completed;
270 }
271 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
272
273 /*
274 * Force a quiescent state for RCU BH.
275 */
276 void rcu_bh_force_quiescent_state(void)
277 {
278 force_quiescent_state(&rcu_bh_state);
279 }
280 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
281
282 /*
283 * Record the number of times rcutorture tests have been initiated and
284 * terminated. This information allows the debugfs tracing stats to be
285 * correlated to the rcutorture messages, even when the rcutorture module
286 * is being repeatedly loaded and unloaded. In other words, we cannot
287 * store this state in rcutorture itself.
288 */
289 void rcutorture_record_test_transition(void)
290 {
291 rcutorture_testseq++;
292 rcutorture_vernum = 0;
293 }
294 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
295
296 /*
297 * Record the number of writer passes through the current rcutorture test.
298 * This is also used to correlate debugfs tracing stats with the rcutorture
299 * messages.
300 */
301 void rcutorture_record_progress(unsigned long vernum)
302 {
303 rcutorture_vernum++;
304 }
305 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
306
307 /*
308 * Force a quiescent state for RCU-sched.
309 */
310 void rcu_sched_force_quiescent_state(void)
311 {
312 force_quiescent_state(&rcu_sched_state);
313 }
314 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
315
316 /*
317 * Does the CPU have callbacks ready to be invoked?
318 */
319 static int
320 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
321 {
322 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
323 rdp->nxttail[RCU_DONE_TAIL] != NULL;
324 }
325
326 /*
327 * Return the root node of the specified rcu_state structure.
328 */
329 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
330 {
331 return &rsp->node[0];
332 }
333
334 /*
335 * Is there any need for future grace periods?
336 * Interrupts must be disabled. If the caller does not hold the root
337 * rnp_node structure's ->lock, the results are advisory only.
338 */
339 static int rcu_future_needs_gp(struct rcu_state *rsp)
340 {
341 struct rcu_node *rnp = rcu_get_root(rsp);
342 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
343 int *fp = &rnp->need_future_gp[idx];
344
345 return ACCESS_ONCE(*fp);
346 }
347
348 /*
349 * Does the current CPU require a not-yet-started grace period?
350 * The caller must have disabled interrupts to prevent races with
351 * normal callback registry.
352 */
353 static int
354 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
355 {
356 int i;
357
358 if (rcu_gp_in_progress(rsp))
359 return 0; /* No, a grace period is already in progress. */
360 if (rcu_future_needs_gp(rsp))
361 return 1; /* Yes, a no-CBs CPU needs one. */
362 if (!rdp->nxttail[RCU_NEXT_TAIL])
363 return 0; /* No, this is a no-CBs (or offline) CPU. */
364 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
365 return 1; /* Yes, this CPU has newly registered callbacks. */
366 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
367 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
368 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
369 rdp->nxtcompleted[i]))
370 return 1; /* Yes, CBs for future grace period. */
371 return 0; /* No grace period needed. */
372 }
373
374 /*
375 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
376 *
377 * If the new value of the ->dynticks_nesting counter now is zero,
378 * we really have entered idle, and must do the appropriate accounting.
379 * The caller must have disabled interrupts.
380 */
381 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
382 bool user)
383 {
384 struct rcu_state *rsp;
385 struct rcu_data *rdp;
386
387 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
388 if (!user && !is_idle_task(current)) {
389 struct task_struct *idle __maybe_unused =
390 idle_task(smp_processor_id());
391
392 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
393 ftrace_dump(DUMP_ORIG);
394 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
395 current->pid, current->comm,
396 idle->pid, idle->comm); /* must be idle task! */
397 }
398 for_each_rcu_flavor(rsp) {
399 rdp = this_cpu_ptr(rsp->rda);
400 do_nocb_deferred_wakeup(rdp);
401 }
402 rcu_prepare_for_idle(smp_processor_id());
403 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
404 smp_mb__before_atomic_inc(); /* See above. */
405 atomic_inc(&rdtp->dynticks);
406 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
407 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
408
409 /*
410 * It is illegal to enter an extended quiescent state while
411 * in an RCU read-side critical section.
412 */
413 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
414 "Illegal idle entry in RCU read-side critical section.");
415 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
416 "Illegal idle entry in RCU-bh read-side critical section.");
417 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
418 "Illegal idle entry in RCU-sched read-side critical section.");
419 }
420
421 /*
422 * Enter an RCU extended quiescent state, which can be either the
423 * idle loop or adaptive-tickless usermode execution.
424 */
425 static void rcu_eqs_enter(bool user)
426 {
427 long long oldval;
428 struct rcu_dynticks *rdtp;
429
430 rdtp = this_cpu_ptr(&rcu_dynticks);
431 oldval = rdtp->dynticks_nesting;
432 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
433 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
434 rdtp->dynticks_nesting = 0;
435 rcu_eqs_enter_common(rdtp, oldval, user);
436 } else {
437 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
438 }
439 }
440
441 /**
442 * rcu_idle_enter - inform RCU that current CPU is entering idle
443 *
444 * Enter idle mode, in other words, -leave- the mode in which RCU
445 * read-side critical sections can occur. (Though RCU read-side
446 * critical sections can occur in irq handlers in idle, a possibility
447 * handled by irq_enter() and irq_exit().)
448 *
449 * We crowbar the ->dynticks_nesting field to zero to allow for
450 * the possibility of usermode upcalls having messed up our count
451 * of interrupt nesting level during the prior busy period.
452 */
453 void rcu_idle_enter(void)
454 {
455 unsigned long flags;
456
457 local_irq_save(flags);
458 rcu_eqs_enter(false);
459 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
460 local_irq_restore(flags);
461 }
462 EXPORT_SYMBOL_GPL(rcu_idle_enter);
463
464 #ifdef CONFIG_RCU_USER_QS
465 /**
466 * rcu_user_enter - inform RCU that we are resuming userspace.
467 *
468 * Enter RCU idle mode right before resuming userspace. No use of RCU
469 * is permitted between this call and rcu_user_exit(). This way the
470 * CPU doesn't need to maintain the tick for RCU maintenance purposes
471 * when the CPU runs in userspace.
472 */
473 void rcu_user_enter(void)
474 {
475 rcu_eqs_enter(1);
476 }
477 #endif /* CONFIG_RCU_USER_QS */
478
479 /**
480 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
481 *
482 * Exit from an interrupt handler, which might possibly result in entering
483 * idle mode, in other words, leaving the mode in which read-side critical
484 * sections can occur.
485 *
486 * This code assumes that the idle loop never does anything that might
487 * result in unbalanced calls to irq_enter() and irq_exit(). If your
488 * architecture violates this assumption, RCU will give you what you
489 * deserve, good and hard. But very infrequently and irreproducibly.
490 *
491 * Use things like work queues to work around this limitation.
492 *
493 * You have been warned.
494 */
495 void rcu_irq_exit(void)
496 {
497 unsigned long flags;
498 long long oldval;
499 struct rcu_dynticks *rdtp;
500
501 local_irq_save(flags);
502 rdtp = this_cpu_ptr(&rcu_dynticks);
503 oldval = rdtp->dynticks_nesting;
504 rdtp->dynticks_nesting--;
505 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
506 if (rdtp->dynticks_nesting)
507 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
508 else
509 rcu_eqs_enter_common(rdtp, oldval, true);
510 rcu_sysidle_enter(rdtp, 1);
511 local_irq_restore(flags);
512 }
513
514 /*
515 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
516 *
517 * If the new value of the ->dynticks_nesting counter was previously zero,
518 * we really have exited idle, and must do the appropriate accounting.
519 * The caller must have disabled interrupts.
520 */
521 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
522 int user)
523 {
524 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
525 atomic_inc(&rdtp->dynticks);
526 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
527 smp_mb__after_atomic_inc(); /* See above. */
528 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
529 rcu_cleanup_after_idle(smp_processor_id());
530 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
531 if (!user && !is_idle_task(current)) {
532 struct task_struct *idle __maybe_unused =
533 idle_task(smp_processor_id());
534
535 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
536 oldval, rdtp->dynticks_nesting);
537 ftrace_dump(DUMP_ORIG);
538 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
539 current->pid, current->comm,
540 idle->pid, idle->comm); /* must be idle task! */
541 }
542 }
543
544 /*
545 * Exit an RCU extended quiescent state, which can be either the
546 * idle loop or adaptive-tickless usermode execution.
547 */
548 static void rcu_eqs_exit(bool user)
549 {
550 struct rcu_dynticks *rdtp;
551 long long oldval;
552
553 rdtp = this_cpu_ptr(&rcu_dynticks);
554 oldval = rdtp->dynticks_nesting;
555 WARN_ON_ONCE(oldval < 0);
556 if (oldval & DYNTICK_TASK_NEST_MASK) {
557 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
558 } else {
559 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
560 rcu_eqs_exit_common(rdtp, oldval, user);
561 }
562 }
563
564 /**
565 * rcu_idle_exit - inform RCU that current CPU is leaving idle
566 *
567 * Exit idle mode, in other words, -enter- the mode in which RCU
568 * read-side critical sections can occur.
569 *
570 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
571 * allow for the possibility of usermode upcalls messing up our count
572 * of interrupt nesting level during the busy period that is just
573 * now starting.
574 */
575 void rcu_idle_exit(void)
576 {
577 unsigned long flags;
578
579 local_irq_save(flags);
580 rcu_eqs_exit(false);
581 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
582 local_irq_restore(flags);
583 }
584 EXPORT_SYMBOL_GPL(rcu_idle_exit);
585
586 #ifdef CONFIG_RCU_USER_QS
587 /**
588 * rcu_user_exit - inform RCU that we are exiting userspace.
589 *
590 * Exit RCU idle mode while entering the kernel because it can
591 * run a RCU read side critical section anytime.
592 */
593 void rcu_user_exit(void)
594 {
595 rcu_eqs_exit(1);
596 }
597 #endif /* CONFIG_RCU_USER_QS */
598
599 /**
600 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
601 *
602 * Enter an interrupt handler, which might possibly result in exiting
603 * idle mode, in other words, entering the mode in which read-side critical
604 * sections can occur.
605 *
606 * Note that the Linux kernel is fully capable of entering an interrupt
607 * handler that it never exits, for example when doing upcalls to
608 * user mode! This code assumes that the idle loop never does upcalls to
609 * user mode. If your architecture does do upcalls from the idle loop (or
610 * does anything else that results in unbalanced calls to the irq_enter()
611 * and irq_exit() functions), RCU will give you what you deserve, good
612 * and hard. But very infrequently and irreproducibly.
613 *
614 * Use things like work queues to work around this limitation.
615 *
616 * You have been warned.
617 */
618 void rcu_irq_enter(void)
619 {
620 unsigned long flags;
621 struct rcu_dynticks *rdtp;
622 long long oldval;
623
624 local_irq_save(flags);
625 rdtp = this_cpu_ptr(&rcu_dynticks);
626 oldval = rdtp->dynticks_nesting;
627 rdtp->dynticks_nesting++;
628 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
629 if (oldval)
630 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
631 else
632 rcu_eqs_exit_common(rdtp, oldval, true);
633 rcu_sysidle_exit(rdtp, 1);
634 local_irq_restore(flags);
635 }
636
637 /**
638 * rcu_nmi_enter - inform RCU of entry to NMI context
639 *
640 * If the CPU was idle with dynamic ticks active, and there is no
641 * irq handler running, this updates rdtp->dynticks_nmi to let the
642 * RCU grace-period handling know that the CPU is active.
643 */
644 void rcu_nmi_enter(void)
645 {
646 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
647
648 if (rdtp->dynticks_nmi_nesting == 0 &&
649 (atomic_read(&rdtp->dynticks) & 0x1))
650 return;
651 rdtp->dynticks_nmi_nesting++;
652 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
653 atomic_inc(&rdtp->dynticks);
654 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
655 smp_mb__after_atomic_inc(); /* See above. */
656 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
657 }
658
659 /**
660 * rcu_nmi_exit - inform RCU of exit from NMI context
661 *
662 * If the CPU was idle with dynamic ticks active, and there is no
663 * irq handler running, this updates rdtp->dynticks_nmi to let the
664 * RCU grace-period handling know that the CPU is no longer active.
665 */
666 void rcu_nmi_exit(void)
667 {
668 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
669
670 if (rdtp->dynticks_nmi_nesting == 0 ||
671 --rdtp->dynticks_nmi_nesting != 0)
672 return;
673 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
674 smp_mb__before_atomic_inc(); /* See above. */
675 atomic_inc(&rdtp->dynticks);
676 smp_mb__after_atomic_inc(); /* Force delay to next write. */
677 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
678 }
679
680 /**
681 * __rcu_is_watching - are RCU read-side critical sections safe?
682 *
683 * Return true if RCU is watching the running CPU, which means that
684 * this CPU can safely enter RCU read-side critical sections. Unlike
685 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
686 * least disabled preemption.
687 */
688 bool notrace __rcu_is_watching(void)
689 {
690 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
691 }
692
693 /**
694 * rcu_is_watching - see if RCU thinks that the current CPU is idle
695 *
696 * If the current CPU is in its idle loop and is neither in an interrupt
697 * or NMI handler, return true.
698 */
699 bool notrace rcu_is_watching(void)
700 {
701 int ret;
702
703 preempt_disable();
704 ret = __rcu_is_watching();
705 preempt_enable();
706 return ret;
707 }
708 EXPORT_SYMBOL_GPL(rcu_is_watching);
709
710 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
711
712 /*
713 * Is the current CPU online? Disable preemption to avoid false positives
714 * that could otherwise happen due to the current CPU number being sampled,
715 * this task being preempted, its old CPU being taken offline, resuming
716 * on some other CPU, then determining that its old CPU is now offline.
