rcu: Kick CPU halfway to RCU CPU stall warning
[deliverable/linux.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include <trace/events/rcu.h>
62
63 #include "rcu.h"
64
65 MODULE_ALIAS("rcutree");
66 #ifdef MODULE_PARAM_PREFIX
67 #undef MODULE_PARAM_PREFIX
68 #endif
69 #define MODULE_PARAM_PREFIX "rcutree."
70
71 /* Data structures. */
72
73 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
74 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
75
76 /*
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
83 */
84 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
85 static char sname##_varname[] = #sname; \
86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
87 struct rcu_state sname##_state = { \
88 .level = { &sname##_state.node[0] }, \
89 .call = cr, \
90 .fqs_state = RCU_GP_IDLE, \
91 .gpnum = 0UL - 300UL, \
92 .completed = 0UL - 300UL, \
93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
95 .orphan_donetail = &sname##_state.orphan_donelist, \
96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
98 .name = sname##_varname, \
99 .abbr = sabbr, \
100 }; \
101 DEFINE_PER_CPU(struct rcu_data, sname##_data)
102
103 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
104 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
105
106 static struct rcu_state *rcu_state;
107 LIST_HEAD(rcu_struct_flavors);
108
109 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
114 NUM_RCU_LVL_0,
115 NUM_RCU_LVL_1,
116 NUM_RCU_LVL_2,
117 NUM_RCU_LVL_3,
118 NUM_RCU_LVL_4,
119 };
120 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
121
122 /*
123 * The rcu_scheduler_active variable transitions from zero to one just
124 * before the first task is spawned. So when this variable is zero, RCU
125 * can assume that there is but one task, allowing RCU to (for example)
126 * optimize synchronize_sched() to a simple barrier(). When this variable
127 * is one, RCU must actually do all the hard work required to detect real
128 * grace periods. This variable is also used to suppress boot-time false
129 * positives from lockdep-RCU error checking.
130 */
131 int rcu_scheduler_active __read_mostly;
132 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133
134 /*
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
141 *
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
144 * a time.
145 */
146 static int rcu_scheduler_fully_active __read_mostly;
147
148 #ifdef CONFIG_RCU_BOOST
149
150 /*
151 * Control variables for per-CPU and per-rcu_node kthreads. These
152 * handle all flavors of RCU.
153 */
154 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
155 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
156 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
157 DEFINE_PER_CPU(char, rcu_cpu_has_work);
158
159 #endif /* #ifdef CONFIG_RCU_BOOST */
160
161 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
162 static void invoke_rcu_core(void);
163 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
164
165 /*
166 * Track the rcutorture test sequence number and the update version
167 * number within a given test. The rcutorture_testseq is incremented
168 * on every rcutorture module load and unload, so has an odd value
169 * when a test is running. The rcutorture_vernum is set to zero
170 * when rcutorture starts and is incremented on each rcutorture update.
171 * These variables enable correlating rcutorture output with the
172 * RCU tracing information.
173 */
174 unsigned long rcutorture_testseq;
175 unsigned long rcutorture_vernum;
176
177 /*
178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
179 * permit this function to be invoked without holding the root rcu_node
180 * structure's ->lock, but of course results can be subject to change.
181 */
182 static int rcu_gp_in_progress(struct rcu_state *rsp)
183 {
184 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
185 }
186
187 /*
188 * Note a quiescent state. Because we do not need to know
189 * how many quiescent states passed, just if there was at least
190 * one since the start of the grace period, this just sets a flag.
191 * The caller must have disabled preemption.
192 */
193 void rcu_sched_qs(int cpu)
194 {
195 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
196
197 if (rdp->passed_quiesce == 0)
198 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
199 rdp->passed_quiesce = 1;
200 }
201
202 void rcu_bh_qs(int cpu)
203 {
204 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
205
206 if (rdp->passed_quiesce == 0)
207 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
208 rdp->passed_quiesce = 1;
209 }
210
211 /*
212 * Note a context switch. This is a quiescent state for RCU-sched,
213 * and requires special handling for preemptible RCU.
214 * The caller must have disabled preemption.
215 */
216 void rcu_note_context_switch(int cpu)
217 {
218 trace_rcu_utilization(TPS("Start context switch"));
219 rcu_sched_qs(cpu);
220 rcu_preempt_note_context_switch(cpu);
221 trace_rcu_utilization(TPS("End context switch"));
222 }
223 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
224
225 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
226 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
227 .dynticks = ATOMIC_INIT(1),
228 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
229 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
230 .dynticks_idle = ATOMIC_INIT(1),
231 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
232 };
233
234 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
235 static long qhimark = 10000; /* If this many pending, ignore blimit. */
236 static long qlowmark = 100; /* Once only this many pending, use blimit. */
237
238 module_param(blimit, long, 0444);
239 module_param(qhimark, long, 0444);
240 module_param(qlowmark, long, 0444);
241
242 static ulong jiffies_till_first_fqs = ULONG_MAX;
243 static ulong jiffies_till_next_fqs = ULONG_MAX;
244
245 module_param(jiffies_till_first_fqs, ulong, 0644);
246 module_param(jiffies_till_next_fqs, ulong, 0644);
247
248 static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
249 struct rcu_data *rdp);
250 static void force_qs_rnp(struct rcu_state *rsp,
251 int (*f)(struct rcu_data *rsp, bool *isidle,
252 unsigned long *maxj),
253 bool *isidle, unsigned long *maxj);
254 static void force_quiescent_state(struct rcu_state *rsp);
255 static int rcu_pending(int cpu);
256
257 /*
258 * Return the number of RCU-sched batches processed thus far for debug & stats.
259 */
260 long rcu_batches_completed_sched(void)
261 {
262 return rcu_sched_state.completed;
263 }
264 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
265
266 /*
267 * Return the number of RCU BH batches processed thus far for debug & stats.
268 */
269 long rcu_batches_completed_bh(void)
270 {
271 return rcu_bh_state.completed;
272 }
273 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
274
275 /*
276 * Force a quiescent state for RCU BH.
277 */
278 void rcu_bh_force_quiescent_state(void)
279 {
280 force_quiescent_state(&rcu_bh_state);
281 }
282 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
283
284 /*
285 * Record the number of times rcutorture tests have been initiated and
286 * terminated. This information allows the debugfs tracing stats to be
287 * correlated to the rcutorture messages, even when the rcutorture module
288 * is being repeatedly loaded and unloaded. In other words, we cannot
289 * store this state in rcutorture itself.
290 */
291 void rcutorture_record_test_transition(void)
292 {
293 rcutorture_testseq++;
294 rcutorture_vernum = 0;
295 }
296 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
297
298 /*
299 * Record the number of writer passes through the current rcutorture test.
300 * This is also used to correlate debugfs tracing stats with the rcutorture
301 * messages.
302 */
303 void rcutorture_record_progress(unsigned long vernum)
304 {
305 rcutorture_vernum++;
306 }
307 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
308
309 /*
310 * Force a quiescent state for RCU-sched.
311 */
312 void rcu_sched_force_quiescent_state(void)
313 {
314 force_quiescent_state(&rcu_sched_state);
315 }
316 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
317
318 /*
319 * Does the CPU have callbacks ready to be invoked?
320 */
321 static int
322 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
323 {
324 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
325 rdp->nxttail[RCU_DONE_TAIL] != NULL;
326 }
327
328 /*
329 * Does the current CPU require a not-yet-started grace period?
330 * The caller must have disabled interrupts to prevent races with
331 * normal callback registry.
332 */
333 static int
334 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
335 {
336 int i;
337
338 if (rcu_gp_in_progress(rsp))
339 return 0; /* No, a grace period is already in progress. */
340 if (rcu_nocb_needs_gp(rsp))
341 return 1; /* Yes, a no-CBs CPU needs one. */
342 if (!rdp->nxttail[RCU_NEXT_TAIL])
343 return 0; /* No, this is a no-CBs (or offline) CPU. */
344 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
345 return 1; /* Yes, this CPU has newly registered callbacks. */
346 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
347 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
348 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
349 rdp->nxtcompleted[i]))
350 return 1; /* Yes, CBs for future grace period. */
351 return 0; /* No grace period needed. */
352 }
353
354 /*
355 * Return the root node of the specified rcu_state structure.
356 */
357 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
358 {
359 return &rsp->node[0];
360 }
361
362 /*
363 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
364 *
365 * If the new value of the ->dynticks_nesting counter now is zero,
366 * we really have entered idle, and must do the appropriate accounting.
367 * The caller must have disabled interrupts.
368 */
369 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
370 bool user)
371 {
372 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
373 if (!user && !is_idle_task(current)) {
374 struct task_struct *idle __maybe_unused =
375 idle_task(smp_processor_id());
376
377 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
378 ftrace_dump(DUMP_ORIG);
379 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
380 current->pid, current->comm,
381 idle->pid, idle->comm); /* must be idle task! */
382 }
383 rcu_prepare_for_idle(smp_processor_id());
384 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
385 smp_mb__before_atomic_inc(); /* See above. */
386 atomic_inc(&rdtp->dynticks);
387 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
388 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
389
390 /*
391 * It is illegal to enter an extended quiescent state while
392 * in an RCU read-side critical section.
393 */
394 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
395 "Illegal idle entry in RCU read-side critical section.");
396 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
397 "Illegal idle entry in RCU-bh read-side critical section.");
398 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
399 "Illegal idle entry in RCU-sched read-side critical section.");
400 }
401
402 /*
403 * Enter an RCU extended quiescent state, which can be either the
404 * idle loop or adaptive-tickless usermode execution.
405 */
406 static void rcu_eqs_enter(bool user)
407 {
408 long long oldval;
409 struct rcu_dynticks *rdtp;
410
411 rdtp = this_cpu_ptr(&rcu_dynticks);
412 oldval = rdtp->dynticks_nesting;
413 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
414 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
415 rdtp->dynticks_nesting = 0;
416 else
417 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
418 rcu_eqs_enter_common(rdtp, oldval, user);
419 }
420
421 /**
422 * rcu_idle_enter - inform RCU that current CPU is entering idle
423 *
424 * Enter idle mode, in other words, -leave- the mode in which RCU
425 * read-side critical sections can occur. (Though RCU read-side
426 * critical sections can occur in irq handlers in idle, a possibility
427 * handled by irq_enter() and irq_exit().)
428 *
429 * We crowbar the ->dynticks_nesting field to zero to allow for
430 * the possibility of usermode upcalls having messed up our count
431 * of interrupt nesting level during the prior busy period.
432 */
433 void rcu_idle_enter(void)
434 {
435 unsigned long flags;
436
437 local_irq_save(flags);
438 rcu_eqs_enter(false);
439 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
440 local_irq_restore(flags);
441 }
442 EXPORT_SYMBOL_GPL(rcu_idle_enter);
443
444 #ifdef CONFIG_RCU_USER_QS
445 /**
446 * rcu_user_enter - inform RCU that we are resuming userspace.
447 *
448 * Enter RCU idle mode right before resuming userspace. No use of RCU
449 * is permitted between this call and rcu_user_exit(). This way the
450 * CPU doesn't need to maintain the tick for RCU maintenance purposes
451 * when the CPU runs in userspace.
452 */
453 void rcu_user_enter(void)
454 {
455 rcu_eqs_enter(1);
456 }
457 #endif /* CONFIG_RCU_USER_QS */
458
459 /**
460 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
461 *
462 * Exit from an interrupt handler, which might possibly result in entering
463 * idle mode, in other words, leaving the mode in which read-side critical
464 * sections can occur.
465 *
466 * This code assumes that the idle loop never does anything that might
467 * result in unbalanced calls to irq_enter() and irq_exit(). If your
468 * architecture violates this assumption, RCU will give you what you
469 * deserve, good and hard. But very infrequently and irreproducibly.
470 *
471 * Use things like work queues to work around this limitation.
472 *
473 * You have been warned.
474 */
475 void rcu_irq_exit(void)
476 {
477 unsigned long flags;
478 long long oldval;
479 struct rcu_dynticks *rdtp;
480
481 local_irq_save(flags);
482 rdtp = this_cpu_ptr(&rcu_dynticks);
483 oldval = rdtp->dynticks_nesting;
484 rdtp->dynticks_nesting--;
485 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
486 if (rdtp->dynticks_nesting)
487 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
488 else
489 rcu_eqs_enter_common(rdtp, oldval, true);
490 rcu_sysidle_enter(rdtp, 1);
491 local_irq_restore(flags);
492 }
493
494 /*
495 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
496 *
497 * If the new value of the ->dynticks_nesting counter was previously zero,
498 * we really have exited idle, and must do the appropriate accounting.
499 * The caller must have disabled interrupts.
500 */
501 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
502 int user)
503 {
504 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
505 atomic_inc(&rdtp->dynticks);
506 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
507 smp_mb__after_atomic_inc(); /* See above. */
508 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
509 rcu_cleanup_after_idle(smp_processor_id());
510 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
511 if (!user && !is_idle_task(current)) {
512 struct task_struct *idle __maybe_unused =
513 idle_task(smp_processor_id());
514
515 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
516 oldval, rdtp->dynticks_nesting);
517 ftrace_dump(DUMP_ORIG);
518 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
519 current->pid, current->comm,
520 idle->pid, idle->comm); /* must be idle task! */
521 }
522 }
523
524 /*
525 * Exit an RCU extended quiescent state, which can be either the
526 * idle loop or adaptive-tickless usermode execution.
