rcu: Add more debug info on "kthread starved" RCU CPU stall warnings
[deliverable/linux.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74 /*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82 #ifdef CONFIG_TRACING
83 # define DEFINE_RCU_TPS(sname) \
84 static char sname##_varname[] = #sname; \
85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86 # define RCU_STATE_NAME(sname) sname##_varname
87 #else
88 # define DEFINE_RCU_TPS(sname)
89 # define RCU_STATE_NAME(sname) __stringify(sname)
90 #endif
91
92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93 DEFINE_RCU_TPS(sname) \
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
95 struct rcu_state sname##_state = { \
96 .level = { &sname##_state.node[0] }, \
97 .rda = &sname##_data, \
98 .call = cr, \
99 .fqs_state = RCU_GP_IDLE, \
100 .gpnum = 0UL - 300UL, \
101 .completed = 0UL - 300UL, \
102 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
103 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
104 .orphan_donetail = &sname##_state.orphan_donelist, \
105 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
106 .name = RCU_STATE_NAME(sname), \
107 .abbr = sabbr, \
108 }
109
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113 static struct rcu_state *const rcu_state_p;
114 static struct rcu_data __percpu *const rcu_data_p;
115 LIST_HEAD(rcu_struct_flavors);
116
117 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
118 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
119 module_param(rcu_fanout_leaf, int, 0444);
120 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
121 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
122 NUM_RCU_LVL_0,
123 NUM_RCU_LVL_1,
124 NUM_RCU_LVL_2,
125 NUM_RCU_LVL_3,
126 NUM_RCU_LVL_4,
127 };
128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129
130 /*
131 * The rcu_scheduler_active variable transitions from zero to one just
132 * before the first task is spawned. So when this variable is zero, RCU
133 * can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_sched() to a simple barrier(). When this variable
135 * is one, RCU must actually do all the hard work required to detect real
136 * grace periods. This variable is also used to suppress boot-time false
137 * positives from lockdep-RCU error checking.
138 */
139 int rcu_scheduler_active __read_mostly;
140 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
141
142 /*
143 * The rcu_scheduler_fully_active variable transitions from zero to one
144 * during the early_initcall() processing, which is after the scheduler
145 * is capable of creating new tasks. So RCU processing (for example,
146 * creating tasks for RCU priority boosting) must be delayed until after
147 * rcu_scheduler_fully_active transitions from zero to one. We also
148 * currently delay invocation of any RCU callbacks until after this point.
149 *
150 * It might later prove better for people registering RCU callbacks during
151 * early boot to take responsibility for these callbacks, but one step at
152 * a time.
153 */
154 static int rcu_scheduler_fully_active __read_mostly;
155
156 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
158 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
159 static void invoke_rcu_core(void);
160 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
161
162 /* rcuc/rcub kthread realtime priority */
163 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
164 module_param(kthread_prio, int, 0644);
165
166 /* Delay in jiffies for grace-period initialization delays, debug only. */
167 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
168 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
169 module_param(gp_init_delay, int, 0644);
170 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
171 static const int gp_init_delay;
172 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
173 #define PER_RCU_NODE_PERIOD 10 /* Number of grace periods between delays. */
174
175 /*
176 * Track the rcutorture test sequence number and the update version
177 * number within a given test. The rcutorture_testseq is incremented
178 * on every rcutorture module load and unload, so has an odd value
179 * when a test is running. The rcutorture_vernum is set to zero
180 * when rcutorture starts and is incremented on each rcutorture update.
181 * These variables enable correlating rcutorture output with the
182 * RCU tracing information.
183 */
184 unsigned long rcutorture_testseq;
185 unsigned long rcutorture_vernum;
186
187 /*
188 * Compute the mask of online CPUs for the specified rcu_node structure.
189 * This will not be stable unless the rcu_node structure's ->lock is
190 * held, but the bit corresponding to the current CPU will be stable
191 * in most contexts.
192 */
193 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
194 {
195 return READ_ONCE(rnp->qsmaskinitnext);
196 }
197
198 /*
199 * Return true if an RCU grace period is in progress. The READ_ONCE()s
200 * permit this function to be invoked without holding the root rcu_node
201 * structure's ->lock, but of course results can be subject to change.
202 */
203 static int rcu_gp_in_progress(struct rcu_state *rsp)
204 {
205 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
206 }
207
208 /*
209 * Note a quiescent state. Because we do not need to know
210 * how many quiescent states passed, just if there was at least
211 * one since the start of the grace period, this just sets a flag.
212 * The caller must have disabled preemption.
213 */
214 void rcu_sched_qs(void)
215 {
216 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
217 trace_rcu_grace_period(TPS("rcu_sched"),
218 __this_cpu_read(rcu_sched_data.gpnum),
219 TPS("cpuqs"));
220 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
221 }
222 }
223
224 void rcu_bh_qs(void)
225 {
226 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
227 trace_rcu_grace_period(TPS("rcu_bh"),
228 __this_cpu_read(rcu_bh_data.gpnum),
229 TPS("cpuqs"));
230 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
231 }
232 }
233
234 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
235
236 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
237 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
238 .dynticks = ATOMIC_INIT(1),
239 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
240 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
241 .dynticks_idle = ATOMIC_INIT(1),
242 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
243 };
244
245 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
246 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
247
248 /*
249 * Let the RCU core know that this CPU has gone through the scheduler,
250 * which is a quiescent state. This is called when the need for a
251 * quiescent state is urgent, so we burn an atomic operation and full
252 * memory barriers to let the RCU core know about it, regardless of what
253 * this CPU might (or might not) do in the near future.
254 *
255 * We inform the RCU core by emulating a zero-duration dyntick-idle
256 * period, which we in turn do by incrementing the ->dynticks counter
257 * by two.
258 */
259 static void rcu_momentary_dyntick_idle(void)
260 {
261 unsigned long flags;
262 struct rcu_data *rdp;
263 struct rcu_dynticks *rdtp;
264 int resched_mask;
265 struct rcu_state *rsp;
266
267 local_irq_save(flags);
268
269 /*
270 * Yes, we can lose flag-setting operations. This is OK, because
271 * the flag will be set again after some delay.
272 */
273 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
274 raw_cpu_write(rcu_sched_qs_mask, 0);
275
276 /* Find the flavor that needs a quiescent state. */
277 for_each_rcu_flavor(rsp) {
278 rdp = raw_cpu_ptr(rsp->rda);
279 if (!(resched_mask & rsp->flavor_mask))
280 continue;
281 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
282 if (READ_ONCE(rdp->mynode->completed) !=
283 READ_ONCE(rdp->cond_resched_completed))
284 continue;
285
286 /*
287 * Pretend to be momentarily idle for the quiescent state.
288 * This allows the grace-period kthread to record the
289 * quiescent state, with no need for this CPU to do anything
290 * further.
291 */
292 rdtp = this_cpu_ptr(&rcu_dynticks);
293 smp_mb__before_atomic(); /* Earlier stuff before QS. */
294 atomic_add(2, &rdtp->dynticks); /* QS. */
295 smp_mb__after_atomic(); /* Later stuff after QS. */
296 break;
297 }
298 local_irq_restore(flags);
299 }
300
301 /*
302 * Note a context switch. This is a quiescent state for RCU-sched,
303 * and requires special handling for preemptible RCU.
304 * The caller must have disabled preemption.
305 */
306 void rcu_note_context_switch(void)
307 {
308 trace_rcu_utilization(TPS("Start context switch"));
309 rcu_sched_qs();
310 rcu_preempt_note_context_switch();
311 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
312 rcu_momentary_dyntick_idle();
313 trace_rcu_utilization(TPS("End context switch"));
314 }
315 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
316
317 /*
318 * Register a quiescent state for all RCU flavors. If there is an
319 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
320 * dyntick-idle quiescent state visible to other CPUs (but only for those
321 * RCU flavors in desperate need of a quiescent state, which will normally
322 * be none of them). Either way, do a lightweight quiescent state for
323 * all RCU flavors.
324 */
325 void rcu_all_qs(void)
326 {
327 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
328 rcu_momentary_dyntick_idle();
329 this_cpu_inc(rcu_qs_ctr);
330 }
331 EXPORT_SYMBOL_GPL(rcu_all_qs);
332
333 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
334 static long qhimark = 10000; /* If this many pending, ignore blimit. */
335 static long qlowmark = 100; /* Once only this many pending, use blimit. */
336
337 module_param(blimit, long, 0444);
338 module_param(qhimark, long, 0444);
339 module_param(qlowmark, long, 0444);
340
341 static ulong jiffies_till_first_fqs = ULONG_MAX;
342 static ulong jiffies_till_next_fqs = ULONG_MAX;
343
344 module_param(jiffies_till_first_fqs, ulong, 0644);
345 module_param(jiffies_till_next_fqs, ulong, 0644);
346
347 /*
348 * How long the grace period must be before we start recruiting
349 * quiescent-state help from rcu_note_context_switch().
350 */
351 static ulong jiffies_till_sched_qs = HZ / 20;
352 module_param(jiffies_till_sched_qs, ulong, 0644);
353
354 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
355 struct rcu_data *rdp);
356 static void force_qs_rnp(struct rcu_state *rsp,
357 int (*f)(struct rcu_data *rsp, bool *isidle,
358 unsigned long *maxj),
359 bool *isidle, unsigned long *maxj);
360 static void force_quiescent_state(struct rcu_state *rsp);
361 static int rcu_pending(void);
362
363 /*
364 * Return the number of RCU batches started thus far for debug & stats.
365 */
366 unsigned long rcu_batches_started(void)
367 {
368 return rcu_state_p->gpnum;
369 }
370 EXPORT_SYMBOL_GPL(rcu_batches_started);
371
372 /*
373 * Return the number of RCU-sched batches started thus far for debug & stats.
374 */
375 unsigned long rcu_batches_started_sched(void)
376 {
377 return rcu_sched_state.gpnum;
378 }
379 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
380
381 /*
382 * Return the number of RCU BH batches started thus far for debug & stats.
383 */
384 unsigned long rcu_batches_started_bh(void)
385 {
386 return rcu_bh_state.gpnum;
387 }
388 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
389
390 /*
391 * Return the number of RCU batches completed thus far for debug & stats.
392 */
393 unsigned long rcu_batches_completed(void)
394 {
395 return rcu_state_p->completed;
396 }
397 EXPORT_SYMBOL_GPL(rcu_batches_completed);
398
399 /*
400 * Return the number of RCU-sched batches completed thus far for debug & stats.
401 */
402 unsigned long rcu_batches_completed_sched(void)
403 {
404 return rcu_sched_state.completed;
405 }
406 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
407
408 /*
409 * Return the number of RCU BH batches completed thus far for debug & stats.
410 */
411 unsigned long rcu_batches_completed_bh(void)
412 {
413 return rcu_bh_state.completed;
414 }
415 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
416
417 /*
418 * Force a quiescent state.
419 */
420 void rcu_force_quiescent_state(void)
421 {
422 force_quiescent_state(rcu_state_p);
423 }
424 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
425
426 /*
427 * Force a quiescent state for RCU BH.
428 */
429 void rcu_bh_force_quiescent_state(void)
430 {
431 force_quiescent_state(&rcu_bh_state);
432 }
433 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
434
435 /*
436 * Force a quiescent state for RCU-sched.
437 */
438 void rcu_sched_force_quiescent_state(void)
439 {
440 force_quiescent_state(&rcu_sched_state);
441 }
442 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
443
444 /*
445 * Show the state of the grace-period kthreads.
446 */
447 void show_rcu_gp_kthreads(void)
448 {
449 struct rcu_state *rsp;
450
451 for_each_rcu_flavor(rsp) {
452 pr_info("%s: wait state: %d ->state: %#lx\n",
453 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
454 /* sched_show_task(rsp->gp_kthread); */
455 }
456 }
457 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
458
459 /*
460 * Record the number of times rcutorture tests have been initiated and
461 * terminated. This information allows the debugfs tracing stats to be
462 * correlated to the rcutorture messages, even when the rcutorture module
463 * is being repeatedly loaded and unloaded. In other words, we cannot
464 * store this state in rcutorture itself.
465 */
466 void rcutorture_record_test_transition(void)
467 {
468 rcutorture_testseq++;
469 rcutorture_vernum = 0;
470 }
471 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
472
473 /*
474 * Send along grace-period-related data for rcutorture diagnostics.
475 */
476 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
477 unsigned long *gpnum, unsigned long *completed)
478 {
479 struct rcu_state *rsp = NULL;
480
481 switch (test_type) {
482 case RCU_FLAVOR:
483 rsp = rcu_state_p;
484 break;
485 case RCU_BH_FLAVOR:
486 rsp = &rcu_bh_state;
487 break;
488 case RCU_SCHED_FLAVOR:
489 rsp = &rcu_sched_state;
490 break;
491 default:
492 break;
493 }
494 if (rsp != NULL) {
495 *flags = READ_ONCE(rsp->gp_flags);
496 *gpnum = READ_ONCE(rsp->gpnum);
497 *completed = READ_ONCE(rsp->completed);
498 return;
499 }
500 *flags = 0;
501 *gpnum = 0;
502 *completed = 0;
503 }
504 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
505
506 /*
507 * Record the number of writer passes through the current rcutorture test.
508 * This is also used to correlate debugfs tracing stats with the rcutorture
509 * messages.
510 */
511 void rcutorture_record_progress(unsigned long vernum)
512 {
513 rcutorture_vernum++;
514 }
515 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
516
517 /*
518 * Does the CPU have callbacks ready to be invoked?
519 */
520 static int
521 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
522 {
523 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
524 rdp->nxttail[RCU_DONE_TAIL] != NULL;
525 }
526
527 /*
528 * Return the root node of the specified rcu_state structure.
529 */
530 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
531 {
532 return &rsp->node[0];
533 }
534
535 /*
536 * Is there any need for future grace periods?
537 * Interrupts must be disabled. If the caller does not hold the root
538 * rnp_node structure's ->lock, the results are advisory only.
539 */
540 static int rcu_future_needs_gp(struct rcu_state *rsp)
541 {
542 struct rcu_node *rnp = rcu_get_root(rsp);
543 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
544 int *fp = &rnp->need_future_gp[idx];
545
546 return READ_ONCE(*fp);
547 }
548
549 /*
550 * Does the current CPU require a not-yet-started grace period?
551 * The caller must have disabled interrupts to prevent races with
552 * normal callback registry.
553 */
554 static int
555 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
556 {
557 int i;
558
559 if (rcu_gp_in_progress(rsp))
560 return 0; /* No, a grace period is already in progress. */
561 if (rcu_future_needs_gp(rsp))
562 return 1; /* Yes, a no-CBs CPU needs one. */
563 if (!rdp->nxttail[RCU_NEXT_TAIL])
564 return 0; /* No, this is a no-CBs (or offline) CPU. */
565 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
566 return 1; /* Yes, this CPU has newly registered callbacks. */
567 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
568 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
569 ULONG_CMP_LT(READ_ONCE(rsp->completed),
570 rdp->nxtcompleted[i]))
571 return 1; /* Yes, CBs for future grace period. */
572 return 0; /* No grace period needed. */
573 }
574
575 /*
576 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
577 *
578 * If the new value of the ->dynticks_nesting counter now is zero,
579 * we really have entered idle, and must do the appropriate accounting.
580 * The caller must have disabled interrupts.
581 */
582 static void rcu_eqs_enter_common(long long oldval, bool user)
583 {
584 struct rcu_state *rsp;
585 struct rcu_data *rdp;
586 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
587
588 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
589 if (!user && !is_idle_task(current)) {
590 struct task_struct *idle __maybe_unused =
591 idle_task(smp_processor_id());
592
593 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
594 ftrace_dump(DUMP_ORIG);
595 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
596 current->pid, current->comm,
597 idle->pid, idle->comm); /* must be idle task! */
598 }
599 for_each_rcu_flavor(rsp) {
600 rdp = this_cpu_ptr(rsp->rda);
601 do_nocb_deferred_wakeup(rdp);
602 }
603 rcu_prepare_for_idle();
604 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
605 smp_mb__before_atomic(); /* See above. */
606 atomic_inc(&rdtp->dynticks);
607 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
608 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
609 rcu_dynticks_task_enter();
610
611 /*
612 * It is illegal to enter an extended quiescent state while
613 * in an RCU read-side critical section.
