rcu: Awaken grace-period kthread when stalled
[deliverable/linux.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 /*
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
78 */
79 #ifdef CONFIG_TRACING
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
84 #else
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #endif
88
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 .level = { &sname##_state.node[0] }, \
94 .rda = &sname##_data, \
95 .call = cr, \
96 .gp_state = RCU_GP_IDLE, \
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
104 .abbr = sabbr, \
105 }
106
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126
127 /*
128 * The rcu_scheduler_active variable transitions from zero to one just
129 * before the first task is spawned. So when this variable is zero, RCU
130 * can assume that there is but one task, allowing RCU to (for example)
131 * optimize synchronize_sched() to a simple barrier(). When this variable
132 * is one, RCU must actually do all the hard work required to detect real
133 * grace periods. This variable is also used to suppress boot-time false
134 * positives from lockdep-RCU error checking.
135 */
136 int rcu_scheduler_active __read_mostly;
137 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
138
139 /*
140 * The rcu_scheduler_fully_active variable transitions from zero to one
141 * during the early_initcall() processing, which is after the scheduler
142 * is capable of creating new tasks. So RCU processing (for example,
143 * creating tasks for RCU priority boosting) must be delayed until after
144 * rcu_scheduler_fully_active transitions from zero to one. We also
145 * currently delay invocation of any RCU callbacks until after this point.
146 *
147 * It might later prove better for people registering RCU callbacks during
148 * early boot to take responsibility for these callbacks, but one step at
149 * a time.
150 */
151 static int rcu_scheduler_fully_active __read_mostly;
152
153 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
154 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
155 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 static void invoke_rcu_core(void);
157 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158 static void rcu_report_exp_rdp(struct rcu_state *rsp,
159 struct rcu_data *rdp, bool wake);
160
161 /* rcuc/rcub kthread realtime priority */
162 #ifdef CONFIG_RCU_KTHREAD_PRIO
163 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
164 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
165 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
166 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
167 module_param(kthread_prio, int, 0644);
168
169 /* Delay in jiffies for grace-period initialization delays, debug only. */
170
171 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
172 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
173 module_param(gp_preinit_delay, int, 0644);
174 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
175 static const int gp_preinit_delay;
176 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
177
178 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
179 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
180 module_param(gp_init_delay, int, 0644);
181 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
182 static const int gp_init_delay;
183 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
184
185 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
186 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
187 module_param(gp_cleanup_delay, int, 0644);
188 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
189 static const int gp_cleanup_delay;
190 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
191
192 /*
193 * Number of grace periods between delays, normalized by the duration of
194 * the delay. The longer the the delay, the more the grace periods between
195 * each delay. The reason for this normalization is that it means that,
196 * for non-zero delays, the overall slowdown of grace periods is constant
197 * regardless of the duration of the delay. This arrangement balances
198 * the need for long delays to increase some race probabilities with the
199 * need for fast grace periods to increase other race probabilities.
200 */
201 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
202
203 /*
204 * Track the rcutorture test sequence number and the update version
205 * number within a given test. The rcutorture_testseq is incremented
206 * on every rcutorture module load and unload, so has an odd value
207 * when a test is running. The rcutorture_vernum is set to zero
208 * when rcutorture starts and is incremented on each rcutorture update.
209 * These variables enable correlating rcutorture output with the
210 * RCU tracing information.
211 */
212 unsigned long rcutorture_testseq;
213 unsigned long rcutorture_vernum;
214
215 /*
216 * Compute the mask of online CPUs for the specified rcu_node structure.
217 * This will not be stable unless the rcu_node structure's ->lock is
218 * held, but the bit corresponding to the current CPU will be stable
219 * in most contexts.
220 */
221 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
222 {
223 return READ_ONCE(rnp->qsmaskinitnext);
224 }
225
226 /*
227 * Return true if an RCU grace period is in progress. The READ_ONCE()s
228 * permit this function to be invoked without holding the root rcu_node
229 * structure's ->lock, but of course results can be subject to change.