527 */
528 static void rcu_eqs_exit(bool user)
529 {
530 struct rcu_dynticks *rdtp;
531 long long oldval;
532
533 rdtp = this_cpu_ptr(&rcu_dynticks);
534 oldval = rdtp->dynticks_nesting;
535 WARN_ON_ONCE(oldval < 0);
536 if (oldval & DYNTICK_TASK_NEST_MASK)
537 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
538 else
539 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
540 rcu_eqs_exit_common(rdtp, oldval, user);
541 }
542
543 /**
544 * rcu_idle_exit - inform RCU that current CPU is leaving idle
545 *
546 * Exit idle mode, in other words, -enter- the mode in which RCU
547 * read-side critical sections can occur.
548 *
549 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
550 * allow for the possibility of usermode upcalls messing up our count
551 * of interrupt nesting level during the busy period that is just
552 * now starting.
553 */
554 void rcu_idle_exit(void)
555 {
556 unsigned long flags;
557
558 local_irq_save(flags);
559 rcu_eqs_exit(false);
560 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
561 local_irq_restore(flags);
562 }
563 EXPORT_SYMBOL_GPL(rcu_idle_exit);
564
565 #ifdef CONFIG_RCU_USER_QS
566 /**
567 * rcu_user_exit - inform RCU that we are exiting userspace.
568 *
569 * Exit RCU idle mode while entering the kernel because it can
570 * run a RCU read side critical section anytime.
571 */
572 void rcu_user_exit(void)
573 {
574 rcu_eqs_exit(1);
575 }
576 #endif /* CONFIG_RCU_USER_QS */
577
578 /**
579 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
580 *
581 * Enter an interrupt handler, which might possibly result in exiting
582 * idle mode, in other words, entering the mode in which read-side critical
583 * sections can occur.
584 *
585 * Note that the Linux kernel is fully capable of entering an interrupt
586 * handler that it never exits, for example when doing upcalls to
587 * user mode! This code assumes that the idle loop never does upcalls to
588 * user mode. If your architecture does do upcalls from the idle loop (or
589 * does anything else that results in unbalanced calls to the irq_enter()
590 * and irq_exit() functions), RCU will give you what you deserve, good
591 * and hard. But very infrequently and irreproducibly.
592 *
593 * Use things like work queues to work around this limitation.
594 *
595 * You have been warned.
596 */
597 void rcu_irq_enter(void)
598 {
599 unsigned long flags;
600 struct rcu_dynticks *rdtp;
601 long long oldval;
602
603 local_irq_save(flags);
604 rdtp = this_cpu_ptr(&rcu_dynticks);
605 oldval = rdtp->dynticks_nesting;
606 rdtp->dynticks_nesting++;
607 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
608 if (oldval)
609 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
610 else
611 rcu_eqs_exit_common(rdtp, oldval, true);
612 rcu_sysidle_exit(rdtp, 1);
613 local_irq_restore(flags);
614 }
615
616 /**
617 * rcu_nmi_enter - inform RCU of entry to NMI context
618 *
619 * If the CPU was idle with dynamic ticks active, and there is no
620 * irq handler running, this updates rdtp->dynticks_nmi to let the
621 * RCU grace-period handling know that the CPU is active.
622 */
623 void rcu_nmi_enter(void)
624 {
625 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
626
627 if (rdtp->dynticks_nmi_nesting == 0 &&
628 (atomic_read(&rdtp->dynticks) & 0x1))
629 return;
630 rdtp->dynticks_nmi_nesting++;
631 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
632 atomic_inc(&rdtp->dynticks);
633 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
634 smp_mb__after_atomic_inc(); /* See above. */
635 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
636 }
637
638 /**
639 * rcu_nmi_exit - inform RCU of exit from NMI context
640 *
641 * If the CPU was idle with dynamic ticks active, and there is no
642 * irq handler running, this updates rdtp->dynticks_nmi to let the
643 * RCU grace-period handling know that the CPU is no longer active.
644 */
645 void rcu_nmi_exit(void)
646 {
647 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
648
649 if (rdtp->dynticks_nmi_nesting == 0 ||
650 --rdtp->dynticks_nmi_nesting != 0)
651 return;
652 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
653 smp_mb__before_atomic_inc(); /* See above. */
654 atomic_inc(&rdtp->dynticks);
655 smp_mb__after_atomic_inc(); /* Force delay to next write. */
656 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
657 }
658
659 /**
660 * __rcu_is_watching - are RCU read-side critical sections safe?
661 *
662 * Return true if RCU is watching the running CPU, which means that
663 * this CPU can safely enter RCU read-side critical sections. Unlike
664 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
665 * least disabled preemption.
666 */
667 bool notrace __rcu_is_watching(void)
668 {
669 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
670 }
671
672 /**
673 * rcu_is_watching - see if RCU thinks that the current CPU is idle
674 *
675 * If the current CPU is in its idle loop and is neither in an interrupt
676 * or NMI handler, return true.
677 */
678 bool notrace rcu_is_watching(void)
679 {
680 int ret;
681
682 preempt_disable();
683 ret = __rcu_is_watching();
684 preempt_enable();
685 return ret;
686 }
687 EXPORT_SYMBOL_GPL(rcu_is_watching);
688
689 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
690
691 /*
692 * Is the current CPU online? Disable preemption to avoid false positives
693 * that could otherwise happen due to the current CPU number being sampled,
694 * this task being preempted, its old CPU being taken offline, resuming
695 * on some other CPU, then determining that its old CPU is now offline.
696 * It is OK to use RCU on an offline processor during initial boot, hence
697 * the check for rcu_scheduler_fully_active. Note also that it is OK
698 * for a CPU coming online to use RCU for one jiffy prior to marking itself
699 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
700 * offline to continue to use RCU for one jiffy after marking itself
701 * offline in the cpu_online_mask. This leniency is necessary given the
702 * non-atomic nature of the online and offline processing, for example,
703 * the fact that a CPU enters the scheduler after completing the CPU_DYING
704 * notifiers.
705 *
706 * This is also why RCU internally marks CPUs online during the
707 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
708 *
709 * Disable checking if in an NMI handler because we cannot safely report
710 * errors from NMI handlers anyway.
711 */
712 bool rcu_lockdep_current_cpu_online(void)
713 {
714 struct rcu_data *rdp;
715 struct rcu_node *rnp;
716 bool ret;
717
718 if (in_nmi())
719 return 1;
720 preempt_disable();
721 rdp = this_cpu_ptr(&rcu_sched_data);
722 rnp = rdp->mynode;
723 ret = (rdp->grpmask & rnp->qsmaskinit) ||
724 !rcu_scheduler_fully_active;
725 preempt_enable();
726 return ret;
727 }
728 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
729
730 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
731
732 /**
733 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
734 *
735 * If the current CPU is idle or running at a first-level (not nested)
736 * interrupt from idle, return true. The caller must have at least
737 * disabled preemption.
738 */
739 static int rcu_is_cpu_rrupt_from_idle(void)
740 {
741 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
742 }
743
744 /*
745 * Snapshot the specified CPU's dynticks counter so that we can later
746 * credit them with an implicit quiescent state. Return 1 if this CPU
747 * is in dynticks idle mode, which is an extended quiescent state.
748 */
749 static int dyntick_save_progress_counter(struct rcu_data *rdp,
750 bool *isidle, unsigned long *maxj)
751 {
752 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
753 rcu_sysidle_check_cpu(rdp, isidle, maxj);
754 return (rdp->dynticks_snap & 0x1) == 0;
755 }
756
757 /*
758 * This function really isn't for public consumption, but RCU is special in
759 * that context switches can allow the state machine to make progress.
760 */
761 extern void resched_cpu(int cpu);
762
763 /*
764 * Return true if the specified CPU has passed through a quiescent
765 * state by virtue of being in or having passed through an dynticks
766 * idle state since the last call to dyntick_save_progress_counter()
767 * for this same CPU, or by virtue of having been offline.
768 */
769 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
770 bool *isidle, unsigned long *maxj)
771 {
772 unsigned int curr;
773 unsigned int snap;
774
775 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
776 snap = (unsigned int)rdp->dynticks_snap;
777
778 /*
779 * If the CPU passed through or entered a dynticks idle phase with
780 * no active irq/NMI handlers, then we can safely pretend that the CPU
781 * already acknowledged the request to pass through a quiescent
782 * state. Either way, that CPU cannot possibly be in an RCU
783 * read-side critical section that started before the beginning
784 * of the current RCU grace period.
785 */
786 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
787 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
788 rdp->dynticks_fqs++;
789 return 1;
790 }
791
792 /*
793 * Check for the CPU being offline, but only if the grace period
794 * is old enough. We don't need to worry about the CPU changing
795 * state: If we see it offline even once, it has been through a
796 * quiescent state.
797 *
798 * The reason for insisting that the grace period be at least
799 * one jiffy old is that CPUs that are not quite online and that
800 * have just gone offline can still execute RCU read-side critical
801 * sections.
802 */
803 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
804 return 0; /* Grace period is not old enough. */
805 barrier();
806 if (cpu_is_offline(rdp->cpu)) {
807 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
808 rdp->offline_fqs++;
809 return 1;
810 }
811
812 /*
813 * There is a possibility that a CPU in adaptive-ticks state
814 * might run in the kernel with the scheduling-clock tick disabled
815 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
816 * force the CPU to restart the scheduling-clock tick in this
817 * CPU is in this state.
818 */
819 rcu_kick_nohz_cpu(rdp->cpu);
820
821 /*
822 * Alternatively, the CPU might be running in the kernel
823 * for an extended period of time without a quiescent state.
824 * Attempt to force the CPU through the scheduler to gain the
825 * needed quiescent state, but only if the grace period has gone
826 * on for an uncommonly long time. If there are many stuck CPUs,
827 * we will beat on the first one until it gets unstuck, then move
828 * to the next. Only do this for the primary flavor of RCU.
829 */
830 if (rdp->rsp == rcu_state &&
831 ULONG_CMP_GE(ACCESS_ONCE(jiffies), rdp->rsp->jiffies_resched)) {
832 rdp->rsp->jiffies_resched += 5;
833 resched_cpu(rdp->cpu);
834 }
835
836 return 0;
837 }
838
839 static void record_gp_stall_check_time(struct rcu_state *rsp)
840 {
841 unsigned long j = ACCESS_ONCE(jiffies);
842 unsigned long j1;
843
844 rsp->gp_start = j;
845 smp_wmb(); /* Record start time before stall time. */
846 j1 = rcu_jiffies_till_stall_check();
847 rsp->jiffies_stall = j + j1;
848 rsp->jiffies_resched = j + j1 / 2;
849 }
850
851 /*
852 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
853 * for architectures that do not implement trigger_all_cpu_backtrace().
854 * The NMI-triggered stack traces are more accurate because they are
855 * printed by the target CPU.
856 */
857 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
858 {
859 int cpu;
860 unsigned long flags;
861 struct rcu_node *rnp;
862
863 rcu_for_each_leaf_node(rsp, rnp) {
864 raw_spin_lock_irqsave(&rnp->lock, flags);
865 if (rnp->qsmask != 0) {
866 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
867 if (rnp->qsmask & (1UL << cpu))
868 dump_cpu_task(rnp->grplo + cpu);
869 }
870 raw_spin_unlock_irqrestore(&rnp->lock, flags);
871 }
872 }
873
874 static void print_other_cpu_stall(struct rcu_state *rsp)
875 {
876 int cpu;
877 long delta;
878 unsigned long flags;
879 int ndetected = 0;
880 struct rcu_node *rnp = rcu_get_root(rsp);
881 long totqlen = 0;
882
883 /* Only let one CPU complain about others per time interval. */
884
885 raw_spin_lock_irqsave(&rnp->lock, flags);
886 delta = jiffies - rsp->jiffies_stall;
887 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
888 raw_spin_unlock_irqrestore(&rnp->lock, flags);
889 return;
890 }
891 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
892 raw_spin_unlock_irqrestore(&rnp->lock, flags);
893
894 /*
895 * OK, time to rat on our buddy...
896 * See Documentation/RCU/stallwarn.txt for info on how to debug
897 * RCU CPU stall warnings.
898 */
899 pr_err("INFO: %s detected stalls on CPUs/tasks:",
900 rsp->name);
901 print_cpu_stall_info_begin();
902 rcu_for_each_leaf_node(rsp, rnp) {
903 raw_spin_lock_irqsave(&rnp->lock, flags);
904 ndetected += rcu_print_task_stall(rnp);
905 if (rnp->qsmask != 0) {
906 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
907 if (rnp->qsmask & (1UL << cpu)) {
908 print_cpu_stall_info(rsp,
909 rnp->grplo + cpu);
910 ndetected++;
911 }
912 }
913 raw_spin_unlock_irqrestore(&rnp->lock, flags);
914 }
915
916 /*
917 * Now rat on any tasks that got kicked up to the root rcu_node
918 * due to CPU offlining.
919 */
920 rnp = rcu_get_root(rsp);
921 raw_spin_lock_irqsave(&rnp->lock, flags);
922 ndetected += rcu_print_task_stall(rnp);
923 raw_spin_unlock_irqrestore(&rnp->lock, flags);
924
925 print_cpu_stall_info_end();
926 for_each_possible_cpu(cpu)
927 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
928 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
929 smp_processor_id(), (long)(jiffies - rsp->gp_start),
930 rsp->gpnum, rsp->completed, totqlen);
931 if (ndetected == 0)
932 pr_err("INFO: Stall ended before state dump start\n");
933 else if (!trigger_all_cpu_backtrace())
934 rcu_dump_cpu_stacks(rsp);
935
936 /* Complain about tasks blocking the grace period. */
937
938 rcu_print_detail_task_stall(rsp);
939
940 force_quiescent_state(rsp); /* Kick them all. */
941 }
942
943 /*
944 * This function really isn't for public consumption, but RCU is special in
945 * that context switches can allow the state machine to make progress.