614 */
615 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
616 "Illegal idle entry in RCU read-side critical section.");
617 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
618 "Illegal idle entry in RCU-bh read-side critical section.");
619 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
620 "Illegal idle entry in RCU-sched read-side critical section.");
621 }
622
623 /*
624 * Enter an RCU extended quiescent state, which can be either the
625 * idle loop or adaptive-tickless usermode execution.
626 */
627 static void rcu_eqs_enter(bool user)
628 {
629 long long oldval;
630 struct rcu_dynticks *rdtp;
631
632 rdtp = this_cpu_ptr(&rcu_dynticks);
633 oldval = rdtp->dynticks_nesting;
634 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
635 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
636 rdtp->dynticks_nesting = 0;
637 rcu_eqs_enter_common(oldval, user);
638 } else {
639 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
640 }
641 }
642
643 /**
644 * rcu_idle_enter - inform RCU that current CPU is entering idle
645 *
646 * Enter idle mode, in other words, -leave- the mode in which RCU
647 * read-side critical sections can occur. (Though RCU read-side
648 * critical sections can occur in irq handlers in idle, a possibility
649 * handled by irq_enter() and irq_exit().)
650 *
651 * We crowbar the ->dynticks_nesting field to zero to allow for
652 * the possibility of usermode upcalls having messed up our count
653 * of interrupt nesting level during the prior busy period.
654 */
655 void rcu_idle_enter(void)
656 {
657 unsigned long flags;
658
659 local_irq_save(flags);
660 rcu_eqs_enter(false);
661 rcu_sysidle_enter(0);
662 local_irq_restore(flags);
663 }
664 EXPORT_SYMBOL_GPL(rcu_idle_enter);
665
666 #ifdef CONFIG_RCU_USER_QS
667 /**
668 * rcu_user_enter - inform RCU that we are resuming userspace.
669 *
670 * Enter RCU idle mode right before resuming userspace. No use of RCU
671 * is permitted between this call and rcu_user_exit(). This way the
672 * CPU doesn't need to maintain the tick for RCU maintenance purposes
673 * when the CPU runs in userspace.
674 */
675 void rcu_user_enter(void)
676 {
677 rcu_eqs_enter(1);
678 }
679 #endif /* CONFIG_RCU_USER_QS */
680
681 /**
682 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
683 *
684 * Exit from an interrupt handler, which might possibly result in entering
685 * idle mode, in other words, leaving the mode in which read-side critical
686 * sections can occur.
687 *
688 * This code assumes that the idle loop never does anything that might
689 * result in unbalanced calls to irq_enter() and irq_exit(). If your
690 * architecture violates this assumption, RCU will give you what you
691 * deserve, good and hard. But very infrequently and irreproducibly.
692 *
693 * Use things like work queues to work around this limitation.
694 *
695 * You have been warned.
696 */
697 void rcu_irq_exit(void)
698 {
699 unsigned long flags;
700 long long oldval;
701 struct rcu_dynticks *rdtp;
702
703 local_irq_save(flags);
704 rdtp = this_cpu_ptr(&rcu_dynticks);
705 oldval = rdtp->dynticks_nesting;
706 rdtp->dynticks_nesting--;
707 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
708 if (rdtp->dynticks_nesting)
709 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
710 else
711 rcu_eqs_enter_common(oldval, true);
712 rcu_sysidle_enter(1);
713 local_irq_restore(flags);
714 }
715
716 /*
717 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
718 *
719 * If the new value of the ->dynticks_nesting counter was previously zero,
720 * we really have exited idle, and must do the appropriate accounting.
721 * The caller must have disabled interrupts.
722 */
723 static void rcu_eqs_exit_common(long long oldval, int user)
724 {
725 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
726
727 rcu_dynticks_task_exit();
728 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
729 atomic_inc(&rdtp->dynticks);
730 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
731 smp_mb__after_atomic(); /* See above. */
732 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
733 rcu_cleanup_after_idle();
734 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
735 if (!user && !is_idle_task(current)) {
736 struct task_struct *idle __maybe_unused =
737 idle_task(smp_processor_id());
738
739 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
740 oldval, rdtp->dynticks_nesting);
741 ftrace_dump(DUMP_ORIG);
742 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
743 current->pid, current->comm,
744 idle->pid, idle->comm); /* must be idle task! */
745 }
746 }
747
748 /*
749 * Exit an RCU extended quiescent state, which can be either the
750 * idle loop or adaptive-tickless usermode execution.
751 */
752 static void rcu_eqs_exit(bool user)
753 {
754 struct rcu_dynticks *rdtp;
755 long long oldval;
756
757 rdtp = this_cpu_ptr(&rcu_dynticks);
758 oldval = rdtp->dynticks_nesting;
759 WARN_ON_ONCE(oldval < 0);
760 if (oldval & DYNTICK_TASK_NEST_MASK) {
761 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
762 } else {
763 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
764 rcu_eqs_exit_common(oldval, user);
765 }
766 }
767
768 /**
769 * rcu_idle_exit - inform RCU that current CPU is leaving idle
770 *
771 * Exit idle mode, in other words, -enter- the mode in which RCU
772 * read-side critical sections can occur.
773 *
774 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
775 * allow for the possibility of usermode upcalls messing up our count
776 * of interrupt nesting level during the busy period that is just
777 * now starting.
778 */
779 void rcu_idle_exit(void)
780 {
781 unsigned long flags;
782
783 local_irq_save(flags);
784 rcu_eqs_exit(false);
785 rcu_sysidle_exit(0);
786 local_irq_restore(flags);
787 }
788 EXPORT_SYMBOL_GPL(rcu_idle_exit);
789
790 #ifdef CONFIG_RCU_USER_QS
791 /**
792 * rcu_user_exit - inform RCU that we are exiting userspace.
793 *
794 * Exit RCU idle mode while entering the kernel because it can
795 * run a RCU read side critical section anytime.
796 */
797 void rcu_user_exit(void)
798 {
799 rcu_eqs_exit(1);
800 }
801 #endif /* CONFIG_RCU_USER_QS */
802
803 /**
804 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
805 *
806 * Enter an interrupt handler, which might possibly result in exiting
807 * idle mode, in other words, entering the mode in which read-side critical
808 * sections can occur.
809 *
810 * Note that the Linux kernel is fully capable of entering an interrupt
811 * handler that it never exits, for example when doing upcalls to
812 * user mode! This code assumes that the idle loop never does upcalls to
813 * user mode. If your architecture does do upcalls from the idle loop (or
814 * does anything else that results in unbalanced calls to the irq_enter()
815 * and irq_exit() functions), RCU will give you what you deserve, good
816 * and hard. But very infrequently and irreproducibly.
817 *
818 * Use things like work queues to work around this limitation.
819 *
820 * You have been warned.
821 */
822 void rcu_irq_enter(void)
823 {
824 unsigned long flags;
825 struct rcu_dynticks *rdtp;
826 long long oldval;
827
828 local_irq_save(flags);
829 rdtp = this_cpu_ptr(&rcu_dynticks);
830 oldval = rdtp->dynticks_nesting;
831 rdtp->dynticks_nesting++;
832 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
833 if (oldval)
834 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
835 else
836 rcu_eqs_exit_common(oldval, true);
837 rcu_sysidle_exit(1);
838 local_irq_restore(flags);
839 }
840
841 /**
842 * rcu_nmi_enter - inform RCU of entry to NMI context
843 *
844 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
845 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
846 * that the CPU is active. This implementation permits nested NMIs, as
847 * long as the nesting level does not overflow an int. (You will probably
848 * run out of stack space first.)
849 */
850 void rcu_nmi_enter(void)
851 {
852 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
853 int incby = 2;
854
855 /* Complain about underflow. */
856 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
857
858 /*
859 * If idle from RCU viewpoint, atomically increment ->dynticks
860 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
861 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
862 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
863 * to be in the outermost NMI handler that interrupted an RCU-idle
864 * period (observation due to Andy Lutomirski).
865 */
866 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
867 smp_mb__before_atomic(); /* Force delay from prior write. */
868 atomic_inc(&rdtp->dynticks);
869 /* atomic_inc() before later RCU read-side crit sects */
870 smp_mb__after_atomic(); /* See above. */
871 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
872 incby = 1;
873 }
874 rdtp->dynticks_nmi_nesting += incby;
875 barrier();
876 }
877
878 /**
879 * rcu_nmi_exit - inform RCU of exit from NMI context
880 *
881 * If we are returning from the outermost NMI handler that interrupted an
882 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
883 * to let the RCU grace-period handling know that the CPU is back to
884 * being RCU-idle.
885 */
886 void rcu_nmi_exit(void)
887 {
888 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
889
890 /*
891 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
892 * (We are exiting an NMI handler, so RCU better be paying attention
893 * to us!)
894 */
895 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
896 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
897
898 /*
899 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
900 * leave it in non-RCU-idle state.
901 */
902 if (rdtp->dynticks_nmi_nesting != 1) {
903 rdtp->dynticks_nmi_nesting -= 2;
904 return;
905 }
906
907 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
908 rdtp->dynticks_nmi_nesting = 0;
909 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
910 smp_mb__before_atomic(); /* See above. */
911 atomic_inc(&rdtp->dynticks);
912 smp_mb__after_atomic(); /* Force delay to next write. */
913 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
914 }
915
916 /**
917 * __rcu_is_watching - are RCU read-side critical sections safe?
918 *
919 * Return true if RCU is watching the running CPU, which means that
920 * this CPU can safely enter RCU read-side critical sections. Unlike
921 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
922 * least disabled preemption.
923 */
924 bool notrace __rcu_is_watching(void)
925 {
926 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
927 }
928
929 /**
930 * rcu_is_watching - see if RCU thinks that the current CPU is idle
931 *
932 * If the current CPU is in its idle loop and is neither in an interrupt
933 * or NMI handler, return true.
934 */
935 bool notrace rcu_is_watching(void)
936 {
937 bool ret;
938
939 preempt_disable();
940 ret = __rcu_is_watching();
941 preempt_enable();
942 return ret;
943 }
944 EXPORT_SYMBOL_GPL(rcu_is_watching);
945
946 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
947
948 /*
949 * Is the current CPU online? Disable preemption to avoid false positives
950 * that could otherwise happen due to the current CPU number being sampled,
951 * this task being preempted, its old CPU being taken offline, resuming
952 * on some other CPU, then determining that its old CPU is now offline.
953 * It is OK to use RCU on an offline processor during initial boot, hence
954 * the check for rcu_scheduler_fully_active. Note also that it is OK
955 * for a CPU coming online to use RCU for one jiffy prior to marking itself
956 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
957 * offline to continue to use RCU for one jiffy after marking itself
958 * offline in the cpu_online_mask. This leniency is necessary given the
959 * non-atomic nature of the online and offline processing, for example,
960 * the fact that a CPU enters the scheduler after completing the CPU_DYING
961 * notifiers.
962 *
963 * This is also why RCU internally marks CPUs online during the
964 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
965 *
966 * Disable checking if in an NMI handler because we cannot safely report
967 * errors from NMI handlers anyway.
968 */
969 bool rcu_lockdep_current_cpu_online(void)
970 {
971 struct rcu_data *rdp;
972 struct rcu_node *rnp;
973 bool ret;
974
975 if (in_nmi())
976 return true;
977 preempt_disable();
978 rdp = this_cpu_ptr(&rcu_sched_data);
979 rnp = rdp->mynode;
980 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
981 !rcu_scheduler_fully_active;
982 preempt_enable();
983 return ret;
984 }
985 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
986
987 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
988
989 /**
990 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
991 *
992 * If the current CPU is idle or running at a first-level (not nested)
993 * interrupt from idle, return true. The caller must have at least
994 * disabled preemption.
995 */
996 static int rcu_is_cpu_rrupt_from_idle(void)
997 {
998 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
999 }
1000
1001 /*
1002 * Snapshot the specified CPU's dynticks counter so that we can later
1003 * credit them with an implicit quiescent state. Return 1 if this CPU
1004 * is in dynticks idle mode, which is an extended quiescent state.
1005 */
1006 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1007 bool *isidle, unsigned long *maxj)
1008 {
1009 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1010 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1011 if ((rdp->dynticks_snap & 0x1) == 0) {
1012 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1013 return 1;
1014 } else {
1015 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1016 rdp->mynode->gpnum))
1017 WRITE_ONCE(rdp->gpwrap, true);
1018 return 0;
1019 }
1020 }
1021
1022 /*
1023 * Return true if the specified CPU has passed through a quiescent
1024 * state by virtue of being in or having passed through an dynticks
1025 * idle state since the last call to dyntick_save_progress_counter()
1026 * for this same CPU, or by virtue of having been offline.
1027 */
1028 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1029 bool *isidle, unsigned long *maxj)
1030 {
1031 unsigned int curr;
1032 int *rcrmp;
1033 unsigned int snap;
1034
1035 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1036 snap = (unsigned int)rdp->dynticks_snap;
1037
1038 /*
1039 * If the CPU passed through or entered a dynticks idle phase with
1040 * no active irq/NMI handlers, then we can safely pretend that the CPU
1041 * already acknowledged the request to pass through a quiescent
1042 * state. Either way, that CPU cannot possibly be in an RCU
1043 * read-side critical section that started before the beginning
1044 * of the current RCU grace period.
1045 */
1046 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1047 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1048 rdp->dynticks_fqs++;
1049 return 1;
1050 }
1051
1052 /*
1053 * Check for the CPU being offline, but only if the grace period
1054 * is old enough. We don't need to worry about the CPU changing
1055 * state: If we see it offline even once, it has been through a
1056 * quiescent state.
1057 *
1058 * The reason for insisting that the grace period be at least
1059 * one jiffy old is that CPUs that are not quite online and that
1060 * have just gone offline can still execute RCU read-side critical
1061 * sections.
1062 */
1063 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1064 return 0; /* Grace period is not old enough. */
1065 barrier();
1066 if (cpu_is_offline(rdp->cpu)) {
1067 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1068 rdp->offline_fqs++;
1069 return 1;
1070 }
1071
1072 /*
1073 * A CPU running for an extended time within the kernel can
1074 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1075 * even context-switching back and forth between a pair of
1076 * in-kernel CPU-bound tasks cannot advance grace periods.
1077 * So if the grace period is old enough, make the CPU pay attention.
1078 * Note that the unsynchronized assignments to the per-CPU
1079 * rcu_sched_qs_mask variable are safe. Yes, setting of
1080 * bits can be lost, but they will be set again on the next
1081 * force-quiescent-state pass. So lost bit sets do not result
1082 * in incorrect behavior, merely in a grace period lasting
1083 * a few jiffies longer than it might otherwise. Because
1084 * there are at most four threads involved, and because the
1085 * updates are only once every few jiffies, the probability of
1086 * lossage (and thus of slight grace-period extension) is
1087 * quite low.
1088 *
1089 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1090 * is set too high, we override with half of the RCU CPU stall
1091 * warning delay.
1092 */
1093 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1094 if (ULONG_CMP_GE(jiffies,
1095 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1096 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1097 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1098 WRITE_ONCE(rdp->cond_resched_completed,
1099 READ_ONCE(rdp->mynode->completed));
1100 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1101 WRITE_ONCE(*rcrmp,
1102 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1103 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1104 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1105 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1106 /* Time to beat on that CPU again! */
1107 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1108 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1109 }
1110 }
1111
1112 return 0;
1113 }
1114
1115 static void record_gp_stall_check_time(struct rcu_state *rsp)
1116 {
1117 unsigned long j = jiffies;
1118 unsigned long j1;
1119
1120 rsp->gp_start = j;
1121 smp_wmb(); /* Record start time before stall time. */
1122 j1 = rcu_jiffies_till_stall_check();
1123 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1124 rsp->jiffies_resched = j + j1 / 2;
1125 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1126 }
1127
1128 /*
1129 * Complain about starvation of grace-period kthread.
1130 */
1131 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1132 {
1133 unsigned long gpa;
1134 unsigned long j;
1135
1136 j = jiffies;
1137 gpa = READ_ONCE(rsp->gp_activity);
1138 if (j - gpa > 2 * HZ)
1139 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x\n",
1140 rsp->name, j - gpa,
1141 rsp->gpnum, rsp->completed, rsp->gp_flags);
1142 }
1143
1144 /*
1145 * Dump stacks of all tasks running on stalled CPUs.