230 */
231 static int rcu_gp_in_progress(struct rcu_state *rsp)
232 {
233 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
234 }
235
236 /*
237 * Note a quiescent state. Because we do not need to know
238 * how many quiescent states passed, just if there was at least
239 * one since the start of the grace period, this just sets a flag.
240 * The caller must have disabled preemption.
241 */
242 void rcu_sched_qs(void)
243 {
244 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
245 return;
246 trace_rcu_grace_period(TPS("rcu_sched"),
247 __this_cpu_read(rcu_sched_data.gpnum),
248 TPS("cpuqs"));
249 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
250 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
251 return;
252 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
253 rcu_report_exp_rdp(&rcu_sched_state,
254 this_cpu_ptr(&rcu_sched_data), true);
255 }
256
257 void rcu_bh_qs(void)
258 {
259 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
260 trace_rcu_grace_period(TPS("rcu_bh"),
261 __this_cpu_read(rcu_bh_data.gpnum),
262 TPS("cpuqs"));
263 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
264 }
265 }
266
267 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
268
269 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
270 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
271 .dynticks = ATOMIC_INIT(1),
272 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
273 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
274 .dynticks_idle = ATOMIC_INIT(1),
275 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
276 };
277
278 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
279 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
280
281 /*
282 * Let the RCU core know that this CPU has gone through the scheduler,
283 * which is a quiescent state. This is called when the need for a
284 * quiescent state is urgent, so we burn an atomic operation and full
285 * memory barriers to let the RCU core know about it, regardless of what
286 * this CPU might (or might not) do in the near future.
287 *
288 * We inform the RCU core by emulating a zero-duration dyntick-idle
289 * period, which we in turn do by incrementing the ->dynticks counter
290 * by two.
291 *
292 * The caller must have disabled interrupts.
293 */
294 static void rcu_momentary_dyntick_idle(void)
295 {
296 struct rcu_data *rdp;
297 struct rcu_dynticks *rdtp;
298 int resched_mask;
299 struct rcu_state *rsp;
300
301 /*
302 * Yes, we can lose flag-setting operations. This is OK, because
303 * the flag will be set again after some delay.
304 */
305 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
306 raw_cpu_write(rcu_sched_qs_mask, 0);
307
308 /* Find the flavor that needs a quiescent state. */
309 for_each_rcu_flavor(rsp) {
310 rdp = raw_cpu_ptr(rsp->rda);
311 if (!(resched_mask & rsp->flavor_mask))
312 continue;
313 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
314 if (READ_ONCE(rdp->mynode->completed) !=
315 READ_ONCE(rdp->cond_resched_completed))
316 continue;
317
318 /*
319 * Pretend to be momentarily idle for the quiescent state.
320 * This allows the grace-period kthread to record the
321 * quiescent state, with no need for this CPU to do anything
322 * further.
323 */
324 rdtp = this_cpu_ptr(&rcu_dynticks);
325 smp_mb__before_atomic(); /* Earlier stuff before QS. */
326 atomic_add(2, &rdtp->dynticks); /* QS. */
327 smp_mb__after_atomic(); /* Later stuff after QS. */
328 break;
329 }
330 }
331
332 /*
333 * Note a context switch. This is a quiescent state for RCU-sched,
334 * and requires special handling for preemptible RCU.
335 * The caller must have disabled interrupts.
336 */
337 void rcu_note_context_switch(void)
338 {
339 barrier(); /* Avoid RCU read-side critical sections leaking down. */
340 trace_rcu_utilization(TPS("Start context switch"));
341 rcu_sched_qs();
342 rcu_preempt_note_context_switch();
343 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
344 rcu_momentary_dyntick_idle();
345 trace_rcu_utilization(TPS("End context switch"));
346 barrier(); /* Avoid RCU read-side critical sections leaking up. */
347 }
348 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
349
350 /*
351 * Register a quiescent state for all RCU flavors. If there is an
352 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
353 * dyntick-idle quiescent state visible to other CPUs (but only for those
354 * RCU flavors in desperate need of a quiescent state, which will normally
355 * be none of them). Either way, do a lightweight quiescent state for
356 * all RCU flavors.
