rcu: Make RCU able to tolerate undefined CONFIG_RCU_FANOUT_LEAF
[deliverable/linux.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74 /*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82 #ifdef CONFIG_TRACING
83 # define DEFINE_RCU_TPS(sname) \
84 static char sname##_varname[] = #sname; \
85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86 # define RCU_STATE_NAME(sname) sname##_varname
87 #else
88 # define DEFINE_RCU_TPS(sname)
89 # define RCU_STATE_NAME(sname) __stringify(sname)
90 #endif
91
92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93 DEFINE_RCU_TPS(sname) \
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
95 struct rcu_state sname##_state = { \
96 .level = { &sname##_state.node[0] }, \
97 .rda = &sname##_data, \
98 .call = cr, \
99 .fqs_state = RCU_GP_IDLE, \
100 .gpnum = 0UL - 300UL, \
101 .completed = 0UL - 300UL, \
102 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
103 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
104 .orphan_donetail = &sname##_state.orphan_donelist, \
105 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
106 .name = RCU_STATE_NAME(sname), \
107 .abbr = sabbr, \
108 }
109
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113 static struct rcu_state *rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115
116 /* Dump rcu_node combining tree at boot to verify correct setup. */
117 static bool dump_tree;
118 module_param(dump_tree, bool, 0444);
119 /* Control rcu_node-tree auto-balancing at boot time. */
120 static bool rcu_fanout_exact;
121 module_param(rcu_fanout_exact, bool, 0444);
122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124 module_param(rcu_fanout_leaf, int, 0444);
125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
126 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
127 NUM_RCU_LVL_0,
128 NUM_RCU_LVL_1,
129 NUM_RCU_LVL_2,
130 NUM_RCU_LVL_3,
131 NUM_RCU_LVL_4,
132 };
133 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
134
135 /*
136 * The rcu_scheduler_active variable transitions from zero to one just
137 * before the first task is spawned. So when this variable is zero, RCU
138 * can assume that there is but one task, allowing RCU to (for example)
139 * optimize synchronize_sched() to a simple barrier(). When this variable
140 * is one, RCU must actually do all the hard work required to detect real
141 * grace periods. This variable is also used to suppress boot-time false
142 * positives from lockdep-RCU error checking.
143 */
144 int rcu_scheduler_active __read_mostly;
145 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146
147 /*
148 * The rcu_scheduler_fully_active variable transitions from zero to one
149 * during the early_initcall() processing, which is after the scheduler
150 * is capable of creating new tasks. So RCU processing (for example,
151 * creating tasks for RCU priority boosting) must be delayed until after
152 * rcu_scheduler_fully_active transitions from zero to one. We also
153 * currently delay invocation of any RCU callbacks until after this point.
154 *
155 * It might later prove better for people registering RCU callbacks during
156 * early boot to take responsibility for these callbacks, but one step at
157 * a time.
158 */
159 static int rcu_scheduler_fully_active __read_mostly;
160
161 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
163 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
164 static void invoke_rcu_core(void);
165 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
166
167 /* rcuc/rcub kthread realtime priority */
168 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
169 module_param(kthread_prio, int, 0644);
170
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
172
173 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
174 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
175 module_param(gp_preinit_delay, int, 0644);
176 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
177 static const int gp_preinit_delay;
178 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
179
180 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
181 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
182 module_param(gp_init_delay, int, 0644);
183 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
184 static const int gp_init_delay;
185 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
186
187 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
188 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
189 module_param(gp_cleanup_delay, int, 0644);
190 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
191 static const int gp_cleanup_delay;
192 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
193
194 /*
195 * Number of grace periods between delays, normalized by the duration of
196 * the delay. The longer the the delay, the more the grace periods between
197 * each delay. The reason for this normalization is that it means that,
198 * for non-zero delays, the overall slowdown of grace periods is constant
199 * regardless of the duration of the delay. This arrangement balances
200 * the need for long delays to increase some race probabilities with the
201 * need for fast grace periods to increase other race probabilities.
202 */
203 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
204
205 /*
206 * Track the rcutorture test sequence number and the update version
207 * number within a given test. The rcutorture_testseq is incremented
208 * on every rcutorture module load and unload, so has an odd value
209 * when a test is running. The rcutorture_vernum is set to zero
210 * when rcutorture starts and is incremented on each rcutorture update.
211 * These variables enable correlating rcutorture output with the
212 * RCU tracing information.
213 */
214 unsigned long rcutorture_testseq;
215 unsigned long rcutorture_vernum;
216
217 /*
218 * Compute the mask of online CPUs for the specified rcu_node structure.
219 * This will not be stable unless the rcu_node structure's ->lock is
220 * held, but the bit corresponding to the current CPU will be stable
221 * in most contexts.
222 */
223 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
224 {
225 return READ_ONCE(rnp->qsmaskinitnext);
226 }
227
228 /*
229 * Return true if an RCU grace period is in progress. The READ_ONCE()s
230 * permit this function to be invoked without holding the root rcu_node
231 * structure's ->lock, but of course results can be subject to change.
232 */
233 static int rcu_gp_in_progress(struct rcu_state *rsp)
234 {
235 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
236 }
237
238 /*
239 * Note a quiescent state. Because we do not need to know
240 * how many quiescent states passed, just if there was at least
241 * one since the start of the grace period, this just sets a flag.
242 * The caller must have disabled preemption.
243 */
244 void rcu_sched_qs(void)
245 {
246 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
247 trace_rcu_grace_period(TPS("rcu_sched"),
248 __this_cpu_read(rcu_sched_data.gpnum),
249 TPS("cpuqs"));
250 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
251 }
252 }
253
254 void rcu_bh_qs(void)
255 {
256 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
257 trace_rcu_grace_period(TPS("rcu_bh"),
258 __this_cpu_read(rcu_bh_data.gpnum),
259 TPS("cpuqs"));
260 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
261 }
262 }
263
264 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
265
266 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
267 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
268 .dynticks = ATOMIC_INIT(1),
269 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
270 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
271 .dynticks_idle = ATOMIC_INIT(1),
272 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
273 };
274
275 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
276 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
277
278 /*
279 * Let the RCU core know that this CPU has gone through the scheduler,
280 * which is a quiescent state. This is called when the need for a
281 * quiescent state is urgent, so we burn an atomic operation and full
282 * memory barriers to let the RCU core know about it, regardless of what
283 * this CPU might (or might not) do in the near future.
284 *
285 * We inform the RCU core by emulating a zero-duration dyntick-idle
286 * period, which we in turn do by incrementing the ->dynticks counter
287 * by two.
288 */
289 static void rcu_momentary_dyntick_idle(void)
290 {
291 unsigned long flags;
292 struct rcu_data *rdp;
293 struct rcu_dynticks *rdtp;
294 int resched_mask;
295 struct rcu_state *rsp;
296
297 local_irq_save(flags);
298
299 /*
300 * Yes, we can lose flag-setting operations. This is OK, because
301 * the flag will be set again after some delay.
302 */
303 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
304 raw_cpu_write(rcu_sched_qs_mask, 0);
305
306 /* Find the flavor that needs a quiescent state. */
307 for_each_rcu_flavor(rsp) {
308 rdp = raw_cpu_ptr(rsp->rda);
309 if (!(resched_mask & rsp->flavor_mask))
310 continue;
311 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
312 if (READ_ONCE(rdp->mynode->completed) !=
313 READ_ONCE(rdp->cond_resched_completed))
314 continue;
315
316 /*
317 * Pretend to be momentarily idle for the quiescent state.
318 * This allows the grace-period kthread to record the
319 * quiescent state, with no need for this CPU to do anything
320 * further.
321 */
322 rdtp = this_cpu_ptr(&rcu_dynticks);
323 smp_mb__before_atomic(); /* Earlier stuff before QS. */
324 atomic_add(2, &rdtp->dynticks); /* QS. */
325 smp_mb__after_atomic(); /* Later stuff after QS. */
326 break;
327 }
328 local_irq_restore(flags);
329 }
330
331 /*
332 * Note a context switch. This is a quiescent state for RCU-sched,
333 * and requires special handling for preemptible RCU.
334 * The caller must have disabled preemption.
335 */
336 void rcu_note_context_switch(void)
337 {
338 trace_rcu_utilization(TPS("Start context switch"));
339 rcu_sched_qs();
340 rcu_preempt_note_context_switch();
341 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
342 rcu_momentary_dyntick_idle();
343 trace_rcu_utilization(TPS("End context switch"));
344 }
345 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
346
347 /*
348 * Register a quiescent state for all RCU flavors. If there is an
349 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
350 * dyntick-idle quiescent state visible to other CPUs (but only for those
351 * RCU flavors in desperate need of a quiescent state, which will normally
352 * be none of them). Either way, do a lightweight quiescent state for
353 * all RCU flavors.
354 */
355 void rcu_all_qs(void)
356 {
357 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
358 rcu_momentary_dyntick_idle();
359 this_cpu_inc(rcu_qs_ctr);
360 }
361 EXPORT_SYMBOL_GPL(rcu_all_qs);
362
363 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
364 static long qhimark = 10000; /* If this many pending, ignore blimit. */
365 static long qlowmark = 100; /* Once only this many pending, use blimit. */
366
367 module_param(blimit, long, 0444);
368 module_param(qhimark, long, 0444);
369 module_param(qlowmark, long, 0444);
370
371 static ulong jiffies_till_first_fqs = ULONG_MAX;
372 static ulong jiffies_till_next_fqs = ULONG_MAX;
373
374 module_param(jiffies_till_first_fqs, ulong, 0644);
375 module_param(jiffies_till_next_fqs, ulong, 0644);
376
377 /*
378 * How long the grace period must be before we start recruiting
379 * quiescent-state help from rcu_note_context_switch().
380 */
381 static ulong jiffies_till_sched_qs = HZ / 20;
382 module_param(jiffies_till_sched_qs, ulong, 0644);
383
384 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
385 struct rcu_data *rdp);
386 static void force_qs_rnp(struct rcu_state *rsp,
387 int (*f)(struct rcu_data *rsp, bool *isidle,
388 unsigned long *maxj),
389 bool *isidle, unsigned long *maxj);
390 static void force_quiescent_state(struct rcu_state *rsp);
391 static int rcu_pending(void);
392
393 /*
394 * Return the number of RCU batches started thus far for debug & stats.
395 */
396 unsigned long rcu_batches_started(void)
397 {
398 return rcu_state_p->gpnum;
399 }
400 EXPORT_SYMBOL_GPL(rcu_batches_started);
401
402 /*
403 * Return the number of RCU-sched batches started thus far for debug & stats.
404 */
405 unsigned long rcu_batches_started_sched(void)
406 {
407 return rcu_sched_state.gpnum;
408 }
409 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
410
411 /*
412 * Return the number of RCU BH batches started thus far for debug & stats.
413 */
414 unsigned long rcu_batches_started_bh(void)
415 {
416 return rcu_bh_state.gpnum;
417 }
418 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
419
420 /*
421 * Return the number of RCU batches completed thus far for debug & stats.
422 */
423 unsigned long rcu_batches_completed(void)
424 {
425 return rcu_state_p->completed;
426 }
427 EXPORT_SYMBOL_GPL(rcu_batches_completed);
428
429 /*
430 * Return the number of RCU-sched batches completed thus far for debug & stats.
431 */
432 unsigned long rcu_batches_completed_sched(void)
433 {
434 return rcu_sched_state.completed;
435 }
436 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
437
438 /*
439 * Return the number of RCU BH batches completed thus far for debug & stats.
440 */
441 unsigned long rcu_batches_completed_bh(void)
442 {
443 return rcu_bh_state.completed;
444 }
445 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
446
447 /*
448 * Force a quiescent state.
449 */
450 void rcu_force_quiescent_state(void)
451 {
452 force_quiescent_state(rcu_state_p);
453 }
454 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
455
456 /*
457 * Force a quiescent state for RCU BH.
458 */
459 void rcu_bh_force_quiescent_state(void)
460 {
461 force_quiescent_state(&rcu_bh_state);
462 }
463 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
464
465 /*
466 * Force a quiescent state for RCU-sched.
467 */
468 void rcu_sched_force_quiescent_state(void)
469 {
470 force_quiescent_state(&rcu_sched_state);
471 }
472 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
473
474 /*
475 * Show the state of the grace-period kthreads.
476 */
477 void show_rcu_gp_kthreads(void)
478 {
479 struct rcu_state *rsp;
480
481 for_each_rcu_flavor(rsp) {
482 pr_info("%s: wait state: %d ->state: %#lx\n",
483 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
484 /* sched_show_task(rsp->gp_kthread); */
485 }
486 }
487 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
488
489 /*
490 * Record the number of times rcutorture tests have been initiated and
491 * terminated. This information allows the debugfs tracing stats to be
492 * correlated to the rcutorture messages, even when the rcutorture module
493 * is being repeatedly loaded and unloaded. In other words, we cannot
494 * store this state in rcutorture itself.
495 */
496 void rcutorture_record_test_transition(void)
497 {
498 rcutorture_testseq++;
499 rcutorture_vernum = 0;
500 }
501 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
502
503 /*
504 * Send along grace-period-related data for rcutorture diagnostics.
505 */
506 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
507 unsigned long *gpnum, unsigned long *completed)
508 {
509 struct rcu_state *rsp = NULL;
510
511 switch (test_type) {
512 case RCU_FLAVOR:
513 rsp = rcu_state_p;
514 break;
515 case RCU_BH_FLAVOR:
516 rsp = &rcu_bh_state;
517 break;
518 case RCU_SCHED_FLAVOR:
519 rsp = &rcu_sched_state;
520 break;
521 default:
522 break;
523 }
524 if (rsp != NULL) {
525 *flags = READ_ONCE(rsp->gp_flags);
526 *gpnum = READ_ONCE(rsp->gpnum);
527 *completed = READ_ONCE(rsp->completed);
528 return;
529 }
530 *flags = 0;
531 *gpnum = 0;
532 *completed = 0;
533 }
534 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
535
536 /*
537 * Record the number of writer passes through the current rcutorture test.
538 * This is also used to correlate debugfs tracing stats with the rcutorture
539 * messages.
540 */
541 void rcutorture_record_progress(unsigned long vernum)
542 {
543 rcutorture_vernum++;
544 }
545 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
546
547 /*
548 * Does the CPU have callbacks ready to be invoked?
549 */
550 static int
551 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
552 {
553 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
554 rdp->nxttail[RCU_DONE_TAIL] != NULL;
555 }
556
557 /*
558 * Return the root node of the specified rcu_state structure.
559 */
560 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
561 {
562 return &rsp->node[0];
563 }
564
565 /*
566 * Is there any need for future grace periods?
567 * Interrupts must be disabled. If the caller does not hold the root
568 * rnp_node structure's ->lock, the results are advisory only.
569 */
570 static int rcu_future_needs_gp(struct rcu_state *rsp)
571 {
572 struct rcu_node *rnp = rcu_get_root(rsp);
573 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
574 int *fp = &rnp->need_future_gp[idx];
575
576 return READ_ONCE(*fp);
577 }
578
579 /*
580 * Does the current CPU require a not-yet-started grace period?
581 * The caller must have disabled interrupts to prevent races with
582 * normal callback registry.
583 */
584 static int
585 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
586 {
587 int i;
588
589 if (rcu_gp_in_progress(rsp))
590 return 0; /* No, a grace period is already in progress. */
591 if (rcu_future_needs_gp(rsp))
592 return 1; /* Yes, a no-CBs CPU needs one. */
593 if (!rdp->nxttail[RCU_NEXT_TAIL])
594 return 0; /* No, this is a no-CBs (or offline) CPU. */
595 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
596 return 1; /* Yes, this CPU has newly registered callbacks. */
597 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
598 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
599 ULONG_CMP_LT(READ_ONCE(rsp->completed),
600 rdp->nxtcompleted[i]))
601 return 1; /* Yes, CBs for future grace period. */
602 return 0; /* No grace period needed. */
603 }
604
605 /*
606 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
607 *
608 * If the new value of the ->dynticks_nesting counter now is zero,
609 * we really have entered idle, and must do the appropriate accounting.
610 * The caller must have disabled interrupts.