717 * It is OK to use RCU on an offline processor during initial boot, hence
718 * the check for rcu_scheduler_fully_active. Note also that it is OK
719 * for a CPU coming online to use RCU for one jiffy prior to marking itself
720 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
721 * offline to continue to use RCU for one jiffy after marking itself
722 * offline in the cpu_online_mask. This leniency is necessary given the
723 * non-atomic nature of the online and offline processing, for example,
724 * the fact that a CPU enters the scheduler after completing the CPU_DYING
725 * notifiers.
726 *
727 * This is also why RCU internally marks CPUs online during the
728 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
729 *
730 * Disable checking if in an NMI handler because we cannot safely report
731 * errors from NMI handlers anyway.
732 */
733 bool rcu_lockdep_current_cpu_online(void)
734 {
735 struct rcu_data *rdp;
736 struct rcu_node *rnp;
737 bool ret;
738
739 if (in_nmi())
740 return true;
741 preempt_disable();
742 rdp = this_cpu_ptr(&rcu_sched_data);
743 rnp = rdp->mynode;
744 ret = (rdp->grpmask & rnp->qsmaskinit) ||
745 !rcu_scheduler_fully_active;
746 preempt_enable();
747 return ret;
748 }
749 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
750
751 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
752
753 /**
754 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
755 *
756 * If the current CPU is idle or running at a first-level (not nested)
757 * interrupt from idle, return true. The caller must have at least
758 * disabled preemption.
759 */
760 static int rcu_is_cpu_rrupt_from_idle(void)
761 {
762 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
763 }
764
765 /*
766 * Snapshot the specified CPU's dynticks counter so that we can later
767 * credit them with an implicit quiescent state. Return 1 if this CPU
768 * is in dynticks idle mode, which is an extended quiescent state.
769 */
770 static int dyntick_save_progress_counter(struct rcu_data *rdp,
771 bool *isidle, unsigned long *maxj)
772 {
773 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
774 rcu_sysidle_check_cpu(rdp, isidle, maxj);
775 if ((rdp->dynticks_snap & 0x1) == 0) {
776 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
777 return 1;
778 } else {
779 return 0;
780 }
781 }
782
783 /*
784 * This function really isn't for public consumption, but RCU is special in
785 * that context switches can allow the state machine to make progress.
786 */
787 extern void resched_cpu(int cpu);
788
789 /*
790 * Return true if the specified CPU has passed through a quiescent
791 * state by virtue of being in or having passed through an dynticks
792 * idle state since the last call to dyntick_save_progress_counter()
793 * for this same CPU, or by virtue of having been offline.
794 */
795 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
796 bool *isidle, unsigned long *maxj)
797 {
798 unsigned int curr;
799 unsigned int snap;
800
801 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
802 snap = (unsigned int)rdp->dynticks_snap;
803
804 /*
805 * If the CPU passed through or entered a dynticks idle phase with
806 * no active irq/NMI handlers, then we can safely pretend that the CPU
807 * already acknowledged the request to pass through a quiescent
808 * state. Either way, that CPU cannot possibly be in an RCU
809 * read-side critical section that started before the beginning
810 * of the current RCU grace period.
811 */
812 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
813 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
814 rdp->dynticks_fqs++;
815 return 1;
816 }
817
818 /*
819 * Check for the CPU being offline, but only if the grace period
820 * is old enough. We don't need to worry about the CPU changing
821 * state: If we see it offline even once, it has been through a
822 * quiescent state.
823 *
824 * The reason for insisting that the grace period be at least
825 * one jiffy old is that CPUs that are not quite online and that
826 * have just gone offline can still execute RCU read-side critical
827 * sections.
828 */
829 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
830 return 0; /* Grace period is not old enough. */
831 barrier();
832 if (cpu_is_offline(rdp->cpu)) {
833 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
834 rdp->offline_fqs++;
835 return 1;
836 }
837
838 /*
839 * There is a possibility that a CPU in adaptive-ticks state
840 * might run in the kernel with the scheduling-clock tick disabled
841 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
842 * force the CPU to restart the scheduling-clock tick in this
843 * CPU is in this state.
844 */
845 rcu_kick_nohz_cpu(rdp->cpu);
846
847 /*
848 * Alternatively, the CPU might be running in the kernel
849 * for an extended period of time without a quiescent state.
850 * Attempt to force the CPU through the scheduler to gain the
851 * needed quiescent state, but only if the grace period has gone
852 * on for an uncommonly long time. If there are many stuck CPUs,
853 * we will beat on the first one until it gets unstuck, then move
854 * to the next. Only do this for the primary flavor of RCU.
855 */
856 if (rdp->rsp == rcu_state &&
857 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
858 rdp->rsp->jiffies_resched += 5;
859 resched_cpu(rdp->cpu);
860 }
861
862 return 0;
863 }
864
865 static void record_gp_stall_check_time(struct rcu_state *rsp)
866 {
867 unsigned long j = jiffies;
868 unsigned long j1;
869
870 rsp->gp_start = j;
871 smp_wmb(); /* Record start time before stall time. */
872 j1 = rcu_jiffies_till_stall_check();
873 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
874 rsp->jiffies_resched = j + j1 / 2;
875 }
876
877 /*
878 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
879 * for architectures that do not implement trigger_all_cpu_backtrace().
880 * The NMI-triggered stack traces are more accurate because they are
881 * printed by the target CPU.
882 */
883 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
884 {
885 int cpu;
886 unsigned long flags;
887 struct rcu_node *rnp;
888
889 rcu_for_each_leaf_node(rsp, rnp) {
890 raw_spin_lock_irqsave(&rnp->lock, flags);
891 if (rnp->qsmask != 0) {
892 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
893 if (rnp->qsmask & (1UL << cpu))
894 dump_cpu_task(rnp->grplo + cpu);
895 }
896 raw_spin_unlock_irqrestore(&rnp->lock, flags);
897 }
898 }
899
900 static void print_other_cpu_stall(struct rcu_state *rsp)
901 {
902 int cpu;
903 long delta;
904 unsigned long flags;
905 int ndetected = 0;
906 struct rcu_node *rnp = rcu_get_root(rsp);
907 long totqlen = 0;
908
909 /* Only let one CPU complain about others per time interval. */
910
911 raw_spin_lock_irqsave(&rnp->lock, flags);
912 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
913 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
914 raw_spin_unlock_irqrestore(&rnp->lock, flags);
915 return;
916 }
917 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
918 raw_spin_unlock_irqrestore(&rnp->lock, flags);
919
920 /*
921 * OK, time to rat on our buddy...
922 * See Documentation/RCU/stallwarn.txt for info on how to debug
923 * RCU CPU stall warnings.
924 */
925 pr_err("INFO: %s detected stalls on CPUs/tasks:",
926 rsp->name);
927 print_cpu_stall_info_begin();
928 rcu_for_each_leaf_node(rsp, rnp) {
929 raw_spin_lock_irqsave(&rnp->lock, flags);
930 ndetected += rcu_print_task_stall(rnp);
931 if (rnp->qsmask != 0) {
932 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
933 if (rnp->qsmask & (1UL << cpu)) {
934 print_cpu_stall_info(rsp,
935 rnp->grplo + cpu);
936 ndetected++;
937 }
938 }
939 raw_spin_unlock_irqrestore(&rnp->lock, flags);
940 }
941
942 /*
943 * Now rat on any tasks that got kicked up to the root rcu_node
944 * due to CPU offlining.
945 */
946 rnp = rcu_get_root(rsp);
947 raw_spin_lock_irqsave(&rnp->lock, flags);
948 ndetected += rcu_print_task_stall(rnp);
949 raw_spin_unlock_irqrestore(&rnp->lock, flags);
950
951 print_cpu_stall_info_end();
952 for_each_possible_cpu(cpu)
953 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
954 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
955 smp_processor_id(), (long)(jiffies - rsp->gp_start),
956 (long)rsp->gpnum, (long)rsp->completed, totqlen);
957 if (ndetected == 0)
958 pr_err("INFO: Stall ended before state dump start\n");
959 else if (!trigger_all_cpu_backtrace())
960 rcu_dump_cpu_stacks(rsp);
961
962 /* Complain about tasks blocking the grace period. */
963
964 rcu_print_detail_task_stall(rsp);
965
966 force_quiescent_state(rsp); /* Kick them all. */
967 }
968
969 /*
970 * This function really isn't for public consumption, but RCU is special in
971 * that context switches can allow the state machine to make progress.
972 */
973 extern void resched_cpu(int cpu);
974
975 static void print_cpu_stall(struct rcu_state *rsp)
976 {
977 int cpu;
978 unsigned long flags;
979 struct rcu_node *rnp = rcu_get_root(rsp);
980 long totqlen = 0;
981
982 /*
983 * OK, time to rat on ourselves...
984 * See Documentation/RCU/stallwarn.txt for info on how to debug
985 * RCU CPU stall warnings.
986 */
987 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
988 print_cpu_stall_info_begin();
989 print_cpu_stall_info(rsp, smp_processor_id());
990 print_cpu_stall_info_end();
991 for_each_possible_cpu(cpu)
992 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
993 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
994 jiffies - rsp->gp_start,
995 (long)rsp->gpnum, (long)rsp->completed, totqlen);
996 if (!trigger_all_cpu_backtrace())
997 dump_stack();
998
999 raw_spin_lock_irqsave(&rnp->lock, flags);
1000 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1001 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1002 3 * rcu_jiffies_till_stall_check() + 3;
1003 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1004
1005 /*
1006 * Attempt to revive the RCU machinery by forcing a context switch.
1007 *
1008 * A context switch would normally allow the RCU state machine to make
1009 * progress and it could be we're stuck in kernel space without context
1010 * switches for an entirely unreasonable amount of time.
1011 */
1012 resched_cpu(smp_processor_id());
1013 }
1014
1015 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1016 {
1017 unsigned long completed;
1018 unsigned long gpnum;
1019 unsigned long gps;
1020 unsigned long j;
1021 unsigned long js;
1022 struct rcu_node *rnp;
1023
1024 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1025 return;
1026 j = jiffies;
1027
1028 /*
1029 * Lots of memory barriers to reject false positives.
1030 *
1031 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1032 * then rsp->gp_start, and finally rsp->completed. These values
1033 * are updated in the opposite order with memory barriers (or
1034 * equivalent) during grace-period initialization and cleanup.
1035 * Now, a false positive can occur if we get an new value of
1036 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1037 * the memory barriers, the only way that this can happen is if one
1038 * grace period ends and another starts between these two fetches.
1039 * Detect this by comparing rsp->completed with the previous fetch
1040 * from rsp->gpnum.
1041 *
1042 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1043 * and rsp->gp_start suffice to forestall false positives.
1044 */
1045 gpnum = ACCESS_ONCE(rsp->gpnum);
1046 smp_rmb(); /* Pick up ->gpnum first... */
1047 js = ACCESS_ONCE(rsp->jiffies_stall);
1048 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1049 gps = ACCESS_ONCE(rsp->gp_start);
1050 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1051 completed = ACCESS_ONCE(rsp->completed);
1052 if (ULONG_CMP_GE(completed, gpnum) ||
1053 ULONG_CMP_LT(j, js) ||
1054 ULONG_CMP_GE(gps, js))
1055 return; /* No stall or GP completed since entering function. */
1056 rnp = rdp->mynode;
1057 if (rcu_gp_in_progress(rsp) &&
1058 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1059
1060 /* We haven't checked in, so go dump stack. */
1061 print_cpu_stall(rsp);
1062
1063 } else if (rcu_gp_in_progress(rsp) &&
1064 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1065
1066 /* They had a few time units to dump stack, so complain. */
1067 print_other_cpu_stall(rsp);
1068 }
1069 }
1070
1071 /**
1072 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1073 *
1074 * Set the stall-warning timeout way off into the future, thus preventing
1075 * any RCU CPU stall-warning messages from appearing in the current set of
1076 * RCU grace periods.
1077 *
1078 * The caller must disable hard irqs.
1079 */
1080 void rcu_cpu_stall_reset(void)
1081 {
1082 struct rcu_state *rsp;
1083
1084 for_each_rcu_flavor(rsp)
1085 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1086 }
1087
1088 /*
1089 * Initialize the specified rcu_data structure's callback list to empty.
1090 */
1091 static void init_callback_list(struct rcu_data *rdp)
1092 {
1093 int i;
1094
1095 if (init_nocb_callback_list(rdp))
1096 return;
1097 rdp->nxtlist = NULL;
1098 for (i = 0; i < RCU_NEXT_SIZE; i++)
1099 rdp->nxttail[i] = &rdp->nxtlist;
1100 }
1101
1102 /*
1103 * Determine the value that ->completed will have at the end of the
1104 * next subsequent grace period. This is used to tag callbacks so that
1105 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1106 * been dyntick-idle for an extended period with callbacks under the
1107 * influence of RCU_FAST_NO_HZ.
1108 *
1109 * The caller must hold rnp->lock with interrupts disabled.
1110 */
1111 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1112 struct rcu_node *rnp)
1113 {
1114 /*
1115 * If RCU is idle, we just wait for the next grace period.
1116 * But we can only be sure that RCU is idle if we are looking
1117 * at the root rcu_node structure -- otherwise, a new grace
1118 * period might have started, but just not yet gotten around
1119 * to initializing the current non-root rcu_node structure.
1120 */
1121 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1122 return rnp->completed + 1;
1123
1124 /*
1125 * Otherwise, wait for a possible partial grace period and
1126 * then the subsequent full grace period.