946 */
947 extern void resched_cpu(int cpu);
948
949 static void print_cpu_stall(struct rcu_state *rsp)
950 {
951 int cpu;
952 unsigned long flags;
953 struct rcu_node *rnp = rcu_get_root(rsp);
954 long totqlen = 0;
955
956 /*
957 * OK, time to rat on ourselves...
958 * See Documentation/RCU/stallwarn.txt for info on how to debug
959 * RCU CPU stall warnings.
960 */
961 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
962 print_cpu_stall_info_begin();
963 print_cpu_stall_info(rsp, smp_processor_id());
964 print_cpu_stall_info_end();
965 for_each_possible_cpu(cpu)
966 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
967 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
968 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
969 if (!trigger_all_cpu_backtrace())
970 dump_stack();
971
972 raw_spin_lock_irqsave(&rnp->lock, flags);
973 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
974 rsp->jiffies_stall = jiffies +
975 3 * rcu_jiffies_till_stall_check() + 3;
976 raw_spin_unlock_irqrestore(&rnp->lock, flags);
977
978 /*
979 * Attempt to revive the RCU machinery by forcing a context switch.
980 *
981 * A context switch would normally allow the RCU state machine to make
982 * progress and it could be we're stuck in kernel space without context
983 * switches for an entirely unreasonable amount of time.
984 */
985 resched_cpu(smp_processor_id());
986 }
987
988 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
989 {
990 unsigned long completed;
991 unsigned long gpnum;
992 unsigned long gps;
993 unsigned long j;
994 unsigned long js;
995 struct rcu_node *rnp;
996
997 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
998 return;
999 j = ACCESS_ONCE(jiffies);
1000
1001 /*
1002 * Lots of memory barriers to reject false positives.
1003 *
1004 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1005 * then rsp->gp_start, and finally rsp->completed. These values
1006 * are updated in the opposite order with memory barriers (or
1007 * equivalent) during grace-period initialization and cleanup.
1008 * Now, a false positive can occur if we get an new value of
1009 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1010 * the memory barriers, the only way that this can happen is if one
1011 * grace period ends and another starts between these two fetches.
1012 * Detect this by comparing rsp->completed with the previous fetch
1013 * from rsp->gpnum.
1014 *
1015 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1016 * and rsp->gp_start suffice to forestall false positives.
1017 */
1018 gpnum = ACCESS_ONCE(rsp->gpnum);
1019 smp_rmb(); /* Pick up ->gpnum first... */
1020 js = ACCESS_ONCE(rsp->jiffies_stall);
1021 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1022 gps = ACCESS_ONCE(rsp->gp_start);
1023 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1024 completed = ACCESS_ONCE(rsp->completed);
1025 if (ULONG_CMP_GE(completed, gpnum) ||
1026 ULONG_CMP_LT(j, js) ||
1027 ULONG_CMP_GE(gps, js))
1028 return; /* No stall or GP completed since entering function. */
1029 rnp = rdp->mynode;
1030 if (rcu_gp_in_progress(rsp) &&
1031 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1032
1033 /* We haven't checked in, so go dump stack. */
1034 print_cpu_stall(rsp);
1035
1036 } else if (rcu_gp_in_progress(rsp) &&
1037 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1038
1039 /* They had a few time units to dump stack, so complain. */
1040 print_other_cpu_stall(rsp);
1041 }
1042 }
1043
1044 /**
1045 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1046 *
1047 * Set the stall-warning timeout way off into the future, thus preventing
1048 * any RCU CPU stall-warning messages from appearing in the current set of
1049 * RCU grace periods.
1050 *
1051 * The caller must disable hard irqs.
1052 */
1053 void rcu_cpu_stall_reset(void)
1054 {
1055 struct rcu_state *rsp;
1056
1057 for_each_rcu_flavor(rsp)
1058 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1059 }
1060
1061 /*
1062 * Initialize the specified rcu_data structure's callback list to empty.
1063 */
1064 static void init_callback_list(struct rcu_data *rdp)
1065 {
1066 int i;
1067
1068 if (init_nocb_callback_list(rdp))
1069 return;
1070 rdp->nxtlist = NULL;
1071 for (i = 0; i < RCU_NEXT_SIZE; i++)
1072 rdp->nxttail[i] = &rdp->nxtlist;
1073 }
1074
1075 /*
1076 * Determine the value that ->completed will have at the end of the
1077 * next subsequent grace period. This is used to tag callbacks so that
1078 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1079 * been dyntick-idle for an extended period with callbacks under the
1080 * influence of RCU_FAST_NO_HZ.
1081 *
1082 * The caller must hold rnp->lock with interrupts disabled.
1083 */
1084 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1085 struct rcu_node *rnp)
1086 {
1087 /*
1088 * If RCU is idle, we just wait for the next grace period.
1089 * But we can only be sure that RCU is idle if we are looking
1090 * at the root rcu_node structure -- otherwise, a new grace
1091 * period might have started, but just not yet gotten around
1092 * to initializing the current non-root rcu_node structure.
1093 */
1094 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1095 return rnp->completed + 1;
1096
1097 /*
1098 * Otherwise, wait for a possible partial grace period and
1099 * then the subsequent full grace period.
1100 */
1101 return rnp->completed + 2;
1102 }
1103
1104 /*
1105 * Trace-event helper function for rcu_start_future_gp() and
1106 * rcu_nocb_wait_gp().
1107 */
1108 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1109 unsigned long c, const char *s)
1110 {
1111 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1112 rnp->completed, c, rnp->level,
1113 rnp->grplo, rnp->grphi, s);
1114 }
1115
1116 /*
1117 * Start some future grace period, as needed to handle newly arrived
1118 * callbacks. The required future grace periods are recorded in each
1119 * rcu_node structure's ->need_future_gp field.
1120 *
1121 * The caller must hold the specified rcu_node structure's ->lock.
1122 */
1123 static unsigned long __maybe_unused
1124 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1125 {
1126 unsigned long c;
1127 int i;
1128 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1129
1130 /*
1131 * Pick up grace-period number for new callbacks. If this
1132 * grace period is already marked as needed, return to the caller.
1133 */
1134 c = rcu_cbs_completed(rdp->rsp, rnp);
1135 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1136 if (rnp->need_future_gp[c & 0x1]) {
1137 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1138 return c;
1139 }
1140
1141 /*
1142 * If either this rcu_node structure or the root rcu_node structure
1143 * believe that a grace period is in progress, then we must wait
1144 * for the one following, which is in "c". Because our request
1145 * will be noticed at the end of the current grace period, we don't
1146 * need to explicitly start one.
1147 */
1148 if (rnp->gpnum != rnp->completed ||
1149 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1150 rnp->need_future_gp[c & 0x1]++;
1151 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1152 return c;
1153 }
1154
1155 /*
1156 * There might be no grace period in progress. If we don't already
1157 * hold it, acquire the root rcu_node structure's lock in order to
1158 * start one (if needed).
1159 */
1160 if (rnp != rnp_root)
1161 raw_spin_lock(&rnp_root->lock);
1162
1163 /*
1164 * Get a new grace-period number. If there really is no grace
1165 * period in progress, it will be smaller than the one we obtained
1166 * earlier. Adjust callbacks as needed. Note that even no-CBs
1167 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1168 */
1169 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1170 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1171 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1172 rdp->nxtcompleted[i] = c;
1173
1174 /*
1175 * If the needed for the required grace period is already
1176 * recorded, trace and leave.
1177 */
1178 if (rnp_root->need_future_gp[c & 0x1]) {
1179 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1180 goto unlock_out;
1181 }
1182
1183 /* Record the need for the future grace period. */
1184 rnp_root->need_future_gp[c & 0x1]++;
1185
1186 /* If a grace period is not already in progress, start one. */
1187 if (rnp_root->gpnum != rnp_root->completed) {
1188 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1189 } else {
1190 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1191 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1192 }
1193 unlock_out:
1194 if (rnp != rnp_root)
1195 raw_spin_unlock(&rnp_root->lock);
1196 return c;
1197 }
1198
1199 /*
1200 * Clean up any old requests for the just-ended grace period. Also return
1201 * whether any additional grace periods have been requested. Also invoke
1202 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1203 * waiting for this grace period to complete.
1204 */
1205 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1206 {
1207 int c = rnp->completed;
1208 int needmore;
1209 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1210
1211 rcu_nocb_gp_cleanup(rsp, rnp);
1212 rnp->need_future_gp[c & 0x1] = 0;
1213 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1214 trace_rcu_future_gp(rnp, rdp, c,
1215 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1216 return needmore;
1217 }
1218
1219 /*
1220 * If there is room, assign a ->completed number to any callbacks on
1221 * this CPU that have not already been assigned. Also accelerate any
1222 * callbacks that were previously assigned a ->completed number that has
1223 * since proven to be too conservative, which can happen if callbacks get
1224 * assigned a ->completed number while RCU is idle, but with reference to
1225 * a non-root rcu_node structure. This function is idempotent, so it does
1226 * not hurt to call it repeatedly.
1227 *
1228 * The caller must hold rnp->lock with interrupts disabled.
1229 */
1230 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1231 struct rcu_data *rdp)
1232 {
1233 unsigned long c;
1234 int i;
1235
1236 /* If the CPU has no callbacks, nothing to do. */
1237 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1238 return;
1239
1240 /*
1241 * Starting from the sublist containing the callbacks most
1242 * recently assigned a ->completed number and working down, find the
1243 * first sublist that is not assignable to an upcoming grace period.
1244 * Such a sublist has something in it (first two tests) and has
1245 * a ->completed number assigned that will complete sooner than
1246 * the ->completed number for newly arrived callbacks (last test).
1247 *
1248 * The key point is that any later sublist can be assigned the
1249 * same ->completed number as the newly arrived callbacks, which
1250 * means that the callbacks in any of these later sublist can be
1251 * grouped into a single sublist, whether or not they have already
1252 * been assigned a ->completed number.
1253 */
1254 c = rcu_cbs_completed(rsp, rnp);
1255 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1256 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1257 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1258 break;
1259
1260 /*
1261 * If there are no sublist for unassigned callbacks, leave.
1262 * At the same time, advance "i" one sublist, so that "i" will
1263 * index into the sublist where all the remaining callbacks should
1264 * be grouped into.
1265 */
1266 if (++i >= RCU_NEXT_TAIL)
1267 return;
1268
1269 /*
1270 * Assign all subsequent callbacks' ->completed number to the next
1271 * full grace period and group them all in the sublist initially
1272 * indexed by "i".
1273 */
1274 for (; i <= RCU_NEXT_TAIL; i++) {
1275 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1276 rdp->nxtcompleted[i] = c;
1277 }
1278 /* Record any needed additional grace periods. */
1279 rcu_start_future_gp(rnp, rdp);
1280
1281 /* Trace depending on how much we were able to accelerate. */
1282 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1283 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1284 else
1285 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1286 }
1287
1288 /*
1289 * Move any callbacks whose grace period has completed to the
1290 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1291 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1292 * sublist. This function is idempotent, so it does not hurt to
1293 * invoke it repeatedly. As long as it is not invoked -too- often...
1294 *
1295 * The caller must hold rnp->lock with interrupts disabled.
1296 */
1297 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1298 struct rcu_data *rdp)
1299 {
1300 int i, j;
1301
1302 /* If the CPU has no callbacks, nothing to do. */
1303 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1304 return;
1305
1306 /*
1307 * Find all callbacks whose ->completed numbers indicate that they
1308 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1309 */
1310 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1311 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1312 break;
1313 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1314 }
1315 /* Clean up any sublist tail pointers that were misordered above. */
1316 for (j = RCU_WAIT_TAIL; j < i; j++)
1317 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1318
1319 /* Copy down callbacks to fill in empty sublists. */
1320 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1321 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1322 break;
1323 rdp->nxttail[j] = rdp->nxttail[i];
1324 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1325 }
1326
1327 /* Classify any remaining callbacks. */
1328 rcu_accelerate_cbs(rsp, rnp, rdp);
1329 }
1330
1331 /*
1332 * Update CPU-local rcu_data state to record the beginnings and ends of
1333 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1334 * structure corresponding to the current CPU, and must have irqs disabled.
1335 */
1336 static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1337 {
1338 /* Handle the ends of any preceding grace periods first. */
1339 if (rdp->completed == rnp->completed) {
1340
1341 /* No grace period end, so just accelerate recent callbacks. */
1342 rcu_accelerate_cbs(rsp, rnp, rdp);
1343
1344 } else {
1345
1346 /* Advance callbacks. */
1347 rcu_advance_cbs(rsp, rnp, rdp);
1348
1349 /* Remember that we saw this grace-period completion. */
1350 rdp->completed = rnp->completed;
1351 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1352 }
1353
1354 if (rdp->gpnum != rnp->gpnum) {
1355 /*
1356 * If the current grace period is waiting for this CPU,
1357 * set up to detect a quiescent state, otherwise don't
1358 * go looking for one.
1359 */
1360 rdp->gpnum = rnp->gpnum;
1361 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1362 rdp->passed_quiesce = 0;
1363 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1364 zero_cpu_stall_ticks(rdp);
1365 }
1366 }
1367
1368 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1369 {
1370 unsigned long flags;
1371 struct rcu_node *rnp;
1372
1373 local_irq_save(flags);
1374 rnp = rdp->mynode;
1375 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1376 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1377 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1378 local_irq_restore(flags);
1379 return;
1380 }
1381 __note_gp_changes(rsp, rnp, rdp);
1382 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1383 }
1384
1385 /*
1386 * Initialize a new grace period. Return 0 if no grace period required.