611 */
612 static void rcu_eqs_enter_common(long long oldval, bool user)
613 {
614 struct rcu_state *rsp;
615 struct rcu_data *rdp;
616 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
617
618 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
619 if (!user && !is_idle_task(current)) {
620 struct task_struct *idle __maybe_unused =
621 idle_task(smp_processor_id());
622
623 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
624 ftrace_dump(DUMP_ORIG);
625 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
626 current->pid, current->comm,
627 idle->pid, idle->comm); /* must be idle task! */
628 }
629 for_each_rcu_flavor(rsp) {
630 rdp = this_cpu_ptr(rsp->rda);
631 do_nocb_deferred_wakeup(rdp);
632 }
633 rcu_prepare_for_idle();
634 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
635 smp_mb__before_atomic(); /* See above. */
636 atomic_inc(&rdtp->dynticks);
637 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
638 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
639 rcu_dynticks_task_enter();
640
641 /*
642 * It is illegal to enter an extended quiescent state while
643 * in an RCU read-side critical section.
644 */
645 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
646 "Illegal idle entry in RCU read-side critical section.");
647 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
648 "Illegal idle entry in RCU-bh read-side critical section.");
649 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
650 "Illegal idle entry in RCU-sched read-side critical section.");
651 }
652
653 /*
654 * Enter an RCU extended quiescent state, which can be either the
655 * idle loop or adaptive-tickless usermode execution.
656 */
657 static void rcu_eqs_enter(bool user)
658 {
659 long long oldval;
660 struct rcu_dynticks *rdtp;
661
662 rdtp = this_cpu_ptr(&rcu_dynticks);
663 oldval = rdtp->dynticks_nesting;
664 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
665 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
666 rdtp->dynticks_nesting = 0;
667 rcu_eqs_enter_common(oldval, user);
668 } else {
669 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
670 }
671 }
672
673 /**
674 * rcu_idle_enter - inform RCU that current CPU is entering idle
675 *
676 * Enter idle mode, in other words, -leave- the mode in which RCU
677 * read-side critical sections can occur. (Though RCU read-side
678 * critical sections can occur in irq handlers in idle, a possibility
679 * handled by irq_enter() and irq_exit().)
680 *
681 * We crowbar the ->dynticks_nesting field to zero to allow for
682 * the possibility of usermode upcalls having messed up our count
683 * of interrupt nesting level during the prior busy period.
684 */
685 void rcu_idle_enter(void)
686 {
687 unsigned long flags;
688
689 local_irq_save(flags);
690 rcu_eqs_enter(false);
691 rcu_sysidle_enter(0);
692 local_irq_restore(flags);
693 }
694 EXPORT_SYMBOL_GPL(rcu_idle_enter);
695
696 #ifdef CONFIG_RCU_USER_QS
697 /**
698 * rcu_user_enter - inform RCU that we are resuming userspace.
699 *
700 * Enter RCU idle mode right before resuming userspace. No use of RCU
701 * is permitted between this call and rcu_user_exit(). This way the
702 * CPU doesn't need to maintain the tick for RCU maintenance purposes
703 * when the CPU runs in userspace.
704 */
705 void rcu_user_enter(void)
706 {
707 rcu_eqs_enter(1);
708 }
709 #endif /* CONFIG_RCU_USER_QS */
710
711 /**
712 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
713 *
714 * Exit from an interrupt handler, which might possibly result in entering
715 * idle mode, in other words, leaving the mode in which read-side critical
716 * sections can occur.
717 *
718 * This code assumes that the idle loop never does anything that might
719 * result in unbalanced calls to irq_enter() and irq_exit(). If your
720 * architecture violates this assumption, RCU will give you what you
721 * deserve, good and hard. But very infrequently and irreproducibly.
722 *
723 * Use things like work queues to work around this limitation.
724 *
725 * You have been warned.
726 */
727 void rcu_irq_exit(void)
728 {
729 unsigned long flags;
730 long long oldval;
731 struct rcu_dynticks *rdtp;
732
733 local_irq_save(flags);
734 rdtp = this_cpu_ptr(&rcu_dynticks);
735 oldval = rdtp->dynticks_nesting;
736 rdtp->dynticks_nesting--;
737 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
738 if (rdtp->dynticks_nesting)
739 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
740 else
741 rcu_eqs_enter_common(oldval, true);
742 rcu_sysidle_enter(1);
743 local_irq_restore(flags);
744 }
745
746 /*
747 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
748 *
749 * If the new value of the ->dynticks_nesting counter was previously zero,
750 * we really have exited idle, and must do the appropriate accounting.
751 * The caller must have disabled interrupts.
752 */
753 static void rcu_eqs_exit_common(long long oldval, int user)
754 {
755 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
756
757 rcu_dynticks_task_exit();
758 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
759 atomic_inc(&rdtp->dynticks);
760 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
761 smp_mb__after_atomic(); /* See above. */
762 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
763 rcu_cleanup_after_idle();
764 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
765 if (!user && !is_idle_task(current)) {
766 struct task_struct *idle __maybe_unused =
767 idle_task(smp_processor_id());
768
769 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
770 oldval, rdtp->dynticks_nesting);
771 ftrace_dump(DUMP_ORIG);
772 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
773 current->pid, current->comm,
774 idle->pid, idle->comm); /* must be idle task! */
775 }
776 }
777
778 /*
779 * Exit an RCU extended quiescent state, which can be either the
780 * idle loop or adaptive-tickless usermode execution.
781 */
782 static void rcu_eqs_exit(bool user)
783 {
784 struct rcu_dynticks *rdtp;
785 long long oldval;
786
787 rdtp = this_cpu_ptr(&rcu_dynticks);
788 oldval = rdtp->dynticks_nesting;
789 WARN_ON_ONCE(oldval < 0);
790 if (oldval & DYNTICK_TASK_NEST_MASK) {
791 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
792 } else {
793 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
794 rcu_eqs_exit_common(oldval, user);
795 }
796 }
797
798 /**
799 * rcu_idle_exit - inform RCU that current CPU is leaving idle
800 *
801 * Exit idle mode, in other words, -enter- the mode in which RCU
802 * read-side critical sections can occur.
803 *
804 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
805 * allow for the possibility of usermode upcalls messing up our count
806 * of interrupt nesting level during the busy period that is just
807 * now starting.
808 */
809 void rcu_idle_exit(void)
810 {
811 unsigned long flags;
812
813 local_irq_save(flags);
814 rcu_eqs_exit(false);
815 rcu_sysidle_exit(0);
816 local_irq_restore(flags);
817 }
818 EXPORT_SYMBOL_GPL(rcu_idle_exit);
819
820 #ifdef CONFIG_RCU_USER_QS
821 /**
822 * rcu_user_exit - inform RCU that we are exiting userspace.
823 *
824 * Exit RCU idle mode while entering the kernel because it can
825 * run a RCU read side critical section anytime.
826 */
827 void rcu_user_exit(void)
828 {
829 rcu_eqs_exit(1);
830 }
831 #endif /* CONFIG_RCU_USER_QS */
832
833 /**
834 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
835 *
836 * Enter an interrupt handler, which might possibly result in exiting
837 * idle mode, in other words, entering the mode in which read-side critical
838 * sections can occur.
839 *
840 * Note that the Linux kernel is fully capable of entering an interrupt
841 * handler that it never exits, for example when doing upcalls to
842 * user mode! This code assumes that the idle loop never does upcalls to
843 * user mode. If your architecture does do upcalls from the idle loop (or
844 * does anything else that results in unbalanced calls to the irq_enter()
845 * and irq_exit() functions), RCU will give you what you deserve, good
846 * and hard. But very infrequently and irreproducibly.
847 *
848 * Use things like work queues to work around this limitation.
849 *
850 * You have been warned.
851 */
852 void rcu_irq_enter(void)
853 {
854 unsigned long flags;
855 struct rcu_dynticks *rdtp;
856 long long oldval;
857
858 local_irq_save(flags);
859 rdtp = this_cpu_ptr(&rcu_dynticks);
860 oldval = rdtp->dynticks_nesting;
861 rdtp->dynticks_nesting++;
862 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
863 if (oldval)
864 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
865 else
866 rcu_eqs_exit_common(oldval, true);
867 rcu_sysidle_exit(1);
868 local_irq_restore(flags);
869 }
870
871 /**
872 * rcu_nmi_enter - inform RCU of entry to NMI context
873 *
874 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
875 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
876 * that the CPU is active. This implementation permits nested NMIs, as
877 * long as the nesting level does not overflow an int. (You will probably
878 * run out of stack space first.)
879 */
880 void rcu_nmi_enter(void)
881 {
882 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
883 int incby = 2;
884
885 /* Complain about underflow. */
886 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
887
888 /*
889 * If idle from RCU viewpoint, atomically increment ->dynticks
890 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
891 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
892 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
893 * to be in the outermost NMI handler that interrupted an RCU-idle
894 * period (observation due to Andy Lutomirski).
895 */
896 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
897 smp_mb__before_atomic(); /* Force delay from prior write. */
898 atomic_inc(&rdtp->dynticks);
899 /* atomic_inc() before later RCU read-side crit sects */
900 smp_mb__after_atomic(); /* See above. */
901 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
902 incby = 1;
903 }
904 rdtp->dynticks_nmi_nesting += incby;
905 barrier();
906 }
907
908 /**
909 * rcu_nmi_exit - inform RCU of exit from NMI context
910 *
911 * If we are returning from the outermost NMI handler that interrupted an
912 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
913 * to let the RCU grace-period handling know that the CPU is back to
914 * being RCU-idle.
915 */
916 void rcu_nmi_exit(void)
917 {
918 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
919
920 /*
921 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
922 * (We are exiting an NMI handler, so RCU better be paying attention
923 * to us!)
924 */
925 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
926 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
927
928 /*
929 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
930 * leave it in non-RCU-idle state.
931 */
932 if (rdtp->dynticks_nmi_nesting != 1) {
933 rdtp->dynticks_nmi_nesting -= 2;
934 return;
935 }
936
937 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
938 rdtp->dynticks_nmi_nesting = 0;
939 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
940 smp_mb__before_atomic(); /* See above. */
941 atomic_inc(&rdtp->dynticks);
942 smp_mb__after_atomic(); /* Force delay to next write. */
943 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
944 }
945
946 /**
947 * __rcu_is_watching - are RCU read-side critical sections safe?
948 *
949 * Return true if RCU is watching the running CPU, which means that
950 * this CPU can safely enter RCU read-side critical sections. Unlike
951 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
952 * least disabled preemption.
953 */
954 bool notrace __rcu_is_watching(void)
955 {
956 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
957 }
958
959 /**
960 * rcu_is_watching - see if RCU thinks that the current CPU is idle
961 *
962 * If the current CPU is in its idle loop and is neither in an interrupt
963 * or NMI handler, return true.
964 */
965 bool notrace rcu_is_watching(void)
966 {
967 bool ret;
968
969 preempt_disable();
970 ret = __rcu_is_watching();
971 preempt_enable();
972 return ret;
973 }
974 EXPORT_SYMBOL_GPL(rcu_is_watching);
975
976 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
977
978 /*
979 * Is the current CPU online? Disable preemption to avoid false positives
980 * that could otherwise happen due to the current CPU number being sampled,
981 * this task being preempted, its old CPU being taken offline, resuming
982 * on some other CPU, then determining that its old CPU is now offline.
983 * It is OK to use RCU on an offline processor during initial boot, hence
984 * the check for rcu_scheduler_fully_active. Note also that it is OK
985 * for a CPU coming online to use RCU for one jiffy prior to marking itself
986 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
987 * offline to continue to use RCU for one jiffy after marking itself
988 * offline in the cpu_online_mask. This leniency is necessary given the
989 * non-atomic nature of the online and offline processing, for example,
990 * the fact that a CPU enters the scheduler after completing the CPU_DYING
991 * notifiers.
992 *
993 * This is also why RCU internally marks CPUs online during the
994 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
995 *
996 * Disable checking if in an NMI handler because we cannot safely report
997 * errors from NMI handlers anyway.
998 */
999 bool rcu_lockdep_current_cpu_online(void)
1000 {
1001 struct rcu_data *rdp;
1002 struct rcu_node *rnp;
1003 bool ret;
1004
1005 if (in_nmi())
1006 return true;
1007 preempt_disable();
1008 rdp = this_cpu_ptr(&rcu_sched_data);
1009 rnp = rdp->mynode;
1010 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1011 !rcu_scheduler_fully_active;
1012 preempt_enable();
1013 return ret;
1014 }
1015 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1016
1017 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1018
1019 /**
1020 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1021 *
1022 * If the current CPU is idle or running at a first-level (not nested)
1023 * interrupt from idle, return true. The caller must have at least
1024 * disabled preemption.
1025 */
1026 static int rcu_is_cpu_rrupt_from_idle(void)
1027 {
1028 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1029 }
1030
1031 /*
1032 * Snapshot the specified CPU's dynticks counter so that we can later
1033 * credit them with an implicit quiescent state. Return 1 if this CPU
1034 * is in dynticks idle mode, which is an extended quiescent state.
1035 */
1036 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1037 bool *isidle, unsigned long *maxj)
1038 {
1039 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1040 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1041 if ((rdp->dynticks_snap & 0x1) == 0) {
1042 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1043 return 1;
1044 } else {
1045 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1046 rdp->mynode->gpnum))
1047 WRITE_ONCE(rdp->gpwrap, true);
1048 return 0;
1049 }
1050 }
1051
1052 /*
1053 * Return true if the specified CPU has passed through a quiescent
1054 * state by virtue of being in or having passed through an dynticks
1055 * idle state since the last call to dyntick_save_progress_counter()
1056 * for this same CPU, or by virtue of having been offline.
1057 */
1058 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1059 bool *isidle, unsigned long *maxj)
1060 {
1061 unsigned int curr;
1062 int *rcrmp;
1063 unsigned int snap;
1064
1065 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1066 snap = (unsigned int)rdp->dynticks_snap;
1067
1068 /*
1069 * If the CPU passed through or entered a dynticks idle phase with
1070 * no active irq/NMI handlers, then we can safely pretend that the CPU
1071 * already acknowledged the request to pass through a quiescent
1072 * state. Either way, that CPU cannot possibly be in an RCU
1073 * read-side critical section that started before the beginning
1074 * of the current RCU grace period.
1075 */
1076 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1077 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1078 rdp->dynticks_fqs++;
1079 return 1;
1080 }
1081
1082 /*
1083 * Check for the CPU being offline, but only if the grace period
1084 * is old enough. We don't need to worry about the CPU changing
1085 * state: If we see it offline even once, it has been through a
1086 * quiescent state.
1087 *
1088 * The reason for insisting that the grace period be at least
1089 * one jiffy old is that CPUs that are not quite online and that
1090 * have just gone offline can still execute RCU read-side critical
1091 * sections.
1092 */
1093 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1094 return 0; /* Grace period is not old enough. */
1095 barrier();
1096 if (cpu_is_offline(rdp->cpu)) {
1097 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1098 rdp->offline_fqs++;
1099 return 1;
1100 }
1101
1102 /*
1103 * A CPU running for an extended time within the kernel can
1104 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1105 * even context-switching back and forth between a pair of
1106 * in-kernel CPU-bound tasks cannot advance grace periods.
1107 * So if the grace period is old enough, make the CPU pay attention.
1108 * Note that the unsynchronized assignments to the per-CPU
1109 * rcu_sched_qs_mask variable are safe. Yes, setting of
1110 * bits can be lost, but they will be set again on the next
1111 * force-quiescent-state pass. So lost bit sets do not result
1112 * in incorrect behavior, merely in a grace period lasting
1113 * a few jiffies longer than it might otherwise. Because
1114 * there are at most four threads involved, and because the
1115 * updates are only once every few jiffies, the probability of
1116 * lossage (and thus of slight grace-period extension) is
1117 * quite low.
1118 *
1119 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1120 * is set too high, we override with half of the RCU CPU stall
1121 * warning delay.
1122 */
1123 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1124 if (ULONG_CMP_GE(jiffies,
1125 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1126 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1127 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1128 WRITE_ONCE(rdp->cond_resched_completed,
1129 READ_ONCE(rdp->mynode->completed));
1130 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1131 WRITE_ONCE(*rcrmp,
1132 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1133 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1134 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1135 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1136 /* Time to beat on that CPU again! */
1137 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1138 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1139 }
1140 }
1141
1142 return 0;
1143 }
1144
1145 static void record_gp_stall_check_time(struct rcu_state *rsp)
1146 {
1147 unsigned long j = jiffies;
1148 unsigned long j1;
1149
1150 rsp->gp_start = j;
1151 smp_wmb(); /* Record start time before stall time. */
1152 j1 = rcu_jiffies_till_stall_check();
1153 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1154 rsp->jiffies_resched = j + j1 / 2;
1155 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1156 }
1157
1158 /*
1159 * Complain about starvation of grace-period kthread.