1127 */
1128 return rnp->completed + 2;
1129 }
1130
1131 /*
1132 * Trace-event helper function for rcu_start_future_gp() and
1133 * rcu_nocb_wait_gp().
1134 */
1135 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1136 unsigned long c, const char *s)
1137 {
1138 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1139 rnp->completed, c, rnp->level,
1140 rnp->grplo, rnp->grphi, s);
1141 }
1142
1143 /*
1144 * Start some future grace period, as needed to handle newly arrived
1145 * callbacks. The required future grace periods are recorded in each
1146 * rcu_node structure's ->need_future_gp field. Returns true if there
1147 * is reason to awaken the grace-period kthread.
1148 *
1149 * The caller must hold the specified rcu_node structure's ->lock.
1150 */
1151 static bool __maybe_unused
1152 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1153 unsigned long *c_out)
1154 {
1155 unsigned long c;
1156 int i;
1157 bool ret = false;
1158 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1159
1160 /*
1161 * Pick up grace-period number for new callbacks. If this
1162 * grace period is already marked as needed, return to the caller.
1163 */
1164 c = rcu_cbs_completed(rdp->rsp, rnp);
1165 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1166 if (rnp->need_future_gp[c & 0x1]) {
1167 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1168 goto out;
1169 }
1170
1171 /*
1172 * If either this rcu_node structure or the root rcu_node structure
1173 * believe that a grace period is in progress, then we must wait
1174 * for the one following, which is in "c". Because our request
1175 * will be noticed at the end of the current grace period, we don't
1176 * need to explicitly start one.
1177 */
1178 if (rnp->gpnum != rnp->completed ||
1179 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1180 rnp->need_future_gp[c & 0x1]++;
1181 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1182 goto out;
1183 }
1184
1185 /*
1186 * There might be no grace period in progress. If we don't already
1187 * hold it, acquire the root rcu_node structure's lock in order to
1188 * start one (if needed).
1189 */
1190 if (rnp != rnp_root) {
1191 raw_spin_lock(&rnp_root->lock);
1192 smp_mb__after_unlock_lock();
1193 }
1194
1195 /*
1196 * Get a new grace-period number. If there really is no grace
1197 * period in progress, it will be smaller than the one we obtained
1198 * earlier. Adjust callbacks as needed. Note that even no-CBs
1199 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1200 */
1201 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1202 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1203 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1204 rdp->nxtcompleted[i] = c;
1205
1206 /*
1207 * If the needed for the required grace period is already
1208 * recorded, trace and leave.
1209 */
1210 if (rnp_root->need_future_gp[c & 0x1]) {
1211 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1212 goto unlock_out;
1213 }
1214
1215 /* Record the need for the future grace period. */
1216 rnp_root->need_future_gp[c & 0x1]++;
1217
1218 /* If a grace period is not already in progress, start one. */
1219 if (rnp_root->gpnum != rnp_root->completed) {
1220 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1221 } else {
1222 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1223 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1224 }
1225 unlock_out:
1226 if (rnp != rnp_root)
1227 raw_spin_unlock(&rnp_root->lock);
1228 out:
1229 if (c_out != NULL)
1230 *c_out = c;
1231 return ret;
1232 }
1233
1234 /*
1235 * Clean up any old requests for the just-ended grace period. Also return
1236 * whether any additional grace periods have been requested. Also invoke
1237 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1238 * waiting for this grace period to complete.
1239 */
1240 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1241 {
1242 int c = rnp->completed;
1243 int needmore;
1244 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1245
1246 rcu_nocb_gp_cleanup(rsp, rnp);
1247 rnp->need_future_gp[c & 0x1] = 0;
1248 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1249 trace_rcu_future_gp(rnp, rdp, c,
1250 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1251 return needmore;
1252 }
1253
1254 /*
1255 * Awaken the grace-period kthread for the specified flavor of RCU.
1256 * Don't do a self-awaken, and don't bother awakening when there is
1257 * nothing for the grace-period kthread to do (as in several CPUs
1258 * raced to awaken, and we lost), and finally don't try to awaken
1259 * a kthread that has not yet been created.
1260 */
1261 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1262 {
1263 if (current == rsp->gp_kthread ||
1264 !ACCESS_ONCE(rsp->gp_flags) ||
1265 !rsp->gp_kthread)
1266 return;
1267 wake_up(&rsp->gp_wq);
1268 }
1269
1270 /*
1271 * If there is room, assign a ->completed number to any callbacks on
1272 * this CPU that have not already been assigned. Also accelerate any
1273 * callbacks that were previously assigned a ->completed number that has
1274 * since proven to be too conservative, which can happen if callbacks get
1275 * assigned a ->completed number while RCU is idle, but with reference to
1276 * a non-root rcu_node structure. This function is idempotent, so it does
1277 * not hurt to call it repeatedly. Returns an flag saying that we should
1278 * awaken the RCU grace-period kthread.
1279 *
1280 * The caller must hold rnp->lock with interrupts disabled.
1281 */
1282 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1283 struct rcu_data *rdp)
1284 {
1285 unsigned long c;
1286 int i;
1287 bool ret;
1288
1289 /* If the CPU has no callbacks, nothing to do. */
1290 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1291 return false;
1292
1293 /*
1294 * Starting from the sublist containing the callbacks most
1295 * recently assigned a ->completed number and working down, find the
1296 * first sublist that is not assignable to an upcoming grace period.
1297 * Such a sublist has something in it (first two tests) and has
1298 * a ->completed number assigned that will complete sooner than
1299 * the ->completed number for newly arrived callbacks (last test).
1300 *
1301 * The key point is that any later sublist can be assigned the
1302 * same ->completed number as the newly arrived callbacks, which
1303 * means that the callbacks in any of these later sublist can be
1304 * grouped into a single sublist, whether or not they have already
1305 * been assigned a ->completed number.
1306 */
1307 c = rcu_cbs_completed(rsp, rnp);
1308 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1309 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1310 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1311 break;
1312
1313 /*
1314 * If there are no sublist for unassigned callbacks, leave.
1315 * At the same time, advance "i" one sublist, so that "i" will
1316 * index into the sublist where all the remaining callbacks should
1317 * be grouped into.
1318 */
1319 if (++i >= RCU_NEXT_TAIL)
1320 return false;
1321
1322 /*
1323 * Assign all subsequent callbacks' ->completed number to the next
1324 * full grace period and group them all in the sublist initially
1325 * indexed by "i".
1326 */
1327 for (; i <= RCU_NEXT_TAIL; i++) {
1328 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1329 rdp->nxtcompleted[i] = c;
1330 }
1331 /* Record any needed additional grace periods. */
1332 ret = rcu_start_future_gp(rnp, rdp, NULL);
1333
1334 /* Trace depending on how much we were able to accelerate. */
1335 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1336 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1337 else
1338 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1339 return ret;
1340 }
1341
1342 /*
1343 * Move any callbacks whose grace period has completed to the
1344 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1345 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1346 * sublist. This function is idempotent, so it does not hurt to
1347 * invoke it repeatedly. As long as it is not invoked -too- often...
1348 * Returns true if the RCU grace-period kthread needs to be awakened.
1349 *
1350 * The caller must hold rnp->lock with interrupts disabled.
1351 */
1352 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1353 struct rcu_data *rdp)
1354 {
1355 int i, j;
1356
1357 /* If the CPU has no callbacks, nothing to do. */
1358 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1359 return false;
1360
1361 /*
1362 * Find all callbacks whose ->completed numbers indicate that they
1363 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1364 */
1365 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1366 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1367 break;
1368 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1369 }
1370 /* Clean up any sublist tail pointers that were misordered above. */
1371 for (j = RCU_WAIT_TAIL; j < i; j++)
1372 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1373
1374 /* Copy down callbacks to fill in empty sublists. */
1375 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1376 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1377 break;
1378 rdp->nxttail[j] = rdp->nxttail[i];
1379 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1380 }
1381
1382 /* Classify any remaining callbacks. */
1383 return rcu_accelerate_cbs(rsp, rnp, rdp);
1384 }
1385
1386 /*
1387 * Update CPU-local rcu_data state to record the beginnings and ends of
1388 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1389 * structure corresponding to the current CPU, and must have irqs disabled.
1390 * Returns true if the grace-period kthread needs to be awakened.
1391 */
1392 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1393 struct rcu_data *rdp)
1394 {
1395 bool ret;
1396
1397 /* Handle the ends of any preceding grace periods first. */
1398 if (rdp->completed == rnp->completed) {
1399
1400 /* No grace period end, so just accelerate recent callbacks. */
1401 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1402
1403 } else {
1404
1405 /* Advance callbacks. */
1406 ret = rcu_advance_cbs(rsp, rnp, rdp);
1407
1408 /* Remember that we saw this grace-period completion. */
1409 rdp->completed = rnp->completed;
1410 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1411 }
1412
1413 if (rdp->gpnum != rnp->gpnum) {
1414 /*
1415 * If the current grace period is waiting for this CPU,
1416 * set up to detect a quiescent state, otherwise don't
1417 * go looking for one.
1418 */
1419 rdp->gpnum = rnp->gpnum;
1420 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1421 rdp->passed_quiesce = 0;
1422 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1423 zero_cpu_stall_ticks(rdp);
1424 }
1425 return ret;
1426 }
1427
1428 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1429 {
1430 unsigned long flags;
1431 bool needwake;
1432 struct rcu_node *rnp;
1433
1434 local_irq_save(flags);
1435 rnp = rdp->mynode;
1436 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1437 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1438 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1439 local_irq_restore(flags);
1440 return;
1441 }
1442 smp_mb__after_unlock_lock();
1443 needwake = __note_gp_changes(rsp, rnp, rdp);
1444 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1445 if (needwake)
1446 rcu_gp_kthread_wake(rsp);
1447 }
1448
1449 /*
1450 * Initialize a new grace period. Return 0 if no grace period required.
1451 */
1452 static int rcu_gp_init(struct rcu_state *rsp)
1453 {
1454 struct rcu_data *rdp;
1455 struct rcu_node *rnp = rcu_get_root(rsp);
1456
1457 rcu_bind_gp_kthread();
1458 raw_spin_lock_irq(&rnp->lock);
1459 smp_mb__after_unlock_lock();
1460 if (!ACCESS_ONCE(rsp->gp_flags)) {
1461 /* Spurious wakeup, tell caller to go back to sleep. */
1462 raw_spin_unlock_irq(&rnp->lock);
1463 return 0;
1464 }
1465 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1466
1467 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1468 /*
1469 * Grace period already in progress, don't start another.
1470 * Not supposed to be able to happen.
1471 */
1472 raw_spin_unlock_irq(&rnp->lock);
1473 return 0;
1474 }
1475
1476 /* Advance to a new grace period and initialize state. */
1477 record_gp_stall_check_time(rsp);
1478 /* Record GP times before starting GP, hence smp_store_release(). */
1479 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1480 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1481 raw_spin_unlock_irq(&rnp->lock);
1482
1483 /* Exclude any concurrent CPU-hotplug operations. */
1484 mutex_lock(&rsp->onoff_mutex);
1485 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1486
1487 /*
1488 * Set the quiescent-state-needed bits in all the rcu_node
1489 * structures for all currently online CPUs in breadth-first order,
1490 * starting from the root rcu_node structure, relying on the layout
1491 * of the tree within the rsp->node[] array. Note that other CPUs
1492 * will access only the leaves of the hierarchy, thus seeing that no
1493 * grace period is in progress, at least until the corresponding
1494 * leaf node has been initialized. In addition, we have excluded
1495 * CPU-hotplug operations.
1496 *
1497 * The grace period cannot complete until the initialization
1498 * process finishes, because this kthread handles both.
1499 */
1500 rcu_for_each_node_breadth_first(rsp, rnp) {
1501 raw_spin_lock_irq(&rnp->lock);
1502 smp_mb__after_unlock_lock();
1503 rdp = this_cpu_ptr(rsp->rda);
1504 rcu_preempt_check_blocked_tasks(rnp);
1505 rnp->qsmask = rnp->qsmaskinit;
1506 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1507 WARN_ON_ONCE(rnp->completed != rsp->completed);
1508 ACCESS_ONCE(rnp->completed) = rsp->completed;
1509 if (rnp == rdp->mynode)
1510 (void)__note_gp_changes(rsp, rnp, rdp);
1511 rcu_preempt_boost_start_gp(rnp);
1512 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1513 rnp->level, rnp->grplo,
1514 rnp->grphi, rnp->qsmask);
1515 raw_spin_unlock_irq(&rnp->lock);
1516 #ifdef CONFIG_PROVE_RCU_DELAY
1517 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1518 system_state == SYSTEM_RUNNING)
1519 udelay(200);
1520 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1521 cond_resched();
1522 }
1523
1524 mutex_unlock(&rsp->onoff_mutex);
1525 return 1;
1526 }
1527
1528 /*
1529 * Do one round of quiescent-state forcing.
1530 */
1531 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1532 {
1533 int fqs_state = fqs_state_in;
1534 bool isidle = false;
1535 unsigned long maxj;
1536 struct rcu_node *rnp = rcu_get_root(rsp);
1537
1538 rsp->n_force_qs++;
1539 if (fqs_state == RCU_SAVE_DYNTICK) {
1540 /* Collect dyntick-idle snapshots. */
1541 if (is_sysidle_rcu_state(rsp)) {
1542 isidle = 1;
1543 maxj = jiffies - ULONG_MAX / 4;
1544 }
1545 force_qs_rnp(rsp, dyntick_save_progress_counter,
1546 &isidle, &maxj);
1547 rcu_sysidle_report_gp(rsp, isidle, maxj);
1548 fqs_state = RCU_FORCE_QS;
1549 } else {
1550 /* Handle dyntick-idle and offline CPUs. */
1551 isidle = 0;
1552 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1553 }
1554 /* Clear flag to prevent immediate re-entry. */
1555 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1556 raw_spin_lock_irq(&rnp->lock);
1557 smp_mb__after_unlock_lock();
1558 ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS;
1559 raw_spin_unlock_irq(&rnp->lock);
1560 }
1561 return fqs_state;
1562 }
1563
1564 /*
1565 * Clean up after the old grace period.