1146 */
1147 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1148 {
1149 int cpu;
1150 unsigned long flags;
1151 struct rcu_node *rnp;
1152
1153 rcu_for_each_leaf_node(rsp, rnp) {
1154 raw_spin_lock_irqsave(&rnp->lock, flags);
1155 if (rnp->qsmask != 0) {
1156 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1157 if (rnp->qsmask & (1UL << cpu))
1158 dump_cpu_task(rnp->grplo + cpu);
1159 }
1160 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1161 }
1162 }
1163
1164 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1165 {
1166 int cpu;
1167 long delta;
1168 unsigned long flags;
1169 unsigned long gpa;
1170 unsigned long j;
1171 int ndetected = 0;
1172 struct rcu_node *rnp = rcu_get_root(rsp);
1173 long totqlen = 0;
1174
1175 /* Only let one CPU complain about others per time interval. */
1176
1177 raw_spin_lock_irqsave(&rnp->lock, flags);
1178 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1179 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1180 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1181 return;
1182 }
1183 WRITE_ONCE(rsp->jiffies_stall,
1184 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1185 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1186
1187 /*
1188 * OK, time to rat on our buddy...
1189 * See Documentation/RCU/stallwarn.txt for info on how to debug
1190 * RCU CPU stall warnings.
1191 */
1192 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1193 rsp->name);
1194 print_cpu_stall_info_begin();
1195 rcu_for_each_leaf_node(rsp, rnp) {
1196 raw_spin_lock_irqsave(&rnp->lock, flags);
1197 ndetected += rcu_print_task_stall(rnp);
1198 if (rnp->qsmask != 0) {
1199 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1200 if (rnp->qsmask & (1UL << cpu)) {
1201 print_cpu_stall_info(rsp,
1202 rnp->grplo + cpu);
1203 ndetected++;
1204 }
1205 }
1206 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1207 }
1208
1209 print_cpu_stall_info_end();
1210 for_each_possible_cpu(cpu)
1211 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1212 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1213 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1214 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1215 if (ndetected) {
1216 rcu_dump_cpu_stacks(rsp);
1217 } else {
1218 if (READ_ONCE(rsp->gpnum) != gpnum ||
1219 READ_ONCE(rsp->completed) == gpnum) {
1220 pr_err("INFO: Stall ended before state dump start\n");
1221 } else {
1222 j = jiffies;
1223 gpa = READ_ONCE(rsp->gp_activity);
1224 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1225 rsp->name, j - gpa, j, gpa,
1226 jiffies_till_next_fqs,
1227 rcu_get_root(rsp)->qsmask);
1228 /* In this case, the current CPU might be at fault. */
1229 sched_show_task(current);
1230 }
1231 }
1232
1233 /* Complain about tasks blocking the grace period. */
1234 rcu_print_detail_task_stall(rsp);
1235
1236 rcu_check_gp_kthread_starvation(rsp);
1237
1238 force_quiescent_state(rsp); /* Kick them all. */
1239 }
1240
1241 static void print_cpu_stall(struct rcu_state *rsp)
1242 {
1243 int cpu;
1244 unsigned long flags;
1245 struct rcu_node *rnp = rcu_get_root(rsp);
1246 long totqlen = 0;
1247
1248 /*
1249 * OK, time to rat on ourselves...
1250 * See Documentation/RCU/stallwarn.txt for info on how to debug
1251 * RCU CPU stall warnings.
1252 */
1253 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1254 print_cpu_stall_info_begin();
1255 print_cpu_stall_info(rsp, smp_processor_id());
1256 print_cpu_stall_info_end();
1257 for_each_possible_cpu(cpu)
1258 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1259 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1260 jiffies - rsp->gp_start,
1261 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1262
1263 rcu_check_gp_kthread_starvation(rsp);
1264
1265 rcu_dump_cpu_stacks(rsp);
1266
1267 raw_spin_lock_irqsave(&rnp->lock, flags);
1268 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1269 WRITE_ONCE(rsp->jiffies_stall,
1270 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1271 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1272
1273 /*
1274 * Attempt to revive the RCU machinery by forcing a context switch.
1275 *
1276 * A context switch would normally allow the RCU state machine to make
1277 * progress and it could be we're stuck in kernel space without context
1278 * switches for an entirely unreasonable amount of time.
1279 */
1280 resched_cpu(smp_processor_id());
1281 }
1282
1283 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1284 {
1285 unsigned long completed;
1286 unsigned long gpnum;
1287 unsigned long gps;
1288 unsigned long j;
1289 unsigned long js;
1290 struct rcu_node *rnp;
1291
1292 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1293 return;
1294 j = jiffies;
1295
1296 /*
1297 * Lots of memory barriers to reject false positives.
1298 *
1299 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1300 * then rsp->gp_start, and finally rsp->completed. These values
1301 * are updated in the opposite order with memory barriers (or
1302 * equivalent) during grace-period initialization and cleanup.
1303 * Now, a false positive can occur if we get an new value of
1304 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1305 * the memory barriers, the only way that this can happen is if one
1306 * grace period ends and another starts between these two fetches.
1307 * Detect this by comparing rsp->completed with the previous fetch
1308 * from rsp->gpnum.
1309 *
1310 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1311 * and rsp->gp_start suffice to forestall false positives.
1312 */
1313 gpnum = READ_ONCE(rsp->gpnum);
1314 smp_rmb(); /* Pick up ->gpnum first... */
1315 js = READ_ONCE(rsp->jiffies_stall);
1316 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1317 gps = READ_ONCE(rsp->gp_start);
1318 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1319 completed = READ_ONCE(rsp->completed);
1320 if (ULONG_CMP_GE(completed, gpnum) ||
1321 ULONG_CMP_LT(j, js) ||
1322 ULONG_CMP_GE(gps, js))
1323 return; /* No stall or GP completed since entering function. */
1324 rnp = rdp->mynode;
1325 if (rcu_gp_in_progress(rsp) &&
1326 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1327
1328 /* We haven't checked in, so go dump stack. */
1329 print_cpu_stall(rsp);
1330
1331 } else if (rcu_gp_in_progress(rsp) &&
1332 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1333
1334 /* They had a few time units to dump stack, so complain. */
1335 print_other_cpu_stall(rsp, gpnum);
1336 }
1337 }
1338
1339 /**
1340 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1341 *
1342 * Set the stall-warning timeout way off into the future, thus preventing
1343 * any RCU CPU stall-warning messages from appearing in the current set of
1344 * RCU grace periods.
1345 *
1346 * The caller must disable hard irqs.
1347 */
1348 void rcu_cpu_stall_reset(void)
1349 {
1350 struct rcu_state *rsp;
1351
1352 for_each_rcu_flavor(rsp)
1353 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1354 }
1355
1356 /*
1357 * Initialize the specified rcu_data structure's default callback list
1358 * to empty. The default callback list is the one that is not used by
1359 * no-callbacks CPUs.
1360 */
1361 static void init_default_callback_list(struct rcu_data *rdp)
1362 {
1363 int i;
1364
1365 rdp->nxtlist = NULL;
1366 for (i = 0; i < RCU_NEXT_SIZE; i++)
1367 rdp->nxttail[i] = &rdp->nxtlist;
1368 }
1369
1370 /*
1371 * Initialize the specified rcu_data structure's callback list to empty.
1372 */
1373 static void init_callback_list(struct rcu_data *rdp)
1374 {
1375 if (init_nocb_callback_list(rdp))
1376 return;
1377 init_default_callback_list(rdp);
1378 }
1379
1380 /*
1381 * Determine the value that ->completed will have at the end of the
1382 * next subsequent grace period. This is used to tag callbacks so that
1383 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1384 * been dyntick-idle for an extended period with callbacks under the
1385 * influence of RCU_FAST_NO_HZ.
1386 *
1387 * The caller must hold rnp->lock with interrupts disabled.
1388 */
1389 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1390 struct rcu_node *rnp)
1391 {
1392 /*
1393 * If RCU is idle, we just wait for the next grace period.
1394 * But we can only be sure that RCU is idle if we are looking
1395 * at the root rcu_node structure -- otherwise, a new grace
1396 * period might have started, but just not yet gotten around
1397 * to initializing the current non-root rcu_node structure.
1398 */
1399 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1400 return rnp->completed + 1;
1401
1402 /*
1403 * Otherwise, wait for a possible partial grace period and
1404 * then the subsequent full grace period.
1405 */
1406 return rnp->completed + 2;
1407 }
1408
1409 /*
1410 * Trace-event helper function for rcu_start_future_gp() and
1411 * rcu_nocb_wait_gp().
1412 */
1413 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1414 unsigned long c, const char *s)
1415 {
1416 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1417 rnp->completed, c, rnp->level,
1418 rnp->grplo, rnp->grphi, s);
1419 }
1420
1421 /*
1422 * Start some future grace period, as needed to handle newly arrived
1423 * callbacks. The required future grace periods are recorded in each
1424 * rcu_node structure's ->need_future_gp field. Returns true if there
1425 * is reason to awaken the grace-period kthread.
1426 *
1427 * The caller must hold the specified rcu_node structure's ->lock.
1428 */
1429 static bool __maybe_unused
1430 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1431 unsigned long *c_out)
1432 {
1433 unsigned long c;
1434 int i;
1435 bool ret = false;
1436 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1437
1438 /*
1439 * Pick up grace-period number for new callbacks. If this
1440 * grace period is already marked as needed, return to the caller.
1441 */
1442 c = rcu_cbs_completed(rdp->rsp, rnp);
1443 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1444 if (rnp->need_future_gp[c & 0x1]) {
1445 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1446 goto out;
1447 }
1448
1449 /*
1450 * If either this rcu_node structure or the root rcu_node structure
1451 * believe that a grace period is in progress, then we must wait
1452 * for the one following, which is in "c". Because our request
1453 * will be noticed at the end of the current grace period, we don't
1454 * need to explicitly start one. We only do the lockless check
1455 * of rnp_root's fields if the current rcu_node structure thinks
1456 * there is no grace period in flight, and because we hold rnp->lock,
1457 * the only possible change is when rnp_root's two fields are
1458 * equal, in which case rnp_root->gpnum might be concurrently
1459 * incremented. But that is OK, as it will just result in our
1460 * doing some extra useless work.
1461 */
1462 if (rnp->gpnum != rnp->completed ||
1463 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1464 rnp->need_future_gp[c & 0x1]++;
1465 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1466 goto out;
1467 }
1468
1469 /*
1470 * There might be no grace period in progress. If we don't already
1471 * hold it, acquire the root rcu_node structure's lock in order to
1472 * start one (if needed).
1473 */
1474 if (rnp != rnp_root) {
1475 raw_spin_lock(&rnp_root->lock);
1476 smp_mb__after_unlock_lock();
1477 }
1478
1479 /*
1480 * Get a new grace-period number. If there really is no grace
1481 * period in progress, it will be smaller than the one we obtained
1482 * earlier. Adjust callbacks as needed. Note that even no-CBs
1483 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1484 */
1485 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1486 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1487 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1488 rdp->nxtcompleted[i] = c;
1489
1490 /*
1491 * If the needed for the required grace period is already
1492 * recorded, trace and leave.
1493 */
1494 if (rnp_root->need_future_gp[c & 0x1]) {
1495 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1496 goto unlock_out;
1497 }
1498
1499 /* Record the need for the future grace period. */
1500 rnp_root->need_future_gp[c & 0x1]++;
1501
1502 /* If a grace period is not already in progress, start one. */
1503 if (rnp_root->gpnum != rnp_root->completed) {
1504 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1505 } else {
1506 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1507 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1508 }
1509 unlock_out:
1510 if (rnp != rnp_root)
1511 raw_spin_unlock(&rnp_root->lock);
1512 out:
1513 if (c_out != NULL)
1514 *c_out = c;
1515 return ret;
1516 }
1517
1518 /*
1519 * Clean up any old requests for the just-ended grace period. Also return
1520 * whether any additional grace periods have been requested. Also invoke
1521 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1522 * waiting for this grace period to complete.
1523 */
1524 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1525 {
1526 int c = rnp->completed;
1527 int needmore;
1528 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1529
1530 rcu_nocb_gp_cleanup(rsp, rnp);
1531 rnp->need_future_gp[c & 0x1] = 0;
1532 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1533 trace_rcu_future_gp(rnp, rdp, c,
1534 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1535 return needmore;
1536 }
1537
1538 /*
1539 * Awaken the grace-period kthread for the specified flavor of RCU.
1540 * Don't do a self-awaken, and don't bother awakening when there is
1541 * nothing for the grace-period kthread to do (as in several CPUs
1542 * raced to awaken, and we lost), and finally don't try to awaken
1543 * a kthread that has not yet been created.
1544 */
1545 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1546 {
1547 if (current == rsp->gp_kthread ||
1548 !READ_ONCE(rsp->gp_flags) ||
1549 !rsp->gp_kthread)
1550 return;
1551 wake_up(&rsp->gp_wq);
1552 }
1553
1554 /*
1555 * If there is room, assign a ->completed number to any callbacks on
1556 * this CPU that have not already been assigned. Also accelerate any
1557 * callbacks that were previously assigned a ->completed number that has
1558 * since proven to be too conservative, which can happen if callbacks get
1559 * assigned a ->completed number while RCU is idle, but with reference to
1560 * a non-root rcu_node structure. This function is idempotent, so it does
1561 * not hurt to call it repeatedly. Returns an flag saying that we should
1562 * awaken the RCU grace-period kthread.
1563 *
1564 * The caller must hold rnp->lock with interrupts disabled.
1565 */
1566 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1567 struct rcu_data *rdp)
1568 {
1569 unsigned long c;
1570 int i;
1571 bool ret;
1572
1573 /* If the CPU has no callbacks, nothing to do. */
1574 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1575 return false;
1576
1577 /*
1578 * Starting from the sublist containing the callbacks most
1579 * recently assigned a ->completed number and working down, find the
1580 * first sublist that is not assignable to an upcoming grace period.
1581 * Such a sublist has something in it (first two tests) and has
1582 * a ->completed number assigned that will complete sooner than
1583 * the ->completed number for newly arrived callbacks (last test).
1584 *
1585 * The key point is that any later sublist can be assigned the
1586 * same ->completed number as the newly arrived callbacks, which
1587 * means that the callbacks in any of these later sublist can be
1588 * grouped into a single sublist, whether or not they have already
1589 * been assigned a ->completed number.
1590 */
1591 c = rcu_cbs_completed(rsp, rnp);
1592 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1593 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1594 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1595 break;
1596
1597 /*
1598 * If there are no sublist for unassigned callbacks, leave.
1599 * At the same time, advance "i" one sublist, so that "i" will
1600 * index into the sublist where all the remaining callbacks should
1601 * be grouped into.
1602 */
1603 if (++i >= RCU_NEXT_TAIL)
1604 return false;
1605
1606 /*
1607 * Assign all subsequent callbacks' ->completed number to the next
1608 * full grace period and group them all in the sublist initially
1609 * indexed by "i".
1610 */
1611 for (; i <= RCU_NEXT_TAIL; i++) {
1612 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1613 rdp->nxtcompleted[i] = c;
1614 }
1615 /* Record any needed additional grace periods. */
1616 ret = rcu_start_future_gp(rnp, rdp, NULL);
1617
1618 /* Trace depending on how much we were able to accelerate. */
1619 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1620 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1621 else
1622 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1623 return ret;
1624 }
1625
1626 /*
1627 * Move any callbacks whose grace period has completed to the
1628 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1629 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1630 * sublist. This function is idempotent, so it does not hurt to
1631 * invoke it repeatedly. As long as it is not invoked -too- often...
1632 * Returns true if the RCU grace-period kthread needs to be awakened.
1633 *
1634 * The caller must hold rnp->lock with interrupts disabled.
1635 */
1636 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1637 struct rcu_data *rdp)
1638 {
1639 int i, j;
1640
1641 /* If the CPU has no callbacks, nothing to do. */
1642 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1643 return false;
1644
1645 /*
1646 * Find all callbacks whose ->completed numbers indicate that they
1647 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1648 */
1649 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1650 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1651 break;
1652 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1653 }
1654 /* Clean up any sublist tail pointers that were misordered above. */
1655 for (j = RCU_WAIT_TAIL; j < i; j++)
1656 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1657
1658 /* Copy down callbacks to fill in empty sublists. */
1659 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1660 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1661 break;
1662 rdp->nxttail[j] = rdp->nxttail[i];
1663 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1664 }
1665
1666 /* Classify any remaining callbacks. */
1667 return rcu_accelerate_cbs(rsp, rnp, rdp);
1668 }
1669
1670 /*
1671 * Update CPU-local rcu_data state to record the beginnings and ends of
1672 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1673 * structure corresponding to the current CPU, and must have irqs disabled.