1160 */
1161 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1162 {
1163 unsigned long gpa;
1164 unsigned long j;
1165
1166 j = jiffies;
1167 gpa = READ_ONCE(rsp->gp_activity);
1168 if (j - gpa > 2 * HZ)
1169 pr_err("%s kthread starved for %ld jiffies!\n",
1170 rsp->name, j - gpa);
1171 }
1172
1173 /*
1174 * Dump stacks of all tasks running on stalled CPUs.
1175 */
1176 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1177 {
1178 int cpu;
1179 unsigned long flags;
1180 struct rcu_node *rnp;
1181
1182 rcu_for_each_leaf_node(rsp, rnp) {
1183 raw_spin_lock_irqsave(&rnp->lock, flags);
1184 if (rnp->qsmask != 0) {
1185 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1186 if (rnp->qsmask & (1UL << cpu))
1187 dump_cpu_task(rnp->grplo + cpu);
1188 }
1189 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1190 }
1191 }
1192
1193 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1194 {
1195 int cpu;
1196 long delta;
1197 unsigned long flags;
1198 unsigned long gpa;
1199 unsigned long j;
1200 int ndetected = 0;
1201 struct rcu_node *rnp = rcu_get_root(rsp);
1202 long totqlen = 0;
1203
1204 /* Only let one CPU complain about others per time interval. */
1205
1206 raw_spin_lock_irqsave(&rnp->lock, flags);
1207 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1208 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1209 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1210 return;
1211 }
1212 WRITE_ONCE(rsp->jiffies_stall,
1213 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1215
1216 /*
1217 * OK, time to rat on our buddy...
1218 * See Documentation/RCU/stallwarn.txt for info on how to debug
1219 * RCU CPU stall warnings.
1220 */
1221 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1222 rsp->name);
1223 print_cpu_stall_info_begin();
1224 rcu_for_each_leaf_node(rsp, rnp) {
1225 raw_spin_lock_irqsave(&rnp->lock, flags);
1226 ndetected += rcu_print_task_stall(rnp);
1227 if (rnp->qsmask != 0) {
1228 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1229 if (rnp->qsmask & (1UL << cpu)) {
1230 print_cpu_stall_info(rsp,
1231 rnp->grplo + cpu);
1232 ndetected++;
1233 }
1234 }
1235 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1236 }
1237
1238 print_cpu_stall_info_end();
1239 for_each_possible_cpu(cpu)
1240 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1241 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1242 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1243 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1244 if (ndetected) {
1245 rcu_dump_cpu_stacks(rsp);
1246 } else {
1247 if (READ_ONCE(rsp->gpnum) != gpnum ||
1248 READ_ONCE(rsp->completed) == gpnum) {
1249 pr_err("INFO: Stall ended before state dump start\n");
1250 } else {
1251 j = jiffies;
1252 gpa = READ_ONCE(rsp->gp_activity);
1253 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1254 rsp->name, j - gpa, j, gpa,
1255 jiffies_till_next_fqs,
1256 rcu_get_root(rsp)->qsmask);
1257 /* In this case, the current CPU might be at fault. */
1258 sched_show_task(current);
1259 }
1260 }
1261
1262 /* Complain about tasks blocking the grace period. */
1263 rcu_print_detail_task_stall(rsp);
1264
1265 rcu_check_gp_kthread_starvation(rsp);
1266
1267 force_quiescent_state(rsp); /* Kick them all. */
1268 }
1269
1270 static void print_cpu_stall(struct rcu_state *rsp)
1271 {
1272 int cpu;
1273 unsigned long flags;
1274 struct rcu_node *rnp = rcu_get_root(rsp);
1275 long totqlen = 0;
1276
1277 /*
1278 * OK, time to rat on ourselves...
1279 * See Documentation/RCU/stallwarn.txt for info on how to debug
1280 * RCU CPU stall warnings.
1281 */
1282 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1283 print_cpu_stall_info_begin();
1284 print_cpu_stall_info(rsp, smp_processor_id());
1285 print_cpu_stall_info_end();
1286 for_each_possible_cpu(cpu)
1287 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1288 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1289 jiffies - rsp->gp_start,
1290 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1291
1292 rcu_check_gp_kthread_starvation(rsp);
1293
1294 rcu_dump_cpu_stacks(rsp);
1295
1296 raw_spin_lock_irqsave(&rnp->lock, flags);
1297 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1298 WRITE_ONCE(rsp->jiffies_stall,
1299 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1300 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1301
1302 /*
1303 * Attempt to revive the RCU machinery by forcing a context switch.
1304 *
1305 * A context switch would normally allow the RCU state machine to make
1306 * progress and it could be we're stuck in kernel space without context
1307 * switches for an entirely unreasonable amount of time.
1308 */
1309 resched_cpu(smp_processor_id());
1310 }
1311
1312 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1313 {
1314 unsigned long completed;
1315 unsigned long gpnum;
1316 unsigned long gps;
1317 unsigned long j;
1318 unsigned long js;
1319 struct rcu_node *rnp;
1320
1321 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1322 return;
1323 j = jiffies;
1324
1325 /*
1326 * Lots of memory barriers to reject false positives.
1327 *
1328 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1329 * then rsp->gp_start, and finally rsp->completed. These values
1330 * are updated in the opposite order with memory barriers (or
1331 * equivalent) during grace-period initialization and cleanup.
1332 * Now, a false positive can occur if we get an new value of
1333 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1334 * the memory barriers, the only way that this can happen is if one
1335 * grace period ends and another starts between these two fetches.
1336 * Detect this by comparing rsp->completed with the previous fetch
1337 * from rsp->gpnum.
1338 *
1339 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1340 * and rsp->gp_start suffice to forestall false positives.
1341 */
1342 gpnum = READ_ONCE(rsp->gpnum);
1343 smp_rmb(); /* Pick up ->gpnum first... */
1344 js = READ_ONCE(rsp->jiffies_stall);
1345 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1346 gps = READ_ONCE(rsp->gp_start);
1347 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1348 completed = READ_ONCE(rsp->completed);
1349 if (ULONG_CMP_GE(completed, gpnum) ||
1350 ULONG_CMP_LT(j, js) ||
1351 ULONG_CMP_GE(gps, js))
1352 return; /* No stall or GP completed since entering function. */
1353 rnp = rdp->mynode;
1354 if (rcu_gp_in_progress(rsp) &&
1355 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1356
1357 /* We haven't checked in, so go dump stack. */
1358 print_cpu_stall(rsp);
1359
1360 } else if (rcu_gp_in_progress(rsp) &&
1361 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1362
1363 /* They had a few time units to dump stack, so complain. */
1364 print_other_cpu_stall(rsp, gpnum);
1365 }
1366 }
1367
1368 /**
1369 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1370 *
1371 * Set the stall-warning timeout way off into the future, thus preventing
1372 * any RCU CPU stall-warning messages from appearing in the current set of
1373 * RCU grace periods.
1374 *
1375 * The caller must disable hard irqs.
1376 */
1377 void rcu_cpu_stall_reset(void)
1378 {
1379 struct rcu_state *rsp;
1380
1381 for_each_rcu_flavor(rsp)
1382 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1383 }
1384
1385 /*
1386 * Initialize the specified rcu_data structure's default callback list
1387 * to empty. The default callback list is the one that is not used by
1388 * no-callbacks CPUs.
1389 */
1390 static void init_default_callback_list(struct rcu_data *rdp)
1391 {
1392 int i;
1393
1394 rdp->nxtlist = NULL;
1395 for (i = 0; i < RCU_NEXT_SIZE; i++)
1396 rdp->nxttail[i] = &rdp->nxtlist;
1397 }
1398
1399 /*
1400 * Initialize the specified rcu_data structure's callback list to empty.
1401 */
1402 static void init_callback_list(struct rcu_data *rdp)
1403 {
1404 if (init_nocb_callback_list(rdp))
1405 return;
1406 init_default_callback_list(rdp);
1407 }
1408
1409 /*
1410 * Determine the value that ->completed will have at the end of the
1411 * next subsequent grace period. This is used to tag callbacks so that
1412 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1413 * been dyntick-idle for an extended period with callbacks under the
1414 * influence of RCU_FAST_NO_HZ.
1415 *
1416 * The caller must hold rnp->lock with interrupts disabled.
1417 */
1418 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1419 struct rcu_node *rnp)
1420 {
1421 /*
1422 * If RCU is idle, we just wait for the next grace period.
1423 * But we can only be sure that RCU is idle if we are looking
1424 * at the root rcu_node structure -- otherwise, a new grace
1425 * period might have started, but just not yet gotten around
1426 * to initializing the current non-root rcu_node structure.
1427 */
1428 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1429 return rnp->completed + 1;
1430
1431 /*
1432 * Otherwise, wait for a possible partial grace period and
1433 * then the subsequent full grace period.
1434 */
1435 return rnp->completed + 2;
1436 }
1437
1438 /*
1439 * Trace-event helper function for rcu_start_future_gp() and
1440 * rcu_nocb_wait_gp().
1441 */
1442 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1443 unsigned long c, const char *s)
1444 {
1445 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1446 rnp->completed, c, rnp->level,
1447 rnp->grplo, rnp->grphi, s);
1448 }
1449
1450 /*
1451 * Start some future grace period, as needed to handle newly arrived
1452 * callbacks. The required future grace periods are recorded in each
1453 * rcu_node structure's ->need_future_gp field. Returns true if there
1454 * is reason to awaken the grace-period kthread.
1455 *
1456 * The caller must hold the specified rcu_node structure's ->lock.
1457 */
1458 static bool __maybe_unused
1459 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1460 unsigned long *c_out)
1461 {
1462 unsigned long c;
1463 int i;
1464 bool ret = false;
1465 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1466
1467 /*
1468 * Pick up grace-period number for new callbacks. If this
1469 * grace period is already marked as needed, return to the caller.
1470 */
1471 c = rcu_cbs_completed(rdp->rsp, rnp);
1472 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1473 if (rnp->need_future_gp[c & 0x1]) {
1474 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1475 goto out;
1476 }
1477
1478 /*
1479 * If either this rcu_node structure or the root rcu_node structure
1480 * believe that a grace period is in progress, then we must wait
1481 * for the one following, which is in "c". Because our request
1482 * will be noticed at the end of the current grace period, we don't
1483 * need to explicitly start one. We only do the lockless check
1484 * of rnp_root's fields if the current rcu_node structure thinks
1485 * there is no grace period in flight, and because we hold rnp->lock,
1486 * the only possible change is when rnp_root's two fields are
1487 * equal, in which case rnp_root->gpnum might be concurrently
1488 * incremented. But that is OK, as it will just result in our
1489 * doing some extra useless work.
1490 */
1491 if (rnp->gpnum != rnp->completed ||
1492 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1493 rnp->need_future_gp[c & 0x1]++;
1494 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1495 goto out;
1496 }
1497
1498 /*
1499 * There might be no grace period in progress. If we don't already
1500 * hold it, acquire the root rcu_node structure's lock in order to
1501 * start one (if needed).
1502 */
1503 if (rnp != rnp_root) {
1504 raw_spin_lock(&rnp_root->lock);
1505 smp_mb__after_unlock_lock();
1506 }
1507
1508 /*
1509 * Get a new grace-period number. If there really is no grace
1510 * period in progress, it will be smaller than the one we obtained
1511 * earlier. Adjust callbacks as needed. Note that even no-CBs
1512 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1513 */
1514 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1515 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1516 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1517 rdp->nxtcompleted[i] = c;
1518
1519 /*
1520 * If the needed for the required grace period is already
1521 * recorded, trace and leave.
1522 */
1523 if (rnp_root->need_future_gp[c & 0x1]) {
1524 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1525 goto unlock_out;
1526 }
1527
1528 /* Record the need for the future grace period. */
1529 rnp_root->need_future_gp[c & 0x1]++;
1530
1531 /* If a grace period is not already in progress, start one. */
1532 if (rnp_root->gpnum != rnp_root->completed) {
1533 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1534 } else {
1535 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1536 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1537 }
1538 unlock_out:
1539 if (rnp != rnp_root)
1540 raw_spin_unlock(&rnp_root->lock);
1541 out:
1542 if (c_out != NULL)
1543 *c_out = c;
1544 return ret;
1545 }
1546
1547 /*
1548 * Clean up any old requests for the just-ended grace period. Also return
1549 * whether any additional grace periods have been requested. Also invoke
1550 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1551 * waiting for this grace period to complete.
1552 */
1553 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1554 {
1555 int c = rnp->completed;
1556 int needmore;
1557 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1558
1559 rcu_nocb_gp_cleanup(rsp, rnp);
1560 rnp->need_future_gp[c & 0x1] = 0;
1561 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1562 trace_rcu_future_gp(rnp, rdp, c,
1563 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1564 return needmore;
1565 }
1566
1567 /*
1568 * Awaken the grace-period kthread for the specified flavor of RCU.
1569 * Don't do a self-awaken, and don't bother awakening when there is
1570 * nothing for the grace-period kthread to do (as in several CPUs
1571 * raced to awaken, and we lost), and finally don't try to awaken
1572 * a kthread that has not yet been created.
1573 */
1574 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1575 {
1576 if (current == rsp->gp_kthread ||
1577 !READ_ONCE(rsp->gp_flags) ||
1578 !rsp->gp_kthread)
1579 return;
1580 wake_up(&rsp->gp_wq);
1581 }
1582
1583 /*
1584 * If there is room, assign a ->completed number to any callbacks on
1585 * this CPU that have not already been assigned. Also accelerate any
1586 * callbacks that were previously assigned a ->completed number that has
1587 * since proven to be too conservative, which can happen if callbacks get
1588 * assigned a ->completed number while RCU is idle, but with reference to
1589 * a non-root rcu_node structure. This function is idempotent, so it does
1590 * not hurt to call it repeatedly. Returns an flag saying that we should
1591 * awaken the RCU grace-period kthread.
1592 *
1593 * The caller must hold rnp->lock with interrupts disabled.
1594 */
1595 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1596 struct rcu_data *rdp)
1597 {
1598 unsigned long c;
1599 int i;
1600 bool ret;
1601
1602 /* If the CPU has no callbacks, nothing to do. */
1603 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1604 return false;
1605
1606 /*
1607 * Starting from the sublist containing the callbacks most
1608 * recently assigned a ->completed number and working down, find the
1609 * first sublist that is not assignable to an upcoming grace period.
1610 * Such a sublist has something in it (first two tests) and has
1611 * a ->completed number assigned that will complete sooner than
1612 * the ->completed number for newly arrived callbacks (last test).
1613 *
1614 * The key point is that any later sublist can be assigned the
1615 * same ->completed number as the newly arrived callbacks, which
1616 * means that the callbacks in any of these later sublist can be
1617 * grouped into a single sublist, whether or not they have already
1618 * been assigned a ->completed number.
1619 */
1620 c = rcu_cbs_completed(rsp, rnp);
1621 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1622 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1623 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1624 break;
1625
1626 /*
1627 * If there are no sublist for unassigned callbacks, leave.
1628 * At the same time, advance "i" one sublist, so that "i" will
1629 * index into the sublist where all the remaining callbacks should
1630 * be grouped into.
1631 */
1632 if (++i >= RCU_NEXT_TAIL)
1633 return false;
1634
1635 /*
1636 * Assign all subsequent callbacks' ->completed number to the next
1637 * full grace period and group them all in the sublist initially
1638 * indexed by "i".
1639 */
1640 for (; i <= RCU_NEXT_TAIL; i++) {
1641 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1642 rdp->nxtcompleted[i] = c;
1643 }
1644 /* Record any needed additional grace periods. */
1645 ret = rcu_start_future_gp(rnp, rdp, NULL);
1646
1647 /* Trace depending on how much we were able to accelerate. */
1648 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1649 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1650 else
1651 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1652 return ret;
1653 }
1654
1655 /*
1656 * Move any callbacks whose grace period has completed to the
1657 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1658 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1659 * sublist. This function is idempotent, so it does not hurt to
1660 * invoke it repeatedly. As long as it is not invoked -too- often...
1661 * Returns true if the RCU grace-period kthread needs to be awakened.
1662 *
1663 * The caller must hold rnp->lock with interrupts disabled.