1387 */
1388 static int rcu_gp_init(struct rcu_state *rsp)
1389 {
1390 struct rcu_data *rdp;
1391 struct rcu_node *rnp = rcu_get_root(rsp);
1392
1393 rcu_bind_gp_kthread();
1394 raw_spin_lock_irq(&rnp->lock);
1395 if (rsp->gp_flags == 0) {
1396 /* Spurious wakeup, tell caller to go back to sleep. */
1397 raw_spin_unlock_irq(&rnp->lock);
1398 return 0;
1399 }
1400 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1401
1402 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1403 /*
1404 * Grace period already in progress, don't start another.
1405 * Not supposed to be able to happen.
1406 */
1407 raw_spin_unlock_irq(&rnp->lock);
1408 return 0;
1409 }
1410
1411 /* Advance to a new grace period and initialize state. */
1412 record_gp_stall_check_time(rsp);
1413 smp_wmb(); /* Record GP times before starting GP. */
1414 rsp->gpnum++;
1415 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1416 raw_spin_unlock_irq(&rnp->lock);
1417
1418 /* Exclude any concurrent CPU-hotplug operations. */
1419 mutex_lock(&rsp->onoff_mutex);
1420
1421 /*
1422 * Set the quiescent-state-needed bits in all the rcu_node
1423 * structures for all currently online CPUs in breadth-first order,
1424 * starting from the root rcu_node structure, relying on the layout
1425 * of the tree within the rsp->node[] array. Note that other CPUs
1426 * will access only the leaves of the hierarchy, thus seeing that no
1427 * grace period is in progress, at least until the corresponding
1428 * leaf node has been initialized. In addition, we have excluded
1429 * CPU-hotplug operations.
1430 *
1431 * The grace period cannot complete until the initialization
1432 * process finishes, because this kthread handles both.
1433 */
1434 rcu_for_each_node_breadth_first(rsp, rnp) {
1435 raw_spin_lock_irq(&rnp->lock);
1436 rdp = this_cpu_ptr(rsp->rda);
1437 rcu_preempt_check_blocked_tasks(rnp);
1438 rnp->qsmask = rnp->qsmaskinit;
1439 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1440 WARN_ON_ONCE(rnp->completed != rsp->completed);
1441 ACCESS_ONCE(rnp->completed) = rsp->completed;
1442 if (rnp == rdp->mynode)
1443 __note_gp_changes(rsp, rnp, rdp);
1444 rcu_preempt_boost_start_gp(rnp);
1445 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1446 rnp->level, rnp->grplo,
1447 rnp->grphi, rnp->qsmask);
1448 raw_spin_unlock_irq(&rnp->lock);
1449 #ifdef CONFIG_PROVE_RCU_DELAY
1450 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1451 system_state == SYSTEM_RUNNING)
1452 udelay(200);
1453 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1454 cond_resched();
1455 }
1456
1457 mutex_unlock(&rsp->onoff_mutex);
1458 return 1;
1459 }
1460
1461 /*
1462 * Do one round of quiescent-state forcing.
1463 */
1464 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1465 {
1466 int fqs_state = fqs_state_in;
1467 bool isidle = false;
1468 unsigned long maxj;
1469 struct rcu_node *rnp = rcu_get_root(rsp);
1470
1471 rsp->n_force_qs++;
1472 if (fqs_state == RCU_SAVE_DYNTICK) {
1473 /* Collect dyntick-idle snapshots. */
1474 if (is_sysidle_rcu_state(rsp)) {
1475 isidle = 1;
1476 maxj = jiffies - ULONG_MAX / 4;
1477 }
1478 force_qs_rnp(rsp, dyntick_save_progress_counter,
1479 &isidle, &maxj);
1480 rcu_sysidle_report_gp(rsp, isidle, maxj);
1481 fqs_state = RCU_FORCE_QS;
1482 } else {
1483 /* Handle dyntick-idle and offline CPUs. */
1484 isidle = 0;
1485 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1486 }
1487 /* Clear flag to prevent immediate re-entry. */
1488 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1489 raw_spin_lock_irq(&rnp->lock);
1490 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1491 raw_spin_unlock_irq(&rnp->lock);
1492 }
1493 return fqs_state;
1494 }
1495
1496 /*
1497 * Clean up after the old grace period.
1498 */
1499 static void rcu_gp_cleanup(struct rcu_state *rsp)
1500 {
1501 unsigned long gp_duration;
1502 int nocb = 0;
1503 struct rcu_data *rdp;
1504 struct rcu_node *rnp = rcu_get_root(rsp);
1505
1506 raw_spin_lock_irq(&rnp->lock);
1507 gp_duration = jiffies - rsp->gp_start;
1508 if (gp_duration > rsp->gp_max)
1509 rsp->gp_max = gp_duration;
1510
1511 /*
1512 * We know the grace period is complete, but to everyone else
1513 * it appears to still be ongoing. But it is also the case
1514 * that to everyone else it looks like there is nothing that
1515 * they can do to advance the grace period. It is therefore
1516 * safe for us to drop the lock in order to mark the grace
1517 * period as completed in all of the rcu_node structures.
1518 */
1519 raw_spin_unlock_irq(&rnp->lock);
1520
1521 /*
1522 * Propagate new ->completed value to rcu_node structures so
1523 * that other CPUs don't have to wait until the start of the next
1524 * grace period to process their callbacks. This also avoids
1525 * some nasty RCU grace-period initialization races by forcing
1526 * the end of the current grace period to be completely recorded in
1527 * all of the rcu_node structures before the beginning of the next
1528 * grace period is recorded in any of the rcu_node structures.
1529 */
1530 rcu_for_each_node_breadth_first(rsp, rnp) {
1531 raw_spin_lock_irq(&rnp->lock);
1532 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1533 rdp = this_cpu_ptr(rsp->rda);
1534 if (rnp == rdp->mynode)
1535 __note_gp_changes(rsp, rnp, rdp);
1536 nocb += rcu_future_gp_cleanup(rsp, rnp);
1537 raw_spin_unlock_irq(&rnp->lock);
1538 cond_resched();
1539 }
1540 rnp = rcu_get_root(rsp);
1541 raw_spin_lock_irq(&rnp->lock);
1542 rcu_nocb_gp_set(rnp, nocb);
1543
1544 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1545 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1546 rsp->fqs_state = RCU_GP_IDLE;
1547 rdp = this_cpu_ptr(rsp->rda);
1548 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
1549 if (cpu_needs_another_gp(rsp, rdp)) {
1550 rsp->gp_flags = RCU_GP_FLAG_INIT;
1551 trace_rcu_grace_period(rsp->name,
1552 ACCESS_ONCE(rsp->gpnum),
1553 TPS("newreq"));
1554 }
1555 raw_spin_unlock_irq(&rnp->lock);
1556 }
1557
1558 /*
1559 * Body of kthread that handles grace periods.
1560 */
1561 static int __noreturn rcu_gp_kthread(void *arg)
1562 {
1563 int fqs_state;
1564 int gf;
1565 unsigned long j;
1566 int ret;
1567 struct rcu_state *rsp = arg;
1568 struct rcu_node *rnp = rcu_get_root(rsp);
1569
1570 for (;;) {
1571
1572 /* Handle grace-period start. */
1573 for (;;) {
1574 trace_rcu_grace_period(rsp->name,
1575 ACCESS_ONCE(rsp->gpnum),
1576 TPS("reqwait"));
1577 wait_event_interruptible(rsp->gp_wq,
1578 ACCESS_ONCE(rsp->gp_flags) &
1579 RCU_GP_FLAG_INIT);
1580 if (rcu_gp_init(rsp))
1581 break;
1582 cond_resched();
1583 flush_signals(current);
1584 trace_rcu_grace_period(rsp->name,
1585 ACCESS_ONCE(rsp->gpnum),
1586 TPS("reqwaitsig"));
1587 }
1588
1589 /* Handle quiescent-state forcing. */
1590 fqs_state = RCU_SAVE_DYNTICK;
1591 j = jiffies_till_first_fqs;
1592 if (j > HZ) {
1593 j = HZ;
1594 jiffies_till_first_fqs = HZ;
1595 }
1596 ret = 0;
1597 for (;;) {
1598 if (!ret)
1599 rsp->jiffies_force_qs = jiffies + j;
1600 trace_rcu_grace_period(rsp->name,
1601 ACCESS_ONCE(rsp->gpnum),
1602 TPS("fqswait"));
1603 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1604 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1605 RCU_GP_FLAG_FQS) ||
1606 (!ACCESS_ONCE(rnp->qsmask) &&
1607 !rcu_preempt_blocked_readers_cgp(rnp)),
1608 j);
1609 /* If grace period done, leave loop. */
1610 if (!ACCESS_ONCE(rnp->qsmask) &&
1611 !rcu_preempt_blocked_readers_cgp(rnp))
1612 break;
1613 /* If time for quiescent-state forcing, do it. */
1614 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1615 (gf & RCU_GP_FLAG_FQS)) {
1616 trace_rcu_grace_period(rsp->name,
1617 ACCESS_ONCE(rsp->gpnum),
1618 TPS("fqsstart"));
1619 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1620 trace_rcu_grace_period(rsp->name,
1621 ACCESS_ONCE(rsp->gpnum),
1622 TPS("fqsend"));
1623 cond_resched();
1624 } else {
1625 /* Deal with stray signal. */
1626 cond_resched();
1627 flush_signals(current);
1628 trace_rcu_grace_period(rsp->name,
1629 ACCESS_ONCE(rsp->gpnum),
1630 TPS("fqswaitsig"));
1631 }
1632 j = jiffies_till_next_fqs;
1633 if (j > HZ) {
1634 j = HZ;
1635 jiffies_till_next_fqs = HZ;
1636 } else if (j < 1) {
1637 j = 1;
1638 jiffies_till_next_fqs = 1;
1639 }
1640 }
1641
1642 /* Handle grace-period end. */
1643 rcu_gp_cleanup(rsp);
1644 }
1645 }
1646
1647 static void rsp_wakeup(struct irq_work *work)
1648 {
1649 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1650
1651 /* Wake up rcu_gp_kthread() to start the grace period. */
1652 wake_up(&rsp->gp_wq);
1653 }
1654
1655 /*
1656 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1657 * in preparation for detecting the next grace period. The caller must hold
1658 * the root node's ->lock and hard irqs must be disabled.
1659 *
1660 * Note that it is legal for a dying CPU (which is marked as offline) to
1661 * invoke this function. This can happen when the dying CPU reports its
1662 * quiescent state.
1663 */
1664 static void
1665 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1666 struct rcu_data *rdp)
1667 {
1668 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1669 /*
1670 * Either we have not yet spawned the grace-period
1671 * task, this CPU does not need another grace period,
1672 * or a grace period is already in progress.
1673 * Either way, don't start a new grace period.
1674 */
1675 return;
1676 }
1677 rsp->gp_flags = RCU_GP_FLAG_INIT;
1678 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1679 TPS("newreq"));
1680
1681 /*
1682 * We can't do wakeups while holding the rnp->lock, as that
1683 * could cause possible deadlocks with the rq->lock. Defer
1684 * the wakeup to interrupt context. And don't bother waking
1685 * up the running kthread.
1686 */
1687 if (current != rsp->gp_kthread)
1688 irq_work_queue(&rsp->wakeup_work);
1689 }
1690
1691 /*
1692 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1693 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1694 * is invoked indirectly from rcu_advance_cbs(), which would result in
1695 * endless recursion -- or would do so if it wasn't for the self-deadlock
1696 * that is encountered beforehand.
1697 */
1698 static void
1699 rcu_start_gp(struct rcu_state *rsp)
1700 {
1701 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1702 struct rcu_node *rnp = rcu_get_root(rsp);
1703
1704 /*
1705 * If there is no grace period in progress right now, any
1706 * callbacks we have up to this point will be satisfied by the
1707 * next grace period. Also, advancing the callbacks reduces the
1708 * probability of false positives from cpu_needs_another_gp()
1709 * resulting in pointless grace periods. So, advance callbacks
1710 * then start the grace period!
1711 */
1712 rcu_advance_cbs(rsp, rnp, rdp);
1713 rcu_start_gp_advanced(rsp, rnp, rdp);
1714 }
1715
1716 /*
1717 * Report a full set of quiescent states to the specified rcu_state
1718 * data structure. This involves cleaning up after the prior grace
1719 * period and letting rcu_start_gp() start up the next grace period
1720 * if one is needed. Note that the caller must hold rnp->lock, which
1721 * is released before return.
1722 */
1723 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1724 __releases(rcu_get_root(rsp)->lock)
1725 {
1726 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1727 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1728 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1729 }
1730
1731 /*
1732 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1733 * Allows quiescent states for a group of CPUs to be reported at one go
1734 * to the specified rcu_node structure, though all the CPUs in the group
1735 * must be represented by the same rcu_node structure (which need not be
1736 * a leaf rcu_node structure, though it often will be). That structure's
1737 * lock must be held upon entry, and it is released before return.
1738 */
1739 static void
1740 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1741 struct rcu_node *rnp, unsigned long flags)
1742 __releases(rnp->lock)
1743 {
1744 struct rcu_node *rnp_c;
1745
1746 /* Walk up the rcu_node hierarchy. */
1747 for (;;) {
1748 if (!(rnp->qsmask & mask)) {
1749
1750 /* Our bit has already been cleared, so done. */
1751 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1752 return;
1753 }
1754 rnp->qsmask &= ~mask;
1755 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1756 mask, rnp->qsmask, rnp->level,
1757 rnp->grplo, rnp->grphi,
1758 !!rnp->gp_tasks);
1759 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1760
1761 /* Other bits still set at this level, so done. */
1762 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1763 return;
1764 }
1765 mask = rnp->grpmask;
1766 if (rnp->parent == NULL) {
1767
1768 /* No more levels. Exit loop holding root lock. */
1769
1770 break;
1771 }
1772 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1773 rnp_c = rnp;
1774 rnp = rnp->parent;
1775 raw_spin_lock_irqsave(&rnp->lock, flags);
1776 WARN_ON_ONCE(rnp_c->qsmask);
1777 }
1778
1779 /*
1780 * Get here if we are the last CPU to pass through a quiescent
1781 * state for this grace period. Invoke rcu_report_qs_rsp()
1782 * to clean up and start the next grace period if one is needed.