1674 * Returns true if the grace-period kthread needs to be awakened.
1675 */
1676 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1677 struct rcu_data *rdp)
1678 {
1679 bool ret;
1680
1681 /* Handle the ends of any preceding grace periods first. */
1682 if (rdp->completed == rnp->completed &&
1683 !unlikely(READ_ONCE(rdp->gpwrap))) {
1684
1685 /* No grace period end, so just accelerate recent callbacks. */
1686 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1687
1688 } else {
1689
1690 /* Advance callbacks. */
1691 ret = rcu_advance_cbs(rsp, rnp, rdp);
1692
1693 /* Remember that we saw this grace-period completion. */
1694 rdp->completed = rnp->completed;
1695 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1696 }
1697
1698 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1699 /*
1700 * If the current grace period is waiting for this CPU,
1701 * set up to detect a quiescent state, otherwise don't
1702 * go looking for one.
1703 */
1704 rdp->gpnum = rnp->gpnum;
1705 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1706 rdp->passed_quiesce = 0;
1707 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1708 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1709 zero_cpu_stall_ticks(rdp);
1710 WRITE_ONCE(rdp->gpwrap, false);
1711 }
1712 return ret;
1713 }
1714
1715 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1716 {
1717 unsigned long flags;
1718 bool needwake;
1719 struct rcu_node *rnp;
1720
1721 local_irq_save(flags);
1722 rnp = rdp->mynode;
1723 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1724 rdp->completed == READ_ONCE(rnp->completed) &&
1725 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1726 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1727 local_irq_restore(flags);
1728 return;
1729 }
1730 smp_mb__after_unlock_lock();
1731 needwake = __note_gp_changes(rsp, rnp, rdp);
1732 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1733 if (needwake)
1734 rcu_gp_kthread_wake(rsp);
1735 }
1736
1737 /*
1738 * Initialize a new grace period. Return 0 if no grace period required.
1739 */
1740 static int rcu_gp_init(struct rcu_state *rsp)
1741 {
1742 unsigned long oldmask;
1743 struct rcu_data *rdp;
1744 struct rcu_node *rnp = rcu_get_root(rsp);
1745
1746 WRITE_ONCE(rsp->gp_activity, jiffies);
1747 raw_spin_lock_irq(&rnp->lock);
1748 smp_mb__after_unlock_lock();
1749 if (!READ_ONCE(rsp->gp_flags)) {
1750 /* Spurious wakeup, tell caller to go back to sleep. */
1751 raw_spin_unlock_irq(&rnp->lock);
1752 return 0;
1753 }
1754 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1755
1756 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1757 /*
1758 * Grace period already in progress, don't start another.
1759 * Not supposed to be able to happen.
1760 */
1761 raw_spin_unlock_irq(&rnp->lock);
1762 return 0;
1763 }
1764
1765 /* Advance to a new grace period and initialize state. */
1766 record_gp_stall_check_time(rsp);
1767 /* Record GP times before starting GP, hence smp_store_release(). */
1768 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1769 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1770 raw_spin_unlock_irq(&rnp->lock);
1771
1772 /*
1773 * Apply per-leaf buffered online and offline operations to the
1774 * rcu_node tree. Note that this new grace period need not wait
1775 * for subsequent online CPUs, and that quiescent-state forcing
1776 * will handle subsequent offline CPUs.
1777 */
1778 rcu_for_each_leaf_node(rsp, rnp) {
1779 raw_spin_lock_irq(&rnp->lock);
1780 smp_mb__after_unlock_lock();
1781 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1782 !rnp->wait_blkd_tasks) {
1783 /* Nothing to do on this leaf rcu_node structure. */
1784 raw_spin_unlock_irq(&rnp->lock);
1785 continue;
1786 }
1787
1788 /* Record old state, apply changes to ->qsmaskinit field. */
1789 oldmask = rnp->qsmaskinit;
1790 rnp->qsmaskinit = rnp->qsmaskinitnext;
1791
1792 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1793 if (!oldmask != !rnp->qsmaskinit) {
1794 if (!oldmask) /* First online CPU for this rcu_node. */
1795 rcu_init_new_rnp(rnp);
1796 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1797 rnp->wait_blkd_tasks = true;
1798 else /* Last offline CPU and can propagate. */
1799 rcu_cleanup_dead_rnp(rnp);
1800 }
1801
1802 /*
1803 * If all waited-on tasks from prior grace period are
1804 * done, and if all this rcu_node structure's CPUs are
1805 * still offline, propagate up the rcu_node tree and
1806 * clear ->wait_blkd_tasks. Otherwise, if one of this
1807 * rcu_node structure's CPUs has since come back online,
1808 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1809 * checks for this, so just call it unconditionally).
1810 */
1811 if (rnp->wait_blkd_tasks &&
1812 (!rcu_preempt_has_tasks(rnp) ||
1813 rnp->qsmaskinit)) {
1814 rnp->wait_blkd_tasks = false;
1815 rcu_cleanup_dead_rnp(rnp);
1816 }
1817
1818 raw_spin_unlock_irq(&rnp->lock);
1819 }
1820
1821 /*
1822 * Set the quiescent-state-needed bits in all the rcu_node
1823 * structures for all currently online CPUs in breadth-first order,
1824 * starting from the root rcu_node structure, relying on the layout
1825 * of the tree within the rsp->node[] array. Note that other CPUs
1826 * will access only the leaves of the hierarchy, thus seeing that no
1827 * grace period is in progress, at least until the corresponding
1828 * leaf node has been initialized. In addition, we have excluded
1829 * CPU-hotplug operations.
1830 *
1831 * The grace period cannot complete until the initialization
1832 * process finishes, because this kthread handles both.
1833 */
1834 rcu_for_each_node_breadth_first(rsp, rnp) {
1835 raw_spin_lock_irq(&rnp->lock);
1836 smp_mb__after_unlock_lock();
1837 rdp = this_cpu_ptr(rsp->rda);
1838 rcu_preempt_check_blocked_tasks(rnp);
1839 rnp->qsmask = rnp->qsmaskinit;
1840 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1841 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1842 WRITE_ONCE(rnp->completed, rsp->completed);
1843 if (rnp == rdp->mynode)
1844 (void)__note_gp_changes(rsp, rnp, rdp);
1845 rcu_preempt_boost_start_gp(rnp);
1846 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1847 rnp->level, rnp->grplo,
1848 rnp->grphi, rnp->qsmask);
1849 raw_spin_unlock_irq(&rnp->lock);
1850 cond_resched_rcu_qs();
1851 WRITE_ONCE(rsp->gp_activity, jiffies);
1852 if (gp_init_delay > 0 &&
1853 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD)))
1854 schedule_timeout_uninterruptible(gp_init_delay);
1855 }
1856
1857 return 1;
1858 }
1859
1860 /*
1861 * Do one round of quiescent-state forcing.
1862 */
1863 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1864 {
1865 int fqs_state = fqs_state_in;
1866 bool isidle = false;
1867 unsigned long maxj;
1868 struct rcu_node *rnp = rcu_get_root(rsp);
1869
1870 WRITE_ONCE(rsp->gp_activity, jiffies);
1871 rsp->n_force_qs++;
1872 if (fqs_state == RCU_SAVE_DYNTICK) {
1873 /* Collect dyntick-idle snapshots. */
1874 if (is_sysidle_rcu_state(rsp)) {
1875 isidle = true;
1876 maxj = jiffies - ULONG_MAX / 4;
1877 }
1878 force_qs_rnp(rsp, dyntick_save_progress_counter,
1879 &isidle, &maxj);
1880 rcu_sysidle_report_gp(rsp, isidle, maxj);
1881 fqs_state = RCU_FORCE_QS;
1882 } else {
1883 /* Handle dyntick-idle and offline CPUs. */
1884 isidle = true;
1885 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1886 }
1887 /* Clear flag to prevent immediate re-entry. */
1888 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1889 raw_spin_lock_irq(&rnp->lock);
1890 smp_mb__after_unlock_lock();
1891 WRITE_ONCE(rsp->gp_flags,
1892 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1893 raw_spin_unlock_irq(&rnp->lock);
1894 }
1895 return fqs_state;
1896 }
1897
1898 /*
1899 * Clean up after the old grace period.
1900 */
1901 static void rcu_gp_cleanup(struct rcu_state *rsp)
1902 {
1903 unsigned long gp_duration;
1904 bool needgp = false;
1905 int nocb = 0;
1906 struct rcu_data *rdp;
1907 struct rcu_node *rnp = rcu_get_root(rsp);
1908
1909 WRITE_ONCE(rsp->gp_activity, jiffies);
1910 raw_spin_lock_irq(&rnp->lock);
1911 smp_mb__after_unlock_lock();
1912 gp_duration = jiffies - rsp->gp_start;
1913 if (gp_duration > rsp->gp_max)
1914 rsp->gp_max = gp_duration;
1915
1916 /*
1917 * We know the grace period is complete, but to everyone else
1918 * it appears to still be ongoing. But it is also the case
1919 * that to everyone else it looks like there is nothing that
1920 * they can do to advance the grace period. It is therefore
1921 * safe for us to drop the lock in order to mark the grace
1922 * period as completed in all of the rcu_node structures.
1923 */
1924 raw_spin_unlock_irq(&rnp->lock);
1925
1926 /*
1927 * Propagate new ->completed value to rcu_node structures so
1928 * that other CPUs don't have to wait until the start of the next
1929 * grace period to process their callbacks. This also avoids
1930 * some nasty RCU grace-period initialization races by forcing
1931 * the end of the current grace period to be completely recorded in
1932 * all of the rcu_node structures before the beginning of the next
1933 * grace period is recorded in any of the rcu_node structures.
1934 */
1935 rcu_for_each_node_breadth_first(rsp, rnp) {
1936 raw_spin_lock_irq(&rnp->lock);
1937 smp_mb__after_unlock_lock();
1938 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
1939 WARN_ON_ONCE(rnp->qsmask);
1940 WRITE_ONCE(rnp->completed, rsp->gpnum);
1941 rdp = this_cpu_ptr(rsp->rda);
1942 if (rnp == rdp->mynode)
1943 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1944 /* smp_mb() provided by prior unlock-lock pair. */
1945 nocb += rcu_future_gp_cleanup(rsp, rnp);
1946 raw_spin_unlock_irq(&rnp->lock);
1947 cond_resched_rcu_qs();
1948 WRITE_ONCE(rsp->gp_activity, jiffies);
1949 }
1950 rnp = rcu_get_root(rsp);
1951 raw_spin_lock_irq(&rnp->lock);
1952 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1953 rcu_nocb_gp_set(rnp, nocb);
1954
1955 /* Declare grace period done. */
1956 WRITE_ONCE(rsp->completed, rsp->gpnum);
1957 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1958 rsp->fqs_state = RCU_GP_IDLE;
1959 rdp = this_cpu_ptr(rsp->rda);
1960 /* Advance CBs to reduce false positives below. */
1961 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1962 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1963 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
1964 trace_rcu_grace_period(rsp->name,
1965 READ_ONCE(rsp->gpnum),
1966 TPS("newreq"));
1967 }
1968 raw_spin_unlock_irq(&rnp->lock);
1969 }
1970
1971 /*
1972 * Body of kthread that handles grace periods.
1973 */
1974 static int __noreturn rcu_gp_kthread(void *arg)
1975 {
1976 int fqs_state;
1977 int gf;
1978 unsigned long j;
1979 int ret;
1980 struct rcu_state *rsp = arg;
1981 struct rcu_node *rnp = rcu_get_root(rsp);
1982
1983 rcu_bind_gp_kthread();
1984 for (;;) {
1985
1986 /* Handle grace-period start. */
1987 for (;;) {
1988 trace_rcu_grace_period(rsp->name,
1989 READ_ONCE(rsp->gpnum),
1990 TPS("reqwait"));
1991 rsp->gp_state = RCU_GP_WAIT_GPS;
1992 wait_event_interruptible(rsp->gp_wq,
1993 READ_ONCE(rsp->gp_flags) &
1994 RCU_GP_FLAG_INIT);
1995 /* Locking provides needed memory barrier. */
1996 if (rcu_gp_init(rsp))
1997 break;
1998 cond_resched_rcu_qs();
1999 WRITE_ONCE(rsp->gp_activity, jiffies);
2000 WARN_ON(signal_pending(current));
2001 trace_rcu_grace_period(rsp->name,
2002 READ_ONCE(rsp->gpnum),
2003 TPS("reqwaitsig"));
2004 }
2005
2006 /* Handle quiescent-state forcing. */
2007 fqs_state = RCU_SAVE_DYNTICK;
2008 j = jiffies_till_first_fqs;
2009 if (j > HZ) {
2010 j = HZ;
2011 jiffies_till_first_fqs = HZ;
2012 }
2013 ret = 0;
2014 for (;;) {
2015 if (!ret)
2016 rsp->jiffies_force_qs = jiffies + j;
2017 trace_rcu_grace_period(rsp->name,
2018 READ_ONCE(rsp->gpnum),
2019 TPS("fqswait"));
2020 rsp->gp_state = RCU_GP_WAIT_FQS;
2021 ret = wait_event_interruptible_timeout(rsp->gp_wq,
2022 ((gf = READ_ONCE(rsp->gp_flags)) &
2023 RCU_GP_FLAG_FQS) ||
2024 (!READ_ONCE(rnp->qsmask) &&
2025 !rcu_preempt_blocked_readers_cgp(rnp)),
2026 j);
2027 /* Locking provides needed memory barriers. */
2028 /* If grace period done, leave loop. */
2029 if (!READ_ONCE(rnp->qsmask) &&
2030 !rcu_preempt_blocked_readers_cgp(rnp))
2031 break;
2032 /* If time for quiescent-state forcing, do it. */
2033 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2034 (gf & RCU_GP_FLAG_FQS)) {
2035 trace_rcu_grace_period(rsp->name,
2036 READ_ONCE(rsp->gpnum),
2037 TPS("fqsstart"));
2038 fqs_state = rcu_gp_fqs(rsp, fqs_state);
2039 trace_rcu_grace_period(rsp->name,
2040 READ_ONCE(rsp->gpnum),
2041 TPS("fqsend"));
2042 cond_resched_rcu_qs();
2043 WRITE_ONCE(rsp->gp_activity, jiffies);
2044 } else {
2045 /* Deal with stray signal. */
2046 cond_resched_rcu_qs();
2047 WRITE_ONCE(rsp->gp_activity, jiffies);
2048 WARN_ON(signal_pending(current));
2049 trace_rcu_grace_period(rsp->name,
2050 READ_ONCE(rsp->gpnum),
2051 TPS("fqswaitsig"));
2052 }
2053 j = jiffies_till_next_fqs;
2054 if (j > HZ) {
2055 j = HZ;
2056 jiffies_till_next_fqs = HZ;
2057 } else if (j < 1) {
2058 j = 1;
2059 jiffies_till_next_fqs = 1;
2060 }
2061 }
2062
2063 /* Handle grace-period end. */
2064 rcu_gp_cleanup(rsp);
2065 }
2066 }
2067
2068 /*
2069 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2070 * in preparation for detecting the next grace period. The caller must hold
2071 * the root node's ->lock and hard irqs must be disabled.
2072 *
2073 * Note that it is legal for a dying CPU (which is marked as offline) to
2074 * invoke this function. This can happen when the dying CPU reports its
2075 * quiescent state.
2076 *
2077 * Returns true if the grace-period kthread must be awakened.
2078 */
2079 static bool
2080 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2081 struct rcu_data *rdp)
2082 {
2083 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2084 /*
2085 * Either we have not yet spawned the grace-period
2086 * task, this CPU does not need another grace period,
2087 * or a grace period is already in progress.
2088 * Either way, don't start a new grace period.