1664 */
1665 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1666 struct rcu_data *rdp)
1667 {
1668 int i, j;
1669
1670 /* If the CPU has no callbacks, nothing to do. */
1671 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1672 return false;
1673
1674 /*
1675 * Find all callbacks whose ->completed numbers indicate that they
1676 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1677 */
1678 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1679 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1680 break;
1681 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1682 }
1683 /* Clean up any sublist tail pointers that were misordered above. */
1684 for (j = RCU_WAIT_TAIL; j < i; j++)
1685 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1686
1687 /* Copy down callbacks to fill in empty sublists. */
1688 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1689 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1690 break;
1691 rdp->nxttail[j] = rdp->nxttail[i];
1692 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1693 }
1694
1695 /* Classify any remaining callbacks. */
1696 return rcu_accelerate_cbs(rsp, rnp, rdp);
1697 }
1698
1699 /*
1700 * Update CPU-local rcu_data state to record the beginnings and ends of
1701 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1702 * structure corresponding to the current CPU, and must have irqs disabled.
1703 * Returns true if the grace-period kthread needs to be awakened.
1704 */
1705 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1706 struct rcu_data *rdp)
1707 {
1708 bool ret;
1709
1710 /* Handle the ends of any preceding grace periods first. */
1711 if (rdp->completed == rnp->completed &&
1712 !unlikely(READ_ONCE(rdp->gpwrap))) {
1713
1714 /* No grace period end, so just accelerate recent callbacks. */
1715 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1716
1717 } else {
1718
1719 /* Advance callbacks. */
1720 ret = rcu_advance_cbs(rsp, rnp, rdp);
1721
1722 /* Remember that we saw this grace-period completion. */
1723 rdp->completed = rnp->completed;
1724 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1725 }
1726
1727 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1728 /*
1729 * If the current grace period is waiting for this CPU,
1730 * set up to detect a quiescent state, otherwise don't
1731 * go looking for one.
1732 */
1733 rdp->gpnum = rnp->gpnum;
1734 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1735 rdp->passed_quiesce = 0;
1736 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1737 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1738 zero_cpu_stall_ticks(rdp);
1739 WRITE_ONCE(rdp->gpwrap, false);
1740 }
1741 return ret;
1742 }
1743
1744 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1745 {
1746 unsigned long flags;
1747 bool needwake;
1748 struct rcu_node *rnp;
1749
1750 local_irq_save(flags);
1751 rnp = rdp->mynode;
1752 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1753 rdp->completed == READ_ONCE(rnp->completed) &&
1754 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1755 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1756 local_irq_restore(flags);
1757 return;
1758 }
1759 smp_mb__after_unlock_lock();
1760 needwake = __note_gp_changes(rsp, rnp, rdp);
1761 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1762 if (needwake)
1763 rcu_gp_kthread_wake(rsp);
1764 }
1765
1766 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1767 {
1768 if (delay > 0 &&
1769 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1770 schedule_timeout_uninterruptible(delay);
1771 }
1772
1773 /*
1774 * Initialize a new grace period. Return 0 if no grace period required.
1775 */
1776 static int rcu_gp_init(struct rcu_state *rsp)
1777 {
1778 unsigned long oldmask;
1779 struct rcu_data *rdp;
1780 struct rcu_node *rnp = rcu_get_root(rsp);
1781
1782 WRITE_ONCE(rsp->gp_activity, jiffies);
1783 raw_spin_lock_irq(&rnp->lock);
1784 smp_mb__after_unlock_lock();
1785 if (!READ_ONCE(rsp->gp_flags)) {
1786 /* Spurious wakeup, tell caller to go back to sleep. */
1787 raw_spin_unlock_irq(&rnp->lock);
1788 return 0;
1789 }
1790 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1791
1792 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1793 /*
1794 * Grace period already in progress, don't start another.
1795 * Not supposed to be able to happen.
1796 */
1797 raw_spin_unlock_irq(&rnp->lock);
1798 return 0;
1799 }
1800
1801 /* Advance to a new grace period and initialize state. */
1802 record_gp_stall_check_time(rsp);
1803 /* Record GP times before starting GP, hence smp_store_release(). */
1804 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1805 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1806 raw_spin_unlock_irq(&rnp->lock);
1807
1808 /*
1809 * Apply per-leaf buffered online and offline operations to the
1810 * rcu_node tree. Note that this new grace period need not wait
1811 * for subsequent online CPUs, and that quiescent-state forcing
1812 * will handle subsequent offline CPUs.
1813 */
1814 rcu_for_each_leaf_node(rsp, rnp) {
1815 rcu_gp_slow(rsp, gp_preinit_delay);
1816 raw_spin_lock_irq(&rnp->lock);
1817 smp_mb__after_unlock_lock();
1818 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1819 !rnp->wait_blkd_tasks) {
1820 /* Nothing to do on this leaf rcu_node structure. */
1821 raw_spin_unlock_irq(&rnp->lock);
1822 continue;
1823 }
1824
1825 /* Record old state, apply changes to ->qsmaskinit field. */
1826 oldmask = rnp->qsmaskinit;
1827 rnp->qsmaskinit = rnp->qsmaskinitnext;
1828
1829 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1830 if (!oldmask != !rnp->qsmaskinit) {
1831 if (!oldmask) /* First online CPU for this rcu_node. */
1832 rcu_init_new_rnp(rnp);
1833 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1834 rnp->wait_blkd_tasks = true;
1835 else /* Last offline CPU and can propagate. */
1836 rcu_cleanup_dead_rnp(rnp);
1837 }
1838
1839 /*
1840 * If all waited-on tasks from prior grace period are
1841 * done, and if all this rcu_node structure's CPUs are
1842 * still offline, propagate up the rcu_node tree and
1843 * clear ->wait_blkd_tasks. Otherwise, if one of this
1844 * rcu_node structure's CPUs has since come back online,
1845 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1846 * checks for this, so just call it unconditionally).
1847 */
1848 if (rnp->wait_blkd_tasks &&
1849 (!rcu_preempt_has_tasks(rnp) ||
1850 rnp->qsmaskinit)) {
1851 rnp->wait_blkd_tasks = false;
1852 rcu_cleanup_dead_rnp(rnp);
1853 }
1854
1855 raw_spin_unlock_irq(&rnp->lock);
1856 }
1857
1858 /*
1859 * Set the quiescent-state-needed bits in all the rcu_node
1860 * structures for all currently online CPUs in breadth-first order,
1861 * starting from the root rcu_node structure, relying on the layout
1862 * of the tree within the rsp->node[] array. Note that other CPUs
1863 * will access only the leaves of the hierarchy, thus seeing that no
1864 * grace period is in progress, at least until the corresponding
1865 * leaf node has been initialized. In addition, we have excluded
1866 * CPU-hotplug operations.
1867 *
1868 * The grace period cannot complete until the initialization
1869 * process finishes, because this kthread handles both.
1870 */
1871 rcu_for_each_node_breadth_first(rsp, rnp) {
1872 rcu_gp_slow(rsp, gp_init_delay);
1873 raw_spin_lock_irq(&rnp->lock);
1874 smp_mb__after_unlock_lock();
1875 rdp = this_cpu_ptr(rsp->rda);
1876 rcu_preempt_check_blocked_tasks(rnp);
1877 rnp->qsmask = rnp->qsmaskinit;
1878 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1879 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1880 WRITE_ONCE(rnp->completed, rsp->completed);
1881 if (rnp == rdp->mynode)
1882 (void)__note_gp_changes(rsp, rnp, rdp);
1883 rcu_preempt_boost_start_gp(rnp);
1884 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1885 rnp->level, rnp->grplo,
1886 rnp->grphi, rnp->qsmask);
1887 raw_spin_unlock_irq(&rnp->lock);
1888 cond_resched_rcu_qs();
1889 WRITE_ONCE(rsp->gp_activity, jiffies);
1890 }
1891
1892 return 1;
1893 }
1894
1895 /*
1896 * Do one round of quiescent-state forcing.
1897 */
1898 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1899 {
1900 int fqs_state = fqs_state_in;
1901 bool isidle = false;
1902 unsigned long maxj;
1903 struct rcu_node *rnp = rcu_get_root(rsp);
1904
1905 WRITE_ONCE(rsp->gp_activity, jiffies);
1906 rsp->n_force_qs++;
1907 if (fqs_state == RCU_SAVE_DYNTICK) {
1908 /* Collect dyntick-idle snapshots. */
1909 if (is_sysidle_rcu_state(rsp)) {
1910 isidle = true;
1911 maxj = jiffies - ULONG_MAX / 4;
1912 }
1913 force_qs_rnp(rsp, dyntick_save_progress_counter,
1914 &isidle, &maxj);
1915 rcu_sysidle_report_gp(rsp, isidle, maxj);
1916 fqs_state = RCU_FORCE_QS;
1917 } else {
1918 /* Handle dyntick-idle and offline CPUs. */
1919 isidle = true;
1920 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1921 }
1922 /* Clear flag to prevent immediate re-entry. */
1923 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1924 raw_spin_lock_irq(&rnp->lock);
1925 smp_mb__after_unlock_lock();
1926 WRITE_ONCE(rsp->gp_flags,
1927 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1928 raw_spin_unlock_irq(&rnp->lock);
1929 }
1930 return fqs_state;
1931 }
1932
1933 /*
1934 * Clean up after the old grace period.
1935 */
1936 static void rcu_gp_cleanup(struct rcu_state *rsp)
1937 {
1938 unsigned long gp_duration;
1939 bool needgp = false;
1940 int nocb = 0;
1941 struct rcu_data *rdp;
1942 struct rcu_node *rnp = rcu_get_root(rsp);
1943
1944 WRITE_ONCE(rsp->gp_activity, jiffies);
1945 raw_spin_lock_irq(&rnp->lock);
1946 smp_mb__after_unlock_lock();
1947 gp_duration = jiffies - rsp->gp_start;
1948 if (gp_duration > rsp->gp_max)
1949 rsp->gp_max = gp_duration;
1950
1951 /*
1952 * We know the grace period is complete, but to everyone else
1953 * it appears to still be ongoing. But it is also the case
1954 * that to everyone else it looks like there is nothing that
1955 * they can do to advance the grace period. It is therefore
1956 * safe for us to drop the lock in order to mark the grace
1957 * period as completed in all of the rcu_node structures.
1958 */
1959 raw_spin_unlock_irq(&rnp->lock);
1960
1961 /*
1962 * Propagate new ->completed value to rcu_node structures so
1963 * that other CPUs don't have to wait until the start of the next
1964 * grace period to process their callbacks. This also avoids
1965 * some nasty RCU grace-period initialization races by forcing
1966 * the end of the current grace period to be completely recorded in
1967 * all of the rcu_node structures before the beginning of the next
1968 * grace period is recorded in any of the rcu_node structures.
1969 */
1970 rcu_for_each_node_breadth_first(rsp, rnp) {
1971 raw_spin_lock_irq(&rnp->lock);
1972 smp_mb__after_unlock_lock();
1973 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
1974 WARN_ON_ONCE(rnp->qsmask);
1975 WRITE_ONCE(rnp->completed, rsp->gpnum);
1976 rdp = this_cpu_ptr(rsp->rda);
1977 if (rnp == rdp->mynode)
1978 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1979 /* smp_mb() provided by prior unlock-lock pair. */
1980 nocb += rcu_future_gp_cleanup(rsp, rnp);
1981 raw_spin_unlock_irq(&rnp->lock);
1982 cond_resched_rcu_qs();
1983 WRITE_ONCE(rsp->gp_activity, jiffies);
1984 rcu_gp_slow(rsp, gp_cleanup_delay);
1985 }
1986 rnp = rcu_get_root(rsp);
1987 raw_spin_lock_irq(&rnp->lock);
1988 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1989 rcu_nocb_gp_set(rnp, nocb);
1990
1991 /* Declare grace period done. */
1992 WRITE_ONCE(rsp->completed, rsp->gpnum);
1993 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1994 rsp->fqs_state = RCU_GP_IDLE;
1995 rdp = this_cpu_ptr(rsp->rda);
1996 /* Advance CBs to reduce false positives below. */
1997 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1998 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1999 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2000 trace_rcu_grace_period(rsp->name,
2001 READ_ONCE(rsp->gpnum),
2002 TPS("newreq"));
2003 }
2004 raw_spin_unlock_irq(&rnp->lock);
2005 }
2006
2007 /*
2008 * Body of kthread that handles grace periods.
2009 */
2010 static int __noreturn rcu_gp_kthread(void *arg)
2011 {
2012 int fqs_state;
2013 int gf;
2014 unsigned long j;
2015 int ret;
2016 struct rcu_state *rsp = arg;
2017 struct rcu_node *rnp = rcu_get_root(rsp);
2018
2019 rcu_bind_gp_kthread();
2020 for (;;) {
2021
2022 /* Handle grace-period start. */
2023 for (;;) {
2024 trace_rcu_grace_period(rsp->name,
2025 READ_ONCE(rsp->gpnum),
2026 TPS("reqwait"));
2027 rsp->gp_state = RCU_GP_WAIT_GPS;
2028 wait_event_interruptible(rsp->gp_wq,
2029 READ_ONCE(rsp->gp_flags) &
2030 RCU_GP_FLAG_INIT);
2031 /* Locking provides needed memory barrier. */
2032 if (rcu_gp_init(rsp))
2033 break;
2034 cond_resched_rcu_qs();
2035 WRITE_ONCE(rsp->gp_activity, jiffies);
2036 WARN_ON(signal_pending(current));
2037 trace_rcu_grace_period(rsp->name,
2038 READ_ONCE(rsp->gpnum),
2039 TPS("reqwaitsig"));
2040 }
2041
2042 /* Handle quiescent-state forcing. */
2043 fqs_state = RCU_SAVE_DYNTICK;
2044 j = jiffies_till_first_fqs;
2045 if (j > HZ) {
2046 j = HZ;
2047 jiffies_till_first_fqs = HZ;
2048 }
2049 ret = 0;
2050 for (;;) {
2051 if (!ret)
2052 rsp->jiffies_force_qs = jiffies + j;
2053 trace_rcu_grace_period(rsp->name,
2054 READ_ONCE(rsp->gpnum),
2055 TPS("fqswait"));
2056 rsp->gp_state = RCU_GP_WAIT_FQS;
2057 ret = wait_event_interruptible_timeout(rsp->gp_wq,
2058 ((gf = READ_ONCE(rsp->gp_flags)) &
2059 RCU_GP_FLAG_FQS) ||
2060 (!READ_ONCE(rnp->qsmask) &&
2061 !rcu_preempt_blocked_readers_cgp(rnp)),
2062 j);
2063 /* Locking provides needed memory barriers. */
2064 /* If grace period done, leave loop. */
2065 if (!READ_ONCE(rnp->qsmask) &&
2066 !rcu_preempt_blocked_readers_cgp(rnp))
2067 break;
2068 /* If time for quiescent-state forcing, do it. */
2069 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2070 (gf & RCU_GP_FLAG_FQS)) {
2071 trace_rcu_grace_period(rsp->name,
2072 READ_ONCE(rsp->gpnum),
2073 TPS("fqsstart"));
2074 fqs_state = rcu_gp_fqs(rsp, fqs_state);
2075 trace_rcu_grace_period(rsp->name,
2076 READ_ONCE(rsp->gpnum),
2077 TPS("fqsend"));
2078 cond_resched_rcu_qs();
2079 WRITE_ONCE(rsp->gp_activity, jiffies);
2080 } else {
2081 /* Deal with stray signal. */
2082 cond_resched_rcu_qs();
2083 WRITE_ONCE(rsp->gp_activity, jiffies);
2084 WARN_ON(signal_pending(current));
2085 trace_rcu_grace_period(rsp->name,
2086 READ_ONCE(rsp->gpnum),
2087 TPS("fqswaitsig"));
2088 }
2089 j = jiffies_till_next_fqs;
2090 if (j > HZ) {
2091 j = HZ;
2092 jiffies_till_next_fqs = HZ;
2093 } else if (j < 1) {
2094 j = 1;
2095 jiffies_till_next_fqs = 1;
2096 }
2097 }
2098
2099 /* Handle grace-period end. */
2100 rcu_gp_cleanup(rsp);
2101 }
2102 }
2103
2104 /*
2105 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2106 * in preparation for detecting the next grace period. The caller must hold
2107 * the root node's ->lock and hard irqs must be disabled.
2108 *
2109 * Note that it is legal for a dying CPU (which is marked as offline) to
2110 * invoke this function. This can happen when the dying CPU reports its
2111 * quiescent state.
2112 *
2113 * Returns true if the grace-period kthread must be awakened.
2114 */
2115 static bool
2116 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2117 struct rcu_data *rdp)
2118 {
2119 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2120 /*
2121 * Either we have not yet spawned the grace-period
2122 * task, this CPU does not need another grace period,
2123 * or a grace period is already in progress.
2124 * Either way, don't start a new grace period.