1783 */
1784 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1785 }
1786
1787 /*
1788 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1789 * structure. This must be either called from the specified CPU, or
1790 * called when the specified CPU is known to be offline (and when it is
1791 * also known that no other CPU is concurrently trying to help the offline
1792 * CPU). The lastcomp argument is used to make sure we are still in the
1793 * grace period of interest. We don't want to end the current grace period
1794 * based on quiescent states detected in an earlier grace period!
1795 */
1796 static void
1797 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1798 {
1799 unsigned long flags;
1800 unsigned long mask;
1801 struct rcu_node *rnp;
1802
1803 rnp = rdp->mynode;
1804 raw_spin_lock_irqsave(&rnp->lock, flags);
1805 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1806 rnp->completed == rnp->gpnum) {
1807
1808 /*
1809 * The grace period in which this quiescent state was
1810 * recorded has ended, so don't report it upwards.
1811 * We will instead need a new quiescent state that lies
1812 * within the current grace period.
1813 */
1814 rdp->passed_quiesce = 0; /* need qs for new gp. */
1815 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1816 return;
1817 }
1818 mask = rdp->grpmask;
1819 if ((rnp->qsmask & mask) == 0) {
1820 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1821 } else {
1822 rdp->qs_pending = 0;
1823
1824 /*
1825 * This GP can't end until cpu checks in, so all of our
1826 * callbacks can be processed during the next GP.
1827 */
1828 rcu_accelerate_cbs(rsp, rnp, rdp);
1829
1830 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1831 }
1832 }
1833
1834 /*
1835 * Check to see if there is a new grace period of which this CPU
1836 * is not yet aware, and if so, set up local rcu_data state for it.
1837 * Otherwise, see if this CPU has just passed through its first
1838 * quiescent state for this grace period, and record that fact if so.
1839 */
1840 static void
1841 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1842 {
1843 /* Check for grace-period ends and beginnings. */
1844 note_gp_changes(rsp, rdp);
1845
1846 /*
1847 * Does this CPU still need to do its part for current grace period?
1848 * If no, return and let the other CPUs do their part as well.
1849 */
1850 if (!rdp->qs_pending)
1851 return;
1852
1853 /*
1854 * Was there a quiescent state since the beginning of the grace
1855 * period? If no, then exit and wait for the next call.
1856 */
1857 if (!rdp->passed_quiesce)
1858 return;
1859
1860 /*
1861 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1862 * judge of that).
1863 */
1864 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1865 }
1866
1867 #ifdef CONFIG_HOTPLUG_CPU
1868
1869 /*
1870 * Send the specified CPU's RCU callbacks to the orphanage. The
1871 * specified CPU must be offline, and the caller must hold the
1872 * ->orphan_lock.
1873 */
1874 static void
1875 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1876 struct rcu_node *rnp, struct rcu_data *rdp)
1877 {
1878 /* No-CBs CPUs do not have orphanable callbacks. */
1879 if (rcu_is_nocb_cpu(rdp->cpu))
1880 return;
1881
1882 /*
1883 * Orphan the callbacks. First adjust the counts. This is safe
1884 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1885 * cannot be running now. Thus no memory barrier is required.
1886 */
1887 if (rdp->nxtlist != NULL) {
1888 rsp->qlen_lazy += rdp->qlen_lazy;
1889 rsp->qlen += rdp->qlen;
1890 rdp->n_cbs_orphaned += rdp->qlen;
1891 rdp->qlen_lazy = 0;
1892 ACCESS_ONCE(rdp->qlen) = 0;
1893 }
1894
1895 /*
1896 * Next, move those callbacks still needing a grace period to
1897 * the orphanage, where some other CPU will pick them up.
1898 * Some of the callbacks might have gone partway through a grace
1899 * period, but that is too bad. They get to start over because we
1900 * cannot assume that grace periods are synchronized across CPUs.
1901 * We don't bother updating the ->nxttail[] array yet, instead
1902 * we just reset the whole thing later on.
1903 */
1904 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1905 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1906 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1907 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1908 }
1909
1910 /*
1911 * Then move the ready-to-invoke callbacks to the orphanage,
1912 * where some other CPU will pick them up. These will not be
1913 * required to pass though another grace period: They are done.
1914 */
1915 if (rdp->nxtlist != NULL) {
1916 *rsp->orphan_donetail = rdp->nxtlist;
1917 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1918 }
1919
1920 /* Finally, initialize the rcu_data structure's list to empty. */
1921 init_callback_list(rdp);
1922 }
1923
1924 /*
1925 * Adopt the RCU callbacks from the specified rcu_state structure's
1926 * orphanage. The caller must hold the ->orphan_lock.
1927 */
1928 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1929 {
1930 int i;
1931 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1932
1933 /* No-CBs CPUs are handled specially. */
1934 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1935 return;
1936
1937 /* Do the accounting first. */
1938 rdp->qlen_lazy += rsp->qlen_lazy;
1939 rdp->qlen += rsp->qlen;
1940 rdp->n_cbs_adopted += rsp->qlen;
1941 if (rsp->qlen_lazy != rsp->qlen)
1942 rcu_idle_count_callbacks_posted();
1943 rsp->qlen_lazy = 0;
1944 rsp->qlen = 0;
1945
1946 /*
1947 * We do not need a memory barrier here because the only way we
1948 * can get here if there is an rcu_barrier() in flight is if
1949 * we are the task doing the rcu_barrier().
1950 */
1951
1952 /* First adopt the ready-to-invoke callbacks. */
1953 if (rsp->orphan_donelist != NULL) {
1954 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1955 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1956 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1957 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1958 rdp->nxttail[i] = rsp->orphan_donetail;
1959 rsp->orphan_donelist = NULL;
1960 rsp->orphan_donetail = &rsp->orphan_donelist;
1961 }
1962
1963 /* And then adopt the callbacks that still need a grace period. */
1964 if (rsp->orphan_nxtlist != NULL) {
1965 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1966 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1967 rsp->orphan_nxtlist = NULL;
1968 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1969 }
1970 }
1971
1972 /*
1973 * Trace the fact that this CPU is going offline.
1974 */
1975 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1976 {
1977 RCU_TRACE(unsigned long mask);
1978 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1979 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1980
1981 RCU_TRACE(mask = rdp->grpmask);
1982 trace_rcu_grace_period(rsp->name,
1983 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1984 TPS("cpuofl"));
1985 }
1986
1987 /*
1988 * The CPU has been completely removed, and some other CPU is reporting
1989 * this fact from process context. Do the remainder of the cleanup,
1990 * including orphaning the outgoing CPU's RCU callbacks, and also
1991 * adopting them. There can only be one CPU hotplug operation at a time,
1992 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1993 */
1994 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1995 {
1996 unsigned long flags;
1997 unsigned long mask;
1998 int need_report = 0;
1999 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2000 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2001
2002 /* Adjust any no-longer-needed kthreads. */
2003 rcu_boost_kthread_setaffinity(rnp, -1);
2004
2005 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2006
2007 /* Exclude any attempts to start a new grace period. */
2008 mutex_lock(&rsp->onoff_mutex);
2009 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2010
2011 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2012 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2013 rcu_adopt_orphan_cbs(rsp);
2014
2015 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2016 mask = rdp->grpmask; /* rnp->grplo is constant. */
2017 do {
2018 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2019 rnp->qsmaskinit &= ~mask;
2020 if (rnp->qsmaskinit != 0) {
2021 if (rnp != rdp->mynode)
2022 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2023 break;
2024 }
2025 if (rnp == rdp->mynode)
2026 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2027 else
2028 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2029 mask = rnp->grpmask;
2030 rnp = rnp->parent;
2031 } while (rnp != NULL);
2032
2033 /*
2034 * We still hold the leaf rcu_node structure lock here, and
2035 * irqs are still disabled. The reason for this subterfuge is
2036 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2037 * held leads to deadlock.
2038 */
2039 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2040 rnp = rdp->mynode;
2041 if (need_report & RCU_OFL_TASKS_NORM_GP)
2042 rcu_report_unblock_qs_rnp(rnp, flags);
2043 else
2044 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2045 if (need_report & RCU_OFL_TASKS_EXP_GP)
2046 rcu_report_exp_rnp(rsp, rnp, true);
2047 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2048 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2049 cpu, rdp->qlen, rdp->nxtlist);
2050 init_callback_list(rdp);
2051 /* Disallow further callbacks on this CPU. */
2052 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2053 mutex_unlock(&rsp->onoff_mutex);
2054 }
2055
2056 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2057
2058 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2059 {
2060 }
2061
2062 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2063 {
2064 }
2065
2066 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2067
2068 /*
2069 * Invoke any RCU callbacks that have made it to the end of their grace
2070 * period. Thottle as specified by rdp->blimit.
2071 */
2072 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2073 {
2074 unsigned long flags;
2075 struct rcu_head *next, *list, **tail;
2076 long bl, count, count_lazy;
2077 int i;
2078
2079 /* If no callbacks are ready, just return. */
2080 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2081 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2082 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2083 need_resched(), is_idle_task(current),
2084 rcu_is_callbacks_kthread());
2085 return;
2086 }
2087
2088 /*
2089 * Extract the list of ready callbacks, disabling to prevent
2090 * races with call_rcu() from interrupt handlers.
2091 */
2092 local_irq_save(flags);
2093 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2094 bl = rdp->blimit;
2095 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2096 list = rdp->nxtlist;
2097 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2098 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2099 tail = rdp->nxttail[RCU_DONE_TAIL];
2100 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2101 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2102 rdp->nxttail[i] = &rdp->nxtlist;
2103 local_irq_restore(flags);
2104
2105 /* Invoke callbacks. */
2106 count = count_lazy = 0;
2107 while (list) {
2108 next = list->next;
2109 prefetch(next);
2110 debug_rcu_head_unqueue(list);
2111 if (__rcu_reclaim(rsp->name, list))
2112 count_lazy++;
2113 list = next;
2114 /* Stop only if limit reached and CPU has something to do. */
2115 if (++count >= bl &&
2116 (need_resched() ||
2117 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2118 break;
2119 }
2120
2121 local_irq_save(flags);
2122 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2123 is_idle_task(current),
2124 rcu_is_callbacks_kthread());
2125
2126 /* Update count, and requeue any remaining callbacks. */
2127 if (list != NULL) {
2128 *tail = rdp->nxtlist;
2129 rdp->nxtlist = list;
2130 for (i = 0; i < RCU_NEXT_SIZE; i++)
2131 if (&rdp->nxtlist == rdp->nxttail[i])
2132 rdp->nxttail[i] = tail;
2133 else
2134 break;
2135 }
2136 smp_mb(); /* List handling before counting for rcu_barrier(). */
2137 rdp->qlen_lazy -= count_lazy;
2138 ACCESS_ONCE(rdp->qlen) -= count;
2139 rdp->n_cbs_invoked += count;
2140
2141 /* Reinstate batch limit if we have worked down the excess. */
2142 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2143 rdp->blimit = blimit;
2144
2145 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2146 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2147 rdp->qlen_last_fqs_check = 0;
2148 rdp->n_force_qs_snap = rsp->n_force_qs;
2149 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2150 rdp->qlen_last_fqs_check = rdp->qlen;
2151 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2152
2153 local_irq_restore(flags);
2154
2155 /* Re-invoke RCU core processing if there are callbacks remaining. */
2156 if (cpu_has_callbacks_ready_to_invoke(rdp))
2157 invoke_rcu_core();
2158 }
2159
2160 /*
2161 * Check to see if this CPU is in a non-context-switch quiescent state
2162 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2163 * Also schedule RCU core processing.
2164 *
2165 * This function must be called from hardirq context. It is normally
2166 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2167 * false, there is no point in invoking rcu_check_callbacks().
2168 */
2169 void rcu_check_callbacks(int cpu, int user)
2170 {
2171 trace_rcu_utilization(TPS("Start scheduler-tick"));
2172 increment_cpu_stall_ticks();
2173 if (user || rcu_is_cpu_rrupt_from_idle()) {
2174
2175 /*
2176 * Get here if this CPU took its interrupt from user
2177 * mode or from the idle loop, and if this is not a
2178 * nested interrupt. In this case, the CPU is in
2179 * a quiescent state, so note it.
2180 *
2181 * No memory barrier is required here because both
2182 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2183 * variables that other CPUs neither access nor modify,
2184 * at least not while the corresponding CPU is online.
2185 */
2186
2187 rcu_sched_qs(cpu);
2188 rcu_bh_qs(cpu);
2189
2190 } else if (!in_softirq()) {
2191
2192 /*
2193 * Get here if this CPU did not take its interrupt from
2194 * softirq, in other words, if it is not interrupting
2195 * a rcu_bh read-side critical section. This is an _bh
2196 * critical section, so note it.
2197 */
2198
2199 rcu_bh_qs(cpu);
2200 }
2201 rcu_preempt_check_callbacks(cpu);
2202 if (rcu_pending(cpu))
2203 invoke_rcu_core();
2204 trace_rcu_utilization(TPS("End scheduler-tick"));
2205 }
2206
2207 /*
2208 * Scan the leaf rcu_node structures, processing dyntick state for any that
2209 * have not yet encountered a quiescent state, using the function specified.