2089 */
2090 return false;
2091 }
2092 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2093 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2094 TPS("newreq"));
2095
2096 /*
2097 * We can't do wakeups while holding the rnp->lock, as that
2098 * could cause possible deadlocks with the rq->lock. Defer
2099 * the wakeup to our caller.
2100 */
2101 return true;
2102 }
2103
2104 /*
2105 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2106 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2107 * is invoked indirectly from rcu_advance_cbs(), which would result in
2108 * endless recursion -- or would do so if it wasn't for the self-deadlock
2109 * that is encountered beforehand.
2110 *
2111 * Returns true if the grace-period kthread needs to be awakened.
2112 */
2113 static bool rcu_start_gp(struct rcu_state *rsp)
2114 {
2115 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2116 struct rcu_node *rnp = rcu_get_root(rsp);
2117 bool ret = false;
2118
2119 /*
2120 * If there is no grace period in progress right now, any
2121 * callbacks we have up to this point will be satisfied by the
2122 * next grace period. Also, advancing the callbacks reduces the
2123 * probability of false positives from cpu_needs_another_gp()
2124 * resulting in pointless grace periods. So, advance callbacks
2125 * then start the grace period!
2126 */
2127 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2128 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2129 return ret;
2130 }
2131
2132 /*
2133 * Report a full set of quiescent states to the specified rcu_state
2134 * data structure. This involves cleaning up after the prior grace
2135 * period and letting rcu_start_gp() start up the next grace period
2136 * if one is needed. Note that the caller must hold rnp->lock, which
2137 * is released before return.
2138 */
2139 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2140 __releases(rcu_get_root(rsp)->lock)
2141 {
2142 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2143 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2144 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2145 rcu_gp_kthread_wake(rsp);
2146 }
2147
2148 /*
2149 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2150 * Allows quiescent states for a group of CPUs to be reported at one go
2151 * to the specified rcu_node structure, though all the CPUs in the group
2152 * must be represented by the same rcu_node structure (which need not be a
2153 * leaf rcu_node structure, though it often will be). The gps parameter
2154 * is the grace-period snapshot, which means that the quiescent states
2155 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2156 * must be held upon entry, and it is released before return.
2157 */
2158 static void
2159 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2160 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2161 __releases(rnp->lock)
2162 {
2163 unsigned long oldmask = 0;
2164 struct rcu_node *rnp_c;
2165
2166 /* Walk up the rcu_node hierarchy. */
2167 for (;;) {
2168 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2169
2170 /*
2171 * Our bit has already been cleared, or the
2172 * relevant grace period is already over, so done.
2173 */
2174 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2175 return;
2176 }
2177 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2178 rnp->qsmask &= ~mask;
2179 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2180 mask, rnp->qsmask, rnp->level,
2181 rnp->grplo, rnp->grphi,
2182 !!rnp->gp_tasks);
2183 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2184
2185 /* Other bits still set at this level, so done. */
2186 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2187 return;
2188 }
2189 mask = rnp->grpmask;
2190 if (rnp->parent == NULL) {
2191
2192 /* No more levels. Exit loop holding root lock. */
2193
2194 break;
2195 }
2196 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2197 rnp_c = rnp;
2198 rnp = rnp->parent;
2199 raw_spin_lock_irqsave(&rnp->lock, flags);
2200 smp_mb__after_unlock_lock();
2201 oldmask = rnp_c->qsmask;
2202 }
2203
2204 /*
2205 * Get here if we are the last CPU to pass through a quiescent
2206 * state for this grace period. Invoke rcu_report_qs_rsp()
2207 * to clean up and start the next grace period if one is needed.
2208 */
2209 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2210 }
2211
2212 /*
2213 * Record a quiescent state for all tasks that were previously queued
2214 * on the specified rcu_node structure and that were blocking the current
2215 * RCU grace period. The caller must hold the specified rnp->lock with
2216 * irqs disabled, and this lock is released upon return, but irqs remain
2217 * disabled.
2218 */
2219 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2220 struct rcu_node *rnp, unsigned long flags)
2221 __releases(rnp->lock)
2222 {
2223 unsigned long gps;
2224 unsigned long mask;
2225 struct rcu_node *rnp_p;
2226
2227 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2228 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2229 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2230 return; /* Still need more quiescent states! */
2231 }
2232
2233 rnp_p = rnp->parent;
2234 if (rnp_p == NULL) {
2235 /*
2236 * Only one rcu_node structure in the tree, so don't
2237 * try to report up to its nonexistent parent!
2238 */
2239 rcu_report_qs_rsp(rsp, flags);
2240 return;
2241 }
2242
2243 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2244 gps = rnp->gpnum;
2245 mask = rnp->grpmask;
2246 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2247 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2248 smp_mb__after_unlock_lock();
2249 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2250 }
2251
2252 /*
2253 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2254 * structure. This must be either called from the specified CPU, or
2255 * called when the specified CPU is known to be offline (and when it is
2256 * also known that no other CPU is concurrently trying to help the offline
2257 * CPU). The lastcomp argument is used to make sure we are still in the
2258 * grace period of interest. We don't want to end the current grace period
2259 * based on quiescent states detected in an earlier grace period!
2260 */
2261 static void
2262 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2263 {
2264 unsigned long flags;
2265 unsigned long mask;
2266 bool needwake;
2267 struct rcu_node *rnp;
2268
2269 rnp = rdp->mynode;
2270 raw_spin_lock_irqsave(&rnp->lock, flags);
2271 smp_mb__after_unlock_lock();
2272 if ((rdp->passed_quiesce == 0 &&
2273 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2274 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2275 rdp->gpwrap) {
2276
2277 /*
2278 * The grace period in which this quiescent state was
2279 * recorded has ended, so don't report it upwards.
2280 * We will instead need a new quiescent state that lies
2281 * within the current grace period.
2282 */
2283 rdp->passed_quiesce = 0; /* need qs for new gp. */
2284 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2285 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2286 return;
2287 }
2288 mask = rdp->grpmask;
2289 if ((rnp->qsmask & mask) == 0) {
2290 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2291 } else {
2292 rdp->qs_pending = 0;
2293
2294 /*
2295 * This GP can't end until cpu checks in, so all of our
2296 * callbacks can be processed during the next GP.
2297 */
2298 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2299
2300 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2301 /* ^^^ Released rnp->lock */
2302 if (needwake)
2303 rcu_gp_kthread_wake(rsp);
2304 }
2305 }
2306
2307 /*
2308 * Check to see if there is a new grace period of which this CPU
2309 * is not yet aware, and if so, set up local rcu_data state for it.
2310 * Otherwise, see if this CPU has just passed through its first
2311 * quiescent state for this grace period, and record that fact if so.
2312 */
2313 static void
2314 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2315 {
2316 /* Check for grace-period ends and beginnings. */
2317 note_gp_changes(rsp, rdp);
2318
2319 /*
2320 * Does this CPU still need to do its part for current grace period?
2321 * If no, return and let the other CPUs do their part as well.
2322 */
2323 if (!rdp->qs_pending)
2324 return;
2325
2326 /*
2327 * Was there a quiescent state since the beginning of the grace
2328 * period? If no, then exit and wait for the next call.
2329 */
2330 if (!rdp->passed_quiesce &&
2331 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2332 return;
2333
2334 /*
2335 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2336 * judge of that).
2337 */
2338 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2339 }
2340
2341 #ifdef CONFIG_HOTPLUG_CPU
2342
2343 /*
2344 * Send the specified CPU's RCU callbacks to the orphanage. The
2345 * specified CPU must be offline, and the caller must hold the
2346 * ->orphan_lock.
2347 */
2348 static void
2349 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2350 struct rcu_node *rnp, struct rcu_data *rdp)
2351 {
2352 /* No-CBs CPUs do not have orphanable callbacks. */
2353 if (rcu_is_nocb_cpu(rdp->cpu))
2354 return;
2355
2356 /*
2357 * Orphan the callbacks. First adjust the counts. This is safe
2358 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2359 * cannot be running now. Thus no memory barrier is required.
2360 */
2361 if (rdp->nxtlist != NULL) {
2362 rsp->qlen_lazy += rdp->qlen_lazy;
2363 rsp->qlen += rdp->qlen;
2364 rdp->n_cbs_orphaned += rdp->qlen;
2365 rdp->qlen_lazy = 0;
2366 WRITE_ONCE(rdp->qlen, 0);
2367 }
2368
2369 /*
2370 * Next, move those callbacks still needing a grace period to
2371 * the orphanage, where some other CPU will pick them up.
2372 * Some of the callbacks might have gone partway through a grace
2373 * period, but that is too bad. They get to start over because we
2374 * cannot assume that grace periods are synchronized across CPUs.
2375 * We don't bother updating the ->nxttail[] array yet, instead
2376 * we just reset the whole thing later on.
2377 */
2378 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2379 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2380 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2381 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2382 }
2383
2384 /*
2385 * Then move the ready-to-invoke callbacks to the orphanage,
2386 * where some other CPU will pick them up. These will not be
2387 * required to pass though another grace period: They are done.
2388 */
2389 if (rdp->nxtlist != NULL) {
2390 *rsp->orphan_donetail = rdp->nxtlist;
2391 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2392 }
2393
2394 /*
2395 * Finally, initialize the rcu_data structure's list to empty and
2396 * disallow further callbacks on this CPU.
2397 */
2398 init_callback_list(rdp);
2399 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2400 }
2401
2402 /*
2403 * Adopt the RCU callbacks from the specified rcu_state structure's
2404 * orphanage. The caller must hold the ->orphan_lock.
2405 */
2406 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2407 {
2408 int i;
2409 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2410
2411 /* No-CBs CPUs are handled specially. */
2412 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2413 return;
2414
2415 /* Do the accounting first. */
2416 rdp->qlen_lazy += rsp->qlen_lazy;
2417 rdp->qlen += rsp->qlen;
2418 rdp->n_cbs_adopted += rsp->qlen;
2419 if (rsp->qlen_lazy != rsp->qlen)
2420 rcu_idle_count_callbacks_posted();
2421 rsp->qlen_lazy = 0;
2422 rsp->qlen = 0;
2423
2424 /*
2425 * We do not need a memory barrier here because the only way we
2426 * can get here if there is an rcu_barrier() in flight is if
2427 * we are the task doing the rcu_barrier().
2428 */
2429
2430 /* First adopt the ready-to-invoke callbacks. */
2431 if (rsp->orphan_donelist != NULL) {
2432 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2433 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2434 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2435 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2436 rdp->nxttail[i] = rsp->orphan_donetail;
2437 rsp->orphan_donelist = NULL;
2438 rsp->orphan_donetail = &rsp->orphan_donelist;
2439 }
2440
2441 /* And then adopt the callbacks that still need a grace period. */
2442 if (rsp->orphan_nxtlist != NULL) {
2443 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2444 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2445 rsp->orphan_nxtlist = NULL;
2446 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2447 }
2448 }
2449
2450 /*
2451 * Trace the fact that this CPU is going offline.
2452 */
2453 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2454 {
2455 RCU_TRACE(unsigned long mask);
2456 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2457 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2458
2459 RCU_TRACE(mask = rdp->grpmask);
2460 trace_rcu_grace_period(rsp->name,
2461 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2462 TPS("cpuofl"));
2463 }
2464
2465 /*
2466 * All CPUs for the specified rcu_node structure have gone offline,
2467 * and all tasks that were preempted within an RCU read-side critical
2468 * section while running on one of those CPUs have since exited their RCU
2469 * read-side critical section. Some other CPU is reporting this fact with
2470 * the specified rcu_node structure's ->lock held and interrupts disabled.
2471 * This function therefore goes up the tree of rcu_node structures,
2472 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2473 * the leaf rcu_node structure's ->qsmaskinit field has already been
2474 * updated
2475 *
2476 * This function does check that the specified rcu_node structure has
2477 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2478 * prematurely. That said, invoking it after the fact will cost you
2479 * a needless lock acquisition. So once it has done its work, don't
2480 * invoke it again.
2481 */
2482 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2483 {
2484 long mask;
2485 struct rcu_node *rnp = rnp_leaf;
2486
2487 if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2488 return;
2489 for (;;) {
2490 mask = rnp->grpmask;
2491 rnp = rnp->parent;
2492 if (!rnp)
2493 break;
2494 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2495 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2496 rnp->qsmaskinit &= ~mask;
2497 rnp->qsmask &= ~mask;
2498 if (rnp->qsmaskinit) {
2499 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2500 return;
2501 }
2502 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2503 }
2504 }
2505
2506 /*
2507 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2508 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2509 * bit masks.
2510 */
2511 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2512 {
2513 unsigned long flags;
2514 unsigned long mask;
2515 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2516 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2517
2518 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2519 mask = rdp->grpmask;
2520 raw_spin_lock_irqsave(&rnp->lock, flags);
2521 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2522 rnp->qsmaskinitnext &= ~mask;
2523 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2524 }
2525
2526 /*
2527 * The CPU has been completely removed, and some other CPU is reporting
2528 * this fact from process context. Do the remainder of the cleanup,
2529 * including orphaning the outgoing CPU's RCU callbacks, and also
2530 * adopting them. There can only be one CPU hotplug operation at a time,
2531 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2532 */
2533 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2534 {
2535 unsigned long flags;
2536 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2537 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2538
2539 /* Adjust any no-longer-needed kthreads. */
2540 rcu_boost_kthread_setaffinity(rnp, -1);
2541
2542 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2543 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2544 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2545 rcu_adopt_orphan_cbs(rsp, flags);
2546 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2547
2548 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2549 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2550 cpu, rdp->qlen, rdp->nxtlist);
2551 }
2552
2553 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2554
2555 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2556 {
2557 }
2558
2559 static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2560 {
2561 }
2562
2563 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2564 {
2565 }
2566
2567 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2568 {
2569 }
2570
2571 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2572
2573 /*
2574 * Invoke any RCU callbacks that have made it to the end of their grace
2575 * period. Thottle as specified by rdp->blimit.
2576 */
2577 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2578 {
2579 unsigned long flags;
2580 struct rcu_head *next, *list, **tail;
2581 long bl, count, count_lazy;
2582 int i;
2583
2584 /* If no callbacks are ready, just return. */
2585 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2586 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2587 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2588 need_resched(), is_idle_task(current),
2589 rcu_is_callbacks_kthread());
2590 return;
2591 }
2592
2593 /*
2594 * Extract the list of ready callbacks, disabling to prevent
2595 * races with call_rcu() from interrupt handlers.
2596 */
2597 local_irq_save(flags);
2598 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2599 bl = rdp->blimit;
2600 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2601 list = rdp->nxtlist;
2602 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2603 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2604 tail = rdp->nxttail[RCU_DONE_TAIL];
2605 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2606 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2607 rdp->nxttail[i] = &rdp->nxtlist;
2608 local_irq_restore(flags);
2609
2610 /* Invoke callbacks. */
2611 count = count_lazy = 0;
2612 while (list) {
2613 next = list->next;
2614 prefetch(next);
2615 debug_rcu_head_unqueue(list);
2616 if (__rcu_reclaim(rsp->name, list))
2617 count_lazy++;
2618 list = next;
2619 /* Stop only if limit reached and CPU has something to do. */
2620 if (++count >= bl &&
2621 (need_resched() ||
2622 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2623 break;
2624 }
2625
2626 local_irq_save(flags);
2627 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2628 is_idle_task(current),
2629 rcu_is_callbacks_kthread());
2630
2631 /* Update count, and requeue any remaining callbacks. */
2632 if (list != NULL) {
2633 *tail = rdp->nxtlist;
2634 rdp->nxtlist = list;
2635 for (i = 0; i < RCU_NEXT_SIZE; i++)
2636 if (&rdp->nxtlist == rdp->nxttail[i])
2637 rdp->nxttail[i] = tail;
2638 else
2639 break;
2640 }
2641 smp_mb(); /* List handling before counting for rcu_barrier(). */
2642 rdp->qlen_lazy -= count_lazy;
2643 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2644 rdp->n_cbs_invoked += count;
2645
2646 /* Reinstate batch limit if we have worked down the excess. */
2647 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2648 rdp->blimit = blimit;
2649
2650 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2651 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2652 rdp->qlen_last_fqs_check = 0;
2653 rdp->n_force_qs_snap = rsp->n_force_qs;
2654 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2655 rdp->qlen_last_fqs_check = rdp->qlen;
2656 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2657
2658 local_irq_restore(flags);
2659
2660 /* Re-invoke RCU core processing if there are callbacks remaining. */
2661 if (cpu_has_callbacks_ready_to_invoke(rdp))
2662 invoke_rcu_core();
2663 }
2664
2665 /*
2666 * Check to see if this CPU is in a non-context-switch quiescent state
2667 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2668 * Also schedule RCU core processing.