2125 */
2126 return false;
2127 }
2128 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2129 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2130 TPS("newreq"));
2131
2132 /*
2133 * We can't do wakeups while holding the rnp->lock, as that
2134 * could cause possible deadlocks with the rq->lock. Defer
2135 * the wakeup to our caller.
2136 */
2137 return true;
2138 }
2139
2140 /*
2141 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2142 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2143 * is invoked indirectly from rcu_advance_cbs(), which would result in
2144 * endless recursion -- or would do so if it wasn't for the self-deadlock
2145 * that is encountered beforehand.
2146 *
2147 * Returns true if the grace-period kthread needs to be awakened.
2148 */
2149 static bool rcu_start_gp(struct rcu_state *rsp)
2150 {
2151 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2152 struct rcu_node *rnp = rcu_get_root(rsp);
2153 bool ret = false;
2154
2155 /*
2156 * If there is no grace period in progress right now, any
2157 * callbacks we have up to this point will be satisfied by the
2158 * next grace period. Also, advancing the callbacks reduces the
2159 * probability of false positives from cpu_needs_another_gp()
2160 * resulting in pointless grace periods. So, advance callbacks
2161 * then start the grace period!
2162 */
2163 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2164 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2165 return ret;
2166 }
2167
2168 /*
2169 * Report a full set of quiescent states to the specified rcu_state
2170 * data structure. This involves cleaning up after the prior grace
2171 * period and letting rcu_start_gp() start up the next grace period
2172 * if one is needed. Note that the caller must hold rnp->lock, which
2173 * is released before return.
2174 */
2175 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2176 __releases(rcu_get_root(rsp)->lock)
2177 {
2178 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2179 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2180 rcu_gp_kthread_wake(rsp);
2181 }
2182
2183 /*
2184 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2185 * Allows quiescent states for a group of CPUs to be reported at one go
2186 * to the specified rcu_node structure, though all the CPUs in the group
2187 * must be represented by the same rcu_node structure (which need not be a
2188 * leaf rcu_node structure, though it often will be). The gps parameter
2189 * is the grace-period snapshot, which means that the quiescent states
2190 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2191 * must be held upon entry, and it is released before return.
2192 */
2193 static void
2194 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2195 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2196 __releases(rnp->lock)
2197 {
2198 unsigned long oldmask = 0;
2199 struct rcu_node *rnp_c;
2200
2201 /* Walk up the rcu_node hierarchy. */
2202 for (;;) {
2203 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2204
2205 /*
2206 * Our bit has already been cleared, or the
2207 * relevant grace period is already over, so done.
2208 */
2209 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2210 return;
2211 }
2212 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2213 rnp->qsmask &= ~mask;
2214 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2215 mask, rnp->qsmask, rnp->level,
2216 rnp->grplo, rnp->grphi,
2217 !!rnp->gp_tasks);
2218 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2219
2220 /* Other bits still set at this level, so done. */
2221 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2222 return;
2223 }
2224 mask = rnp->grpmask;
2225 if (rnp->parent == NULL) {
2226
2227 /* No more levels. Exit loop holding root lock. */
2228
2229 break;
2230 }
2231 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2232 rnp_c = rnp;
2233 rnp = rnp->parent;
2234 raw_spin_lock_irqsave(&rnp->lock, flags);
2235 smp_mb__after_unlock_lock();
2236 oldmask = rnp_c->qsmask;
2237 }
2238
2239 /*
2240 * Get here if we are the last CPU to pass through a quiescent
2241 * state for this grace period. Invoke rcu_report_qs_rsp()
2242 * to clean up and start the next grace period if one is needed.
2243 */
2244 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2245 }
2246
2247 /*
2248 * Record a quiescent state for all tasks that were previously queued
2249 * on the specified rcu_node structure and that were blocking the current
2250 * RCU grace period. The caller must hold the specified rnp->lock with
2251 * irqs disabled, and this lock is released upon return, but irqs remain
2252 * disabled.
2253 */
2254 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2255 struct rcu_node *rnp, unsigned long flags)
2256 __releases(rnp->lock)
2257 {
2258 unsigned long gps;
2259 unsigned long mask;
2260 struct rcu_node *rnp_p;
2261
2262 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2263 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2264 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2265 return; /* Still need more quiescent states! */
2266 }
2267
2268 rnp_p = rnp->parent;
2269 if (rnp_p == NULL) {
2270 /*
2271 * Only one rcu_node structure in the tree, so don't
2272 * try to report up to its nonexistent parent!
2273 */
2274 rcu_report_qs_rsp(rsp, flags);
2275 return;
2276 }
2277
2278 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2279 gps = rnp->gpnum;
2280 mask = rnp->grpmask;
2281 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2282 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2283 smp_mb__after_unlock_lock();
2284 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2285 }
2286
2287 /*
2288 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2289 * structure. This must be either called from the specified CPU, or
2290 * called when the specified CPU is known to be offline (and when it is
2291 * also known that no other CPU is concurrently trying to help the offline
2292 * CPU). The lastcomp argument is used to make sure we are still in the
2293 * grace period of interest. We don't want to end the current grace period
2294 * based on quiescent states detected in an earlier grace period!
2295 */
2296 static void
2297 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2298 {
2299 unsigned long flags;
2300 unsigned long mask;
2301 bool needwake;
2302 struct rcu_node *rnp;
2303
2304 rnp = rdp->mynode;
2305 raw_spin_lock_irqsave(&rnp->lock, flags);
2306 smp_mb__after_unlock_lock();
2307 if ((rdp->passed_quiesce == 0 &&
2308 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2309 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2310 rdp->gpwrap) {
2311
2312 /*
2313 * The grace period in which this quiescent state was
2314 * recorded has ended, so don't report it upwards.
2315 * We will instead need a new quiescent state that lies
2316 * within the current grace period.
2317 */
2318 rdp->passed_quiesce = 0; /* need qs for new gp. */
2319 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2320 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2321 return;
2322 }
2323 mask = rdp->grpmask;
2324 if ((rnp->qsmask & mask) == 0) {
2325 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2326 } else {
2327 rdp->qs_pending = 0;
2328
2329 /*
2330 * This GP can't end until cpu checks in, so all of our
2331 * callbacks can be processed during the next GP.
2332 */
2333 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2334
2335 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2336 /* ^^^ Released rnp->lock */
2337 if (needwake)
2338 rcu_gp_kthread_wake(rsp);
2339 }
2340 }
2341
2342 /*
2343 * Check to see if there is a new grace period of which this CPU
2344 * is not yet aware, and if so, set up local rcu_data state for it.
2345 * Otherwise, see if this CPU has just passed through its first
2346 * quiescent state for this grace period, and record that fact if so.
2347 */
2348 static void
2349 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2350 {
2351 /* Check for grace-period ends and beginnings. */
2352 note_gp_changes(rsp, rdp);
2353
2354 /*
2355 * Does this CPU still need to do its part for current grace period?
2356 * If no, return and let the other CPUs do their part as well.
2357 */
2358 if (!rdp->qs_pending)
2359 return;
2360
2361 /*
2362 * Was there a quiescent state since the beginning of the grace
2363 * period? If no, then exit and wait for the next call.
2364 */
2365 if (!rdp->passed_quiesce &&
2366 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2367 return;
2368
2369 /*
2370 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2371 * judge of that).
2372 */
2373 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2374 }
2375
2376 #ifdef CONFIG_HOTPLUG_CPU
2377
2378 /*
2379 * Send the specified CPU's RCU callbacks to the orphanage. The
2380 * specified CPU must be offline, and the caller must hold the
2381 * ->orphan_lock.
2382 */
2383 static void
2384 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2385 struct rcu_node *rnp, struct rcu_data *rdp)
2386 {
2387 /* No-CBs CPUs do not have orphanable callbacks. */
2388 if (rcu_is_nocb_cpu(rdp->cpu))
2389 return;
2390
2391 /*
2392 * Orphan the callbacks. First adjust the counts. This is safe
2393 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2394 * cannot be running now. Thus no memory barrier is required.
2395 */
2396 if (rdp->nxtlist != NULL) {
2397 rsp->qlen_lazy += rdp->qlen_lazy;
2398 rsp->qlen += rdp->qlen;
2399 rdp->n_cbs_orphaned += rdp->qlen;
2400 rdp->qlen_lazy = 0;
2401 WRITE_ONCE(rdp->qlen, 0);
2402 }
2403
2404 /*
2405 * Next, move those callbacks still needing a grace period to
2406 * the orphanage, where some other CPU will pick them up.
2407 * Some of the callbacks might have gone partway through a grace
2408 * period, but that is too bad. They get to start over because we
2409 * cannot assume that grace periods are synchronized across CPUs.
2410 * We don't bother updating the ->nxttail[] array yet, instead
2411 * we just reset the whole thing later on.
2412 */
2413 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2414 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2415 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2416 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2417 }
2418
2419 /*
2420 * Then move the ready-to-invoke callbacks to the orphanage,
2421 * where some other CPU will pick them up. These will not be
2422 * required to pass though another grace period: They are done.
2423 */
2424 if (rdp->nxtlist != NULL) {
2425 *rsp->orphan_donetail = rdp->nxtlist;
2426 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2427 }
2428
2429 /*
2430 * Finally, initialize the rcu_data structure's list to empty and
2431 * disallow further callbacks on this CPU.
2432 */
2433 init_callback_list(rdp);
2434 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2435 }
2436
2437 /*
2438 * Adopt the RCU callbacks from the specified rcu_state structure's
2439 * orphanage. The caller must hold the ->orphan_lock.
2440 */
2441 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2442 {
2443 int i;
2444 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2445
2446 /* No-CBs CPUs are handled specially. */
2447 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2448 return;
2449
2450 /* Do the accounting first. */
2451 rdp->qlen_lazy += rsp->qlen_lazy;
2452 rdp->qlen += rsp->qlen;
2453 rdp->n_cbs_adopted += rsp->qlen;
2454 if (rsp->qlen_lazy != rsp->qlen)
2455 rcu_idle_count_callbacks_posted();
2456 rsp->qlen_lazy = 0;
2457 rsp->qlen = 0;
2458
2459 /*
2460 * We do not need a memory barrier here because the only way we
2461 * can get here if there is an rcu_barrier() in flight is if
2462 * we are the task doing the rcu_barrier().
2463 */
2464
2465 /* First adopt the ready-to-invoke callbacks. */
2466 if (rsp->orphan_donelist != NULL) {
2467 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2468 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2469 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2470 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2471 rdp->nxttail[i] = rsp->orphan_donetail;
2472 rsp->orphan_donelist = NULL;
2473 rsp->orphan_donetail = &rsp->orphan_donelist;
2474 }
2475
2476 /* And then adopt the callbacks that still need a grace period. */
2477 if (rsp->orphan_nxtlist != NULL) {
2478 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2479 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2480 rsp->orphan_nxtlist = NULL;
2481 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2482 }
2483 }
2484
2485 /*
2486 * Trace the fact that this CPU is going offline.
2487 */
2488 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2489 {
2490 RCU_TRACE(unsigned long mask);
2491 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2492 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2493
2494 RCU_TRACE(mask = rdp->grpmask);
2495 trace_rcu_grace_period(rsp->name,
2496 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2497 TPS("cpuofl"));
2498 }
2499
2500 /*
2501 * All CPUs for the specified rcu_node structure have gone offline,
2502 * and all tasks that were preempted within an RCU read-side critical
2503 * section while running on one of those CPUs have since exited their RCU
2504 * read-side critical section. Some other CPU is reporting this fact with
2505 * the specified rcu_node structure's ->lock held and interrupts disabled.
2506 * This function therefore goes up the tree of rcu_node structures,
2507 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2508 * the leaf rcu_node structure's ->qsmaskinit field has already been
2509 * updated
2510 *
2511 * This function does check that the specified rcu_node structure has
2512 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2513 * prematurely. That said, invoking it after the fact will cost you
2514 * a needless lock acquisition. So once it has done its work, don't
2515 * invoke it again.
2516 */
2517 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2518 {
2519 long mask;
2520 struct rcu_node *rnp = rnp_leaf;
2521
2522 if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2523 return;
2524 for (;;) {
2525 mask = rnp->grpmask;
2526 rnp = rnp->parent;
2527 if (!rnp)
2528 break;
2529 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2530 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2531 rnp->qsmaskinit &= ~mask;
2532 rnp->qsmask &= ~mask;
2533 if (rnp->qsmaskinit) {
2534 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2535 return;
2536 }
2537 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2538 }
2539 }
2540
2541 /*
2542 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2543 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2544 * bit masks.
2545 */
2546 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2547 {
2548 unsigned long flags;
2549 unsigned long mask;
2550 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2551 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2552
2553 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2554 mask = rdp->grpmask;
2555 raw_spin_lock_irqsave(&rnp->lock, flags);
2556 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2557 rnp->qsmaskinitnext &= ~mask;
2558 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2559 }
2560
2561 /*
2562 * The CPU has been completely removed, and some other CPU is reporting
2563 * this fact from process context. Do the remainder of the cleanup,
2564 * including orphaning the outgoing CPU's RCU callbacks, and also
2565 * adopting them. There can only be one CPU hotplug operation at a time,
2566 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2567 */
2568 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2569 {
2570 unsigned long flags;
2571 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2572 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2573
2574 /* Adjust any no-longer-needed kthreads. */
2575 rcu_boost_kthread_setaffinity(rnp, -1);
2576
2577 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2578 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2579 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2580 rcu_adopt_orphan_cbs(rsp, flags);
2581 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2582
2583 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2584 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2585 cpu, rdp->qlen, rdp->nxtlist);
2586 }
2587
2588 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2589
2590 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2591 {
2592 }
2593
2594 static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2595 {
2596 }
2597
2598 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2599 {
2600 }
2601
2602 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2603 {
2604 }
2605
2606 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2607
2608 /*
2609 * Invoke any RCU callbacks that have made it to the end of their grace
2610 * period. Thottle as specified by rdp->blimit.
2611 */
2612 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2613 {
2614 unsigned long flags;
2615 struct rcu_head *next, *list, **tail;
2616 long bl, count, count_lazy;
2617 int i;
2618
2619 /* If no callbacks are ready, just return. */
2620 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2621 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2622 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2623 need_resched(), is_idle_task(current),
2624 rcu_is_callbacks_kthread());
2625 return;
2626 }
2627
2628 /*
2629 * Extract the list of ready callbacks, disabling to prevent
2630 * races with call_rcu() from interrupt handlers.
2631 */
2632 local_irq_save(flags);
2633 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2634 bl = rdp->blimit;
2635 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2636 list = rdp->nxtlist;
2637 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2638 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2639 tail = rdp->nxttail[RCU_DONE_TAIL];
2640 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2641 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2642 rdp->nxttail[i] = &rdp->nxtlist;
2643 local_irq_restore(flags);
2644
2645 /* Invoke callbacks. */
2646 count = count_lazy = 0;
2647 while (list) {
2648 next = list->next;
2649 prefetch(next);
2650 debug_rcu_head_unqueue(list);
2651 if (__rcu_reclaim(rsp->name, list))
2652 count_lazy++;
2653 list = next;
2654 /* Stop only if limit reached and CPU has something to do. */
2655 if (++count >= bl &&
2656 (need_resched() ||
2657 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2658 break;
2659 }
2660
2661 local_irq_save(flags);
2662 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2663 is_idle_task(current),
2664 rcu_is_callbacks_kthread());
2665
2666 /* Update count, and requeue any remaining callbacks. */
2667 if (list != NULL) {
2668 *tail = rdp->nxtlist;
2669 rdp->nxtlist = list;
2670 for (i = 0; i < RCU_NEXT_SIZE; i++)
2671 if (&rdp->nxtlist == rdp->nxttail[i])
2672 rdp->nxttail[i] = tail;
2673 else
2674 break;
2675 }
2676 smp_mb(); /* List handling before counting for rcu_barrier(). */
2677 rdp->qlen_lazy -= count_lazy;
2678 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2679 rdp->n_cbs_invoked += count;
2680
2681 /* Reinstate batch limit if we have worked down the excess. */
2682 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2683 rdp->blimit = blimit;
2684
2685 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2686 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2687 rdp->qlen_last_fqs_check = 0;
2688 rdp->n_force_qs_snap = rsp->n_force_qs;
2689 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2690 rdp->qlen_last_fqs_check = rdp->qlen;
2691 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2692
2693 local_irq_restore(flags);
2694
2695 /* Re-invoke RCU core processing if there are callbacks remaining. */
2696 if (cpu_has_callbacks_ready_to_invoke(rdp))
2697 invoke_rcu_core();
2698 }
2699
2700 /*
2701 * Check to see if this CPU is in a non-context-switch quiescent state
2702 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2703 * Also schedule RCU core processing.