2210 * Also initiate boosting for any threads blocked on the root rcu_node.
2211 *
2212 * The caller must have suppressed start of new grace periods.
2213 */
2214 static void force_qs_rnp(struct rcu_state *rsp,
2215 int (*f)(struct rcu_data *rsp, bool *isidle,
2216 unsigned long *maxj),
2217 bool *isidle, unsigned long *maxj)
2218 {
2219 unsigned long bit;
2220 int cpu;
2221 unsigned long flags;
2222 unsigned long mask;
2223 struct rcu_node *rnp;
2224
2225 rcu_for_each_leaf_node(rsp, rnp) {
2226 cond_resched();
2227 mask = 0;
2228 raw_spin_lock_irqsave(&rnp->lock, flags);
2229 if (!rcu_gp_in_progress(rsp)) {
2230 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2231 return;
2232 }
2233 if (rnp->qsmask == 0) {
2234 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2235 continue;
2236 }
2237 cpu = rnp->grplo;
2238 bit = 1;
2239 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2240 if ((rnp->qsmask & bit) != 0) {
2241 if ((rnp->qsmaskinit & bit) != 0)
2242 *isidle = 0;
2243 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2244 mask |= bit;
2245 }
2246 }
2247 if (mask != 0) {
2248
2249 /* rcu_report_qs_rnp() releases rnp->lock. */
2250 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2251 continue;
2252 }
2253 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2254 }
2255 rnp = rcu_get_root(rsp);
2256 if (rnp->qsmask == 0) {
2257 raw_spin_lock_irqsave(&rnp->lock, flags);
2258 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2259 }
2260 }
2261
2262 /*
2263 * Force quiescent states on reluctant CPUs, and also detect which
2264 * CPUs are in dyntick-idle mode.
2265 */
2266 static void force_quiescent_state(struct rcu_state *rsp)
2267 {
2268 unsigned long flags;
2269 bool ret;
2270 struct rcu_node *rnp;
2271 struct rcu_node *rnp_old = NULL;
2272
2273 /* Funnel through hierarchy to reduce memory contention. */
2274 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2275 for (; rnp != NULL; rnp = rnp->parent) {
2276 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2277 !raw_spin_trylock(&rnp->fqslock);
2278 if (rnp_old != NULL)
2279 raw_spin_unlock(&rnp_old->fqslock);
2280 if (ret) {
2281 rsp->n_force_qs_lh++;
2282 return;
2283 }
2284 rnp_old = rnp;
2285 }
2286 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2287
2288 /* Reached the root of the rcu_node tree, acquire lock. */
2289 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2290 raw_spin_unlock(&rnp_old->fqslock);
2291 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2292 rsp->n_force_qs_lh++;
2293 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2294 return; /* Someone beat us to it. */
2295 }
2296 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2297 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2298 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2299 }
2300
2301 /*
2302 * This does the RCU core processing work for the specified rcu_state
2303 * and rcu_data structures. This may be called only from the CPU to
2304 * whom the rdp belongs.
2305 */
2306 static void
2307 __rcu_process_callbacks(struct rcu_state *rsp)
2308 {
2309 unsigned long flags;
2310 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2311
2312 WARN_ON_ONCE(rdp->beenonline == 0);
2313
2314 /* Update RCU state based on any recent quiescent states. */
2315 rcu_check_quiescent_state(rsp, rdp);
2316
2317 /* Does this CPU require a not-yet-started grace period? */
2318 local_irq_save(flags);
2319 if (cpu_needs_another_gp(rsp, rdp)) {
2320 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2321 rcu_start_gp(rsp);
2322 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2323 } else {
2324 local_irq_restore(flags);
2325 }
2326
2327 /* If there are callbacks ready, invoke them. */
2328 if (cpu_has_callbacks_ready_to_invoke(rdp))
2329 invoke_rcu_callbacks(rsp, rdp);
2330 }
2331
2332 /*
2333 * Do RCU core processing for the current CPU.
2334 */
2335 static void rcu_process_callbacks(struct softirq_action *unused)
2336 {
2337 struct rcu_state *rsp;
2338
2339 if (cpu_is_offline(smp_processor_id()))
2340 return;
2341 trace_rcu_utilization(TPS("Start RCU core"));
2342 for_each_rcu_flavor(rsp)
2343 __rcu_process_callbacks(rsp);
2344 trace_rcu_utilization(TPS("End RCU core"));
2345 }
2346
2347 /*
2348 * Schedule RCU callback invocation. If the specified type of RCU
2349 * does not support RCU priority boosting, just do a direct call,
2350 * otherwise wake up the per-CPU kernel kthread. Note that because we
2351 * are running on the current CPU with interrupts disabled, the
2352 * rcu_cpu_kthread_task cannot disappear out from under us.
2353 */
2354 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2355 {
2356 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2357 return;
2358 if (likely(!rsp->boost)) {
2359 rcu_do_batch(rsp, rdp);
2360 return;
2361 }
2362 invoke_rcu_callbacks_kthread();
2363 }
2364
2365 static void invoke_rcu_core(void)
2366 {
2367 if (cpu_online(smp_processor_id()))
2368 raise_softirq(RCU_SOFTIRQ);
2369 }
2370
2371 /*
2372 * Handle any core-RCU processing required by a call_rcu() invocation.
2373 */
2374 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2375 struct rcu_head *head, unsigned long flags)
2376 {
2377 /*
2378 * If called from an extended quiescent state, invoke the RCU
2379 * core in order to force a re-evaluation of RCU's idleness.
2380 */
2381 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2382 invoke_rcu_core();
2383
2384 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2385 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2386 return;
2387
2388 /*
2389 * Force the grace period if too many callbacks or too long waiting.
2390 * Enforce hysteresis, and don't invoke force_quiescent_state()
2391 * if some other CPU has recently done so. Also, don't bother
2392 * invoking force_quiescent_state() if the newly enqueued callback
2393 * is the only one waiting for a grace period to complete.
2394 */
2395 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2396
2397 /* Are we ignoring a completed grace period? */
2398 note_gp_changes(rsp, rdp);
2399
2400 /* Start a new grace period if one not already started. */
2401 if (!rcu_gp_in_progress(rsp)) {
2402 struct rcu_node *rnp_root = rcu_get_root(rsp);
2403
2404 raw_spin_lock(&rnp_root->lock);
2405 rcu_start_gp(rsp);
2406 raw_spin_unlock(&rnp_root->lock);
2407 } else {
2408 /* Give the grace period a kick. */
2409 rdp->blimit = LONG_MAX;
2410 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2411 *rdp->nxttail[RCU_DONE_TAIL] != head)
2412 force_quiescent_state(rsp);
2413 rdp->n_force_qs_snap = rsp->n_force_qs;
2414 rdp->qlen_last_fqs_check = rdp->qlen;
2415 }
2416 }
2417 }
2418
2419 /*
2420 * RCU callback function to leak a callback.
2421 */
2422 static void rcu_leak_callback(struct rcu_head *rhp)
2423 {
2424 }
2425
2426 /*
2427 * Helper function for call_rcu() and friends. The cpu argument will
2428 * normally be -1, indicating "currently running CPU". It may specify
2429 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2430 * is expected to specify a CPU.
2431 */
2432 static void
2433 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2434 struct rcu_state *rsp, int cpu, bool lazy)
2435 {
2436 unsigned long flags;
2437 struct rcu_data *rdp;
2438
2439 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2440 if (debug_rcu_head_queue(head)) {
2441 /* Probable double call_rcu(), so leak the callback. */
2442 ACCESS_ONCE(head->func) = rcu_leak_callback;
2443 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2444 return;
2445 }
2446 head->func = func;
2447 head->next = NULL;
2448
2449 /*
2450 * Opportunistically note grace-period endings and beginnings.
2451 * Note that we might see a beginning right after we see an
2452 * end, but never vice versa, since this CPU has to pass through
2453 * a quiescent state betweentimes.
2454 */
2455 local_irq_save(flags);
2456 rdp = this_cpu_ptr(rsp->rda);
2457
2458 /* Add the callback to our list. */
2459 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2460 int offline;
2461
2462 if (cpu != -1)
2463 rdp = per_cpu_ptr(rsp->rda, cpu);
2464 offline = !__call_rcu_nocb(rdp, head, lazy);
2465 WARN_ON_ONCE(offline);
2466 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2467 local_irq_restore(flags);
2468 return;
2469 }
2470 ACCESS_ONCE(rdp->qlen)++;
2471 if (lazy)
2472 rdp->qlen_lazy++;
2473 else
2474 rcu_idle_count_callbacks_posted();
2475 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2476 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2477 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2478
2479 if (__is_kfree_rcu_offset((unsigned long)func))
2480 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2481 rdp->qlen_lazy, rdp->qlen);
2482 else
2483 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2484
2485 /* Go handle any RCU core processing required. */
2486 __call_rcu_core(rsp, rdp, head, flags);
2487 local_irq_restore(flags);
2488 }
2489
2490 /*
2491 * Queue an RCU-sched callback for invocation after a grace period.
2492 */
2493 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2494 {
2495 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2496 }
2497 EXPORT_SYMBOL_GPL(call_rcu_sched);
2498
2499 /*
2500 * Queue an RCU callback for invocation after a quicker grace period.
2501 */
2502 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2503 {
2504 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2505 }
2506 EXPORT_SYMBOL_GPL(call_rcu_bh);
2507
2508 /*
2509 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2510 * any blocking grace-period wait automatically implies a grace period
2511 * if there is only one CPU online at any point time during execution
2512 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2513 * occasionally incorrectly indicate that there are multiple CPUs online
2514 * when there was in fact only one the whole time, as this just adds
2515 * some overhead: RCU still operates correctly.
2516 */
2517 static inline int rcu_blocking_is_gp(void)
2518 {
2519 int ret;
2520
2521 might_sleep(); /* Check for RCU read-side critical section. */
2522 preempt_disable();
2523 ret = num_online_cpus() <= 1;
2524 preempt_enable();
2525 return ret;
2526 }
2527
2528 /**
2529 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2530 *
2531 * Control will return to the caller some time after a full rcu-sched
2532 * grace period has elapsed, in other words after all currently executing
2533 * rcu-sched read-side critical sections have completed. These read-side
2534 * critical sections are delimited by rcu_read_lock_sched() and
2535 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2536 * local_irq_disable(), and so on may be used in place of
2537 * rcu_read_lock_sched().
2538 *
2539 * This means that all preempt_disable code sequences, including NMI and
2540 * non-threaded hardware-interrupt handlers, in progress on entry will
2541 * have completed before this primitive returns. However, this does not
2542 * guarantee that softirq handlers will have completed, since in some
2543 * kernels, these handlers can run in process context, and can block.
2544 *
2545 * Note that this guarantee implies further memory-ordering guarantees.
2546 * On systems with more than one CPU, when synchronize_sched() returns,
2547 * each CPU is guaranteed to have executed a full memory barrier since the
2548 * end of its last RCU-sched read-side critical section whose beginning
2549 * preceded the call to synchronize_sched(). In addition, each CPU having
2550 * an RCU read-side critical section that extends beyond the return from
2551 * synchronize_sched() is guaranteed to have executed a full memory barrier
2552 * after the beginning of synchronize_sched() and before the beginning of
2553 * that RCU read-side critical section. Note that these guarantees include
2554 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2555 * that are executing in the kernel.
2556 *
2557 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2558 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2559 * to have executed a full memory barrier during the execution of
2560 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2561 * again only if the system has more than one CPU).
2562 *
2563 * This primitive provides the guarantees made by the (now removed)
2564 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2565 * guarantees that rcu_read_lock() sections will have completed.
2566 * In "classic RCU", these two guarantees happen to be one and
2567 * the same, but can differ in realtime RCU implementations.
2568 */
2569 void synchronize_sched(void)
2570 {
2571 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2572 !lock_is_held(&rcu_lock_map) &&
2573 !lock_is_held(&rcu_sched_lock_map),
2574 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2575 if (rcu_blocking_is_gp())
2576 return;
2577 if (rcu_expedited)
2578 synchronize_sched_expedited();
2579 else
2580 wait_rcu_gp(call_rcu_sched);
2581 }
2582 EXPORT_SYMBOL_GPL(synchronize_sched);
2583
2584 /**
2585 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2586 *
2587 * Control will return to the caller some time after a full rcu_bh grace
2588 * period has elapsed, in other words after all currently executing rcu_bh
2589 * read-side critical sections have completed. RCU read-side critical
2590 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2591 * and may be nested.
2592 *
2593 * See the description of synchronize_sched() for more detailed information
2594 * on memory ordering guarantees.
2595 */
2596 void synchronize_rcu_bh(void)
2597 {
2598 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2599 !lock_is_held(&rcu_lock_map) &&
2600 !lock_is_held(&rcu_sched_lock_map),
2601 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2602 if (rcu_blocking_is_gp())
2603 return;
2604 if (rcu_expedited)
2605 synchronize_rcu_bh_expedited();
2606 else
2607 wait_rcu_gp(call_rcu_bh);
2608 }
2609 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2610
2611 static int synchronize_sched_expedited_cpu_stop(void *data)
2612 {
2613 /*
2614 * There must be a full memory barrier on each affected CPU
2615 * between the time that try_stop_cpus() is called and the
2616 * time that it returns.
2617 *
2618 * In the current initial implementation of cpu_stop, the
2619 * above condition is already met when the control reaches
2620 * this point and the following smp_mb() is not strictly
2621 * necessary. Do smp_mb() anyway for documentation and
2622 * robustness against future implementation changes.