2669 *
2670 * This function must be called from hardirq context. It is normally
2671 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2672 * false, there is no point in invoking rcu_check_callbacks().
2673 */
2674 void rcu_check_callbacks(int user)
2675 {
2676 trace_rcu_utilization(TPS("Start scheduler-tick"));
2677 increment_cpu_stall_ticks();
2678 if (user || rcu_is_cpu_rrupt_from_idle()) {
2679
2680 /*
2681 * Get here if this CPU took its interrupt from user
2682 * mode or from the idle loop, and if this is not a
2683 * nested interrupt. In this case, the CPU is in
2684 * a quiescent state, so note it.
2685 *
2686 * No memory barrier is required here because both
2687 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2688 * variables that other CPUs neither access nor modify,
2689 * at least not while the corresponding CPU is online.
2690 */
2691
2692 rcu_sched_qs();
2693 rcu_bh_qs();
2694
2695 } else if (!in_softirq()) {
2696
2697 /*
2698 * Get here if this CPU did not take its interrupt from
2699 * softirq, in other words, if it is not interrupting
2700 * a rcu_bh read-side critical section. This is an _bh
2701 * critical section, so note it.
2702 */
2703
2704 rcu_bh_qs();
2705 }
2706 rcu_preempt_check_callbacks();
2707 if (rcu_pending())
2708 invoke_rcu_core();
2709 if (user)
2710 rcu_note_voluntary_context_switch(current);
2711 trace_rcu_utilization(TPS("End scheduler-tick"));
2712 }
2713
2714 /*
2715 * Scan the leaf rcu_node structures, processing dyntick state for any that
2716 * have not yet encountered a quiescent state, using the function specified.
2717 * Also initiate boosting for any threads blocked on the root rcu_node.
2718 *
2719 * The caller must have suppressed start of new grace periods.
2720 */
2721 static void force_qs_rnp(struct rcu_state *rsp,
2722 int (*f)(struct rcu_data *rsp, bool *isidle,
2723 unsigned long *maxj),
2724 bool *isidle, unsigned long *maxj)
2725 {
2726 unsigned long bit;
2727 int cpu;
2728 unsigned long flags;
2729 unsigned long mask;
2730 struct rcu_node *rnp;
2731
2732 rcu_for_each_leaf_node(rsp, rnp) {
2733 cond_resched_rcu_qs();
2734 mask = 0;
2735 raw_spin_lock_irqsave(&rnp->lock, flags);
2736 smp_mb__after_unlock_lock();
2737 if (!rcu_gp_in_progress(rsp)) {
2738 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2739 return;
2740 }
2741 if (rnp->qsmask == 0) {
2742 if (rcu_state_p == &rcu_sched_state ||
2743 rsp != rcu_state_p ||
2744 rcu_preempt_blocked_readers_cgp(rnp)) {
2745 /*
2746 * No point in scanning bits because they
2747 * are all zero. But we might need to
2748 * priority-boost blocked readers.
2749 */
2750 rcu_initiate_boost(rnp, flags);
2751 /* rcu_initiate_boost() releases rnp->lock */
2752 continue;
2753 }
2754 if (rnp->parent &&
2755 (rnp->parent->qsmask & rnp->grpmask)) {
2756 /*
2757 * Race between grace-period
2758 * initialization and task exiting RCU
2759 * read-side critical section: Report.
2760 */
2761 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2762 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2763 continue;
2764 }
2765 }
2766 cpu = rnp->grplo;
2767 bit = 1;
2768 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2769 if ((rnp->qsmask & bit) != 0) {
2770 if ((rnp->qsmaskinit & bit) == 0)
2771 *isidle = false; /* Pending hotplug. */
2772 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2773 mask |= bit;
2774 }
2775 }
2776 if (mask != 0) {
2777 /* Idle/offline CPUs, report (releases rnp->lock. */
2778 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2779 } else {
2780 /* Nothing to do here, so just drop the lock. */
2781 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2782 }
2783 }
2784 }
2785
2786 /*
2787 * Force quiescent states on reluctant CPUs, and also detect which
2788 * CPUs are in dyntick-idle mode.
2789 */
2790 static void force_quiescent_state(struct rcu_state *rsp)
2791 {
2792 unsigned long flags;
2793 bool ret;
2794 struct rcu_node *rnp;
2795 struct rcu_node *rnp_old = NULL;
2796
2797 /* Funnel through hierarchy to reduce memory contention. */
2798 rnp = __this_cpu_read(rsp->rda->mynode);
2799 for (; rnp != NULL; rnp = rnp->parent) {
2800 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2801 !raw_spin_trylock(&rnp->fqslock);
2802 if (rnp_old != NULL)
2803 raw_spin_unlock(&rnp_old->fqslock);
2804 if (ret) {
2805 rsp->n_force_qs_lh++;
2806 return;
2807 }
2808 rnp_old = rnp;
2809 }
2810 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2811
2812 /* Reached the root of the rcu_node tree, acquire lock. */
2813 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2814 smp_mb__after_unlock_lock();
2815 raw_spin_unlock(&rnp_old->fqslock);
2816 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2817 rsp->n_force_qs_lh++;
2818 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2819 return; /* Someone beat us to it. */
2820 }
2821 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2822 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2823 rcu_gp_kthread_wake(rsp);
2824 }
2825
2826 /*
2827 * This does the RCU core processing work for the specified rcu_state
2828 * and rcu_data structures. This may be called only from the CPU to
2829 * whom the rdp belongs.
2830 */
2831 static void
2832 __rcu_process_callbacks(struct rcu_state *rsp)
2833 {
2834 unsigned long flags;
2835 bool needwake;
2836 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2837
2838 WARN_ON_ONCE(rdp->beenonline == 0);
2839
2840 /* Update RCU state based on any recent quiescent states. */
2841 rcu_check_quiescent_state(rsp, rdp);
2842
2843 /* Does this CPU require a not-yet-started grace period? */
2844 local_irq_save(flags);
2845 if (cpu_needs_another_gp(rsp, rdp)) {
2846 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2847 needwake = rcu_start_gp(rsp);
2848 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2849 if (needwake)
2850 rcu_gp_kthread_wake(rsp);
2851 } else {
2852 local_irq_restore(flags);
2853 }
2854
2855 /* If there are callbacks ready, invoke them. */
2856 if (cpu_has_callbacks_ready_to_invoke(rdp))
2857 invoke_rcu_callbacks(rsp, rdp);
2858
2859 /* Do any needed deferred wakeups of rcuo kthreads. */
2860 do_nocb_deferred_wakeup(rdp);
2861 }
2862
2863 /*
2864 * Do RCU core processing for the current CPU.
2865 */
2866 static void rcu_process_callbacks(struct softirq_action *unused)
2867 {
2868 struct rcu_state *rsp;
2869
2870 if (cpu_is_offline(smp_processor_id()))
2871 return;
2872 trace_rcu_utilization(TPS("Start RCU core"));
2873 for_each_rcu_flavor(rsp)
2874 __rcu_process_callbacks(rsp);
2875 trace_rcu_utilization(TPS("End RCU core"));
2876 }
2877
2878 /*
2879 * Schedule RCU callback invocation. If the specified type of RCU
2880 * does not support RCU priority boosting, just do a direct call,
2881 * otherwise wake up the per-CPU kernel kthread. Note that because we
2882 * are running on the current CPU with softirqs disabled, the
2883 * rcu_cpu_kthread_task cannot disappear out from under us.
2884 */
2885 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2886 {
2887 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2888 return;
2889 if (likely(!rsp->boost)) {
2890 rcu_do_batch(rsp, rdp);
2891 return;
2892 }
2893 invoke_rcu_callbacks_kthread();
2894 }
2895
2896 static void invoke_rcu_core(void)
2897 {
2898 if (cpu_online(smp_processor_id()))
2899 raise_softirq(RCU_SOFTIRQ);
2900 }
2901
2902 /*
2903 * Handle any core-RCU processing required by a call_rcu() invocation.
2904 */
2905 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2906 struct rcu_head *head, unsigned long flags)
2907 {
2908 bool needwake;
2909
2910 /*
2911 * If called from an extended quiescent state, invoke the RCU
2912 * core in order to force a re-evaluation of RCU's idleness.
2913 */
2914 if (!rcu_is_watching())
2915 invoke_rcu_core();
2916
2917 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2918 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2919 return;
2920
2921 /*
2922 * Force the grace period if too many callbacks or too long waiting.
2923 * Enforce hysteresis, and don't invoke force_quiescent_state()
2924 * if some other CPU has recently done so. Also, don't bother
2925 * invoking force_quiescent_state() if the newly enqueued callback
2926 * is the only one waiting for a grace period to complete.
2927 */
2928 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2929
2930 /* Are we ignoring a completed grace period? */
2931 note_gp_changes(rsp, rdp);
2932
2933 /* Start a new grace period if one not already started. */
2934 if (!rcu_gp_in_progress(rsp)) {
2935 struct rcu_node *rnp_root = rcu_get_root(rsp);
2936
2937 raw_spin_lock(&rnp_root->lock);
2938 smp_mb__after_unlock_lock();
2939 needwake = rcu_start_gp(rsp);
2940 raw_spin_unlock(&rnp_root->lock);
2941 if (needwake)
2942 rcu_gp_kthread_wake(rsp);
2943 } else {
2944 /* Give the grace period a kick. */
2945 rdp->blimit = LONG_MAX;
2946 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2947 *rdp->nxttail[RCU_DONE_TAIL] != head)
2948 force_quiescent_state(rsp);
2949 rdp->n_force_qs_snap = rsp->n_force_qs;
2950 rdp->qlen_last_fqs_check = rdp->qlen;
2951 }
2952 }
2953 }
2954
2955 /*
2956 * RCU callback function to leak a callback.
2957 */
2958 static void rcu_leak_callback(struct rcu_head *rhp)
2959 {
2960 }
2961
2962 /*
2963 * Helper function for call_rcu() and friends. The cpu argument will
2964 * normally be -1, indicating "currently running CPU". It may specify
2965 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2966 * is expected to specify a CPU.
2967 */
2968 static void
2969 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2970 struct rcu_state *rsp, int cpu, bool lazy)
2971 {
2972 unsigned long flags;
2973 struct rcu_data *rdp;
2974
2975 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2976 if (debug_rcu_head_queue(head)) {
2977 /* Probable double call_rcu(), so leak the callback. */
2978 WRITE_ONCE(head->func, rcu_leak_callback);
2979 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2980 return;
2981 }
2982 head->func = func;
2983 head->next = NULL;
2984
2985 /*
2986 * Opportunistically note grace-period endings and beginnings.
2987 * Note that we might see a beginning right after we see an
2988 * end, but never vice versa, since this CPU has to pass through
2989 * a quiescent state betweentimes.
2990 */
2991 local_irq_save(flags);
2992 rdp = this_cpu_ptr(rsp->rda);
2993
2994 /* Add the callback to our list. */
2995 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2996 int offline;
2997
2998 if (cpu != -1)
2999 rdp = per_cpu_ptr(rsp->rda, cpu);
3000 if (likely(rdp->mynode)) {
3001 /* Post-boot, so this should be for a no-CBs CPU. */
3002 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3003 WARN_ON_ONCE(offline);
3004 /* Offline CPU, _call_rcu() illegal, leak callback. */
3005 local_irq_restore(flags);
3006 return;
3007 }
3008 /*
3009 * Very early boot, before rcu_init(). Initialize if needed
3010 * and then drop through to queue the callback.
3011 */
3012 BUG_ON(cpu != -1);
3013 WARN_ON_ONCE(!rcu_is_watching());
3014 if (!likely(rdp->nxtlist))
3015 init_default_callback_list(rdp);
3016 }
3017 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3018 if (lazy)
3019 rdp->qlen_lazy++;
3020 else
3021 rcu_idle_count_callbacks_posted();
3022 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3023 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3024 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3025
3026 if (__is_kfree_rcu_offset((unsigned long)func))
3027 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3028 rdp->qlen_lazy, rdp->qlen);
3029 else
3030 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3031
3032 /* Go handle any RCU core processing required. */
3033 __call_rcu_core(rsp, rdp, head, flags);
3034 local_irq_restore(flags);
3035 }
3036
3037 /*
3038 * Queue an RCU-sched callback for invocation after a grace period.
3039 */
3040 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3041 {
3042 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3043 }
3044 EXPORT_SYMBOL_GPL(call_rcu_sched);
3045
3046 /*
3047 * Queue an RCU callback for invocation after a quicker grace period.
3048 */
3049 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3050 {
3051 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3052 }
3053 EXPORT_SYMBOL_GPL(call_rcu_bh);
3054
3055 /*
3056 * Queue an RCU callback for lazy invocation after a grace period.
3057 * This will likely be later named something like "call_rcu_lazy()",
3058 * but this change will require some way of tagging the lazy RCU
3059 * callbacks in the list of pending callbacks. Until then, this
3060 * function may only be called from __kfree_rcu().
3061 */
3062 void kfree_call_rcu(struct rcu_head *head,
3063 void (*func)(struct rcu_head *rcu))
3064 {
3065 __call_rcu(head, func, rcu_state_p, -1, 1);
3066 }
3067 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3068
3069 /*
3070 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3071 * any blocking grace-period wait automatically implies a grace period
3072 * if there is only one CPU online at any point time during execution
3073 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3074 * occasionally incorrectly indicate that there are multiple CPUs online
3075 * when there was in fact only one the whole time, as this just adds
3076 * some overhead: RCU still operates correctly.
3077 */
3078 static inline int rcu_blocking_is_gp(void)
3079 {
3080 int ret;
3081
3082 might_sleep(); /* Check for RCU read-side critical section. */
3083 preempt_disable();
3084 ret = num_online_cpus() <= 1;
3085 preempt_enable();
3086 return ret;
3087 }
3088
3089 /**
3090 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3091 *
3092 * Control will return to the caller some time after a full rcu-sched
3093 * grace period has elapsed, in other words after all currently executing
3094 * rcu-sched read-side critical sections have completed. These read-side
3095 * critical sections are delimited by rcu_read_lock_sched() and
3096 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3097 * local_irq_disable(), and so on may be used in place of
3098 * rcu_read_lock_sched().
3099 *
3100 * This means that all preempt_disable code sequences, including NMI and
3101 * non-threaded hardware-interrupt handlers, in progress on entry will
3102 * have completed before this primitive returns. However, this does not
3103 * guarantee that softirq handlers will have completed, since in some
3104 * kernels, these handlers can run in process context, and can block.
3105 *
3106 * Note that this guarantee implies further memory-ordering guarantees.
3107 * On systems with more than one CPU, when synchronize_sched() returns,
3108 * each CPU is guaranteed to have executed a full memory barrier since the
3109 * end of its last RCU-sched read-side critical section whose beginning
3110 * preceded the call to synchronize_sched(). In addition, each CPU having
3111 * an RCU read-side critical section that extends beyond the return from
3112 * synchronize_sched() is guaranteed to have executed a full memory barrier
3113 * after the beginning of synchronize_sched() and before the beginning of
3114 * that RCU read-side critical section. Note that these guarantees include
3115 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3116 * that are executing in the kernel.
3117 *
3118 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3119 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3120 * to have executed a full memory barrier during the execution of
3121 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3122 * again only if the system has more than one CPU).
3123 *
3124 * This primitive provides the guarantees made by the (now removed)
3125 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3126 * guarantees that rcu_read_lock() sections will have completed.
3127 * In "classic RCU", these two guarantees happen to be one and
3128 * the same, but can differ in realtime RCU implementations.
3129 */
3130 void synchronize_sched(void)
3131 {
3132 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3133 !lock_is_held(&rcu_lock_map) &&
3134 !lock_is_held(&rcu_sched_lock_map),
3135 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3136 if (rcu_blocking_is_gp())
3137 return;
3138 if (rcu_gp_is_expedited())
3139 synchronize_sched_expedited();
3140 else
3141 wait_rcu_gp(call_rcu_sched);
3142 }
3143 EXPORT_SYMBOL_GPL(synchronize_sched);
3144
3145 /**
3146 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3147 *
3148 * Control will return to the caller some time after a full rcu_bh grace
3149 * period has elapsed, in other words after all currently executing rcu_bh
3150 * read-side critical sections have completed. RCU read-side critical
3151 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3152 * and may be nested.