1566 */
1567 static void rcu_gp_cleanup(struct rcu_state *rsp)
1568 {
1569 unsigned long gp_duration;
1570 bool needgp = false;
1571 int nocb = 0;
1572 struct rcu_data *rdp;
1573 struct rcu_node *rnp = rcu_get_root(rsp);
1574
1575 raw_spin_lock_irq(&rnp->lock);
1576 smp_mb__after_unlock_lock();
1577 gp_duration = jiffies - rsp->gp_start;
1578 if (gp_duration > rsp->gp_max)
1579 rsp->gp_max = gp_duration;
1580
1581 /*
1582 * We know the grace period is complete, but to everyone else
1583 * it appears to still be ongoing. But it is also the case
1584 * that to everyone else it looks like there is nothing that
1585 * they can do to advance the grace period. It is therefore
1586 * safe for us to drop the lock in order to mark the grace
1587 * period as completed in all of the rcu_node structures.
1588 */
1589 raw_spin_unlock_irq(&rnp->lock);
1590
1591 /*
1592 * Propagate new ->completed value to rcu_node structures so
1593 * that other CPUs don't have to wait until the start of the next
1594 * grace period to process their callbacks. This also avoids
1595 * some nasty RCU grace-period initialization races by forcing
1596 * the end of the current grace period to be completely recorded in
1597 * all of the rcu_node structures before the beginning of the next
1598 * grace period is recorded in any of the rcu_node structures.
1599 */
1600 rcu_for_each_node_breadth_first(rsp, rnp) {
1601 raw_spin_lock_irq(&rnp->lock);
1602 smp_mb__after_unlock_lock();
1603 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1604 rdp = this_cpu_ptr(rsp->rda);
1605 if (rnp == rdp->mynode)
1606 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1607 /* smp_mb() provided by prior unlock-lock pair. */
1608 nocb += rcu_future_gp_cleanup(rsp, rnp);
1609 raw_spin_unlock_irq(&rnp->lock);
1610 cond_resched();
1611 }
1612 rnp = rcu_get_root(rsp);
1613 raw_spin_lock_irq(&rnp->lock);
1614 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1615 rcu_nocb_gp_set(rnp, nocb);
1616
1617 /* Declare grace period done. */
1618 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1619 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1620 rsp->fqs_state = RCU_GP_IDLE;
1621 rdp = this_cpu_ptr(rsp->rda);
1622 /* Advance CBs to reduce false positives below. */
1623 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1624 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1625 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1626 trace_rcu_grace_period(rsp->name,
1627 ACCESS_ONCE(rsp->gpnum),
1628 TPS("newreq"));
1629 }
1630 raw_spin_unlock_irq(&rnp->lock);
1631 }
1632
1633 /*
1634 * Body of kthread that handles grace periods.
1635 */
1636 static int __noreturn rcu_gp_kthread(void *arg)
1637 {
1638 int fqs_state;
1639 int gf;
1640 unsigned long j;
1641 int ret;
1642 struct rcu_state *rsp = arg;
1643 struct rcu_node *rnp = rcu_get_root(rsp);
1644
1645 for (;;) {
1646
1647 /* Handle grace-period start. */
1648 for (;;) {
1649 trace_rcu_grace_period(rsp->name,
1650 ACCESS_ONCE(rsp->gpnum),
1651 TPS("reqwait"));
1652 wait_event_interruptible(rsp->gp_wq,
1653 ACCESS_ONCE(rsp->gp_flags) &
1654 RCU_GP_FLAG_INIT);
1655 /* Locking provides needed memory barrier. */
1656 if (rcu_gp_init(rsp))
1657 break;
1658 cond_resched();
1659 flush_signals(current);
1660 trace_rcu_grace_period(rsp->name,
1661 ACCESS_ONCE(rsp->gpnum),
1662 TPS("reqwaitsig"));
1663 }
1664
1665 /* Handle quiescent-state forcing. */
1666 fqs_state = RCU_SAVE_DYNTICK;
1667 j = jiffies_till_first_fqs;
1668 if (j > HZ) {
1669 j = HZ;
1670 jiffies_till_first_fqs = HZ;
1671 }
1672 ret = 0;
1673 for (;;) {
1674 if (!ret)
1675 rsp->jiffies_force_qs = jiffies + j;
1676 trace_rcu_grace_period(rsp->name,
1677 ACCESS_ONCE(rsp->gpnum),
1678 TPS("fqswait"));
1679 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1680 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1681 RCU_GP_FLAG_FQS) ||
1682 (!ACCESS_ONCE(rnp->qsmask) &&
1683 !rcu_preempt_blocked_readers_cgp(rnp)),
1684 j);
1685 /* Locking provides needed memory barriers. */
1686 /* If grace period done, leave loop. */
1687 if (!ACCESS_ONCE(rnp->qsmask) &&
1688 !rcu_preempt_blocked_readers_cgp(rnp))
1689 break;
1690 /* If time for quiescent-state forcing, do it. */
1691 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1692 (gf & RCU_GP_FLAG_FQS)) {
1693 trace_rcu_grace_period(rsp->name,
1694 ACCESS_ONCE(rsp->gpnum),
1695 TPS("fqsstart"));
1696 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1697 trace_rcu_grace_period(rsp->name,
1698 ACCESS_ONCE(rsp->gpnum),
1699 TPS("fqsend"));
1700 cond_resched();
1701 } else {
1702 /* Deal with stray signal. */
1703 cond_resched();
1704 flush_signals(current);
1705 trace_rcu_grace_period(rsp->name,
1706 ACCESS_ONCE(rsp->gpnum),
1707 TPS("fqswaitsig"));
1708 }
1709 j = jiffies_till_next_fqs;
1710 if (j > HZ) {
1711 j = HZ;
1712 jiffies_till_next_fqs = HZ;
1713 } else if (j < 1) {
1714 j = 1;
1715 jiffies_till_next_fqs = 1;
1716 }
1717 }
1718
1719 /* Handle grace-period end. */
1720 rcu_gp_cleanup(rsp);
1721 }
1722 }
1723
1724 /*
1725 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1726 * in preparation for detecting the next grace period. The caller must hold
1727 * the root node's ->lock and hard irqs must be disabled.
1728 *
1729 * Note that it is legal for a dying CPU (which is marked as offline) to
1730 * invoke this function. This can happen when the dying CPU reports its
1731 * quiescent state.
1732 *
1733 * Returns true if the grace-period kthread must be awakened.
1734 */
1735 static bool
1736 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1737 struct rcu_data *rdp)
1738 {
1739 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1740 /*
1741 * Either we have not yet spawned the grace-period
1742 * task, this CPU does not need another grace period,
1743 * or a grace period is already in progress.
1744 * Either way, don't start a new grace period.
1745 */
1746 return false;
1747 }
1748 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1749 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1750 TPS("newreq"));
1751
1752 /*
1753 * We can't do wakeups while holding the rnp->lock, as that
1754 * could cause possible deadlocks with the rq->lock. Defer
1755 * the wakeup to our caller.
1756 */
1757 return true;
1758 }
1759
1760 /*
1761 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1762 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1763 * is invoked indirectly from rcu_advance_cbs(), which would result in
1764 * endless recursion -- or would do so if it wasn't for the self-deadlock
1765 * that is encountered beforehand.
1766 *
1767 * Returns true if the grace-period kthread needs to be awakened.
1768 */
1769 static bool rcu_start_gp(struct rcu_state *rsp)
1770 {
1771 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1772 struct rcu_node *rnp = rcu_get_root(rsp);
1773 bool ret = false;
1774
1775 /*
1776 * If there is no grace period in progress right now, any
1777 * callbacks we have up to this point will be satisfied by the
1778 * next grace period. Also, advancing the callbacks reduces the
1779 * probability of false positives from cpu_needs_another_gp()
1780 * resulting in pointless grace periods. So, advance callbacks
1781 * then start the grace period!
1782 */
1783 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1784 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1785 return ret;
1786 }
1787
1788 /*
1789 * Report a full set of quiescent states to the specified rcu_state
1790 * data structure. This involves cleaning up after the prior grace
1791 * period and letting rcu_start_gp() start up the next grace period
1792 * if one is needed. Note that the caller must hold rnp->lock, which
1793 * is released before return.
1794 */
1795 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1796 __releases(rcu_get_root(rsp)->lock)
1797 {
1798 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1799 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1800 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1801 }
1802
1803 /*
1804 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1805 * Allows quiescent states for a group of CPUs to be reported at one go
1806 * to the specified rcu_node structure, though all the CPUs in the group
1807 * must be represented by the same rcu_node structure (which need not be
1808 * a leaf rcu_node structure, though it often will be). That structure's
1809 * lock must be held upon entry, and it is released before return.
1810 */
1811 static void
1812 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1813 struct rcu_node *rnp, unsigned long flags)
1814 __releases(rnp->lock)
1815 {
1816 struct rcu_node *rnp_c;
1817
1818 /* Walk up the rcu_node hierarchy. */
1819 for (;;) {
1820 if (!(rnp->qsmask & mask)) {
1821
1822 /* Our bit has already been cleared, so done. */
1823 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1824 return;
1825 }
1826 rnp->qsmask &= ~mask;
1827 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1828 mask, rnp->qsmask, rnp->level,
1829 rnp->grplo, rnp->grphi,
1830 !!rnp->gp_tasks);
1831 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1832
1833 /* Other bits still set at this level, so done. */
1834 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1835 return;
1836 }
1837 mask = rnp->grpmask;
1838 if (rnp->parent == NULL) {
1839
1840 /* No more levels. Exit loop holding root lock. */
1841
1842 break;
1843 }
1844 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1845 rnp_c = rnp;
1846 rnp = rnp->parent;
1847 raw_spin_lock_irqsave(&rnp->lock, flags);
1848 smp_mb__after_unlock_lock();
1849 WARN_ON_ONCE(rnp_c->qsmask);
1850 }
1851
1852 /*
1853 * Get here if we are the last CPU to pass through a quiescent
1854 * state for this grace period. Invoke rcu_report_qs_rsp()
1855 * to clean up and start the next grace period if one is needed.
1856 */
1857 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1858 }
1859
1860 /*
1861 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1862 * structure. This must be either called from the specified CPU, or
1863 * called when the specified CPU is known to be offline (and when it is
1864 * also known that no other CPU is concurrently trying to help the offline
1865 * CPU). The lastcomp argument is used to make sure we are still in the
1866 * grace period of interest. We don't want to end the current grace period
1867 * based on quiescent states detected in an earlier grace period!
1868 */
1869 static void
1870 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1871 {
1872 unsigned long flags;
1873 unsigned long mask;
1874 bool needwake;
1875 struct rcu_node *rnp;
1876
1877 rnp = rdp->mynode;
1878 raw_spin_lock_irqsave(&rnp->lock, flags);
1879 smp_mb__after_unlock_lock();
1880 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1881 rnp->completed == rnp->gpnum) {
1882
1883 /*
1884 * The grace period in which this quiescent state was
1885 * recorded has ended, so don't report it upwards.
1886 * We will instead need a new quiescent state that lies
1887 * within the current grace period.
1888 */
1889 rdp->passed_quiesce = 0; /* need qs for new gp. */
1890 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1891 return;
1892 }
1893 mask = rdp->grpmask;
1894 if ((rnp->qsmask & mask) == 0) {
1895 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1896 } else {
1897 rdp->qs_pending = 0;
1898
1899 /*
1900 * This GP can't end until cpu checks in, so all of our
1901 * callbacks can be processed during the next GP.
1902 */
1903 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1904
1905 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1906 if (needwake)
1907 rcu_gp_kthread_wake(rsp);
1908 }
1909 }
1910
1911 /*
1912 * Check to see if there is a new grace period of which this CPU
1913 * is not yet aware, and if so, set up local rcu_data state for it.
1914 * Otherwise, see if this CPU has just passed through its first
1915 * quiescent state for this grace period, and record that fact if so.
1916 */
1917 static void
1918 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1919 {
1920 /* Check for grace-period ends and beginnings. */
1921 note_gp_changes(rsp, rdp);
1922
1923 /*
1924 * Does this CPU still need to do its part for current grace period?
1925 * If no, return and let the other CPUs do their part as well.
1926 */
1927 if (!rdp->qs_pending)
1928 return;
1929
1930 /*
1931 * Was there a quiescent state since the beginning of the grace
1932 * period? If no, then exit and wait for the next call.
1933 */
1934 if (!rdp->passed_quiesce)
1935 return;
1936
1937 /*
1938 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1939 * judge of that).
1940 */
1941 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1942 }
1943
1944 #ifdef CONFIG_HOTPLUG_CPU
1945
1946 /*
1947 * Send the specified CPU's RCU callbacks to the orphanage. The
1948 * specified CPU must be offline, and the caller must hold the
1949 * ->orphan_lock.
1950 */
1951 static void
1952 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1953 struct rcu_node *rnp, struct rcu_data *rdp)
1954 {
1955 /* No-CBs CPUs do not have orphanable callbacks. */
1956 if (rcu_is_nocb_cpu(rdp->cpu))
1957 return;
1958
1959 /*
1960 * Orphan the callbacks. First adjust the counts. This is safe
1961 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1962 * cannot be running now. Thus no memory barrier is required.