2704 *
2705 * This function must be called from hardirq context. It is normally
2706 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2707 * false, there is no point in invoking rcu_check_callbacks().
2708 */
2709 void rcu_check_callbacks(int user)
2710 {
2711 trace_rcu_utilization(TPS("Start scheduler-tick"));
2712 increment_cpu_stall_ticks();
2713 if (user || rcu_is_cpu_rrupt_from_idle()) {
2714
2715 /*
2716 * Get here if this CPU took its interrupt from user
2717 * mode or from the idle loop, and if this is not a
2718 * nested interrupt. In this case, the CPU is in
2719 * a quiescent state, so note it.
2720 *
2721 * No memory barrier is required here because both
2722 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2723 * variables that other CPUs neither access nor modify,
2724 * at least not while the corresponding CPU is online.
2725 */
2726
2727 rcu_sched_qs();
2728 rcu_bh_qs();
2729
2730 } else if (!in_softirq()) {
2731
2732 /*
2733 * Get here if this CPU did not take its interrupt from
2734 * softirq, in other words, if it is not interrupting
2735 * a rcu_bh read-side critical section. This is an _bh
2736 * critical section, so note it.
2737 */
2738
2739 rcu_bh_qs();
2740 }
2741 rcu_preempt_check_callbacks();
2742 if (rcu_pending())
2743 invoke_rcu_core();
2744 if (user)
2745 rcu_note_voluntary_context_switch(current);
2746 trace_rcu_utilization(TPS("End scheduler-tick"));
2747 }
2748
2749 /*
2750 * Scan the leaf rcu_node structures, processing dyntick state for any that
2751 * have not yet encountered a quiescent state, using the function specified.
2752 * Also initiate boosting for any threads blocked on the root rcu_node.
2753 *
2754 * The caller must have suppressed start of new grace periods.
2755 */
2756 static void force_qs_rnp(struct rcu_state *rsp,
2757 int (*f)(struct rcu_data *rsp, bool *isidle,
2758 unsigned long *maxj),
2759 bool *isidle, unsigned long *maxj)
2760 {
2761 unsigned long bit;
2762 int cpu;
2763 unsigned long flags;
2764 unsigned long mask;
2765 struct rcu_node *rnp;
2766
2767 rcu_for_each_leaf_node(rsp, rnp) {
2768 cond_resched_rcu_qs();
2769 mask = 0;
2770 raw_spin_lock_irqsave(&rnp->lock, flags);
2771 smp_mb__after_unlock_lock();
2772 if (!rcu_gp_in_progress(rsp)) {
2773 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2774 return;
2775 }
2776 if (rnp->qsmask == 0) {
2777 if (rcu_state_p == &rcu_sched_state ||
2778 rsp != rcu_state_p ||
2779 rcu_preempt_blocked_readers_cgp(rnp)) {
2780 /*
2781 * No point in scanning bits because they
2782 * are all zero. But we might need to
2783 * priority-boost blocked readers.
2784 */
2785 rcu_initiate_boost(rnp, flags);
2786 /* rcu_initiate_boost() releases rnp->lock */
2787 continue;
2788 }
2789 if (rnp->parent &&
2790 (rnp->parent->qsmask & rnp->grpmask)) {
2791 /*
2792 * Race between grace-period
2793 * initialization and task exiting RCU
2794 * read-side critical section: Report.
2795 */
2796 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2797 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2798 continue;
2799 }
2800 }
2801 cpu = rnp->grplo;
2802 bit = 1;
2803 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2804 if ((rnp->qsmask & bit) != 0) {
2805 if ((rnp->qsmaskinit & bit) == 0)
2806 *isidle = false; /* Pending hotplug. */
2807 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2808 mask |= bit;
2809 }
2810 }
2811 if (mask != 0) {
2812 /* Idle/offline CPUs, report (releases rnp->lock. */
2813 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2814 } else {
2815 /* Nothing to do here, so just drop the lock. */
2816 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2817 }
2818 }
2819 }
2820
2821 /*
2822 * Force quiescent states on reluctant CPUs, and also detect which
2823 * CPUs are in dyntick-idle mode.
2824 */
2825 static void force_quiescent_state(struct rcu_state *rsp)
2826 {
2827 unsigned long flags;
2828 bool ret;
2829 struct rcu_node *rnp;
2830 struct rcu_node *rnp_old = NULL;
2831
2832 /* Funnel through hierarchy to reduce memory contention. */
2833 rnp = __this_cpu_read(rsp->rda->mynode);
2834 for (; rnp != NULL; rnp = rnp->parent) {
2835 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2836 !raw_spin_trylock(&rnp->fqslock);
2837 if (rnp_old != NULL)
2838 raw_spin_unlock(&rnp_old->fqslock);
2839 if (ret) {
2840 rsp->n_force_qs_lh++;
2841 return;
2842 }
2843 rnp_old = rnp;
2844 }
2845 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2846
2847 /* Reached the root of the rcu_node tree, acquire lock. */
2848 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2849 smp_mb__after_unlock_lock();
2850 raw_spin_unlock(&rnp_old->fqslock);
2851 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2852 rsp->n_force_qs_lh++;
2853 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2854 return; /* Someone beat us to it. */
2855 }
2856 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2857 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2858 rcu_gp_kthread_wake(rsp);
2859 }
2860
2861 /*
2862 * This does the RCU core processing work for the specified rcu_state
2863 * and rcu_data structures. This may be called only from the CPU to
2864 * whom the rdp belongs.
2865 */
2866 static void
2867 __rcu_process_callbacks(struct rcu_state *rsp)
2868 {
2869 unsigned long flags;
2870 bool needwake;
2871 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2872
2873 WARN_ON_ONCE(rdp->beenonline == 0);
2874
2875 /* Update RCU state based on any recent quiescent states. */
2876 rcu_check_quiescent_state(rsp, rdp);
2877
2878 /* Does this CPU require a not-yet-started grace period? */
2879 local_irq_save(flags);
2880 if (cpu_needs_another_gp(rsp, rdp)) {
2881 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2882 needwake = rcu_start_gp(rsp);
2883 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2884 if (needwake)
2885 rcu_gp_kthread_wake(rsp);
2886 } else {
2887 local_irq_restore(flags);
2888 }
2889
2890 /* If there are callbacks ready, invoke them. */
2891 if (cpu_has_callbacks_ready_to_invoke(rdp))
2892 invoke_rcu_callbacks(rsp, rdp);
2893
2894 /* Do any needed deferred wakeups of rcuo kthreads. */
2895 do_nocb_deferred_wakeup(rdp);
2896 }
2897
2898 /*
2899 * Do RCU core processing for the current CPU.
2900 */
2901 static void rcu_process_callbacks(struct softirq_action *unused)
2902 {
2903 struct rcu_state *rsp;
2904
2905 if (cpu_is_offline(smp_processor_id()))
2906 return;
2907 trace_rcu_utilization(TPS("Start RCU core"));
2908 for_each_rcu_flavor(rsp)
2909 __rcu_process_callbacks(rsp);
2910 trace_rcu_utilization(TPS("End RCU core"));
2911 }
2912
2913 /*
2914 * Schedule RCU callback invocation. If the specified type of RCU
2915 * does not support RCU priority boosting, just do a direct call,
2916 * otherwise wake up the per-CPU kernel kthread. Note that because we
2917 * are running on the current CPU with softirqs disabled, the
2918 * rcu_cpu_kthread_task cannot disappear out from under us.
2919 */
2920 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2921 {
2922 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2923 return;
2924 if (likely(!rsp->boost)) {
2925 rcu_do_batch(rsp, rdp);
2926 return;
2927 }
2928 invoke_rcu_callbacks_kthread();
2929 }
2930
2931 static void invoke_rcu_core(void)
2932 {
2933 if (cpu_online(smp_processor_id()))
2934 raise_softirq(RCU_SOFTIRQ);
2935 }
2936
2937 /*
2938 * Handle any core-RCU processing required by a call_rcu() invocation.
2939 */
2940 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2941 struct rcu_head *head, unsigned long flags)
2942 {
2943 bool needwake;
2944
2945 /*
2946 * If called from an extended quiescent state, invoke the RCU
2947 * core in order to force a re-evaluation of RCU's idleness.
2948 */
2949 if (!rcu_is_watching())
2950 invoke_rcu_core();
2951
2952 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2953 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2954 return;
2955
2956 /*
2957 * Force the grace period if too many callbacks or too long waiting.
2958 * Enforce hysteresis, and don't invoke force_quiescent_state()
2959 * if some other CPU has recently done so. Also, don't bother
2960 * invoking force_quiescent_state() if the newly enqueued callback
2961 * is the only one waiting for a grace period to complete.
2962 */
2963 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2964
2965 /* Are we ignoring a completed grace period? */
2966 note_gp_changes(rsp, rdp);
2967
2968 /* Start a new grace period if one not already started. */
2969 if (!rcu_gp_in_progress(rsp)) {
2970 struct rcu_node *rnp_root = rcu_get_root(rsp);
2971
2972 raw_spin_lock(&rnp_root->lock);
2973 smp_mb__after_unlock_lock();
2974 needwake = rcu_start_gp(rsp);
2975 raw_spin_unlock(&rnp_root->lock);
2976 if (needwake)
2977 rcu_gp_kthread_wake(rsp);
2978 } else {
2979 /* Give the grace period a kick. */
2980 rdp->blimit = LONG_MAX;
2981 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2982 *rdp->nxttail[RCU_DONE_TAIL] != head)
2983 force_quiescent_state(rsp);
2984 rdp->n_force_qs_snap = rsp->n_force_qs;
2985 rdp->qlen_last_fqs_check = rdp->qlen;
2986 }
2987 }
2988 }
2989
2990 /*
2991 * RCU callback function to leak a callback.
2992 */
2993 static void rcu_leak_callback(struct rcu_head *rhp)
2994 {
2995 }
2996
2997 /*
2998 * Helper function for call_rcu() and friends. The cpu argument will
2999 * normally be -1, indicating "currently running CPU". It may specify
3000 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3001 * is expected to specify a CPU.
3002 */
3003 static void
3004 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3005 struct rcu_state *rsp, int cpu, bool lazy)
3006 {
3007 unsigned long flags;
3008 struct rcu_data *rdp;
3009
3010 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3011 if (debug_rcu_head_queue(head)) {
3012 /* Probable double call_rcu(), so leak the callback. */
3013 WRITE_ONCE(head->func, rcu_leak_callback);
3014 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3015 return;
3016 }
3017 head->func = func;
3018 head->next = NULL;
3019
3020 /*
3021 * Opportunistically note grace-period endings and beginnings.
3022 * Note that we might see a beginning right after we see an
3023 * end, but never vice versa, since this CPU has to pass through
3024 * a quiescent state betweentimes.
3025 */
3026 local_irq_save(flags);
3027 rdp = this_cpu_ptr(rsp->rda);
3028
3029 /* Add the callback to our list. */
3030 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3031 int offline;
3032
3033 if (cpu != -1)
3034 rdp = per_cpu_ptr(rsp->rda, cpu);
3035 if (likely(rdp->mynode)) {
3036 /* Post-boot, so this should be for a no-CBs CPU. */
3037 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3038 WARN_ON_ONCE(offline);
3039 /* Offline CPU, _call_rcu() illegal, leak callback. */
3040 local_irq_restore(flags);
3041 return;
3042 }
3043 /*
3044 * Very early boot, before rcu_init(). Initialize if needed
3045 * and then drop through to queue the callback.
3046 */
3047 BUG_ON(cpu != -1);
3048 WARN_ON_ONCE(!rcu_is_watching());
3049 if (!likely(rdp->nxtlist))
3050 init_default_callback_list(rdp);
3051 }
3052 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3053 if (lazy)
3054 rdp->qlen_lazy++;
3055 else
3056 rcu_idle_count_callbacks_posted();
3057 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3058 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3059 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3060
3061 if (__is_kfree_rcu_offset((unsigned long)func))
3062 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3063 rdp->qlen_lazy, rdp->qlen);
3064 else
3065 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3066
3067 /* Go handle any RCU core processing required. */
3068 __call_rcu_core(rsp, rdp, head, flags);
3069 local_irq_restore(flags);
3070 }
3071
3072 /*
3073 * Queue an RCU-sched callback for invocation after a grace period.
3074 */
3075 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3076 {
3077 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3078 }
3079 EXPORT_SYMBOL_GPL(call_rcu_sched);
3080
3081 /*
3082 * Queue an RCU callback for invocation after a quicker grace period.
3083 */
3084 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3085 {
3086 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3087 }
3088 EXPORT_SYMBOL_GPL(call_rcu_bh);
3089
3090 /*
3091 * Queue an RCU callback for lazy invocation after a grace period.
3092 * This will likely be later named something like "call_rcu_lazy()",
3093 * but this change will require some way of tagging the lazy RCU
3094 * callbacks in the list of pending callbacks. Until then, this
3095 * function may only be called from __kfree_rcu().
3096 */
3097 void kfree_call_rcu(struct rcu_head *head,
3098 void (*func)(struct rcu_head *rcu))
3099 {
3100 __call_rcu(head, func, rcu_state_p, -1, 1);
3101 }
3102 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3103
3104 /*
3105 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3106 * any blocking grace-period wait automatically implies a grace period
3107 * if there is only one CPU online at any point time during execution
3108 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3109 * occasionally incorrectly indicate that there are multiple CPUs online
3110 * when there was in fact only one the whole time, as this just adds
3111 * some overhead: RCU still operates correctly.
3112 */
3113 static inline int rcu_blocking_is_gp(void)
3114 {
3115 int ret;
3116
3117 might_sleep(); /* Check for RCU read-side critical section. */
3118 preempt_disable();
3119 ret = num_online_cpus() <= 1;
3120 preempt_enable();
3121 return ret;
3122 }
3123
3124 /**
3125 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3126 *
3127 * Control will return to the caller some time after a full rcu-sched
3128 * grace period has elapsed, in other words after all currently executing
3129 * rcu-sched read-side critical sections have completed. These read-side
3130 * critical sections are delimited by rcu_read_lock_sched() and
3131 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3132 * local_irq_disable(), and so on may be used in place of
3133 * rcu_read_lock_sched().
3134 *
3135 * This means that all preempt_disable code sequences, including NMI and
3136 * non-threaded hardware-interrupt handlers, in progress on entry will
3137 * have completed before this primitive returns. However, this does not
3138 * guarantee that softirq handlers will have completed, since in some
3139 * kernels, these handlers can run in process context, and can block.
3140 *
3141 * Note that this guarantee implies further memory-ordering guarantees.
3142 * On systems with more than one CPU, when synchronize_sched() returns,
3143 * each CPU is guaranteed to have executed a full memory barrier since the
3144 * end of its last RCU-sched read-side critical section whose beginning
3145 * preceded the call to synchronize_sched(). In addition, each CPU having
3146 * an RCU read-side critical section that extends beyond the return from
3147 * synchronize_sched() is guaranteed to have executed a full memory barrier
3148 * after the beginning of synchronize_sched() and before the beginning of
3149 * that RCU read-side critical section. Note that these guarantees include
3150 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3151 * that are executing in the kernel.
3152 *
3153 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3154 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3155 * to have executed a full memory barrier during the execution of
3156 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3157 * again only if the system has more than one CPU).
3158 *
3159 * This primitive provides the guarantees made by the (now removed)
3160 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3161 * guarantees that rcu_read_lock() sections will have completed.
3162 * In "classic RCU", these two guarantees happen to be one and
3163 * the same, but can differ in realtime RCU implementations.
3164 */
3165 void synchronize_sched(void)
3166 {
3167 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3168 !lock_is_held(&rcu_lock_map) &&
3169 !lock_is_held(&rcu_sched_lock_map),
3170 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3171 if (rcu_blocking_is_gp())
3172 return;
3173 if (rcu_gp_is_expedited())
3174 synchronize_sched_expedited();
3175 else
3176 wait_rcu_gp(call_rcu_sched);
3177 }
3178 EXPORT_SYMBOL_GPL(synchronize_sched);
3179
3180 /**
3181 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3182 *
3183 * Control will return to the caller some time after a full rcu_bh grace
3184 * period has elapsed, in other words after all currently executing rcu_bh
3185 * read-side critical sections have completed. RCU read-side critical
3186 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3187 * and may be nested.