2623 */
2624 smp_mb(); /* See above comment block. */
2625 return 0;
2626 }
2627
2628 /**
2629 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2630 *
2631 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2632 * approach to force the grace period to end quickly. This consumes
2633 * significant time on all CPUs and is unfriendly to real-time workloads,
2634 * so is thus not recommended for any sort of common-case code. In fact,
2635 * if you are using synchronize_sched_expedited() in a loop, please
2636 * restructure your code to batch your updates, and then use a single
2637 * synchronize_sched() instead.
2638 *
2639 * Note that it is illegal to call this function while holding any lock
2640 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2641 * to call this function from a CPU-hotplug notifier. Failing to observe
2642 * these restriction will result in deadlock.
2643 *
2644 * This implementation can be thought of as an application of ticket
2645 * locking to RCU, with sync_sched_expedited_started and
2646 * sync_sched_expedited_done taking on the roles of the halves
2647 * of the ticket-lock word. Each task atomically increments
2648 * sync_sched_expedited_started upon entry, snapshotting the old value,
2649 * then attempts to stop all the CPUs. If this succeeds, then each
2650 * CPU will have executed a context switch, resulting in an RCU-sched
2651 * grace period. We are then done, so we use atomic_cmpxchg() to
2652 * update sync_sched_expedited_done to match our snapshot -- but
2653 * only if someone else has not already advanced past our snapshot.
2654 *
2655 * On the other hand, if try_stop_cpus() fails, we check the value
2656 * of sync_sched_expedited_done. If it has advanced past our
2657 * initial snapshot, then someone else must have forced a grace period
2658 * some time after we took our snapshot. In this case, our work is
2659 * done for us, and we can simply return. Otherwise, we try again,
2660 * but keep our initial snapshot for purposes of checking for someone
2661 * doing our work for us.
2662 *
2663 * If we fail too many times in a row, we fall back to synchronize_sched().
2664 */
2665 void synchronize_sched_expedited(void)
2666 {
2667 long firstsnap, s, snap;
2668 int trycount = 0;
2669 struct rcu_state *rsp = &rcu_sched_state;
2670
2671 /*
2672 * If we are in danger of counter wrap, just do synchronize_sched().
2673 * By allowing sync_sched_expedited_started to advance no more than
2674 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2675 * that more than 3.5 billion CPUs would be required to force a
2676 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2677 * course be required on a 64-bit system.
2678 */
2679 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2680 (ulong)atomic_long_read(&rsp->expedited_done) +
2681 ULONG_MAX / 8)) {
2682 synchronize_sched();
2683 atomic_long_inc(&rsp->expedited_wrap);
2684 return;
2685 }
2686
2687 /*
2688 * Take a ticket. Note that atomic_inc_return() implies a
2689 * full memory barrier.
2690 */
2691 snap = atomic_long_inc_return(&rsp->expedited_start);
2692 firstsnap = snap;
2693 get_online_cpus();
2694 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2695
2696 /*
2697 * Each pass through the following loop attempts to force a
2698 * context switch on each CPU.
2699 */
2700 while (try_stop_cpus(cpu_online_mask,
2701 synchronize_sched_expedited_cpu_stop,
2702 NULL) == -EAGAIN) {
2703 put_online_cpus();
2704 atomic_long_inc(&rsp->expedited_tryfail);
2705
2706 /* Check to see if someone else did our work for us. */
2707 s = atomic_long_read(&rsp->expedited_done);
2708 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2709 /* ensure test happens before caller kfree */
2710 smp_mb__before_atomic_inc(); /* ^^^ */
2711 atomic_long_inc(&rsp->expedited_workdone1);
2712 return;
2713 }
2714
2715 /* No joy, try again later. Or just synchronize_sched(). */
2716 if (trycount++ < 10) {
2717 udelay(trycount * num_online_cpus());
2718 } else {
2719 wait_rcu_gp(call_rcu_sched);
2720 atomic_long_inc(&rsp->expedited_normal);
2721 return;
2722 }
2723
2724 /* Recheck to see if someone else did our work for us. */
2725 s = atomic_long_read(&rsp->expedited_done);
2726 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2727 /* ensure test happens before caller kfree */
2728 smp_mb__before_atomic_inc(); /* ^^^ */
2729 atomic_long_inc(&rsp->expedited_workdone2);
2730 return;
2731 }
2732
2733 /*
2734 * Refetching sync_sched_expedited_started allows later
2735 * callers to piggyback on our grace period. We retry
2736 * after they started, so our grace period works for them,
2737 * and they started after our first try, so their grace
2738 * period works for us.
2739 */
2740 get_online_cpus();
2741 snap = atomic_long_read(&rsp->expedited_start);
2742 smp_mb(); /* ensure read is before try_stop_cpus(). */
2743 }
2744 atomic_long_inc(&rsp->expedited_stoppedcpus);
2745
2746 /*
2747 * Everyone up to our most recent fetch is covered by our grace
2748 * period. Update the counter, but only if our work is still
2749 * relevant -- which it won't be if someone who started later
2750 * than we did already did their update.
2751 */
2752 do {
2753 atomic_long_inc(&rsp->expedited_done_tries);
2754 s = atomic_long_read(&rsp->expedited_done);
2755 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2756 /* ensure test happens before caller kfree */
2757 smp_mb__before_atomic_inc(); /* ^^^ */
2758 atomic_long_inc(&rsp->expedited_done_lost);
2759 break;
2760 }
2761 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2762 atomic_long_inc(&rsp->expedited_done_exit);
2763
2764 put_online_cpus();
2765 }
2766 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2767
2768 /*
2769 * Check to see if there is any immediate RCU-related work to be done
2770 * by the current CPU, for the specified type of RCU, returning 1 if so.
2771 * The checks are in order of increasing expense: checks that can be
2772 * carried out against CPU-local state are performed first. However,
2773 * we must check for CPU stalls first, else we might not get a chance.
2774 */
2775 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2776 {
2777 struct rcu_node *rnp = rdp->mynode;
2778
2779 rdp->n_rcu_pending++;
2780
2781 /* Check for CPU stalls, if enabled. */
2782 check_cpu_stall(rsp, rdp);
2783
2784 /* Is the RCU core waiting for a quiescent state from this CPU? */
2785 if (rcu_scheduler_fully_active &&
2786 rdp->qs_pending && !rdp->passed_quiesce) {
2787 rdp->n_rp_qs_pending++;
2788 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2789 rdp->n_rp_report_qs++;
2790 return 1;
2791 }
2792
2793 /* Does this CPU have callbacks ready to invoke? */
2794 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2795 rdp->n_rp_cb_ready++;
2796 return 1;
2797 }
2798
2799 /* Has RCU gone idle with this CPU needing another grace period? */
2800 if (cpu_needs_another_gp(rsp, rdp)) {
2801 rdp->n_rp_cpu_needs_gp++;
2802 return 1;
2803 }
2804
2805 /* Has another RCU grace period completed? */
2806 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2807 rdp->n_rp_gp_completed++;
2808 return 1;
2809 }
2810
2811 /* Has a new RCU grace period started? */
2812 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2813 rdp->n_rp_gp_started++;
2814 return 1;
2815 }
2816
2817 /* nothing to do */
2818 rdp->n_rp_need_nothing++;
2819 return 0;
2820 }
2821
2822 /*
2823 * Check to see if there is any immediate RCU-related work to be done
2824 * by the current CPU, returning 1 if so. This function is part of the
2825 * RCU implementation; it is -not- an exported member of the RCU API.
2826 */
2827 static int rcu_pending(int cpu)
2828 {
2829 struct rcu_state *rsp;
2830
2831 for_each_rcu_flavor(rsp)
2832 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2833 return 1;
2834 return 0;
2835 }
2836
2837 /*
2838 * Return true if the specified CPU has any callback. If all_lazy is
2839 * non-NULL, store an indication of whether all callbacks are lazy.
2840 * (If there are no callbacks, all of them are deemed to be lazy.)
2841 */
2842 static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2843 {
2844 bool al = true;
2845 bool hc = false;
2846 struct rcu_data *rdp;
2847 struct rcu_state *rsp;
2848
2849 for_each_rcu_flavor(rsp) {
2850 rdp = per_cpu_ptr(rsp->rda, cpu);
2851 if (!rdp->nxtlist)
2852 continue;
2853 hc = true;
2854 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
2855 al = false;
2856 break;
2857 }
2858 }
2859 if (all_lazy)
2860 *all_lazy = al;
2861 return hc;
2862 }
2863
2864 /*
2865 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2866 * the compiler is expected to optimize this away.
2867 */
2868 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
2869 int cpu, unsigned long done)
2870 {
2871 trace_rcu_barrier(rsp->name, s, cpu,
2872 atomic_read(&rsp->barrier_cpu_count), done);
2873 }
2874
2875 /*
2876 * RCU callback function for _rcu_barrier(). If we are last, wake
2877 * up the task executing _rcu_barrier().
2878 */
2879 static void rcu_barrier_callback(struct rcu_head *rhp)
2880 {
2881 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2882 struct rcu_state *rsp = rdp->rsp;
2883
2884 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2885 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2886 complete(&rsp->barrier_completion);
2887 } else {
2888 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2889 }
2890 }
2891
2892 /*
2893 * Called with preemption disabled, and from cross-cpu IRQ context.
2894 */
2895 static void rcu_barrier_func(void *type)
2896 {
2897 struct rcu_state *rsp = type;
2898 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2899
2900 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2901 atomic_inc(&rsp->barrier_cpu_count);
2902 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2903 }
2904
2905 /*
2906 * Orchestrate the specified type of RCU barrier, waiting for all
2907 * RCU callbacks of the specified type to complete.
2908 */
2909 static void _rcu_barrier(struct rcu_state *rsp)
2910 {
2911 int cpu;
2912 struct rcu_data *rdp;
2913 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2914 unsigned long snap_done;
2915
2916 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2917
2918 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2919 mutex_lock(&rsp->barrier_mutex);
2920
2921 /*
2922 * Ensure that all prior references, including to ->n_barrier_done,
2923 * are ordered before the _rcu_barrier() machinery.
2924 */
2925 smp_mb(); /* See above block comment. */
2926
2927 /*
2928 * Recheck ->n_barrier_done to see if others did our work for us.
2929 * This means checking ->n_barrier_done for an even-to-odd-to-even
2930 * transition. The "if" expression below therefore rounds the old
2931 * value up to the next even number and adds two before comparing.
2932 */
2933 snap_done = rsp->n_barrier_done;
2934 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2935
2936 /*
2937 * If the value in snap is odd, we needed to wait for the current
2938 * rcu_barrier() to complete, then wait for the next one, in other
2939 * words, we need the value of snap_done to be three larger than
2940 * the value of snap. On the other hand, if the value in snap is
2941 * even, we only had to wait for the next rcu_barrier() to complete,
2942 * in other words, we need the value of snap_done to be only two
2943 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
2944 * this for us (thank you, Linus!).
2945 */
2946 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
2947 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2948 smp_mb(); /* caller's subsequent code after above check. */
2949 mutex_unlock(&rsp->barrier_mutex);
2950 return;
2951 }
2952
2953 /*
2954 * Increment ->n_barrier_done to avoid duplicate work. Use
2955 * ACCESS_ONCE() to prevent the compiler from speculating
2956 * the increment to precede the early-exit check.
2957 */
2958 ACCESS_ONCE(rsp->n_barrier_done)++;
2959 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2960 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2961 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2962
2963 /*
2964 * Initialize the count to one rather than to zero in order to
2965 * avoid a too-soon return to zero in case of a short grace period
2966 * (or preemption of this task). Exclude CPU-hotplug operations
2967 * to ensure that no offline CPU has callbacks queued.
2968 */
2969 init_completion(&rsp->barrier_completion);
2970 atomic_set(&rsp->barrier_cpu_count, 1);
2971 get_online_cpus();
2972
2973 /*
2974 * Force each CPU with callbacks to register a new callback.
2975 * When that callback is invoked, we will know that all of the
2976 * corresponding CPU's preceding callbacks have been invoked.
2977 */
2978 for_each_possible_cpu(cpu) {
2979 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
2980 continue;
2981 rdp = per_cpu_ptr(rsp->rda, cpu);
2982 if (rcu_is_nocb_cpu(cpu)) {
2983 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2984 rsp->n_barrier_done);
2985 atomic_inc(&rsp->barrier_cpu_count);
2986 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2987 rsp, cpu, 0);
2988 } else if (ACCESS_ONCE(rdp->qlen)) {
2989 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2990 rsp->n_barrier_done);
2991 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2992 } else {
2993 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2994 rsp->n_barrier_done);
2995 }
2996 }
2997 put_online_cpus();
2998
2999 /*
3000 * Now that we have an rcu_barrier_callback() callback on each
3001 * CPU, and thus each counted, remove the initial count.
3002 */
3003 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3004 complete(&rsp->barrier_completion);
3005
3006 /* Increment ->n_barrier_done to prevent duplicate work. */
3007 smp_mb(); /* Keep increment after above mechanism. */
3008 ACCESS_ONCE(rsp->n_barrier_done)++;
3009 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3010 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3011 smp_mb(); /* Keep increment before caller's subsequent code. */
3012
3013 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3014 wait_for_completion(&rsp->barrier_completion);
3015
3016 /* Other rcu_barrier() invocations can now safely proceed. */
3017 mutex_unlock(&rsp->barrier_mutex);
3018 }
3019
3020 /**
3021 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3022 */
3023 void rcu_barrier_bh(void)
3024 {
3025 _rcu_barrier(&rcu_bh_state);
3026 }
3027 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3028
3029 /**
3030 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3031 */
3032 void rcu_barrier_sched(void)
3033 {
3034 _rcu_barrier(&rcu_sched_state);
3035 }
3036 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3037
3038 /*
3039 * Do boot-time initialization of a CPU's per-CPU RCU data.