1963 */
1964 if (rdp->nxtlist != NULL) {
1965 rsp->qlen_lazy += rdp->qlen_lazy;
1966 rsp->qlen += rdp->qlen;
1967 rdp->n_cbs_orphaned += rdp->qlen;
1968 rdp->qlen_lazy = 0;
1969 ACCESS_ONCE(rdp->qlen) = 0;
1970 }
1971
1972 /*
1973 * Next, move those callbacks still needing a grace period to
1974 * the orphanage, where some other CPU will pick them up.
1975 * Some of the callbacks might have gone partway through a grace
1976 * period, but that is too bad. They get to start over because we
1977 * cannot assume that grace periods are synchronized across CPUs.
1978 * We don't bother updating the ->nxttail[] array yet, instead
1979 * we just reset the whole thing later on.
1980 */
1981 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1982 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1983 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1984 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1985 }
1986
1987 /*
1988 * Then move the ready-to-invoke callbacks to the orphanage,
1989 * where some other CPU will pick them up. These will not be
1990 * required to pass though another grace period: They are done.
1991 */
1992 if (rdp->nxtlist != NULL) {
1993 *rsp->orphan_donetail = rdp->nxtlist;
1994 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1995 }
1996
1997 /* Finally, initialize the rcu_data structure's list to empty. */
1998 init_callback_list(rdp);
1999 }
2000
2001 /*
2002 * Adopt the RCU callbacks from the specified rcu_state structure's
2003 * orphanage. The caller must hold the ->orphan_lock.
2004 */
2005 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2006 {
2007 int i;
2008 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2009
2010 /* No-CBs CPUs are handled specially. */
2011 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2012 return;
2013
2014 /* Do the accounting first. */
2015 rdp->qlen_lazy += rsp->qlen_lazy;
2016 rdp->qlen += rsp->qlen;
2017 rdp->n_cbs_adopted += rsp->qlen;
2018 if (rsp->qlen_lazy != rsp->qlen)
2019 rcu_idle_count_callbacks_posted();
2020 rsp->qlen_lazy = 0;
2021 rsp->qlen = 0;
2022
2023 /*
2024 * We do not need a memory barrier here because the only way we
2025 * can get here if there is an rcu_barrier() in flight is if
2026 * we are the task doing the rcu_barrier().
2027 */
2028
2029 /* First adopt the ready-to-invoke callbacks. */
2030 if (rsp->orphan_donelist != NULL) {
2031 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2032 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2033 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2034 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2035 rdp->nxttail[i] = rsp->orphan_donetail;
2036 rsp->orphan_donelist = NULL;
2037 rsp->orphan_donetail = &rsp->orphan_donelist;
2038 }
2039
2040 /* And then adopt the callbacks that still need a grace period. */
2041 if (rsp->orphan_nxtlist != NULL) {
2042 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2043 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2044 rsp->orphan_nxtlist = NULL;
2045 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2046 }
2047 }
2048
2049 /*
2050 * Trace the fact that this CPU is going offline.
2051 */
2052 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2053 {
2054 RCU_TRACE(unsigned long mask);
2055 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2056 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2057
2058 RCU_TRACE(mask = rdp->grpmask);
2059 trace_rcu_grace_period(rsp->name,
2060 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2061 TPS("cpuofl"));
2062 }
2063
2064 /*
2065 * The CPU has been completely removed, and some other CPU is reporting
2066 * this fact from process context. Do the remainder of the cleanup,
2067 * including orphaning the outgoing CPU's RCU callbacks, and also
2068 * adopting them. There can only be one CPU hotplug operation at a time,
2069 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2070 */
2071 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2072 {
2073 unsigned long flags;
2074 unsigned long mask;
2075 int need_report = 0;
2076 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2077 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2078
2079 /* Adjust any no-longer-needed kthreads. */
2080 rcu_boost_kthread_setaffinity(rnp, -1);
2081
2082 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2083
2084 /* Exclude any attempts to start a new grace period. */
2085 mutex_lock(&rsp->onoff_mutex);
2086 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2087
2088 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2089 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2090 rcu_adopt_orphan_cbs(rsp, flags);
2091
2092 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2093 mask = rdp->grpmask; /* rnp->grplo is constant. */
2094 do {
2095 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2096 smp_mb__after_unlock_lock();
2097 rnp->qsmaskinit &= ~mask;
2098 if (rnp->qsmaskinit != 0) {
2099 if (rnp != rdp->mynode)
2100 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2101 break;
2102 }
2103 if (rnp == rdp->mynode)
2104 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2105 else
2106 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2107 mask = rnp->grpmask;
2108 rnp = rnp->parent;
2109 } while (rnp != NULL);
2110
2111 /*
2112 * We still hold the leaf rcu_node structure lock here, and
2113 * irqs are still disabled. The reason for this subterfuge is
2114 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2115 * held leads to deadlock.
2116 */
2117 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2118 rnp = rdp->mynode;
2119 if (need_report & RCU_OFL_TASKS_NORM_GP)
2120 rcu_report_unblock_qs_rnp(rnp, flags);
2121 else
2122 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2123 if (need_report & RCU_OFL_TASKS_EXP_GP)
2124 rcu_report_exp_rnp(rsp, rnp, true);
2125 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2126 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2127 cpu, rdp->qlen, rdp->nxtlist);
2128 init_callback_list(rdp);
2129 /* Disallow further callbacks on this CPU. */
2130 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2131 mutex_unlock(&rsp->onoff_mutex);
2132 }
2133
2134 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2135
2136 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2137 {
2138 }
2139
2140 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2141 {
2142 }
2143
2144 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2145
2146 /*
2147 * Invoke any RCU callbacks that have made it to the end of their grace
2148 * period. Thottle as specified by rdp->blimit.
2149 */
2150 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2151 {
2152 unsigned long flags;
2153 struct rcu_head *next, *list, **tail;
2154 long bl, count, count_lazy;
2155 int i;
2156
2157 /* If no callbacks are ready, just return. */
2158 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2159 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2160 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2161 need_resched(), is_idle_task(current),
2162 rcu_is_callbacks_kthread());
2163 return;
2164 }
2165
2166 /*
2167 * Extract the list of ready callbacks, disabling to prevent
2168 * races with call_rcu() from interrupt handlers.
2169 */
2170 local_irq_save(flags);
2171 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2172 bl = rdp->blimit;
2173 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2174 list = rdp->nxtlist;
2175 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2176 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2177 tail = rdp->nxttail[RCU_DONE_TAIL];
2178 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2179 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2180 rdp->nxttail[i] = &rdp->nxtlist;
2181 local_irq_restore(flags);
2182
2183 /* Invoke callbacks. */
2184 count = count_lazy = 0;
2185 while (list) {
2186 next = list->next;
2187 prefetch(next);
2188 debug_rcu_head_unqueue(list);
2189 if (__rcu_reclaim(rsp->name, list))
2190 count_lazy++;
2191 list = next;
2192 /* Stop only if limit reached and CPU has something to do. */
2193 if (++count >= bl &&
2194 (need_resched() ||
2195 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2196 break;
2197 }
2198
2199 local_irq_save(flags);
2200 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2201 is_idle_task(current),
2202 rcu_is_callbacks_kthread());
2203
2204 /* Update count, and requeue any remaining callbacks. */
2205 if (list != NULL) {
2206 *tail = rdp->nxtlist;
2207 rdp->nxtlist = list;
2208 for (i = 0; i < RCU_NEXT_SIZE; i++)
2209 if (&rdp->nxtlist == rdp->nxttail[i])
2210 rdp->nxttail[i] = tail;
2211 else
2212 break;
2213 }
2214 smp_mb(); /* List handling before counting for rcu_barrier(). */
2215 rdp->qlen_lazy -= count_lazy;
2216 ACCESS_ONCE(rdp->qlen) -= count;
2217 rdp->n_cbs_invoked += count;
2218
2219 /* Reinstate batch limit if we have worked down the excess. */
2220 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2221 rdp->blimit = blimit;
2222
2223 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2224 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2225 rdp->qlen_last_fqs_check = 0;
2226 rdp->n_force_qs_snap = rsp->n_force_qs;
2227 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2228 rdp->qlen_last_fqs_check = rdp->qlen;
2229 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2230
2231 local_irq_restore(flags);
2232
2233 /* Re-invoke RCU core processing if there are callbacks remaining. */
2234 if (cpu_has_callbacks_ready_to_invoke(rdp))
2235 invoke_rcu_core();
2236 }
2237
2238 /*
2239 * Check to see if this CPU is in a non-context-switch quiescent state
2240 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2241 * Also schedule RCU core processing.
2242 *
2243 * This function must be called from hardirq context. It is normally
2244 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2245 * false, there is no point in invoking rcu_check_callbacks().
2246 */
2247 void rcu_check_callbacks(int cpu, int user)
2248 {
2249 trace_rcu_utilization(TPS("Start scheduler-tick"));
2250 increment_cpu_stall_ticks();
2251 if (user || rcu_is_cpu_rrupt_from_idle()) {
2252
2253 /*
2254 * Get here if this CPU took its interrupt from user
2255 * mode or from the idle loop, and if this is not a
2256 * nested interrupt. In this case, the CPU is in
2257 * a quiescent state, so note it.
2258 *
2259 * No memory barrier is required here because both
2260 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2261 * variables that other CPUs neither access nor modify,
2262 * at least not while the corresponding CPU is online.
2263 */
2264
2265 rcu_sched_qs(cpu);
2266 rcu_bh_qs(cpu);
2267
2268 } else if (!in_softirq()) {
2269
2270 /*
2271 * Get here if this CPU did not take its interrupt from
2272 * softirq, in other words, if it is not interrupting
2273 * a rcu_bh read-side critical section. This is an _bh
2274 * critical section, so note it.
2275 */
2276
2277 rcu_bh_qs(cpu);
2278 }
2279 rcu_preempt_check_callbacks(cpu);
2280 if (rcu_pending(cpu))
2281 invoke_rcu_core();
2282 trace_rcu_utilization(TPS("End scheduler-tick"));
2283 }
2284
2285 /*
2286 * Scan the leaf rcu_node structures, processing dyntick state for any that
2287 * have not yet encountered a quiescent state, using the function specified.
2288 * Also initiate boosting for any threads blocked on the root rcu_node.
2289 *
2290 * The caller must have suppressed start of new grace periods.
2291 */
2292 static void force_qs_rnp(struct rcu_state *rsp,
2293 int (*f)(struct rcu_data *rsp, bool *isidle,
2294 unsigned long *maxj),
2295 bool *isidle, unsigned long *maxj)
2296 {
2297 unsigned long bit;
2298 int cpu;
2299 unsigned long flags;
2300 unsigned long mask;
2301 struct rcu_node *rnp;
2302
2303 rcu_for_each_leaf_node(rsp, rnp) {
2304 cond_resched();
2305 mask = 0;
2306 raw_spin_lock_irqsave(&rnp->lock, flags);
2307 smp_mb__after_unlock_lock();
2308 if (!rcu_gp_in_progress(rsp)) {
2309 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2310 return;
2311 }
2312 if (rnp->qsmask == 0) {
2313 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2314 continue;
2315 }
2316 cpu = rnp->grplo;
2317 bit = 1;
2318 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2319 if ((rnp->qsmask & bit) != 0) {
2320 if ((rnp->qsmaskinit & bit) != 0)
2321 *isidle = 0;
2322 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2323 mask |= bit;
2324 }
2325 }
2326 if (mask != 0) {
2327
2328 /* rcu_report_qs_rnp() releases rnp->lock. */
2329 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2330 continue;
2331 }
2332 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2333 }
2334 rnp = rcu_get_root(rsp);
2335 if (rnp->qsmask == 0) {
2336 raw_spin_lock_irqsave(&rnp->lock, flags);
2337 smp_mb__after_unlock_lock();
2338 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2339 }
2340 }
2341
2342 /*
2343 * Force quiescent states on reluctant CPUs, and also detect which
2344 * CPUs are in dyntick-idle mode.
2345 */
2346 static void force_quiescent_state(struct rcu_state *rsp)
2347 {
2348 unsigned long flags;
2349 bool ret;
2350 struct rcu_node *rnp;
2351 struct rcu_node *rnp_old = NULL;
2352
2353 /* Funnel through hierarchy to reduce memory contention. */
2354 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2355 for (; rnp != NULL; rnp = rnp->parent) {
2356 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2357 !raw_spin_trylock(&rnp->fqslock);
2358 if (rnp_old != NULL)
2359 raw_spin_unlock(&rnp_old->fqslock);
2360 if (ret) {
2361 ACCESS_ONCE(rsp->n_force_qs_lh)++;
2362 return;
2363 }
2364 rnp_old = rnp;
2365 }
2366 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2367
2368 /* Reached the root of the rcu_node tree, acquire lock. */
2369 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2370 smp_mb__after_unlock_lock();
2371 raw_spin_unlock(&rnp_old->fqslock);
2372 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2373 ACCESS_ONCE(rsp->n_force_qs_lh)++;
2374 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2375 return; /* Someone beat us to it. */
2376 }
2377 ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS;
2378 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2379 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2380 }
2381
2382 /*
2383 * This does the RCU core processing work for the specified rcu_state
2384 * and rcu_data structures. This may be called only from the CPU to
2385 * whom the rdp belongs.