3153 *
3154 * See the description of synchronize_sched() for more detailed information
3155 * on memory ordering guarantees.
3156 */
3157 void synchronize_rcu_bh(void)
3158 {
3159 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3160 !lock_is_held(&rcu_lock_map) &&
3161 !lock_is_held(&rcu_sched_lock_map),
3162 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3163 if (rcu_blocking_is_gp())
3164 return;
3165 if (rcu_gp_is_expedited())
3166 synchronize_rcu_bh_expedited();
3167 else
3168 wait_rcu_gp(call_rcu_bh);
3169 }
3170 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3171
3172 /**
3173 * get_state_synchronize_rcu - Snapshot current RCU state
3174 *
3175 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3176 * to determine whether or not a full grace period has elapsed in the
3177 * meantime.
3178 */
3179 unsigned long get_state_synchronize_rcu(void)
3180 {
3181 /*
3182 * Any prior manipulation of RCU-protected data must happen
3183 * before the load from ->gpnum.
3184 */
3185 smp_mb(); /* ^^^ */
3186
3187 /*
3188 * Make sure this load happens before the purportedly
3189 * time-consuming work between get_state_synchronize_rcu()
3190 * and cond_synchronize_rcu().
3191 */
3192 return smp_load_acquire(&rcu_state_p->gpnum);
3193 }
3194 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3195
3196 /**
3197 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3198 *
3199 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3200 *
3201 * If a full RCU grace period has elapsed since the earlier call to
3202 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3203 * synchronize_rcu() to wait for a full grace period.
3204 *
3205 * Yes, this function does not take counter wrap into account. But
3206 * counter wrap is harmless. If the counter wraps, we have waited for
3207 * more than 2 billion grace periods (and way more on a 64-bit system!),
3208 * so waiting for one additional grace period should be just fine.
3209 */
3210 void cond_synchronize_rcu(unsigned long oldstate)
3211 {
3212 unsigned long newstate;
3213
3214 /*
3215 * Ensure that this load happens before any RCU-destructive
3216 * actions the caller might carry out after we return.
3217 */
3218 newstate = smp_load_acquire(&rcu_state_p->completed);
3219 if (ULONG_CMP_GE(oldstate, newstate))
3220 synchronize_rcu();
3221 }
3222 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3223
3224 static int synchronize_sched_expedited_cpu_stop(void *data)
3225 {
3226 /*
3227 * There must be a full memory barrier on each affected CPU
3228 * between the time that try_stop_cpus() is called and the
3229 * time that it returns.
3230 *
3231 * In the current initial implementation of cpu_stop, the
3232 * above condition is already met when the control reaches
3233 * this point and the following smp_mb() is not strictly
3234 * necessary. Do smp_mb() anyway for documentation and
3235 * robustness against future implementation changes.
3236 */
3237 smp_mb(); /* See above comment block. */
3238 return 0;
3239 }
3240
3241 /**
3242 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3243 *
3244 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3245 * approach to force the grace period to end quickly. This consumes
3246 * significant time on all CPUs and is unfriendly to real-time workloads,
3247 * so is thus not recommended for any sort of common-case code. In fact,
3248 * if you are using synchronize_sched_expedited() in a loop, please
3249 * restructure your code to batch your updates, and then use a single
3250 * synchronize_sched() instead.
3251 *
3252 * This implementation can be thought of as an application of ticket
3253 * locking to RCU, with sync_sched_expedited_started and
3254 * sync_sched_expedited_done taking on the roles of the halves
3255 * of the ticket-lock word. Each task atomically increments
3256 * sync_sched_expedited_started upon entry, snapshotting the old value,
3257 * then attempts to stop all the CPUs. If this succeeds, then each
3258 * CPU will have executed a context switch, resulting in an RCU-sched
3259 * grace period. We are then done, so we use atomic_cmpxchg() to
3260 * update sync_sched_expedited_done to match our snapshot -- but
3261 * only if someone else has not already advanced past our snapshot.
3262 *
3263 * On the other hand, if try_stop_cpus() fails, we check the value
3264 * of sync_sched_expedited_done. If it has advanced past our
3265 * initial snapshot, then someone else must have forced a grace period
3266 * some time after we took our snapshot. In this case, our work is
3267 * done for us, and we can simply return. Otherwise, we try again,
3268 * but keep our initial snapshot for purposes of checking for someone
3269 * doing our work for us.
3270 *
3271 * If we fail too many times in a row, we fall back to synchronize_sched().
3272 */
3273 void synchronize_sched_expedited(void)
3274 {
3275 cpumask_var_t cm;
3276 bool cma = false;
3277 int cpu;
3278 long firstsnap, s, snap;
3279 int trycount = 0;
3280 struct rcu_state *rsp = &rcu_sched_state;
3281
3282 /*
3283 * If we are in danger of counter wrap, just do synchronize_sched().
3284 * By allowing sync_sched_expedited_started to advance no more than
3285 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3286 * that more than 3.5 billion CPUs would be required to force a
3287 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3288 * course be required on a 64-bit system.
3289 */
3290 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3291 (ulong)atomic_long_read(&rsp->expedited_done) +
3292 ULONG_MAX / 8)) {
3293 synchronize_sched();
3294 atomic_long_inc(&rsp->expedited_wrap);
3295 return;
3296 }
3297
3298 /*
3299 * Take a ticket. Note that atomic_inc_return() implies a
3300 * full memory barrier.
3301 */
3302 snap = atomic_long_inc_return(&rsp->expedited_start);
3303 firstsnap = snap;
3304 if (!try_get_online_cpus()) {
3305 /* CPU hotplug operation in flight, fall back to normal GP. */
3306 wait_rcu_gp(call_rcu_sched);
3307 atomic_long_inc(&rsp->expedited_normal);
3308 return;
3309 }
3310 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3311
3312 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3313 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3314 if (cma) {
3315 cpumask_copy(cm, cpu_online_mask);
3316 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3317 for_each_cpu(cpu, cm) {
3318 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3319
3320 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3321 cpumask_clear_cpu(cpu, cm);
3322 }
3323 if (cpumask_weight(cm) == 0)
3324 goto all_cpus_idle;
3325 }
3326
3327 /*
3328 * Each pass through the following loop attempts to force a
3329 * context switch on each CPU.
3330 */
3331 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3332 synchronize_sched_expedited_cpu_stop,
3333 NULL) == -EAGAIN) {
3334 put_online_cpus();
3335 atomic_long_inc(&rsp->expedited_tryfail);
3336
3337 /* Check to see if someone else did our work for us. */
3338 s = atomic_long_read(&rsp->expedited_done);
3339 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3340 /* ensure test happens before caller kfree */
3341 smp_mb__before_atomic(); /* ^^^ */
3342 atomic_long_inc(&rsp->expedited_workdone1);
3343 free_cpumask_var(cm);
3344 return;
3345 }
3346
3347 /* No joy, try again later. Or just synchronize_sched(). */
3348 if (trycount++ < 10) {
3349 udelay(trycount * num_online_cpus());
3350 } else {
3351 wait_rcu_gp(call_rcu_sched);
3352 atomic_long_inc(&rsp->expedited_normal);
3353 free_cpumask_var(cm);
3354 return;
3355 }
3356
3357 /* Recheck to see if someone else did our work for us. */
3358 s = atomic_long_read(&rsp->expedited_done);
3359 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3360 /* ensure test happens before caller kfree */
3361 smp_mb__before_atomic(); /* ^^^ */
3362 atomic_long_inc(&rsp->expedited_workdone2);
3363 free_cpumask_var(cm);
3364 return;
3365 }
3366
3367 /*
3368 * Refetching sync_sched_expedited_started allows later
3369 * callers to piggyback on our grace period. We retry
3370 * after they started, so our grace period works for them,
3371 * and they started after our first try, so their grace
3372 * period works for us.
3373 */
3374 if (!try_get_online_cpus()) {
3375 /* CPU hotplug operation in flight, use normal GP. */
3376 wait_rcu_gp(call_rcu_sched);
3377 atomic_long_inc(&rsp->expedited_normal);
3378 free_cpumask_var(cm);
3379 return;
3380 }
3381 snap = atomic_long_read(&rsp->expedited_start);
3382 smp_mb(); /* ensure read is before try_stop_cpus(). */
3383 }
3384 atomic_long_inc(&rsp->expedited_stoppedcpus);
3385
3386 all_cpus_idle:
3387 free_cpumask_var(cm);
3388
3389 /*
3390 * Everyone up to our most recent fetch is covered by our grace
3391 * period. Update the counter, but only if our work is still
3392 * relevant -- which it won't be if someone who started later
3393 * than we did already did their update.
3394 */
3395 do {
3396 atomic_long_inc(&rsp->expedited_done_tries);
3397 s = atomic_long_read(&rsp->expedited_done);
3398 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3399 /* ensure test happens before caller kfree */
3400 smp_mb__before_atomic(); /* ^^^ */
3401 atomic_long_inc(&rsp->expedited_done_lost);
3402 break;
3403 }
3404 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3405 atomic_long_inc(&rsp->expedited_done_exit);
3406
3407 put_online_cpus();
3408 }
3409 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3410
3411 /*
3412 * Check to see if there is any immediate RCU-related work to be done
3413 * by the current CPU, for the specified type of RCU, returning 1 if so.
3414 * The checks are in order of increasing expense: checks that can be
3415 * carried out against CPU-local state are performed first. However,
3416 * we must check for CPU stalls first, else we might not get a chance.
3417 */
3418 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3419 {
3420 struct rcu_node *rnp = rdp->mynode;
3421
3422 rdp->n_rcu_pending++;
3423
3424 /* Check for CPU stalls, if enabled. */
3425 check_cpu_stall(rsp, rdp);
3426
3427 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3428 if (rcu_nohz_full_cpu(rsp))
3429 return 0;
3430
3431 /* Is the RCU core waiting for a quiescent state from this CPU? */
3432 if (rcu_scheduler_fully_active &&
3433 rdp->qs_pending && !rdp->passed_quiesce &&
3434 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3435 rdp->n_rp_qs_pending++;
3436 } else if (rdp->qs_pending &&
3437 (rdp->passed_quiesce ||
3438 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3439 rdp->n_rp_report_qs++;
3440 return 1;
3441 }
3442
3443 /* Does this CPU have callbacks ready to invoke? */
3444 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3445 rdp->n_rp_cb_ready++;
3446 return 1;
3447 }
3448
3449 /* Has RCU gone idle with this CPU needing another grace period? */
3450 if (cpu_needs_another_gp(rsp, rdp)) {
3451 rdp->n_rp_cpu_needs_gp++;
3452 return 1;
3453 }
3454
3455 /* Has another RCU grace period completed? */
3456 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3457 rdp->n_rp_gp_completed++;
3458 return 1;
3459 }
3460
3461 /* Has a new RCU grace period started? */
3462 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3463 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3464 rdp->n_rp_gp_started++;
3465 return 1;
3466 }
3467
3468 /* Does this CPU need a deferred NOCB wakeup? */
3469 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3470 rdp->n_rp_nocb_defer_wakeup++;
3471 return 1;
3472 }
3473
3474 /* nothing to do */
3475 rdp->n_rp_need_nothing++;
3476 return 0;
3477 }
3478
3479 /*
3480 * Check to see if there is any immediate RCU-related work to be done
3481 * by the current CPU, returning 1 if so. This function is part of the
3482 * RCU implementation; it is -not- an exported member of the RCU API.
3483 */
3484 static int rcu_pending(void)
3485 {
3486 struct rcu_state *rsp;
3487
3488 for_each_rcu_flavor(rsp)
3489 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3490 return 1;
3491 return 0;
3492 }
3493
3494 /*
3495 * Return true if the specified CPU has any callback. If all_lazy is
3496 * non-NULL, store an indication of whether all callbacks are lazy.
3497 * (If there are no callbacks, all of them are deemed to be lazy.)
3498 */
3499 static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3500 {
3501 bool al = true;
3502 bool hc = false;
3503 struct rcu_data *rdp;
3504 struct rcu_state *rsp;
3505
3506 for_each_rcu_flavor(rsp) {
3507 rdp = this_cpu_ptr(rsp->rda);
3508 if (!rdp->nxtlist)
3509 continue;
3510 hc = true;
3511 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3512 al = false;
3513 break;
3514 }
3515 }
3516 if (all_lazy)
3517 *all_lazy = al;
3518 return hc;
3519 }
3520
3521 /*
3522 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3523 * the compiler is expected to optimize this away.
3524 */
3525 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3526 int cpu, unsigned long done)
3527 {
3528 trace_rcu_barrier(rsp->name, s, cpu,
3529 atomic_read(&rsp->barrier_cpu_count), done);
3530 }
3531
3532 /*
3533 * RCU callback function for _rcu_barrier(). If we are last, wake
3534 * up the task executing _rcu_barrier().
3535 */
3536 static void rcu_barrier_callback(struct rcu_head *rhp)
3537 {
3538 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3539 struct rcu_state *rsp = rdp->rsp;
3540
3541 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3542 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3543 complete(&rsp->barrier_completion);
3544 } else {
3545 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3546 }
3547 }
3548
3549 /*
3550 * Called with preemption disabled, and from cross-cpu IRQ context.
3551 */
3552 static void rcu_barrier_func(void *type)
3553 {
3554 struct rcu_state *rsp = type;
3555 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3556
3557 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3558 atomic_inc(&rsp->barrier_cpu_count);
3559 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3560 }
3561
3562 /*
3563 * Orchestrate the specified type of RCU barrier, waiting for all
3564 * RCU callbacks of the specified type to complete.
3565 */
3566 static void _rcu_barrier(struct rcu_state *rsp)
3567 {
3568 int cpu;
3569 struct rcu_data *rdp;
3570 unsigned long snap = READ_ONCE(rsp->n_barrier_done);
3571 unsigned long snap_done;
3572
3573 _rcu_barrier_trace(rsp, "Begin", -1, snap);
3574
3575 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3576 mutex_lock(&rsp->barrier_mutex);
3577
3578 /*
3579 * Ensure that all prior references, including to ->n_barrier_done,
3580 * are ordered before the _rcu_barrier() machinery.
3581 */
3582 smp_mb(); /* See above block comment. */
3583
3584 /*
3585 * Recheck ->n_barrier_done to see if others did our work for us.
3586 * This means checking ->n_barrier_done for an even-to-odd-to-even
3587 * transition. The "if" expression below therefore rounds the old
3588 * value up to the next even number and adds two before comparing.
3589 */
3590 snap_done = rsp->n_barrier_done;
3591 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3592
3593 /*
3594 * If the value in snap is odd, we needed to wait for the current
3595 * rcu_barrier() to complete, then wait for the next one, in other
3596 * words, we need the value of snap_done to be three larger than
3597 * the value of snap. On the other hand, if the value in snap is
3598 * even, we only had to wait for the next rcu_barrier() to complete,
3599 * in other words, we need the value of snap_done to be only two
3600 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3601 * this for us (thank you, Linus!).
3602 */
3603 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3604 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3605 smp_mb(); /* caller's subsequent code after above check. */
3606 mutex_unlock(&rsp->barrier_mutex);
3607 return;
3608 }
3609
3610 /*
3611 * Increment ->n_barrier_done to avoid duplicate work. Use
3612 * WRITE_ONCE() to prevent the compiler from speculating
3613 * the increment to precede the early-exit check.
3614 */
3615 WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3616 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3617 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3618 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3619
3620 /*
3621 * Initialize the count to one rather than to zero in order to
3622 * avoid a too-soon return to zero in case of a short grace period
3623 * (or preemption of this task). Exclude CPU-hotplug operations
3624 * to ensure that no offline CPU has callbacks queued.
3625 */
3626 init_completion(&rsp->barrier_completion);
3627 atomic_set(&rsp->barrier_cpu_count, 1);
3628 get_online_cpus();
3629
3630 /*
3631 * Force each CPU with callbacks to register a new callback.
3632 * When that callback is invoked, we will know that all of the
3633 * corresponding CPU's preceding callbacks have been invoked.