3188 *
3189 * See the description of synchronize_sched() for more detailed information
3190 * on memory ordering guarantees.
3191 */
3192 void synchronize_rcu_bh(void)
3193 {
3194 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3195 !lock_is_held(&rcu_lock_map) &&
3196 !lock_is_held(&rcu_sched_lock_map),
3197 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3198 if (rcu_blocking_is_gp())
3199 return;
3200 if (rcu_gp_is_expedited())
3201 synchronize_rcu_bh_expedited();
3202 else
3203 wait_rcu_gp(call_rcu_bh);
3204 }
3205 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3206
3207 /**
3208 * get_state_synchronize_rcu - Snapshot current RCU state
3209 *
3210 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3211 * to determine whether or not a full grace period has elapsed in the
3212 * meantime.
3213 */
3214 unsigned long get_state_synchronize_rcu(void)
3215 {
3216 /*
3217 * Any prior manipulation of RCU-protected data must happen
3218 * before the load from ->gpnum.
3219 */
3220 smp_mb(); /* ^^^ */
3221
3222 /*
3223 * Make sure this load happens before the purportedly
3224 * time-consuming work between get_state_synchronize_rcu()
3225 * and cond_synchronize_rcu().
3226 */
3227 return smp_load_acquire(&rcu_state_p->gpnum);
3228 }
3229 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3230
3231 /**
3232 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3233 *
3234 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3235 *
3236 * If a full RCU grace period has elapsed since the earlier call to
3237 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3238 * synchronize_rcu() to wait for a full grace period.
3239 *
3240 * Yes, this function does not take counter wrap into account. But
3241 * counter wrap is harmless. If the counter wraps, we have waited for
3242 * more than 2 billion grace periods (and way more on a 64-bit system!),
3243 * so waiting for one additional grace period should be just fine.
3244 */
3245 void cond_synchronize_rcu(unsigned long oldstate)
3246 {
3247 unsigned long newstate;
3248
3249 /*
3250 * Ensure that this load happens before any RCU-destructive
3251 * actions the caller might carry out after we return.
3252 */
3253 newstate = smp_load_acquire(&rcu_state_p->completed);
3254 if (ULONG_CMP_GE(oldstate, newstate))
3255 synchronize_rcu();
3256 }
3257 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3258
3259 static int synchronize_sched_expedited_cpu_stop(void *data)
3260 {
3261 /*
3262 * There must be a full memory barrier on each affected CPU
3263 * between the time that try_stop_cpus() is called and the
3264 * time that it returns.
3265 *
3266 * In the current initial implementation of cpu_stop, the
3267 * above condition is already met when the control reaches
3268 * this point and the following smp_mb() is not strictly
3269 * necessary. Do smp_mb() anyway for documentation and
3270 * robustness against future implementation changes.
3271 */
3272 smp_mb(); /* See above comment block. */
3273 return 0;
3274 }
3275
3276 /**
3277 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3278 *
3279 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3280 * approach to force the grace period to end quickly. This consumes
3281 * significant time on all CPUs and is unfriendly to real-time workloads,
3282 * so is thus not recommended for any sort of common-case code. In fact,
3283 * if you are using synchronize_sched_expedited() in a loop, please
3284 * restructure your code to batch your updates, and then use a single
3285 * synchronize_sched() instead.
3286 *
3287 * This implementation can be thought of as an application of ticket
3288 * locking to RCU, with sync_sched_expedited_started and
3289 * sync_sched_expedited_done taking on the roles of the halves
3290 * of the ticket-lock word. Each task atomically increments
3291 * sync_sched_expedited_started upon entry, snapshotting the old value,
3292 * then attempts to stop all the CPUs. If this succeeds, then each
3293 * CPU will have executed a context switch, resulting in an RCU-sched
3294 * grace period. We are then done, so we use atomic_cmpxchg() to
3295 * update sync_sched_expedited_done to match our snapshot -- but
3296 * only if someone else has not already advanced past our snapshot.
3297 *
3298 * On the other hand, if try_stop_cpus() fails, we check the value
3299 * of sync_sched_expedited_done. If it has advanced past our
3300 * initial snapshot, then someone else must have forced a grace period
3301 * some time after we took our snapshot. In this case, our work is
3302 * done for us, and we can simply return. Otherwise, we try again,
3303 * but keep our initial snapshot for purposes of checking for someone
3304 * doing our work for us.
3305 *
3306 * If we fail too many times in a row, we fall back to synchronize_sched().
3307 */
3308 void synchronize_sched_expedited(void)
3309 {
3310 cpumask_var_t cm;
3311 bool cma = false;
3312 int cpu;
3313 long firstsnap, s, snap;
3314 int trycount = 0;
3315 struct rcu_state *rsp = &rcu_sched_state;
3316
3317 /*
3318 * If we are in danger of counter wrap, just do synchronize_sched().
3319 * By allowing sync_sched_expedited_started to advance no more than
3320 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3321 * that more than 3.5 billion CPUs would be required to force a
3322 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3323 * course be required on a 64-bit system.
3324 */
3325 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3326 (ulong)atomic_long_read(&rsp->expedited_done) +
3327 ULONG_MAX / 8)) {
3328 synchronize_sched();
3329 atomic_long_inc(&rsp->expedited_wrap);
3330 return;
3331 }
3332
3333 /*
3334 * Take a ticket. Note that atomic_inc_return() implies a
3335 * full memory barrier.
3336 */
3337 snap = atomic_long_inc_return(&rsp->expedited_start);
3338 firstsnap = snap;
3339 if (!try_get_online_cpus()) {
3340 /* CPU hotplug operation in flight, fall back to normal GP. */
3341 wait_rcu_gp(call_rcu_sched);
3342 atomic_long_inc(&rsp->expedited_normal);
3343 return;
3344 }
3345 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3346
3347 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3348 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3349 if (cma) {
3350 cpumask_copy(cm, cpu_online_mask);
3351 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3352 for_each_cpu(cpu, cm) {
3353 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3354
3355 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3356 cpumask_clear_cpu(cpu, cm);
3357 }
3358 if (cpumask_weight(cm) == 0)
3359 goto all_cpus_idle;
3360 }
3361
3362 /*
3363 * Each pass through the following loop attempts to force a
3364 * context switch on each CPU.
3365 */
3366 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3367 synchronize_sched_expedited_cpu_stop,
3368 NULL) == -EAGAIN) {
3369 put_online_cpus();
3370 atomic_long_inc(&rsp->expedited_tryfail);
3371
3372 /* Check to see if someone else did our work for us. */
3373 s = atomic_long_read(&rsp->expedited_done);
3374 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3375 /* ensure test happens before caller kfree */
3376 smp_mb__before_atomic(); /* ^^^ */
3377 atomic_long_inc(&rsp->expedited_workdone1);
3378 free_cpumask_var(cm);
3379 return;
3380 }
3381
3382 /* No joy, try again later. Or just synchronize_sched(). */
3383 if (trycount++ < 10) {
3384 udelay(trycount * num_online_cpus());
3385 } else {
3386 wait_rcu_gp(call_rcu_sched);
3387 atomic_long_inc(&rsp->expedited_normal);
3388 free_cpumask_var(cm);
3389 return;
3390 }
3391
3392 /* Recheck to see if someone else did our work for us. */
3393 s = atomic_long_read(&rsp->expedited_done);
3394 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3395 /* ensure test happens before caller kfree */
3396 smp_mb__before_atomic(); /* ^^^ */
3397 atomic_long_inc(&rsp->expedited_workdone2);
3398 free_cpumask_var(cm);
3399 return;
3400 }
3401
3402 /*
3403 * Refetching sync_sched_expedited_started allows later
3404 * callers to piggyback on our grace period. We retry
3405 * after they started, so our grace period works for them,
3406 * and they started after our first try, so their grace
3407 * period works for us.
3408 */
3409 if (!try_get_online_cpus()) {
3410 /* CPU hotplug operation in flight, use normal GP. */
3411 wait_rcu_gp(call_rcu_sched);
3412 atomic_long_inc(&rsp->expedited_normal);
3413 free_cpumask_var(cm);
3414 return;
3415 }
3416 snap = atomic_long_read(&rsp->expedited_start);
3417 smp_mb(); /* ensure read is before try_stop_cpus(). */
3418 }
3419 atomic_long_inc(&rsp->expedited_stoppedcpus);
3420
3421 all_cpus_idle:
3422 free_cpumask_var(cm);
3423
3424 /*
3425 * Everyone up to our most recent fetch is covered by our grace
3426 * period. Update the counter, but only if our work is still
3427 * relevant -- which it won't be if someone who started later
3428 * than we did already did their update.
3429 */
3430 do {
3431 atomic_long_inc(&rsp->expedited_done_tries);
3432 s = atomic_long_read(&rsp->expedited_done);
3433 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3434 /* ensure test happens before caller kfree */
3435 smp_mb__before_atomic(); /* ^^^ */
3436 atomic_long_inc(&rsp->expedited_done_lost);
3437 break;
3438 }
3439 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3440 atomic_long_inc(&rsp->expedited_done_exit);
3441
3442 put_online_cpus();
3443 }
3444 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3445
3446 /*
3447 * Check to see if there is any immediate RCU-related work to be done
3448 * by the current CPU, for the specified type of RCU, returning 1 if so.
3449 * The checks are in order of increasing expense: checks that can be
3450 * carried out against CPU-local state are performed first. However,
3451 * we must check for CPU stalls first, else we might not get a chance.
3452 */
3453 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3454 {
3455 struct rcu_node *rnp = rdp->mynode;
3456
3457 rdp->n_rcu_pending++;
3458
3459 /* Check for CPU stalls, if enabled. */
3460 check_cpu_stall(rsp, rdp);
3461
3462 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3463 if (rcu_nohz_full_cpu(rsp))
3464 return 0;
3465
3466 /* Is the RCU core waiting for a quiescent state from this CPU? */
3467 if (rcu_scheduler_fully_active &&
3468 rdp->qs_pending && !rdp->passed_quiesce &&
3469 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3470 rdp->n_rp_qs_pending++;
3471 } else if (rdp->qs_pending &&
3472 (rdp->passed_quiesce ||
3473 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3474 rdp->n_rp_report_qs++;
3475 return 1;
3476 }
3477
3478 /* Does this CPU have callbacks ready to invoke? */
3479 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3480 rdp->n_rp_cb_ready++;
3481 return 1;
3482 }
3483
3484 /* Has RCU gone idle with this CPU needing another grace period? */
3485 if (cpu_needs_another_gp(rsp, rdp)) {
3486 rdp->n_rp_cpu_needs_gp++;
3487 return 1;
3488 }
3489
3490 /* Has another RCU grace period completed? */
3491 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3492 rdp->n_rp_gp_completed++;
3493 return 1;
3494 }
3495
3496 /* Has a new RCU grace period started? */
3497 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3498 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3499 rdp->n_rp_gp_started++;
3500 return 1;
3501 }
3502
3503 /* Does this CPU need a deferred NOCB wakeup? */
3504 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3505 rdp->n_rp_nocb_defer_wakeup++;
3506 return 1;
3507 }
3508
3509 /* nothing to do */
3510 rdp->n_rp_need_nothing++;
3511 return 0;
3512 }
3513
3514 /*
3515 * Check to see if there is any immediate RCU-related work to be done
3516 * by the current CPU, returning 1 if so. This function is part of the
3517 * RCU implementation; it is -not- an exported member of the RCU API.
3518 */
3519 static int rcu_pending(void)
3520 {
3521 struct rcu_state *rsp;
3522
3523 for_each_rcu_flavor(rsp)
3524 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3525 return 1;
3526 return 0;
3527 }
3528
3529 /*
3530 * Return true if the specified CPU has any callback. If all_lazy is
3531 * non-NULL, store an indication of whether all callbacks are lazy.
3532 * (If there are no callbacks, all of them are deemed to be lazy.)
3533 */
3534 static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3535 {
3536 bool al = true;
3537 bool hc = false;
3538 struct rcu_data *rdp;
3539 struct rcu_state *rsp;
3540
3541 for_each_rcu_flavor(rsp) {
3542 rdp = this_cpu_ptr(rsp->rda);
3543 if (!rdp->nxtlist)
3544 continue;
3545 hc = true;
3546 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3547 al = false;
3548 break;
3549 }
3550 }
3551 if (all_lazy)
3552 *all_lazy = al;
3553 return hc;
3554 }
3555
3556 /*
3557 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3558 * the compiler is expected to optimize this away.
3559 */
3560 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3561 int cpu, unsigned long done)
3562 {
3563 trace_rcu_barrier(rsp->name, s, cpu,
3564 atomic_read(&rsp->barrier_cpu_count), done);
3565 }
3566
3567 /*
3568 * RCU callback function for _rcu_barrier(). If we are last, wake
3569 * up the task executing _rcu_barrier().
3570 */
3571 static void rcu_barrier_callback(struct rcu_head *rhp)
3572 {
3573 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3574 struct rcu_state *rsp = rdp->rsp;
3575
3576 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3577 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3578 complete(&rsp->barrier_completion);
3579 } else {
3580 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3581 }
3582 }
3583
3584 /*
3585 * Called with preemption disabled, and from cross-cpu IRQ context.
3586 */
3587 static void rcu_barrier_func(void *type)
3588 {
3589 struct rcu_state *rsp = type;
3590 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3591
3592 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3593 atomic_inc(&rsp->barrier_cpu_count);
3594 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3595 }
3596
3597 /*
3598 * Orchestrate the specified type of RCU barrier, waiting for all
3599 * RCU callbacks of the specified type to complete.
3600 */
3601 static void _rcu_barrier(struct rcu_state *rsp)
3602 {
3603 int cpu;
3604 struct rcu_data *rdp;
3605 unsigned long snap = READ_ONCE(rsp->n_barrier_done);
3606 unsigned long snap_done;
3607
3608 _rcu_barrier_trace(rsp, "Begin", -1, snap);
3609
3610 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3611 mutex_lock(&rsp->barrier_mutex);
3612
3613 /*
3614 * Ensure that all prior references, including to ->n_barrier_done,
3615 * are ordered before the _rcu_barrier() machinery.
3616 */
3617 smp_mb(); /* See above block comment. */
3618
3619 /*
3620 * Recheck ->n_barrier_done to see if others did our work for us.
3621 * This means checking ->n_barrier_done for an even-to-odd-to-even
3622 * transition. The "if" expression below therefore rounds the old
3623 * value up to the next even number and adds two before comparing.
3624 */
3625 snap_done = rsp->n_barrier_done;
3626 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3627
3628 /*
3629 * If the value in snap is odd, we needed to wait for the current
3630 * rcu_barrier() to complete, then wait for the next one, in other
3631 * words, we need the value of snap_done to be three larger than
3632 * the value of snap. On the other hand, if the value in snap is
3633 * even, we only had to wait for the next rcu_barrier() to complete,
3634 * in other words, we need the value of snap_done to be only two
3635 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3636 * this for us (thank you, Linus!).
3637 */
3638 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3639 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3640 smp_mb(); /* caller's subsequent code after above check. */
3641 mutex_unlock(&rsp->barrier_mutex);
3642 return;
3643 }
3644
3645 /*
3646 * Increment ->n_barrier_done to avoid duplicate work. Use
3647 * WRITE_ONCE() to prevent the compiler from speculating
3648 * the increment to precede the early-exit check.
3649 */
3650 WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3651 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3652 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3653 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3654
3655 /*
3656 * Initialize the count to one rather than to zero in order to
3657 * avoid a too-soon return to zero in case of a short grace period
3658 * (or preemption of this task). Exclude CPU-hotplug operations
3659 * to ensure that no offline CPU has callbacks queued.
3660 */
3661 init_completion(&rsp->barrier_completion);
3662 atomic_set(&rsp->barrier_cpu_count, 1);
3663 get_online_cpus();
3664
3665 /*
3666 * Force each CPU with callbacks to register a new callback.
3667 * When that callback is invoked, we will know that all of the
3668 * corresponding CPU's preceding callbacks have been invoked.
3669 */
3670 for_each_possible_cpu(cpu) {
3671 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3672 continue;
3673 rdp = per_cpu_ptr(rsp->rda, cpu);
3674 if (rcu_is_nocb_cpu(cpu)) {
3675 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3676 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3677 rsp->n_barrier_done);
3678 } else {
3679 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3680 rsp->n_barrier_done);
3681 smp_mb__before_atomic();
3682 atomic_inc(&rsp->barrier_cpu_count);
3683 __call_rcu(&rdp->barrier_head,
3684 rcu_barrier_callback, rsp, cpu, 0);
3685 }
3686 } else if (READ_ONCE(rdp->qlen)) {
3687 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3688 rsp->n_barrier_done);
3689 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3690 } else {
3691 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3692 rsp->n_barrier_done);
3693 }
3694 }
3695 put_online_cpus();
3696
3697 /*
3698 * Now that we have an rcu_barrier_callback() callback on each
3699 * CPU, and thus each counted, remove the initial count.