3040 */
3041 static void __init
3042 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3043 {
3044 unsigned long flags;
3045 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3046 struct rcu_node *rnp = rcu_get_root(rsp);
3047
3048 /* Set up local state, ensuring consistent view of global state. */
3049 raw_spin_lock_irqsave(&rnp->lock, flags);
3050 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3051 init_callback_list(rdp);
3052 rdp->qlen_lazy = 0;
3053 ACCESS_ONCE(rdp->qlen) = 0;
3054 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3055 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3056 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3057 rdp->cpu = cpu;
3058 rdp->rsp = rsp;
3059 rcu_boot_init_nocb_percpu_data(rdp);
3060 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3061 }
3062
3063 /*
3064 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3065 * offline event can be happening at a given time. Note also that we
3066 * can accept some slop in the rsp->completed access due to the fact
3067 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3068 */
3069 static void
3070 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3071 {
3072 unsigned long flags;
3073 unsigned long mask;
3074 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3075 struct rcu_node *rnp = rcu_get_root(rsp);
3076
3077 /* Exclude new grace periods. */
3078 mutex_lock(&rsp->onoff_mutex);
3079
3080 /* Set up local state, ensuring consistent view of global state. */
3081 raw_spin_lock_irqsave(&rnp->lock, flags);
3082 rdp->beenonline = 1; /* We have now been online. */
3083 rdp->preemptible = preemptible;
3084 rdp->qlen_last_fqs_check = 0;
3085 rdp->n_force_qs_snap = rsp->n_force_qs;
3086 rdp->blimit = blimit;
3087 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3088 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3089 rcu_sysidle_init_percpu_data(rdp->dynticks);
3090 atomic_set(&rdp->dynticks->dynticks,
3091 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3092 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3093
3094 /* Add CPU to rcu_node bitmasks. */
3095 rnp = rdp->mynode;
3096 mask = rdp->grpmask;
3097 do {
3098 /* Exclude any attempts to start a new GP on small systems. */
3099 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3100 rnp->qsmaskinit |= mask;
3101 mask = rnp->grpmask;
3102 if (rnp == rdp->mynode) {
3103 /*
3104 * If there is a grace period in progress, we will
3105 * set up to wait for it next time we run the
3106 * RCU core code.
3107 */
3108 rdp->gpnum = rnp->completed;
3109 rdp->completed = rnp->completed;
3110 rdp->passed_quiesce = 0;
3111 rdp->qs_pending = 0;
3112 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3113 }
3114 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3115 rnp = rnp->parent;
3116 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3117 local_irq_restore(flags);
3118
3119 mutex_unlock(&rsp->onoff_mutex);
3120 }
3121
3122 static void rcu_prepare_cpu(int cpu)
3123 {
3124 struct rcu_state *rsp;
3125
3126 for_each_rcu_flavor(rsp)
3127 rcu_init_percpu_data(cpu, rsp,
3128 strcmp(rsp->name, "rcu_preempt") == 0);
3129 }
3130
3131 /*
3132 * Handle CPU online/offline notification events.
3133 */
3134 static int rcu_cpu_notify(struct notifier_block *self,
3135 unsigned long action, void *hcpu)
3136 {
3137 long cpu = (long)hcpu;
3138 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3139 struct rcu_node *rnp = rdp->mynode;
3140 struct rcu_state *rsp;
3141
3142 trace_rcu_utilization(TPS("Start CPU hotplug"));
3143 switch (action) {
3144 case CPU_UP_PREPARE:
3145 case CPU_UP_PREPARE_FROZEN:
3146 rcu_prepare_cpu(cpu);
3147 rcu_prepare_kthreads(cpu);
3148 break;
3149 case CPU_ONLINE:
3150 case CPU_DOWN_FAILED:
3151 rcu_boost_kthread_setaffinity(rnp, -1);
3152 break;
3153 case CPU_DOWN_PREPARE:
3154 rcu_boost_kthread_setaffinity(rnp, cpu);
3155 break;
3156 case CPU_DYING:
3157 case CPU_DYING_FROZEN:
3158 for_each_rcu_flavor(rsp)
3159 rcu_cleanup_dying_cpu(rsp);
3160 break;
3161 case CPU_DEAD:
3162 case CPU_DEAD_FROZEN:
3163 case CPU_UP_CANCELED:
3164 case CPU_UP_CANCELED_FROZEN:
3165 for_each_rcu_flavor(rsp)
3166 rcu_cleanup_dead_cpu(cpu, rsp);
3167 break;
3168 default:
3169 break;
3170 }
3171 trace_rcu_utilization(TPS("End CPU hotplug"));
3172 return NOTIFY_OK;
3173 }
3174
3175 static int rcu_pm_notify(struct notifier_block *self,
3176 unsigned long action, void *hcpu)
3177 {
3178 switch (action) {
3179 case PM_HIBERNATION_PREPARE:
3180 case PM_SUSPEND_PREPARE:
3181 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3182 rcu_expedited = 1;
3183 break;
3184 case PM_POST_HIBERNATION:
3185 case PM_POST_SUSPEND:
3186 rcu_expedited = 0;
3187 break;
3188 default:
3189 break;
3190 }
3191 return NOTIFY_OK;
3192 }
3193
3194 /*
3195 * Spawn the kthread that handles this RCU flavor's grace periods.
3196 */
3197 static int __init rcu_spawn_gp_kthread(void)
3198 {
3199 unsigned long flags;
3200 struct rcu_node *rnp;
3201 struct rcu_state *rsp;
3202 struct task_struct *t;
3203
3204 for_each_rcu_flavor(rsp) {
3205 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3206 BUG_ON(IS_ERR(t));
3207 rnp = rcu_get_root(rsp);
3208 raw_spin_lock_irqsave(&rnp->lock, flags);
3209 rsp->gp_kthread = t;
3210 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3211 rcu_spawn_nocb_kthreads(rsp);
3212 }
3213 return 0;
3214 }
3215 early_initcall(rcu_spawn_gp_kthread);
3216
3217 /*
3218 * This function is invoked towards the end of the scheduler's initialization
3219 * process. Before this is called, the idle task might contain
3220 * RCU read-side critical sections (during which time, this idle
3221 * task is booting the system). After this function is called, the
3222 * idle tasks are prohibited from containing RCU read-side critical
3223 * sections. This function also enables RCU lockdep checking.
3224 */
3225 void rcu_scheduler_starting(void)
3226 {
3227 WARN_ON(num_online_cpus() != 1);
3228 WARN_ON(nr_context_switches() > 0);
3229 rcu_scheduler_active = 1;
3230 }
3231
3232 /*
3233 * Compute the per-level fanout, either using the exact fanout specified
3234 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3235 */
3236 #ifdef CONFIG_RCU_FANOUT_EXACT
3237 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3238 {
3239 int i;
3240
3241 for (i = rcu_num_lvls - 1; i > 0; i--)
3242 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3243 rsp->levelspread[0] = rcu_fanout_leaf;
3244 }
3245 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3246 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3247 {
3248 int ccur;
3249 int cprv;
3250 int i;
3251
3252 cprv = nr_cpu_ids;
3253 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3254 ccur = rsp->levelcnt[i];
3255 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3256 cprv = ccur;
3257 }
3258 }
3259 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3260
3261 /*
3262 * Helper function for rcu_init() that initializes one rcu_state structure.
3263 */
3264 static void __init rcu_init_one(struct rcu_state *rsp,
3265 struct rcu_data __percpu *rda)
3266 {
3267 static char *buf[] = { "rcu_node_0",
3268 "rcu_node_1",
3269 "rcu_node_2",
3270 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3271 static char *fqs[] = { "rcu_node_fqs_0",
3272 "rcu_node_fqs_1",
3273 "rcu_node_fqs_2",
3274 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3275 int cpustride = 1;
3276 int i;
3277 int j;
3278 struct rcu_node *rnp;
3279
3280 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3281
3282 /* Silence gcc 4.8 warning about array index out of range. */
3283 if (rcu_num_lvls > RCU_NUM_LVLS)
3284 panic("rcu_init_one: rcu_num_lvls overflow");
3285
3286 /* Initialize the level-tracking arrays. */
3287
3288 for (i = 0; i < rcu_num_lvls; i++)
3289 rsp->levelcnt[i] = num_rcu_lvl[i];
3290 for (i = 1; i < rcu_num_lvls; i++)
3291 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3292 rcu_init_levelspread(rsp);
3293
3294 /* Initialize the elements themselves, starting from the leaves. */
3295
3296 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3297 cpustride *= rsp->levelspread[i];
3298 rnp = rsp->level[i];
3299 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3300 raw_spin_lock_init(&rnp->lock);
3301 lockdep_set_class_and_name(&rnp->lock,
3302 &rcu_node_class[i], buf[i]);
3303 raw_spin_lock_init(&rnp->fqslock);
3304 lockdep_set_class_and_name(&rnp->fqslock,
3305 &rcu_fqs_class[i], fqs[i]);
3306 rnp->gpnum = rsp->gpnum;
3307 rnp->completed = rsp->completed;
3308 rnp->qsmask = 0;
3309 rnp->qsmaskinit = 0;
3310 rnp->grplo = j * cpustride;
3311 rnp->grphi = (j + 1) * cpustride - 1;
3312 if (rnp->grphi >= NR_CPUS)
3313 rnp->grphi = NR_CPUS - 1;
3314 if (i == 0) {
3315 rnp->grpnum = 0;
3316 rnp->grpmask = 0;
3317 rnp->parent = NULL;
3318 } else {
3319 rnp->grpnum = j % rsp->levelspread[i - 1];
3320 rnp->grpmask = 1UL << rnp->grpnum;
3321 rnp->parent = rsp->level[i - 1] +
3322 j / rsp->levelspread[i - 1];
3323 }
3324 rnp->level = i;
3325 INIT_LIST_HEAD(&rnp->blkd_tasks);
3326 rcu_init_one_nocb(rnp);
3327 }
3328 }
3329
3330 rsp->rda = rda;
3331 init_waitqueue_head(&rsp->gp_wq);
3332 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3333 rnp = rsp->level[rcu_num_lvls - 1];
3334 for_each_possible_cpu(i) {
3335 while (i > rnp->grphi)
3336 rnp++;
3337 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3338 rcu_boot_init_percpu_data(i, rsp);
3339 }
3340 list_add(&rsp->flavors, &rcu_struct_flavors);
3341 }
3342
3343 /*
3344 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3345 * replace the definitions in tree.h because those are needed to size
3346 * the ->node array in the rcu_state structure.
3347 */
3348 static void __init rcu_init_geometry(void)
3349 {
3350 ulong d;
3351 int i;
3352 int j;
3353 int n = nr_cpu_ids;
3354 int rcu_capacity[MAX_RCU_LVLS + 1];
3355
3356 /*
3357 * Initialize any unspecified boot parameters.
3358 * The default values of jiffies_till_first_fqs and
3359 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3360 * value, which is a function of HZ, then adding one for each
3361 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3362 */
3363 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3364 if (jiffies_till_first_fqs == ULONG_MAX)
3365 jiffies_till_first_fqs = d;
3366 if (jiffies_till_next_fqs == ULONG_MAX)
3367 jiffies_till_next_fqs = d;
3368
3369 /* If the compile-time values are accurate, just leave. */
3370 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3371 nr_cpu_ids == NR_CPUS)
3372 return;
3373
3374 /*
3375 * Compute number of nodes that can be handled an rcu_node tree
3376 * with the given number of levels. Setting rcu_capacity[0] makes
3377 * some of the arithmetic easier.
3378 */
3379 rcu_capacity[0] = 1;
3380 rcu_capacity[1] = rcu_fanout_leaf;
3381 for (i = 2; i <= MAX_RCU_LVLS; i++)
3382 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3383
3384 /*
3385 * The boot-time rcu_fanout_leaf parameter is only permitted
3386 * to increase the leaf-level fanout, not decrease it. Of course,
3387 * the leaf-level fanout cannot exceed the number of bits in
3388 * the rcu_node masks. Finally, the tree must be able to accommodate
3389 * the configured number of CPUs. Complain and fall back to the
3390 * compile-time values if these limits are exceeded.
3391 */
3392 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3393 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3394 n > rcu_capacity[MAX_RCU_LVLS]) {
3395 WARN_ON(1);
3396 return;
3397 }
3398
3399 /* Calculate the number of rcu_nodes at each level of the tree. */
3400 for (i = 1; i <= MAX_RCU_LVLS; i++)
3401 if (n <= rcu_capacity[i]) {
3402 for (j = 0; j <= i; j++)
3403 num_rcu_lvl[j] =
3404 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3405 rcu_num_lvls = i;
3406 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3407 num_rcu_lvl[j] = 0;
3408 break;
3409 }
3410
3411 /* Calculate the total number of rcu_node structures. */
3412 rcu_num_nodes = 0;
3413 for (i = 0; i <= MAX_RCU_LVLS; i++)
3414 rcu_num_nodes += num_rcu_lvl[i];
3415 rcu_num_nodes -= n;
3416 }
3417
3418 void __init rcu_init(void)
3419 {
3420 int cpu;
3421
3422 rcu_bootup_announce();
3423 rcu_init_geometry();
3424 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3425 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3426 __rcu_init_preempt();
3427 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3428
3429 /*
3430 * We don't need protection against CPU-hotplug here because
3431 * this is called early in boot, before either interrupts
3432 * or the scheduler are operational.
3433 */
3434 cpu_notifier(rcu_cpu_notify, 0);
3435 pm_notifier(rcu_pm_notify, 0);
3436 for_each_online_cpu(cpu)
3437 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3438 }
3439
3440 #include "tree_plugin.h"
This page took 0.106802 seconds and 6 git commands to generate.