357 *
358 * The barrier() calls are redundant in the common case when this is
359 * called externally, but just in case this is called from within this
360 * file.
361 *
362 */
363 void rcu_all_qs(void)
364 {
365 unsigned long flags;
366
367 barrier(); /* Avoid RCU read-side critical sections leaking down. */
368 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
369 local_irq_save(flags);
370 rcu_momentary_dyntick_idle();
371 local_irq_restore(flags);
372 }
373 this_cpu_inc(rcu_qs_ctr);
374 barrier(); /* Avoid RCU read-side critical sections leaking up. */
375 }
376 EXPORT_SYMBOL_GPL(rcu_all_qs);
377
378 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
379 static long qhimark = 10000; /* If this many pending, ignore blimit. */
380 static long qlowmark = 100; /* Once only this many pending, use blimit. */
381
382 module_param(blimit, long, 0444);
383 module_param(qhimark, long, 0444);
384 module_param(qlowmark, long, 0444);
385
386 static ulong jiffies_till_first_fqs = ULONG_MAX;
387 static ulong jiffies_till_next_fqs = ULONG_MAX;
388
389 module_param(jiffies_till_first_fqs, ulong, 0644);
390 module_param(jiffies_till_next_fqs, ulong, 0644);
391
392 /*
393 * How long the grace period must be before we start recruiting
394 * quiescent-state help from rcu_note_context_switch().
395 */
396 static ulong jiffies_till_sched_qs = HZ / 20;
397 module_param(jiffies_till_sched_qs, ulong, 0644);
398
399 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
400 struct rcu_data *rdp);
401 static void force_qs_rnp(struct rcu_state *rsp,
402 int (*f)(struct rcu_data *rsp, bool *isidle,
403 unsigned long *maxj),
404 bool *isidle, unsigned long *maxj);
405 static void force_quiescent_state(struct rcu_state *rsp);
406 static int rcu_pending(void);
407
408 /*
409 * Return the number of RCU batches started thus far for debug & stats.
410 */
411 unsigned long rcu_batches_started(void)
412 {
413 return rcu_state_p->gpnum;
414 }
415 EXPORT_SYMBOL_GPL(rcu_batches_started);
416
417 /*
418 * Return the number of RCU-sched batches started thus far for debug & stats.
419 */
420 unsigned long rcu_batches_started_sched(void)
421 {
422 return rcu_sched_state.gpnum;
423 }
424 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
425
426 /*
427 * Return the number of RCU BH batches started thus far for debug & stats.
428 */
429 unsigned long rcu_batches_started_bh(void)
430 {
431 return rcu_bh_state.gpnum;
432 }
433 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
434
435 /*
436 * Return the number of RCU batches completed thus far for debug & stats.
437 */
438 unsigned long rcu_batches_completed(void)
439 {
440 return rcu_state_p->completed;
441 }
442 EXPORT_SYMBOL_GPL(rcu_batches_completed);
443
444 /*
445 * Return the number of RCU-sched batches completed thus far for debug & stats.
446 */
447 unsigned long rcu_batches_completed_sched(void)
448 {
449 return rcu_sched_state.completed;
450 }
451 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
452
453 /*
454 * Return the number of RCU BH batches completed thus far for debug & stats.
455 */
456 unsigned long rcu_batches_completed_bh(void)
457 {
458 return rcu_bh_state.completed;
459 }
460 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
461
462 /*
463 * Force a quiescent state.
464 */
465 void rcu_force_quiescent_state(void)
466 {
467 force_quiescent_state(rcu_state_p);
468 }
469 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
470
471 /*
472 * Force a quiescent state for RCU BH.
473 */
474 void rcu_bh_force_quiescent_state(void)
475 {
476 force_quiescent_state(&rcu_bh_state);
477 }
478 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
479
480 /*
481 * Force a quiescent state for RCU-sched.