3634 */
3635 for_each_possible_cpu(cpu) {
3636 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3637 continue;
3638 rdp = per_cpu_ptr(rsp->rda, cpu);
3639 if (rcu_is_nocb_cpu(cpu)) {
3640 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3641 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3642 rsp->n_barrier_done);
3643 } else {
3644 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3645 rsp->n_barrier_done);
3646 smp_mb__before_atomic();
3647 atomic_inc(&rsp->barrier_cpu_count);
3648 __call_rcu(&rdp->barrier_head,
3649 rcu_barrier_callback, rsp, cpu, 0);
3650 }
3651 } else if (READ_ONCE(rdp->qlen)) {
3652 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3653 rsp->n_barrier_done);
3654 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3655 } else {
3656 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3657 rsp->n_barrier_done);
3658 }
3659 }
3660 put_online_cpus();
3661
3662 /*
3663 * Now that we have an rcu_barrier_callback() callback on each
3664 * CPU, and thus each counted, remove the initial count.
3665 */
3666 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3667 complete(&rsp->barrier_completion);
3668
3669 /* Increment ->n_barrier_done to prevent duplicate work. */
3670 smp_mb(); /* Keep increment after above mechanism. */
3671 WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3672 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3673 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3674 smp_mb(); /* Keep increment before caller's subsequent code. */
3675
3676 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3677 wait_for_completion(&rsp->barrier_completion);
3678
3679 /* Other rcu_barrier() invocations can now safely proceed. */
3680 mutex_unlock(&rsp->barrier_mutex);
3681 }
3682
3683 /**
3684 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3685 */
3686 void rcu_barrier_bh(void)
3687 {
3688 _rcu_barrier(&rcu_bh_state);
3689 }
3690 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3691
3692 /**
3693 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3694 */
3695 void rcu_barrier_sched(void)
3696 {
3697 _rcu_barrier(&rcu_sched_state);
3698 }
3699 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3700
3701 /*
3702 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3703 * first CPU in a given leaf rcu_node structure coming online. The caller
3704 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3705 * disabled.
3706 */
3707 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3708 {
3709 long mask;
3710 struct rcu_node *rnp = rnp_leaf;
3711
3712 for (;;) {
3713 mask = rnp->grpmask;
3714 rnp = rnp->parent;
3715 if (rnp == NULL)
3716 return;
3717 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3718 rnp->qsmaskinit |= mask;
3719 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3720 }
3721 }
3722
3723 /*
3724 * Do boot-time initialization of a CPU's per-CPU RCU data.
3725 */
3726 static void __init
3727 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3728 {
3729 unsigned long flags;
3730 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3731 struct rcu_node *rnp = rcu_get_root(rsp);
3732
3733 /* Set up local state, ensuring consistent view of global state. */
3734 raw_spin_lock_irqsave(&rnp->lock, flags);
3735 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3736 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3737 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3738 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3739 rdp->cpu = cpu;
3740 rdp->rsp = rsp;
3741 rcu_boot_init_nocb_percpu_data(rdp);
3742 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3743 }
3744
3745 /*
3746 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3747 * offline event can be happening at a given time. Note also that we
3748 * can accept some slop in the rsp->completed access due to the fact
3749 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3750 */
3751 static void
3752 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3753 {
3754 unsigned long flags;
3755 unsigned long mask;
3756 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3757 struct rcu_node *rnp = rcu_get_root(rsp);
3758
3759 /* Set up local state, ensuring consistent view of global state. */
3760 raw_spin_lock_irqsave(&rnp->lock, flags);
3761 rdp->beenonline = 1; /* We have now been online. */
3762 rdp->qlen_last_fqs_check = 0;
3763 rdp->n_force_qs_snap = rsp->n_force_qs;
3764 rdp->blimit = blimit;
3765 if (!rdp->nxtlist)
3766 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3767 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3768 rcu_sysidle_init_percpu_data(rdp->dynticks);
3769 atomic_set(&rdp->dynticks->dynticks,
3770 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3771 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3772
3773 /*
3774 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3775 * propagation up the rcu_node tree will happen at the beginning
3776 * of the next grace period.
3777 */
3778 rnp = rdp->mynode;
3779 mask = rdp->grpmask;
3780 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3781 smp_mb__after_unlock_lock();
3782 rnp->qsmaskinitnext |= mask;
3783 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3784 rdp->completed = rnp->completed;
3785 rdp->passed_quiesce = false;
3786 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3787 rdp->qs_pending = false;
3788 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3789 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3790 }
3791
3792 static void rcu_prepare_cpu(int cpu)
3793 {
3794 struct rcu_state *rsp;
3795
3796 for_each_rcu_flavor(rsp)
3797 rcu_init_percpu_data(cpu, rsp);
3798 }
3799
3800 /*
3801 * Handle CPU online/offline notification events.
3802 */
3803 int rcu_cpu_notify(struct notifier_block *self,
3804 unsigned long action, void *hcpu)
3805 {
3806 long cpu = (long)hcpu;
3807 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3808 struct rcu_node *rnp = rdp->mynode;
3809 struct rcu_state *rsp;
3810
3811 switch (action) {
3812 case CPU_UP_PREPARE:
3813 case CPU_UP_PREPARE_FROZEN:
3814 rcu_prepare_cpu(cpu);
3815 rcu_prepare_kthreads(cpu);
3816 rcu_spawn_all_nocb_kthreads(cpu);
3817 break;
3818 case CPU_ONLINE:
3819 case CPU_DOWN_FAILED:
3820 rcu_boost_kthread_setaffinity(rnp, -1);
3821 break;
3822 case CPU_DOWN_PREPARE:
3823 rcu_boost_kthread_setaffinity(rnp, cpu);
3824 break;
3825 case CPU_DYING:
3826 case CPU_DYING_FROZEN:
3827 for_each_rcu_flavor(rsp)
3828 rcu_cleanup_dying_cpu(rsp);
3829 break;
3830 case CPU_DYING_IDLE:
3831 for_each_rcu_flavor(rsp) {
3832 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3833 }
3834 break;
3835 case CPU_DEAD:
3836 case CPU_DEAD_FROZEN:
3837 case CPU_UP_CANCELED:
3838 case CPU_UP_CANCELED_FROZEN:
3839 for_each_rcu_flavor(rsp) {
3840 rcu_cleanup_dead_cpu(cpu, rsp);
3841 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3842 }
3843 break;
3844 default:
3845 break;
3846 }
3847 return NOTIFY_OK;
3848 }
3849
3850 static int rcu_pm_notify(struct notifier_block *self,
3851 unsigned long action, void *hcpu)
3852 {
3853 switch (action) {
3854 case PM_HIBERNATION_PREPARE:
3855 case PM_SUSPEND_PREPARE:
3856 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3857 rcu_expedite_gp();
3858 break;
3859 case PM_POST_HIBERNATION:
3860 case PM_POST_SUSPEND:
3861 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3862 rcu_unexpedite_gp();
3863 break;
3864 default:
3865 break;
3866 }
3867 return NOTIFY_OK;
3868 }
3869
3870 /*
3871 * Spawn the kthreads that handle each RCU flavor's grace periods.
3872 */
3873 static int __init rcu_spawn_gp_kthread(void)
3874 {
3875 unsigned long flags;
3876 int kthread_prio_in = kthread_prio;
3877 struct rcu_node *rnp;
3878 struct rcu_state *rsp;
3879 struct sched_param sp;
3880 struct task_struct *t;
3881
3882 /* Force priority into range. */
3883 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3884 kthread_prio = 1;
3885 else if (kthread_prio < 0)
3886 kthread_prio = 0;
3887 else if (kthread_prio > 99)
3888 kthread_prio = 99;
3889 if (kthread_prio != kthread_prio_in)
3890 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3891 kthread_prio, kthread_prio_in);
3892
3893 rcu_scheduler_fully_active = 1;
3894 for_each_rcu_flavor(rsp) {
3895 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3896 BUG_ON(IS_ERR(t));
3897 rnp = rcu_get_root(rsp);
3898 raw_spin_lock_irqsave(&rnp->lock, flags);
3899 rsp->gp_kthread = t;
3900 if (kthread_prio) {
3901 sp.sched_priority = kthread_prio;
3902 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3903 }
3904 wake_up_process(t);
3905 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3906 }
3907 rcu_spawn_nocb_kthreads();
3908 rcu_spawn_boost_kthreads();
3909 return 0;
3910 }
3911 early_initcall(rcu_spawn_gp_kthread);
3912
3913 /*
3914 * This function is invoked towards the end of the scheduler's initialization
3915 * process. Before this is called, the idle task might contain
3916 * RCU read-side critical sections (during which time, this idle
3917 * task is booting the system). After this function is called, the
3918 * idle tasks are prohibited from containing RCU read-side critical
3919 * sections. This function also enables RCU lockdep checking.
3920 */
3921 void rcu_scheduler_starting(void)
3922 {
3923 WARN_ON(num_online_cpus() != 1);
3924 WARN_ON(nr_context_switches() > 0);
3925 rcu_scheduler_active = 1;
3926 }
3927
3928 /*
3929 * Compute the per-level fanout, either using the exact fanout specified
3930 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3931 */
3932 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3933 {
3934 int i;
3935
3936 if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) {
3937 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3938 for (i = rcu_num_lvls - 2; i >= 0; i--)
3939 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3940 } else {
3941 int ccur;
3942 int cprv;
3943
3944 cprv = nr_cpu_ids;
3945 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3946 ccur = rsp->levelcnt[i];
3947 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3948 cprv = ccur;
3949 }
3950 }
3951 }
3952
3953 /*
3954 * Helper function for rcu_init() that initializes one rcu_state structure.
3955 */
3956 static void __init rcu_init_one(struct rcu_state *rsp,
3957 struct rcu_data __percpu *rda)
3958 {
3959 static const char * const buf[] = {
3960 "rcu_node_0",
3961 "rcu_node_1",
3962 "rcu_node_2",
3963 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3964 static const char * const fqs[] = {
3965 "rcu_node_fqs_0",
3966 "rcu_node_fqs_1",
3967 "rcu_node_fqs_2",
3968 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3969 static u8 fl_mask = 0x1;
3970 int cpustride = 1;
3971 int i;
3972 int j;
3973 struct rcu_node *rnp;
3974
3975 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3976
3977 /* Silence gcc 4.8 warning about array index out of range. */
3978 if (rcu_num_lvls > RCU_NUM_LVLS)
3979 panic("rcu_init_one: rcu_num_lvls overflow");
3980
3981 /* Initialize the level-tracking arrays. */
3982
3983 for (i = 0; i < rcu_num_lvls; i++)
3984 rsp->levelcnt[i] = num_rcu_lvl[i];
3985 for (i = 1; i < rcu_num_lvls; i++)
3986 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3987 rcu_init_levelspread(rsp);
3988 rsp->flavor_mask = fl_mask;
3989 fl_mask <<= 1;
3990
3991 /* Initialize the elements themselves, starting from the leaves. */
3992
3993 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3994 cpustride *= rsp->levelspread[i];
3995 rnp = rsp->level[i];
3996 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3997 raw_spin_lock_init(&rnp->lock);
3998 lockdep_set_class_and_name(&rnp->lock,
3999 &rcu_node_class[i], buf[i]);
4000 raw_spin_lock_init(&rnp->fqslock);
4001 lockdep_set_class_and_name(&rnp->fqslock,
4002 &rcu_fqs_class[i], fqs[i]);
4003 rnp->gpnum = rsp->gpnum;
4004 rnp->completed = rsp->completed;
4005 rnp->qsmask = 0;
4006 rnp->qsmaskinit = 0;
4007 rnp->grplo = j * cpustride;
4008 rnp->grphi = (j + 1) * cpustride - 1;
4009 if (rnp->grphi >= nr_cpu_ids)
4010 rnp->grphi = nr_cpu_ids - 1;
4011 if (i == 0) {
4012 rnp->grpnum = 0;
4013 rnp->grpmask = 0;
4014 rnp->parent = NULL;
4015 } else {
4016 rnp->grpnum = j % rsp->levelspread[i - 1];
4017 rnp->grpmask = 1UL << rnp->grpnum;
4018 rnp->parent = rsp->level[i - 1] +
4019 j / rsp->levelspread[i - 1];
4020 }
4021 rnp->level = i;
4022 INIT_LIST_HEAD(&rnp->blkd_tasks);
4023 rcu_init_one_nocb(rnp);
4024 }
4025 }
4026
4027 init_waitqueue_head(&rsp->gp_wq);
4028 rnp = rsp->level[rcu_num_lvls - 1];
4029 for_each_possible_cpu(i) {
4030 while (i > rnp->grphi)
4031 rnp++;
4032 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4033 rcu_boot_init_percpu_data(i, rsp);
4034 }
4035 list_add(&rsp->flavors, &rcu_struct_flavors);
4036 }
4037
4038 /*
4039 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4040 * replace the definitions in tree.h because those are needed to size
4041 * the ->node array in the rcu_state structure.
4042 */
4043 static void __init rcu_init_geometry(void)
4044 {
4045 ulong d;
4046 int i;
4047 int j;
4048 int n = nr_cpu_ids;
4049 int rcu_capacity[MAX_RCU_LVLS + 1];
4050
4051 /*
4052 * Initialize any unspecified boot parameters.
4053 * The default values of jiffies_till_first_fqs and
4054 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4055 * value, which is a function of HZ, then adding one for each
4056 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4057 */
4058 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4059 if (jiffies_till_first_fqs == ULONG_MAX)
4060 jiffies_till_first_fqs = d;
4061 if (jiffies_till_next_fqs == ULONG_MAX)
4062 jiffies_till_next_fqs = d;
4063
4064 /* If the compile-time values are accurate, just leave. */
4065 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
4066 nr_cpu_ids == NR_CPUS)
4067 return;
4068 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4069 rcu_fanout_leaf, nr_cpu_ids);
4070
4071 /*
4072 * Compute number of nodes that can be handled an rcu_node tree
4073 * with the given number of levels. Setting rcu_capacity[0] makes
4074 * some of the arithmetic easier.
4075 */
4076 rcu_capacity[0] = 1;
4077 rcu_capacity[1] = rcu_fanout_leaf;
4078 for (i = 2; i <= MAX_RCU_LVLS; i++)
4079 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
4080
4081 /*
4082 * The boot-time rcu_fanout_leaf parameter is only permitted
4083 * to increase the leaf-level fanout, not decrease it. Of course,
4084 * the leaf-level fanout cannot exceed the number of bits in
4085 * the rcu_node masks. Finally, the tree must be able to accommodate
4086 * the configured number of CPUs. Complain and fall back to the
4087 * compile-time values if these limits are exceeded.
4088 */
4089 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
4090 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
4091 n > rcu_capacity[MAX_RCU_LVLS]) {
4092 WARN_ON(1);
4093 return;
4094 }
4095
4096 /* Calculate the number of rcu_nodes at each level of the tree. */
4097 for (i = 1; i <= MAX_RCU_LVLS; i++)
4098 if (n <= rcu_capacity[i]) {
4099 for (j = 0; j <= i; j++)
4100 num_rcu_lvl[j] =
4101 DIV_ROUND_UP(n, rcu_capacity[i - j]);
4102 rcu_num_lvls = i;
4103 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
4104 num_rcu_lvl[j] = 0;
4105 break;
4106 }
4107
4108 /* Calculate the total number of rcu_node structures. */
4109 rcu_num_nodes = 0;
4110 for (i = 0; i <= MAX_RCU_LVLS; i++)
4111 rcu_num_nodes += num_rcu_lvl[i];
4112 rcu_num_nodes -= n;
4113 }
4114
4115 void __init rcu_init(void)
4116 {
4117 int cpu;
4118
4119 rcu_early_boot_tests();
4120
4121 rcu_bootup_announce();
4122 rcu_init_geometry();
4123 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4124 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4125 __rcu_init_preempt();
4126 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4127
4128 /*
4129 * We don't need protection against CPU-hotplug here because
4130 * this is called early in boot, before either interrupts
4131 * or the scheduler are operational.
4132 */
4133 cpu_notifier(rcu_cpu_notify, 0);
4134 pm_notifier(rcu_pm_notify, 0);
4135 for_each_online_cpu(cpu)
4136 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4137 }
4138
4139 #include "tree_plugin.h"
This page took 0.129898 seconds and 6 git commands to generate.