3700 */
3701 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3702 complete(&rsp->barrier_completion);
3703
3704 /* Increment ->n_barrier_done to prevent duplicate work. */
3705 smp_mb(); /* Keep increment after above mechanism. */
3706 WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3707 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3708 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3709 smp_mb(); /* Keep increment before caller's subsequent code. */
3710
3711 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3712 wait_for_completion(&rsp->barrier_completion);
3713
3714 /* Other rcu_barrier() invocations can now safely proceed. */
3715 mutex_unlock(&rsp->barrier_mutex);
3716 }
3717
3718 /**
3719 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3720 */
3721 void rcu_barrier_bh(void)
3722 {
3723 _rcu_barrier(&rcu_bh_state);
3724 }
3725 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3726
3727 /**
3728 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3729 */
3730 void rcu_barrier_sched(void)
3731 {
3732 _rcu_barrier(&rcu_sched_state);
3733 }
3734 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3735
3736 /*
3737 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3738 * first CPU in a given leaf rcu_node structure coming online. The caller
3739 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3740 * disabled.
3741 */
3742 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3743 {
3744 long mask;
3745 struct rcu_node *rnp = rnp_leaf;
3746
3747 for (;;) {
3748 mask = rnp->grpmask;
3749 rnp = rnp->parent;
3750 if (rnp == NULL)
3751 return;
3752 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3753 rnp->qsmaskinit |= mask;
3754 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3755 }
3756 }
3757
3758 /*
3759 * Do boot-time initialization of a CPU's per-CPU RCU data.
3760 */
3761 static void __init
3762 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3763 {
3764 unsigned long flags;
3765 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3766 struct rcu_node *rnp = rcu_get_root(rsp);
3767
3768 /* Set up local state, ensuring consistent view of global state. */
3769 raw_spin_lock_irqsave(&rnp->lock, flags);
3770 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3771 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3772 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3773 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3774 rdp->cpu = cpu;
3775 rdp->rsp = rsp;
3776 rcu_boot_init_nocb_percpu_data(rdp);
3777 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3778 }
3779
3780 /*
3781 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3782 * offline event can be happening at a given time. Note also that we
3783 * can accept some slop in the rsp->completed access due to the fact
3784 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3785 */
3786 static void
3787 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3788 {
3789 unsigned long flags;
3790 unsigned long mask;
3791 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3792 struct rcu_node *rnp = rcu_get_root(rsp);
3793
3794 /* Set up local state, ensuring consistent view of global state. */
3795 raw_spin_lock_irqsave(&rnp->lock, flags);
3796 rdp->beenonline = 1; /* We have now been online. */
3797 rdp->qlen_last_fqs_check = 0;
3798 rdp->n_force_qs_snap = rsp->n_force_qs;
3799 rdp->blimit = blimit;
3800 if (!rdp->nxtlist)
3801 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3802 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3803 rcu_sysidle_init_percpu_data(rdp->dynticks);
3804 atomic_set(&rdp->dynticks->dynticks,
3805 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3806 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3807
3808 /*
3809 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3810 * propagation up the rcu_node tree will happen at the beginning
3811 * of the next grace period.
3812 */
3813 rnp = rdp->mynode;
3814 mask = rdp->grpmask;
3815 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3816 smp_mb__after_unlock_lock();
3817 rnp->qsmaskinitnext |= mask;
3818 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3819 rdp->completed = rnp->completed;
3820 rdp->passed_quiesce = false;
3821 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3822 rdp->qs_pending = false;
3823 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3824 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3825 }
3826
3827 static void rcu_prepare_cpu(int cpu)
3828 {
3829 struct rcu_state *rsp;
3830
3831 for_each_rcu_flavor(rsp)
3832 rcu_init_percpu_data(cpu, rsp);
3833 }
3834
3835 /*
3836 * Handle CPU online/offline notification events.
3837 */
3838 int rcu_cpu_notify(struct notifier_block *self,
3839 unsigned long action, void *hcpu)
3840 {
3841 long cpu = (long)hcpu;
3842 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3843 struct rcu_node *rnp = rdp->mynode;
3844 struct rcu_state *rsp;
3845
3846 switch (action) {
3847 case CPU_UP_PREPARE:
3848 case CPU_UP_PREPARE_FROZEN:
3849 rcu_prepare_cpu(cpu);
3850 rcu_prepare_kthreads(cpu);
3851 rcu_spawn_all_nocb_kthreads(cpu);
3852 break;
3853 case CPU_ONLINE:
3854 case CPU_DOWN_FAILED:
3855 rcu_boost_kthread_setaffinity(rnp, -1);
3856 break;
3857 case CPU_DOWN_PREPARE:
3858 rcu_boost_kthread_setaffinity(rnp, cpu);
3859 break;
3860 case CPU_DYING:
3861 case CPU_DYING_FROZEN:
3862 for_each_rcu_flavor(rsp)
3863 rcu_cleanup_dying_cpu(rsp);
3864 break;
3865 case CPU_DYING_IDLE:
3866 for_each_rcu_flavor(rsp) {
3867 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3868 }
3869 break;
3870 case CPU_DEAD:
3871 case CPU_DEAD_FROZEN:
3872 case CPU_UP_CANCELED:
3873 case CPU_UP_CANCELED_FROZEN:
3874 for_each_rcu_flavor(rsp) {
3875 rcu_cleanup_dead_cpu(cpu, rsp);
3876 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3877 }
3878 break;
3879 default:
3880 break;
3881 }
3882 return NOTIFY_OK;
3883 }
3884
3885 static int rcu_pm_notify(struct notifier_block *self,
3886 unsigned long action, void *hcpu)
3887 {
3888 switch (action) {
3889 case PM_HIBERNATION_PREPARE:
3890 case PM_SUSPEND_PREPARE:
3891 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3892 rcu_expedite_gp();
3893 break;
3894 case PM_POST_HIBERNATION:
3895 case PM_POST_SUSPEND:
3896 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3897 rcu_unexpedite_gp();
3898 break;
3899 default:
3900 break;
3901 }
3902 return NOTIFY_OK;
3903 }
3904
3905 /*
3906 * Spawn the kthreads that handle each RCU flavor's grace periods.
3907 */
3908 static int __init rcu_spawn_gp_kthread(void)
3909 {
3910 unsigned long flags;
3911 int kthread_prio_in = kthread_prio;
3912 struct rcu_node *rnp;
3913 struct rcu_state *rsp;
3914 struct sched_param sp;
3915 struct task_struct *t;
3916
3917 /* Force priority into range. */
3918 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3919 kthread_prio = 1;
3920 else if (kthread_prio < 0)
3921 kthread_prio = 0;
3922 else if (kthread_prio > 99)
3923 kthread_prio = 99;
3924 if (kthread_prio != kthread_prio_in)
3925 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3926 kthread_prio, kthread_prio_in);
3927
3928 rcu_scheduler_fully_active = 1;
3929 for_each_rcu_flavor(rsp) {
3930 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3931 BUG_ON(IS_ERR(t));
3932 rnp = rcu_get_root(rsp);
3933 raw_spin_lock_irqsave(&rnp->lock, flags);
3934 rsp->gp_kthread = t;
3935 if (kthread_prio) {
3936 sp.sched_priority = kthread_prio;
3937 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3938 }
3939 wake_up_process(t);
3940 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3941 }
3942 rcu_spawn_nocb_kthreads();
3943 rcu_spawn_boost_kthreads();
3944 return 0;
3945 }
3946 early_initcall(rcu_spawn_gp_kthread);
3947
3948 /*
3949 * This function is invoked towards the end of the scheduler's initialization
3950 * process. Before this is called, the idle task might contain
3951 * RCU read-side critical sections (during which time, this idle
3952 * task is booting the system). After this function is called, the
3953 * idle tasks are prohibited from containing RCU read-side critical
3954 * sections. This function also enables RCU lockdep checking.
3955 */
3956 void rcu_scheduler_starting(void)
3957 {
3958 WARN_ON(num_online_cpus() != 1);
3959 WARN_ON(nr_context_switches() > 0);
3960 rcu_scheduler_active = 1;
3961 }
3962
3963 /*
3964 * Compute the per-level fanout, either using the exact fanout specified
3965 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
3966 */
3967 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3968 {
3969 int i;
3970
3971 if (rcu_fanout_exact) {
3972 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3973 for (i = rcu_num_lvls - 2; i >= 0; i--)
3974 rsp->levelspread[i] = RCU_FANOUT;
3975 } else {
3976 int ccur;
3977 int cprv;
3978
3979 cprv = nr_cpu_ids;
3980 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3981 ccur = rsp->levelcnt[i];
3982 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3983 cprv = ccur;
3984 }
3985 }
3986 }
3987
3988 /*
3989 * Helper function for rcu_init() that initializes one rcu_state structure.
3990 */
3991 static void __init rcu_init_one(struct rcu_state *rsp,
3992 struct rcu_data __percpu *rda)
3993 {
3994 static const char * const buf[] = {
3995 "rcu_node_0",
3996 "rcu_node_1",
3997 "rcu_node_2",
3998 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3999 static const char * const fqs[] = {
4000 "rcu_node_fqs_0",
4001 "rcu_node_fqs_1",
4002 "rcu_node_fqs_2",
4003 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4004 static u8 fl_mask = 0x1;
4005 int cpustride = 1;
4006 int i;
4007 int j;
4008 struct rcu_node *rnp;
4009
4010 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4011
4012 /* Silence gcc 4.8 false positive about array index out of range. */
4013 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4014 panic("rcu_init_one: rcu_num_lvls out of range");
4015
4016 /* Initialize the level-tracking arrays. */
4017
4018 for (i = 0; i < rcu_num_lvls; i++)
4019 rsp->levelcnt[i] = num_rcu_lvl[i];
4020 for (i = 1; i < rcu_num_lvls; i++)
4021 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
4022 rcu_init_levelspread(rsp);
4023 rsp->flavor_mask = fl_mask;
4024 fl_mask <<= 1;
4025
4026 /* Initialize the elements themselves, starting from the leaves. */
4027
4028 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4029 cpustride *= rsp->levelspread[i];
4030 rnp = rsp->level[i];
4031 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
4032 raw_spin_lock_init(&rnp->lock);
4033 lockdep_set_class_and_name(&rnp->lock,
4034 &rcu_node_class[i], buf[i]);
4035 raw_spin_lock_init(&rnp->fqslock);
4036 lockdep_set_class_and_name(&rnp->fqslock,
4037 &rcu_fqs_class[i], fqs[i]);
4038 rnp->gpnum = rsp->gpnum;
4039 rnp->completed = rsp->completed;
4040 rnp->qsmask = 0;
4041 rnp->qsmaskinit = 0;
4042 rnp->grplo = j * cpustride;
4043 rnp->grphi = (j + 1) * cpustride - 1;
4044 if (rnp->grphi >= nr_cpu_ids)
4045 rnp->grphi = nr_cpu_ids - 1;
4046 if (i == 0) {
4047 rnp->grpnum = 0;
4048 rnp->grpmask = 0;
4049 rnp->parent = NULL;
4050 } else {
4051 rnp->grpnum = j % rsp->levelspread[i - 1];
4052 rnp->grpmask = 1UL << rnp->grpnum;
4053 rnp->parent = rsp->level[i - 1] +
4054 j / rsp->levelspread[i - 1];
4055 }
4056 rnp->level = i;
4057 INIT_LIST_HEAD(&rnp->blkd_tasks);
4058 rcu_init_one_nocb(rnp);
4059 }
4060 }
4061
4062 init_waitqueue_head(&rsp->gp_wq);
4063 rnp = rsp->level[rcu_num_lvls - 1];
4064 for_each_possible_cpu(i) {
4065 while (i > rnp->grphi)
4066 rnp++;
4067 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4068 rcu_boot_init_percpu_data(i, rsp);
4069 }
4070 list_add(&rsp->flavors, &rcu_struct_flavors);
4071 }
4072
4073 /*
4074 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4075 * replace the definitions in tree.h because those are needed to size
4076 * the ->node array in the rcu_state structure.
4077 */
4078 static void __init rcu_init_geometry(void)
4079 {
4080 ulong d;
4081 int i;
4082 int j;
4083 int n = nr_cpu_ids;
4084 int rcu_capacity[MAX_RCU_LVLS + 1];
4085
4086 /*
4087 * Initialize any unspecified boot parameters.
4088 * The default values of jiffies_till_first_fqs and
4089 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4090 * value, which is a function of HZ, then adding one for each
4091 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4092 */
4093 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4094 if (jiffies_till_first_fqs == ULONG_MAX)
4095 jiffies_till_first_fqs = d;
4096 if (jiffies_till_next_fqs == ULONG_MAX)
4097 jiffies_till_next_fqs = d;
4098
4099 /* If the compile-time values are accurate, just leave. */
4100 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4101 nr_cpu_ids == NR_CPUS)
4102 return;
4103 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4104 rcu_fanout_leaf, nr_cpu_ids);
4105
4106 /*
4107 * Compute number of nodes that can be handled an rcu_node tree
4108 * with the given number of levels. Setting rcu_capacity[0] makes
4109 * some of the arithmetic easier.
4110 */
4111 rcu_capacity[0] = 1;
4112 rcu_capacity[1] = rcu_fanout_leaf;
4113 for (i = 2; i <= MAX_RCU_LVLS; i++)
4114 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4115
4116 /*
4117 * The boot-time rcu_fanout_leaf parameter is only permitted
4118 * to increase the leaf-level fanout, not decrease it. Of course,
4119 * the leaf-level fanout cannot exceed the number of bits in
4120 * the rcu_node masks. Finally, the tree must be able to accommodate
4121 * the configured number of CPUs. Complain and fall back to the
4122 * compile-time values if these limits are exceeded.
4123 */
4124 if (rcu_fanout_leaf < RCU_FANOUT_LEAF ||
4125 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
4126 n > rcu_capacity[MAX_RCU_LVLS]) {
4127 WARN_ON(1);
4128 return;
4129 }
4130
4131 /* Calculate the number of rcu_nodes at each level of the tree. */
4132 for (i = 1; i <= MAX_RCU_LVLS; i++)
4133 if (n <= rcu_capacity[i]) {
4134 for (j = 0; j <= i; j++)
4135 num_rcu_lvl[j] =
4136 DIV_ROUND_UP(n, rcu_capacity[i - j]);
4137 rcu_num_lvls = i;
4138 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
4139 num_rcu_lvl[j] = 0;
4140 break;
4141 }
4142
4143 /* Calculate the total number of rcu_node structures. */
4144 rcu_num_nodes = 0;
4145 for (i = 0; i <= MAX_RCU_LVLS; i++)
4146 rcu_num_nodes += num_rcu_lvl[i];
4147 rcu_num_nodes -= n;
4148 }
4149
4150 /*
4151 * Dump out the structure of the rcu_node combining tree associated
4152 * with the rcu_state structure referenced by rsp.
4153 */
4154 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4155 {
4156 int level = 0;
4157 struct rcu_node *rnp;
4158
4159 pr_info("rcu_node tree layout dump\n");
4160 pr_info(" ");
4161 rcu_for_each_node_breadth_first(rsp, rnp) {
4162 if (rnp->level != level) {
4163 pr_cont("\n");
4164 pr_info(" ");
4165 level = rnp->level;
4166 }
4167 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4168 }
4169 pr_cont("\n");
4170 }
4171
4172 void __init rcu_init(void)
4173 {
4174 int cpu;
4175
4176 rcu_early_boot_tests();
4177
4178 rcu_bootup_announce();
4179 rcu_init_geometry();
4180 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4181 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4182 if (dump_tree)
4183 rcu_dump_rcu_node_tree(&rcu_sched_state);
4184 __rcu_init_preempt();
4185 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4186
4187 /*
4188 * We don't need protection against CPU-hotplug here because
4189 * this is called early in boot, before either interrupts
4190 * or the scheduler are operational.
4191 */
4192 cpu_notifier(rcu_cpu_notify, 0);
4193 pm_notifier(rcu_pm_notify, 0);
4194 for_each_online_cpu(cpu)
4195 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4196 }
4197
4198 #include "tree_plugin.h"
This page took 0.207327 seconds and 6 git commands to generate.