482 */
483 void rcu_sched_force_quiescent_state(void)
484 {
485 force_quiescent_state(&rcu_sched_state);
486 }
487 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
488
489 /*
490 * Show the state of the grace-period kthreads.
491 */
492 void show_rcu_gp_kthreads(void)
493 {
494 struct rcu_state *rsp;
495
496 for_each_rcu_flavor(rsp) {
497 pr_info("%s: wait state: %d ->state: %#lx\n",
498 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
499 /* sched_show_task(rsp->gp_kthread); */
500 }
501 }
502 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
503
504 /*
505 * Record the number of times rcutorture tests have been initiated and
506 * terminated. This information allows the debugfs tracing stats to be
507 * correlated to the rcutorture messages, even when the rcutorture module
508 * is being repeatedly loaded and unloaded. In other words, we cannot
509 * store this state in rcutorture itself.
510 */
511 void rcutorture_record_test_transition(void)
512 {
513 rcutorture_testseq++;
514 rcutorture_vernum = 0;
515 }
516 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
517
518 /*
519 * Send along grace-period-related data for rcutorture diagnostics.
520 */
521 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
522 unsigned long *gpnum, unsigned long *completed)
523 {
524 struct rcu_state *rsp = NULL;
525
526 switch (test_type) {
527 case RCU_FLAVOR:
528 rsp = rcu_state_p;
529 break;
530 case RCU_BH_FLAVOR:
531 rsp = &rcu_bh_state;
532 break;
533 case RCU_SCHED_FLAVOR:
534 rsp = &rcu_sched_state;
535 break;
536 default:
537 break;
538 }
539 if (rsp != NULL) {
540 *flags = READ_ONCE(rsp->gp_flags);
541 *gpnum = READ_ONCE(rsp->gpnum);
542 *completed = READ_ONCE(rsp->completed);
543 return;
544 }
545 *flags = 0;
546 *gpnum = 0;
547 *completed = 0;
548 }
549 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
550
551 /*
552 * Record the number of writer passes through the current rcutorture test.
553 * This is also used to correlate debugfs tracing stats with the rcutorture
554 * messages.
555 */
556 void rcutorture_record_progress(unsigned long vernum)
557 {
558 rcutorture_vernum++;
559 }
560 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
561
562 /*
563 * Does the CPU have callbacks ready to be invoked?
564 */
565 static int
566 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
567 {
568 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
569 rdp->nxttail[RCU_DONE_TAIL] != NULL;
570 }
571
572 /*
573 * Return the root node of the specified rcu_state structure.
574 */
575 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
576 {
577 return &rsp->node[0];
578 }
579
580 /*
581 * Is there any need for future grace periods?
582 * Interrupts must be disabled. If the caller does not hold the root
583 * rnp_node structure's ->lock, the results are advisory only.
584 */
585 static int rcu_future_needs_gp(struct rcu_state *rsp)
586 {
587 struct rcu_node *rnp = rcu_get_root(rsp);
588 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
589 int *fp = &rnp->need_future_gp[idx];
590
591 return READ_ONCE(*fp);
592 }
593
594 /*
595 * Does the current CPU require a not-yet-started grace period?
596 * The caller must have disabled interrupts to prevent races with
597 * normal callback registry.
598 */
599 static bool
600 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
601 {
602 int i;
603
604 if (rcu_gp_in_progress(rsp))
605 return false; /* No, a grace period is already in progress. */
606 if (rcu_future_needs_gp(rsp))
607 return true; /* Yes, a no-CBs CPU needs one. */
608 if (!rdp->nxttail[RCU_NEXT_TAIL])
609 return false; /* No, this is a no-CBs (or offline) CPU. */
610 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
611 return true; /* Yes, CPU has newly registered callbacks. */
612 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
613 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
614 ULONG_CMP_LT(READ_ONCE(rsp->completed),
615 rdp->nxtcompleted[i]))
616 return true; /* Yes, CBs for future grace period. */
617 return false; /* No grace period needed. */
618 }
619
620 /*
621 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
622 *
623 * If the new value of the ->dynticks_nesting counter now is zero,
624 * we really have entered idle, and must do the appropriate accounting.