2386 */
2387 static void
2388 __rcu_process_callbacks(struct rcu_state *rsp)
2389 {
2390 unsigned long flags;
2391 bool needwake;
2392 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2393
2394 WARN_ON_ONCE(rdp->beenonline == 0);
2395
2396 /* Update RCU state based on any recent quiescent states. */
2397 rcu_check_quiescent_state(rsp, rdp);
2398
2399 /* Does this CPU require a not-yet-started grace period? */
2400 local_irq_save(flags);
2401 if (cpu_needs_another_gp(rsp, rdp)) {
2402 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2403 needwake = rcu_start_gp(rsp);
2404 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2405 if (needwake)
2406 rcu_gp_kthread_wake(rsp);
2407 } else {
2408 local_irq_restore(flags);
2409 }
2410
2411 /* If there are callbacks ready, invoke them. */
2412 if (cpu_has_callbacks_ready_to_invoke(rdp))
2413 invoke_rcu_callbacks(rsp, rdp);
2414
2415 /* Do any needed deferred wakeups of rcuo kthreads. */
2416 do_nocb_deferred_wakeup(rdp);
2417 }
2418
2419 /*
2420 * Do RCU core processing for the current CPU.
2421 */
2422 static void rcu_process_callbacks(struct softirq_action *unused)
2423 {
2424 struct rcu_state *rsp;
2425
2426 if (cpu_is_offline(smp_processor_id()))
2427 return;
2428 trace_rcu_utilization(TPS("Start RCU core"));
2429 for_each_rcu_flavor(rsp)
2430 __rcu_process_callbacks(rsp);
2431 trace_rcu_utilization(TPS("End RCU core"));
2432 }
2433
2434 /*
2435 * Schedule RCU callback invocation. If the specified type of RCU
2436 * does not support RCU priority boosting, just do a direct call,
2437 * otherwise wake up the per-CPU kernel kthread. Note that because we
2438 * are running on the current CPU with interrupts disabled, the
2439 * rcu_cpu_kthread_task cannot disappear out from under us.
2440 */
2441 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2442 {
2443 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2444 return;
2445 if (likely(!rsp->boost)) {
2446 rcu_do_batch(rsp, rdp);
2447 return;
2448 }
2449 invoke_rcu_callbacks_kthread();
2450 }
2451
2452 static void invoke_rcu_core(void)
2453 {
2454 if (cpu_online(smp_processor_id()))
2455 raise_softirq(RCU_SOFTIRQ);
2456 }
2457
2458 /*
2459 * Handle any core-RCU processing required by a call_rcu() invocation.
2460 */
2461 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2462 struct rcu_head *head, unsigned long flags)
2463 {
2464 bool needwake;
2465
2466 /*
2467 * If called from an extended quiescent state, invoke the RCU
2468 * core in order to force a re-evaluation of RCU's idleness.
2469 */
2470 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2471 invoke_rcu_core();
2472
2473 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2474 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2475 return;
2476
2477 /*
2478 * Force the grace period if too many callbacks or too long waiting.
2479 * Enforce hysteresis, and don't invoke force_quiescent_state()
2480 * if some other CPU has recently done so. Also, don't bother
2481 * invoking force_quiescent_state() if the newly enqueued callback
2482 * is the only one waiting for a grace period to complete.
2483 */
2484 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2485
2486 /* Are we ignoring a completed grace period? */
2487 note_gp_changes(rsp, rdp);
2488
2489 /* Start a new grace period if one not already started. */
2490 if (!rcu_gp_in_progress(rsp)) {
2491 struct rcu_node *rnp_root = rcu_get_root(rsp);
2492
2493 raw_spin_lock(&rnp_root->lock);
2494 smp_mb__after_unlock_lock();
2495 needwake = rcu_start_gp(rsp);
2496 raw_spin_unlock(&rnp_root->lock);
2497 if (needwake)
2498 rcu_gp_kthread_wake(rsp);
2499 } else {
2500 /* Give the grace period a kick. */
2501 rdp->blimit = LONG_MAX;
2502 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2503 *rdp->nxttail[RCU_DONE_TAIL] != head)
2504 force_quiescent_state(rsp);
2505 rdp->n_force_qs_snap = rsp->n_force_qs;
2506 rdp->qlen_last_fqs_check = rdp->qlen;
2507 }
2508 }
2509 }
2510
2511 /*
2512 * RCU callback function to leak a callback.
2513 */
2514 static void rcu_leak_callback(struct rcu_head *rhp)
2515 {
2516 }
2517
2518 /*
2519 * Helper function for call_rcu() and friends. The cpu argument will
2520 * normally be -1, indicating "currently running CPU". It may specify
2521 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2522 * is expected to specify a CPU.
2523 */
2524 static void
2525 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2526 struct rcu_state *rsp, int cpu, bool lazy)
2527 {
2528 unsigned long flags;
2529 struct rcu_data *rdp;
2530
2531 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2532 if (debug_rcu_head_queue(head)) {
2533 /* Probable double call_rcu(), so leak the callback. */
2534 ACCESS_ONCE(head->func) = rcu_leak_callback;
2535 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2536 return;
2537 }
2538 head->func = func;
2539 head->next = NULL;
2540
2541 /*
2542 * Opportunistically note grace-period endings and beginnings.
2543 * Note that we might see a beginning right after we see an
2544 * end, but never vice versa, since this CPU has to pass through
2545 * a quiescent state betweentimes.
2546 */
2547 local_irq_save(flags);
2548 rdp = this_cpu_ptr(rsp->rda);
2549
2550 /* Add the callback to our list. */
2551 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2552 int offline;
2553
2554 if (cpu != -1)
2555 rdp = per_cpu_ptr(rsp->rda, cpu);
2556 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2557 WARN_ON_ONCE(offline);
2558 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2559 local_irq_restore(flags);
2560 return;
2561 }
2562 ACCESS_ONCE(rdp->qlen)++;
2563 if (lazy)
2564 rdp->qlen_lazy++;
2565 else
2566 rcu_idle_count_callbacks_posted();
2567 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2568 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2569 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2570
2571 if (__is_kfree_rcu_offset((unsigned long)func))
2572 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2573 rdp->qlen_lazy, rdp->qlen);
2574 else
2575 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2576
2577 /* Go handle any RCU core processing required. */
2578 __call_rcu_core(rsp, rdp, head, flags);
2579 local_irq_restore(flags);
2580 }
2581
2582 /*
2583 * Queue an RCU-sched callback for invocation after a grace period.
2584 */
2585 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2586 {
2587 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2588 }
2589 EXPORT_SYMBOL_GPL(call_rcu_sched);
2590
2591 /*
2592 * Queue an RCU callback for invocation after a quicker grace period.
2593 */
2594 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2595 {
2596 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2597 }
2598 EXPORT_SYMBOL_GPL(call_rcu_bh);
2599
2600 /*
2601 * Queue an RCU callback for lazy invocation after a grace period.
2602 * This will likely be later named something like "call_rcu_lazy()",
2603 * but this change will require some way of tagging the lazy RCU
2604 * callbacks in the list of pending callbacks. Until then, this
2605 * function may only be called from __kfree_rcu().
2606 */
2607 void kfree_call_rcu(struct rcu_head *head,
2608 void (*func)(struct rcu_head *rcu))
2609 {
2610 __call_rcu(head, func, rcu_state, -1, 1);
2611 }
2612 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2613
2614 /*
2615 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2616 * any blocking grace-period wait automatically implies a grace period
2617 * if there is only one CPU online at any point time during execution
2618 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2619 * occasionally incorrectly indicate that there are multiple CPUs online
2620 * when there was in fact only one the whole time, as this just adds
2621 * some overhead: RCU still operates correctly.
2622 */
2623 static inline int rcu_blocking_is_gp(void)
2624 {
2625 int ret;
2626
2627 might_sleep(); /* Check for RCU read-side critical section. */
2628 preempt_disable();
2629 ret = num_online_cpus() <= 1;
2630 preempt_enable();
2631 return ret;
2632 }
2633
2634 /**
2635 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2636 *
2637 * Control will return to the caller some time after a full rcu-sched
2638 * grace period has elapsed, in other words after all currently executing
2639 * rcu-sched read-side critical sections have completed. These read-side
2640 * critical sections are delimited by rcu_read_lock_sched() and
2641 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2642 * local_irq_disable(), and so on may be used in place of
2643 * rcu_read_lock_sched().
2644 *
2645 * This means that all preempt_disable code sequences, including NMI and
2646 * non-threaded hardware-interrupt handlers, in progress on entry will
2647 * have completed before this primitive returns. However, this does not
2648 * guarantee that softirq handlers will have completed, since in some
2649 * kernels, these handlers can run in process context, and can block.
2650 *
2651 * Note that this guarantee implies further memory-ordering guarantees.
2652 * On systems with more than one CPU, when synchronize_sched() returns,
2653 * each CPU is guaranteed to have executed a full memory barrier since the
2654 * end of its last RCU-sched read-side critical section whose beginning
2655 * preceded the call to synchronize_sched(). In addition, each CPU having
2656 * an RCU read-side critical section that extends beyond the return from
2657 * synchronize_sched() is guaranteed to have executed a full memory barrier
2658 * after the beginning of synchronize_sched() and before the beginning of
2659 * that RCU read-side critical section. Note that these guarantees include
2660 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2661 * that are executing in the kernel.
2662 *
2663 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2664 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2665 * to have executed a full memory barrier during the execution of
2666 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2667 * again only if the system has more than one CPU).
2668 *
2669 * This primitive provides the guarantees made by the (now removed)
2670 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2671 * guarantees that rcu_read_lock() sections will have completed.
2672 * In "classic RCU", these two guarantees happen to be one and
2673 * the same, but can differ in realtime RCU implementations.
2674 */
2675 void synchronize_sched(void)
2676 {
2677 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2678 !lock_is_held(&rcu_lock_map) &&
2679 !lock_is_held(&rcu_sched_lock_map),
2680 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2681 if (rcu_blocking_is_gp())
2682 return;
2683 if (rcu_expedited)
2684 synchronize_sched_expedited();
2685 else
2686 wait_rcu_gp(call_rcu_sched);
2687 }
2688 EXPORT_SYMBOL_GPL(synchronize_sched);
2689
2690 /**
2691 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2692 *
2693 * Control will return to the caller some time after a full rcu_bh grace
2694 * period has elapsed, in other words after all currently executing rcu_bh
2695 * read-side critical sections have completed. RCU read-side critical
2696 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2697 * and may be nested.
2698 *
2699 * See the description of synchronize_sched() for more detailed information
2700 * on memory ordering guarantees.
2701 */
2702 void synchronize_rcu_bh(void)
2703 {
2704 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2705 !lock_is_held(&rcu_lock_map) &&
2706 !lock_is_held(&rcu_sched_lock_map),
2707 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2708 if (rcu_blocking_is_gp())
2709 return;
2710 if (rcu_expedited)
2711 synchronize_rcu_bh_expedited();
2712 else
2713 wait_rcu_gp(call_rcu_bh);
2714 }
2715 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2716
2717 /**
2718 * get_state_synchronize_rcu - Snapshot current RCU state
2719 *
2720 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2721 * to determine whether or not a full grace period has elapsed in the
2722 * meantime.
2723 */
2724 unsigned long get_state_synchronize_rcu(void)
2725 {
2726 /*
2727 * Any prior manipulation of RCU-protected data must happen
2728 * before the load from ->gpnum.
2729 */
2730 smp_mb(); /* ^^^ */
2731
2732 /*
2733 * Make sure this load happens before the purportedly
2734 * time-consuming work between get_state_synchronize_rcu()
2735 * and cond_synchronize_rcu().
2736 */
2737 return smp_load_acquire(&rcu_state->gpnum);
2738 }
2739 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2740
2741 /**
2742 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2743 *
2744 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2745 *
2746 * If a full RCU grace period has elapsed since the earlier call to
2747 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2748 * synchronize_rcu() to wait for a full grace period.
2749 *
2750 * Yes, this function does not take counter wrap into account. But
2751 * counter wrap is harmless. If the counter wraps, we have waited for
2752 * more than 2 billion grace periods (and way more on a 64-bit system!),
2753 * so waiting for one additional grace period should be just fine.
2754 */
2755 void cond_synchronize_rcu(unsigned long oldstate)
2756 {
2757 unsigned long newstate;
2758
2759 /*
2760 * Ensure that this load happens before any RCU-destructive
2761 * actions the caller might carry out after we return.
2762 */
2763 newstate = smp_load_acquire(&rcu_state->completed);
2764 if (ULONG_CMP_GE(oldstate, newstate))
2765 synchronize_rcu();
2766 }
2767 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2768
2769 static int synchronize_sched_expedited_cpu_stop(void *data)
2770 {
2771 /*
2772 * There must be a full memory barrier on each affected CPU
2773 * between the time that try_stop_cpus() is called and the
2774 * time that it returns.
2775 *
2776 * In the current initial implementation of cpu_stop, the
2777 * above condition is already met when the control reaches
2778 * this point and the following smp_mb() is not strictly
2779 * necessary. Do smp_mb() anyway for documentation and
2780 * robustness against future implementation changes.
2781 */
2782 smp_mb(); /* See above comment block. */
2783 return 0;
2784 }
2785
2786 /**
2787 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2788 *
2789 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2790 * approach to force the grace period to end quickly. This consumes
2791 * significant time on all CPUs and is unfriendly to real-time workloads,
2792 * so is thus not recommended for any sort of common-case code. In fact,
2793 * if you are using synchronize_sched_expedited() in a loop, please
2794 * restructure your code to batch your updates, and then use a single
2795 * synchronize_sched() instead.
2796 *
2797 * Note that it is illegal to call this function while holding any lock
2798 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2799 * to call this function from a CPU-hotplug notifier. Failing to observe
2800 * these restriction will result in deadlock.
2801 *
2802 * This implementation can be thought of as an application of ticket
2803 * locking to RCU, with sync_sched_expedited_started and
2804 * sync_sched_expedited_done taking on the roles of the halves
2805 * of the ticket-lock word. Each task atomically increments
2806 * sync_sched_expedited_started upon entry, snapshotting the old value,
2807 * then attempts to stop all the CPUs. If this succeeds, then each
2808 * CPU will have executed a context switch, resulting in an RCU-sched
2809 * grace period. We are then done, so we use atomic_cmpxchg() to
2810 * update sync_sched_expedited_done to match our snapshot -- but
2811 * only if someone else has not already advanced past our snapshot.
2812 *
2813 * On the other hand, if try_stop_cpus() fails, we check the value
2814 * of sync_sched_expedited_done. If it has advanced past our
2815 * initial snapshot, then someone else must have forced a grace period
2816 * some time after we took our snapshot. In this case, our work is
2817 * done for us, and we can simply return. Otherwise, we try again,
2818 * but keep our initial snapshot for purposes of checking for someone
2819 * doing our work for us.
2820 *
2821 * If we fail too many times in a row, we fall back to synchronize_sched().
2822 */
2823 void synchronize_sched_expedited(void)
2824 {
2825 long firstsnap, s, snap;
2826 int trycount = 0;
2827 struct rcu_state *rsp = &rcu_sched_state;
2828
2829 /*
2830 * If we are in danger of counter wrap, just do synchronize_sched().
2831 * By allowing sync_sched_expedited_started to advance no more than
2832 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2833 * that more than 3.5 billion CPUs would be required to force a
2834 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2835 * course be required on a 64-bit system.
2836 */
2837 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2838 (ulong)atomic_long_read(&rsp->expedited_done) +
2839 ULONG_MAX / 8)) {
2840 synchronize_sched();
2841 atomic_long_inc(&rsp->expedited_wrap);
2842 return;
2843 }
2844
2845 /*
2846 * Take a ticket. Note that atomic_inc_return() implies a
2847 * full memory barrier.
2848 */
2849 snap = atomic_long_inc_return(&rsp->expedited_start);
2850 firstsnap = snap;
2851 get_online_cpus();
2852 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2853
2854 /*
2855 * Each pass through the following loop attempts to force a
2856 * context switch on each CPU.
2857 */
2858 while (try_stop_cpus(cpu_online_mask,
2859 synchronize_sched_expedited_cpu_stop,
2860 NULL) == -EAGAIN) {
2861 put_online_cpus();
2862 atomic_long_inc(&rsp->expedited_tryfail);
2863
2864 /* Check to see if someone else did our work for us. */
2865 s = atomic_long_read(&rsp->expedited_done);
2866 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2867 /* ensure test happens before caller kfree */
2868 smp_mb__before_atomic_inc(); /* ^^^ */
2869 atomic_long_inc(&rsp->expedited_workdone1);
2870 return;
2871 }
2872
2873 /* No joy, try again later. Or just synchronize_sched(). */
2874 if (trycount++ < 10) {
2875 udelay(trycount * num_online_cpus());
2876 } else {
2877 wait_rcu_gp(call_rcu_sched);
2878 atomic_long_inc(&rsp->expedited_normal);
2879 return;
2880 }
2881
2882 /* Recheck to see if someone else did our work for us. */
2883 s = atomic_long_read(&rsp->expedited_done);
2884 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2885 /* ensure test happens before caller kfree */
2886 smp_mb__before_atomic_inc(); /* ^^^ */
2887 atomic_long_inc(&rsp->expedited_workdone2);
2888 return;
2889 }
2890
2891 /*
2892 * Refetching sync_sched_expedited_started allows later
2893 * callers to piggyback on our grace period. We retry
2894 * after they started, so our grace period works for them,
2895 * and they started after our first try, so their grace
2896 * period works for us.
2897 */
2898 get_online_cpus();
2899 snap = atomic_long_read(&rsp->expedited_start);
2900 smp_mb(); /* ensure read is before try_stop_cpus(). */
2901 }
2902 atomic_long_inc(&rsp->expedited_stoppedcpus);
2903
2904 /*
2905 * Everyone up to our most recent fetch is covered by our grace
2906 * period. Update the counter, but only if our work is still
2907 * relevant -- which it won't be if someone who started later
2908 * than we did already did their update.
2909 */
2910 do {
2911 atomic_long_inc(&rsp->expedited_done_tries);
2912 s = atomic_long_read(&rsp->expedited_done);
2913 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2914 /* ensure test happens before caller kfree */
2915 smp_mb__before_atomic_inc(); /* ^^^ */
2916 atomic_long_inc(&rsp->expedited_done_lost);
2917 break;
2918 }
2919 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2920 atomic_long_inc(&rsp->expedited_done_exit);
2921
2922 put_online_cpus();
2923 }
2924 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2925
2926 /*
2927 * Check to see if there is any immediate RCU-related work to be done
2928 * by the current CPU, for the specified type of RCU, returning 1 if so.
2929 * The checks are in order of increasing expense: checks that can be
2930 * carried out against CPU-local state are performed first. However,
2931 * we must check for CPU stalls first, else we might not get a chance.
2932 */
2933 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2934 {
2935 struct rcu_node *rnp = rdp->mynode;
2936
2937 rdp->n_rcu_pending++;
2938
2939 /* Check for CPU stalls, if enabled. */
2940 check_cpu_stall(rsp, rdp);
2941
2942 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2943 if (rcu_nohz_full_cpu(rsp))
2944 return 0;
2945
2946 /* Is the RCU core waiting for a quiescent state from this CPU? */
2947 if (rcu_scheduler_fully_active &&
2948 rdp->qs_pending && !rdp->passed_quiesce) {
2949 rdp->n_rp_qs_pending++;
2950 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2951 rdp->n_rp_report_qs++;
2952 return 1;
2953 }
2954
2955 /* Does this CPU have callbacks ready to invoke? */
2956 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2957 rdp->n_rp_cb_ready++;
2958 return 1;
2959 }
2960
2961 /* Has RCU gone idle with this CPU needing another grace period? */
2962 if (cpu_needs_another_gp(rsp, rdp)) {
2963 rdp->n_rp_cpu_needs_gp++;
2964 return 1;
2965 }
2966
2967 /* Has another RCU grace period completed? */
2968 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2969 rdp->n_rp_gp_completed++;
2970 return 1;
2971 }
2972
2973 /* Has a new RCU grace period started? */
2974 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2975 rdp->n_rp_gp_started++;
2976 return 1;
2977 }
2978
2979 /* Does this CPU need a deferred NOCB wakeup? */
2980 if (rcu_nocb_need_deferred_wakeup(rdp)) {
2981 rdp->n_rp_nocb_defer_wakeup++;
2982 return 1;
2983 }
2984
2985 /* nothing to do */
2986 rdp->n_rp_need_nothing++;
2987 return 0;
2988 }
2989
2990 /*
2991 * Check to see if there is any immediate RCU-related work to be done
2992 * by the current CPU, returning 1 if so. This function is part of the
2993 * RCU implementation; it is -not- an exported member of the RCU API.
2994 */
2995 static int rcu_pending(int cpu)
2996 {
2997 struct rcu_state *rsp;
2998
2999 for_each_rcu_flavor(rsp)
3000 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
3001 return 1;
3002 return 0;
3003 }
3004
3005 /*
3006 * Return true if the specified CPU has any callback. If all_lazy is
3007 * non-NULL, store an indication of whether all callbacks are lazy.
3008 * (If there are no callbacks, all of them are deemed to be lazy.)
3009 */
3010 static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
3011 {
3012 bool al = true;
3013 bool hc = false;
3014 struct rcu_data *rdp;
3015 struct rcu_state *rsp;
3016
3017 for_each_rcu_flavor(rsp) {
3018 rdp = per_cpu_ptr(rsp->rda, cpu);
3019 if (!rdp->nxtlist)
3020 continue;
3021 hc = true;
3022 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3023 al = false;
3024 break;
3025 }
3026 }
3027 if (all_lazy)
3028 *all_lazy = al;
3029 return hc;
3030 }
3031
3032 /*
3033 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3034 * the compiler is expected to optimize this away.
3035 */
3036 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3037 int cpu, unsigned long done)
3038 {
3039 trace_rcu_barrier(rsp->name, s, cpu,
3040 atomic_read(&rsp->barrier_cpu_count), done);
3041 }
3042
3043 /*
3044 * RCU callback function for _rcu_barrier(). If we are last, wake
3045 * up the task executing _rcu_barrier().
3046 */
3047 static void rcu_barrier_callback(struct rcu_head *rhp)
3048 {
3049 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3050 struct rcu_state *rsp = rdp->rsp;
3051
3052 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3053 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3054 complete(&rsp->barrier_completion);
3055 } else {
3056 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3057 }
3058 }
3059
3060 /*
3061 * Called with preemption disabled, and from cross-cpu IRQ context.
3062 */
3063 static void rcu_barrier_func(void *type)
3064 {
3065 struct rcu_state *rsp = type;
3066 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
3067
3068 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3069 atomic_inc(&rsp->barrier_cpu_count);
3070 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3071 }
3072
3073 /*
3074 * Orchestrate the specified type of RCU barrier, waiting for all
3075 * RCU callbacks of the specified type to complete.
3076 */
3077 static void _rcu_barrier(struct rcu_state *rsp)
3078 {
3079 int cpu;
3080 struct rcu_data *rdp;
3081 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3082 unsigned long snap_done;
3083
3084 _rcu_barrier_trace(rsp, "Begin", -1, snap);
3085
3086 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3087 mutex_lock(&rsp->barrier_mutex);
3088
3089 /*
3090 * Ensure that all prior references, including to ->n_barrier_done,
3091 * are ordered before the _rcu_barrier() machinery.
3092 */
3093 smp_mb(); /* See above block comment. */
3094
3095 /*
3096 * Recheck ->n_barrier_done to see if others did our work for us.
3097 * This means checking ->n_barrier_done for an even-to-odd-to-even
3098 * transition. The "if" expression below therefore rounds the old
3099 * value up to the next even number and adds two before comparing.
3100 */
3101 snap_done = rsp->n_barrier_done;
3102 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3103
3104 /*
3105 * If the value in snap is odd, we needed to wait for the current
3106 * rcu_barrier() to complete, then wait for the next one, in other
3107 * words, we need the value of snap_done to be three larger than
3108 * the value of snap. On the other hand, if the value in snap is
3109 * even, we only had to wait for the next rcu_barrier() to complete,
3110 * in other words, we need the value of snap_done to be only two
3111 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3112 * this for us (thank you, Linus!).
3113 */
3114 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3115 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3116 smp_mb(); /* caller's subsequent code after above check. */
3117 mutex_unlock(&rsp->barrier_mutex);
3118 return;
3119 }
3120
3121 /*
3122 * Increment ->n_barrier_done to avoid duplicate work. Use
3123 * ACCESS_ONCE() to prevent the compiler from speculating
3124 * the increment to precede the early-exit check.
3125 */
3126 ACCESS_ONCE(rsp->n_barrier_done)++;
3127 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3128 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3129 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3130
3131 /*
3132 * Initialize the count to one rather than to zero in order to
3133 * avoid a too-soon return to zero in case of a short grace period
3134 * (or preemption of this task). Exclude CPU-hotplug operations
3135 * to ensure that no offline CPU has callbacks queued.
3136 */
3137 init_completion(&rsp->barrier_completion);
3138 atomic_set(&rsp->barrier_cpu_count, 1);
3139 get_online_cpus();
3140
3141 /*
3142 * Force each CPU with callbacks to register a new callback.
3143 * When that callback is invoked, we will know that all of the
3144 * corresponding CPU's preceding callbacks have been invoked.
3145 */
3146 for_each_possible_cpu(cpu) {
3147 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3148 continue;
3149 rdp = per_cpu_ptr(rsp->rda, cpu);
3150 if (rcu_is_nocb_cpu(cpu)) {
3151 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3152 rsp->n_barrier_done);
3153 atomic_inc(&rsp->barrier_cpu_count);
3154 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3155 rsp, cpu, 0);
3156 } else if (ACCESS_ONCE(rdp->qlen)) {
3157 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3158 rsp->n_barrier_done);
3159 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3160 } else {
3161 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3162 rsp->n_barrier_done);
3163 }
3164 }
3165 put_online_cpus();
3166
3167 /*
3168 * Now that we have an rcu_barrier_callback() callback on each
3169 * CPU, and thus each counted, remove the initial count.
3170 */
3171 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3172 complete(&rsp->barrier_completion);
3173
3174 /* Increment ->n_barrier_done to prevent duplicate work. */
3175 smp_mb(); /* Keep increment after above mechanism. */
3176 ACCESS_ONCE(rsp->n_barrier_done)++;
3177 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3178 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3179 smp_mb(); /* Keep increment before caller's subsequent code. */
3180
3181 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3182 wait_for_completion(&rsp->barrier_completion);
3183
3184 /* Other rcu_barrier() invocations can now safely proceed. */
3185 mutex_unlock(&rsp->barrier_mutex);
3186 }
3187
3188 /**
3189 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3190 */
3191 void rcu_barrier_bh(void)
3192 {
3193 _rcu_barrier(&rcu_bh_state);
3194 }
3195 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3196
3197 /**
3198 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3199 */
3200 void rcu_barrier_sched(void)
3201 {
3202 _rcu_barrier(&rcu_sched_state);
3203 }
3204 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3205
3206 /*
3207 * Do boot-time initialization of a CPU's per-CPU RCU data.
3208 */
3209 static void __init
3210 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3211 {
3212 unsigned long flags;
3213 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3214 struct rcu_node *rnp = rcu_get_root(rsp);
3215
3216 /* Set up local state, ensuring consistent view of global state. */
3217 raw_spin_lock_irqsave(&rnp->lock, flags);
3218 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3219 init_callback_list(rdp);
3220 rdp->qlen_lazy = 0;
3221 ACCESS_ONCE(rdp->qlen) = 0;
3222 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3223 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3224 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3225 rdp->cpu = cpu;
3226 rdp->rsp = rsp;
3227 rcu_boot_init_nocb_percpu_data(rdp);
3228 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3229 }
3230
3231 /*
3232 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3233 * offline event can be happening at a given time. Note also that we
3234 * can accept some slop in the rsp->completed access due to the fact
3235 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3236 */
3237 static void
3238 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3239 {
3240 unsigned long flags;
3241 unsigned long mask;
3242 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3243 struct rcu_node *rnp = rcu_get_root(rsp);
3244
3245 /* Exclude new grace periods. */
3246 mutex_lock(&rsp->onoff_mutex);
3247
3248 /* Set up local state, ensuring consistent view of global state. */
3249 raw_spin_lock_irqsave(&rnp->lock, flags);
3250 rdp->beenonline = 1; /* We have now been online. */
3251 rdp->qlen_last_fqs_check = 0;
3252 rdp->n_force_qs_snap = rsp->n_force_qs;
3253 rdp->blimit = blimit;
3254 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3255 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3256 rcu_sysidle_init_percpu_data(rdp->dynticks);
3257 atomic_set(&rdp->dynticks->dynticks,
3258 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3259 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3260
3261 /* Add CPU to rcu_node bitmasks. */
3262 rnp = rdp->mynode;
3263 mask = rdp->grpmask;
3264 do {
3265 /* Exclude any attempts to start a new GP on small systems. */
3266 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3267 rnp->qsmaskinit |= mask;
3268 mask = rnp->grpmask;
3269 if (rnp == rdp->mynode) {
3270 /*
3271 * If there is a grace period in progress, we will
3272 * set up to wait for it next time we run the
3273 * RCU core code.
3274 */
3275 rdp->gpnum = rnp->completed;
3276 rdp->completed = rnp->completed;
3277 rdp->passed_quiesce = 0;
3278 rdp->qs_pending = 0;
3279 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3280 }
3281 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3282 rnp = rnp->parent;
3283 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3284 local_irq_restore(flags);
3285
3286 mutex_unlock(&rsp->onoff_mutex);
3287 }
3288
3289 static void rcu_prepare_cpu(int cpu)
3290 {
3291 struct rcu_state *rsp;
3292
3293 for_each_rcu_flavor(rsp)
3294 rcu_init_percpu_data(cpu, rsp);
3295 }
3296
3297 /*
3298 * Handle CPU online/offline notification events.
3299 */
3300 static int rcu_cpu_notify(struct notifier_block *self,
3301 unsigned long action, void *hcpu)
3302 {
3303 long cpu = (long)hcpu;
3304 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3305 struct rcu_node *rnp = rdp->mynode;
3306 struct rcu_state *rsp;
3307
3308 trace_rcu_utilization(TPS("Start CPU hotplug"));
3309 switch (action) {
3310 case CPU_UP_PREPARE:
3311 case CPU_UP_PREPARE_FROZEN:
3312 rcu_prepare_cpu(cpu);
3313 rcu_prepare_kthreads(cpu);
3314 break;
3315 case CPU_ONLINE:
3316 case CPU_DOWN_FAILED:
3317 rcu_boost_kthread_setaffinity(rnp, -1);
3318 break;
3319 case CPU_DOWN_PREPARE:
3320 rcu_boost_kthread_setaffinity(rnp, cpu);
3321 break;
3322 case CPU_DYING:
3323 case CPU_DYING_FROZEN:
3324 for_each_rcu_flavor(rsp)
3325 rcu_cleanup_dying_cpu(rsp);
3326 break;
3327 case CPU_DEAD:
3328 case CPU_DEAD_FROZEN:
3329 case CPU_UP_CANCELED:
3330 case CPU_UP_CANCELED_FROZEN:
3331 for_each_rcu_flavor(rsp)
3332 rcu_cleanup_dead_cpu(cpu, rsp);
3333 break;
3334 default:
3335 break;
3336 }
3337 trace_rcu_utilization(TPS("End CPU hotplug"));
3338 return NOTIFY_OK;
3339 }
3340
3341 static int rcu_pm_notify(struct notifier_block *self,
3342 unsigned long action, void *hcpu)
3343 {
3344 switch (action) {
3345 case PM_HIBERNATION_PREPARE:
3346 case PM_SUSPEND_PREPARE:
3347 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3348 rcu_expedited = 1;
3349 break;
3350 case PM_POST_HIBERNATION:
3351 case PM_POST_SUSPEND:
3352 rcu_expedited = 0;
3353 break;
3354 default:
3355 break;
3356 }
3357 return NOTIFY_OK;
3358 }
3359
3360 /*
3361 * Spawn the kthread that handles this RCU flavor's grace periods.
3362 */
3363 static int __init rcu_spawn_gp_kthread(void)
3364 {
3365 unsigned long flags;
3366 struct rcu_node *rnp;
3367 struct rcu_state *rsp;
3368 struct task_struct *t;
3369
3370 for_each_rcu_flavor(rsp) {
3371 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3372 BUG_ON(IS_ERR(t));
3373 rnp = rcu_get_root(rsp);
3374 raw_spin_lock_irqsave(&rnp->lock, flags);
3375 rsp->gp_kthread = t;
3376 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3377 rcu_spawn_nocb_kthreads(rsp);
3378 }
3379 return 0;
3380 }
3381 early_initcall(rcu_spawn_gp_kthread);
3382
3383 /*
3384 * This function is invoked towards the end of the scheduler's initialization
3385 * process. Before this is called, the idle task might contain
3386 * RCU read-side critical sections (during which time, this idle
3387 * task is booting the system). After this function is called, the
3388 * idle tasks are prohibited from containing RCU read-side critical
3389 * sections. This function also enables RCU lockdep checking.
3390 */
3391 void rcu_scheduler_starting(void)
3392 {
3393 WARN_ON(num_online_cpus() != 1);
3394 WARN_ON(nr_context_switches() > 0);
3395 rcu_scheduler_active = 1;
3396 }
3397
3398 /*
3399 * Compute the per-level fanout, either using the exact fanout specified
3400 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3401 */
3402 #ifdef CONFIG_RCU_FANOUT_EXACT
3403 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3404 {
3405 int i;
3406
3407 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3408 for (i = rcu_num_lvls - 2; i >= 0; i--)
3409 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3410 }
3411 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3412 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3413 {
3414 int ccur;
3415 int cprv;
3416 int i;
3417
3418 cprv = nr_cpu_ids;
3419 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3420 ccur = rsp->levelcnt[i];
3421 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3422 cprv = ccur;
3423 }
3424 }
3425 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3426
3427 /*
3428 * Helper function for rcu_init() that initializes one rcu_state structure.
3429 */
3430 static void __init rcu_init_one(struct rcu_state *rsp,
3431 struct rcu_data __percpu *rda)
3432 {
3433 static char *buf[] = { "rcu_node_0",
3434 "rcu_node_1",
3435 "rcu_node_2",
3436 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3437 static char *fqs[] = { "rcu_node_fqs_0",
3438 "rcu_node_fqs_1",
3439 "rcu_node_fqs_2",
3440 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3441 int cpustride = 1;
3442 int i;
3443 int j;
3444 struct rcu_node *rnp;
3445
3446 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3447
3448 /* Silence gcc 4.8 warning about array index out of range. */
3449 if (rcu_num_lvls > RCU_NUM_LVLS)
3450 panic("rcu_init_one: rcu_num_lvls overflow");
3451
3452 /* Initialize the level-tracking arrays. */
3453
3454 for (i = 0; i < rcu_num_lvls; i++)
3455 rsp->levelcnt[i] = num_rcu_lvl[i];
3456 for (i = 1; i < rcu_num_lvls; i++)
3457 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3458 rcu_init_levelspread(rsp);
3459
3460 /* Initialize the elements themselves, starting from the leaves. */
3461
3462 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3463 cpustride *= rsp->levelspread[i];
3464 rnp = rsp->level[i];
3465 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3466 raw_spin_lock_init(&rnp->lock);
3467 lockdep_set_class_and_name(&rnp->lock,
3468 &rcu_node_class[i], buf[i]);
3469 raw_spin_lock_init(&rnp->fqslock);
3470 lockdep_set_class_and_name(&rnp->fqslock,
3471 &rcu_fqs_class[i], fqs[i]);
3472 rnp->gpnum = rsp->gpnum;
3473 rnp->completed = rsp->completed;
3474 rnp->qsmask = 0;
3475 rnp->qsmaskinit = 0;
3476 rnp->grplo = j * cpustride;
3477 rnp->grphi = (j + 1) * cpustride - 1;
3478 if (rnp->grphi >= nr_cpu_ids)
3479 rnp->grphi = nr_cpu_ids - 1;
3480 if (i == 0) {
3481 rnp->grpnum = 0;
3482 rnp->grpmask = 0;
3483 rnp->parent = NULL;
3484 } else {
3485 rnp->grpnum = j % rsp->levelspread[i - 1];
3486 rnp->grpmask = 1UL << rnp->grpnum;
3487 rnp->parent = rsp->level[i - 1] +
3488 j / rsp->levelspread[i - 1];
3489 }
3490 rnp->level = i;
3491 INIT_LIST_HEAD(&rnp->blkd_tasks);
3492 rcu_init_one_nocb(rnp);
3493 }
3494 }
3495
3496 rsp->rda = rda;
3497 init_waitqueue_head(&rsp->gp_wq);
3498 rnp = rsp->level[rcu_num_lvls - 1];
3499 for_each_possible_cpu(i) {
3500 while (i > rnp->grphi)
3501 rnp++;
3502 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3503 rcu_boot_init_percpu_data(i, rsp);
3504 }
3505 list_add(&rsp->flavors, &rcu_struct_flavors);
3506 }
3507
3508 /*
3509 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3510 * replace the definitions in tree.h because those are needed to size
3511 * the ->node array in the rcu_state structure.
3512 */
3513 static void __init rcu_init_geometry(void)
3514 {
3515 ulong d;
3516 int i;
3517 int j;
3518 int n = nr_cpu_ids;
3519 int rcu_capacity[MAX_RCU_LVLS + 1];
3520
3521 /*
3522 * Initialize any unspecified boot parameters.
3523 * The default values of jiffies_till_first_fqs and
3524 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3525 * value, which is a function of HZ, then adding one for each
3526 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3527 */
3528 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3529 if (jiffies_till_first_fqs == ULONG_MAX)
3530 jiffies_till_first_fqs = d;
3531 if (jiffies_till_next_fqs == ULONG_MAX)
3532 jiffies_till_next_fqs = d;
3533
3534 /* If the compile-time values are accurate, just leave. */
3535 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3536 nr_cpu_ids == NR_CPUS)
3537 return;
3538 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3539 rcu_fanout_leaf, nr_cpu_ids);
3540
3541 /*
3542 * Compute number of nodes that can be handled an rcu_node tree
3543 * with the given number of levels. Setting rcu_capacity[0] makes
3544 * some of the arithmetic easier.
3545 */
3546 rcu_capacity[0] = 1;
3547 rcu_capacity[1] = rcu_fanout_leaf;
3548 for (i = 2; i <= MAX_RCU_LVLS; i++)
3549 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3550
3551 /*
3552 * The boot-time rcu_fanout_leaf parameter is only permitted
3553 * to increase the leaf-level fanout, not decrease it. Of course,
3554 * the leaf-level fanout cannot exceed the number of bits in
3555 * the rcu_node masks. Finally, the tree must be able to accommodate
3556 * the configured number of CPUs. Complain and fall back to the
3557 * compile-time values if these limits are exceeded.
3558 */
3559 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3560 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3561 n > rcu_capacity[MAX_RCU_LVLS]) {
3562 WARN_ON(1);
3563 return;
3564 }
3565
3566 /* Calculate the number of rcu_nodes at each level of the tree. */
3567 for (i = 1; i <= MAX_RCU_LVLS; i++)
3568 if (n <= rcu_capacity[i]) {
3569 for (j = 0; j <= i; j++)
3570 num_rcu_lvl[j] =
3571 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3572 rcu_num_lvls = i;
3573 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3574 num_rcu_lvl[j] = 0;
3575 break;
3576 }
3577
3578 /* Calculate the total number of rcu_node structures. */
3579 rcu_num_nodes = 0;
3580 for (i = 0; i <= MAX_RCU_LVLS; i++)
3581 rcu_num_nodes += num_rcu_lvl[i];
3582 rcu_num_nodes -= n;
3583 }
3584
3585 void __init rcu_init(void)
3586 {
3587 int cpu;
3588
3589 rcu_bootup_announce();
3590 rcu_init_geometry();
3591 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3592 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3593 __rcu_init_preempt();
3594 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3595
3596 /*
3597 * We don't need protection against CPU-hotplug here because
3598 * this is called early in boot, before either interrupts
3599 * or the scheduler are operational.
3600 */
3601 cpu_notifier(rcu_cpu_notify, 0);
3602 pm_notifier(rcu_pm_notify, 0);
3603 for_each_online_cpu(cpu)
3604 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3605 }
3606
3607 #include "tree_plugin.h"
This page took 0.110273 seconds and 5 git commands to generate.