625 * The caller must have disabled interrupts.
626 */
627 static void rcu_eqs_enter_common(long long oldval, bool user)
628 {
629 struct rcu_state *rsp;
630 struct rcu_data *rdp;
631 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
632
633 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
634 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
635 !user && !is_idle_task(current)) {
636 struct task_struct *idle __maybe_unused =
637 idle_task(smp_processor_id());
638
639 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
640 rcu_ftrace_dump(DUMP_ORIG);
641 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
642 current->pid, current->comm,
643 idle->pid, idle->comm); /* must be idle task! */
644 }
645 for_each_rcu_flavor(rsp) {
646 rdp = this_cpu_ptr(rsp->rda);
647 do_nocb_deferred_wakeup(rdp);
648 }
649 rcu_prepare_for_idle();
650 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
651 smp_mb__before_atomic(); /* See above. */
652 atomic_inc(&rdtp->dynticks);
653 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
654 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
655 atomic_read(&rdtp->dynticks) & 0x1);
656 rcu_dynticks_task_enter();
657
658 /*
659 * It is illegal to enter an extended quiescent state while
660 * in an RCU read-side critical section.
661 */
662 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
663 "Illegal idle entry in RCU read-side critical section.");
664 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
665 "Illegal idle entry in RCU-bh read-side critical section.");
666 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
667 "Illegal idle entry in RCU-sched read-side critical section.");
668 }
669
670 /*
671 * Enter an RCU extended quiescent state, which can be either the
672 * idle loop or adaptive-tickless usermode execution.
673 */
674 static void rcu_eqs_enter(bool user)
675 {
676 long long oldval;
677 struct rcu_dynticks *rdtp;
678
679 rdtp = this_cpu_ptr(&rcu_dynticks);
680 oldval = rdtp->dynticks_nesting;
681 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
682 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
683 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
684 rdtp->dynticks_nesting = 0;
685 rcu_eqs_enter_common(oldval, user);
686 } else {
687 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
688 }
689 }
690
691 /**
692 * rcu_idle_enter - inform RCU that current CPU is entering idle
693 *
694 * Enter idle mode, in other words, -leave- the mode in which RCU
695 * read-side critical sections can occur. (Though RCU read-side
696 * critical sections can occur in irq handlers in idle, a possibility
697 * handled by irq_enter() and irq_exit().)
698 *
699 * We crowbar the ->dynticks_nesting field to zero to allow for
700 * the possibility of usermode upcalls having messed up our count
701 * of interrupt nesting level during the prior busy period.
702 */
703 void rcu_idle_enter(void)
704 {
705 unsigned long flags;
706
707 local_irq_save(flags);
708 rcu_eqs_enter(false);
709 rcu_sysidle_enter(0);
710 local_irq_restore(flags);
711 }
712 EXPORT_SYMBOL_GPL(rcu_idle_enter);
713
714 #ifdef CONFIG_NO_HZ_FULL
715 /**
716 * rcu_user_enter - inform RCU that we are resuming userspace.
717 *
718 * Enter RCU idle mode right before resuming userspace. No use of RCU
719 * is permitted between this call and rcu_user_exit(). This way the
720 * CPU doesn't need to maintain the tick for RCU maintenance purposes
721 * when the CPU runs in userspace.
722 */
723 void rcu_user_enter(void)
724 {
725 rcu_eqs_enter(1);
726 }
727 #endif /* CONFIG_NO_HZ_FULL */
728
729 /**
730 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
731 *
732 * Exit from an interrupt handler, which might possibly result in entering
733 * idle mode, in other words, leaving the mode in which read-side critical
734 * sections can occur. The caller must have disabled interrupts.
735 *
736 * This code assumes that the idle loop never does anything that might
737 * result in unbalanced calls to irq_enter() and irq_exit(). If your
738 * architecture violates this assumption, RCU will give you what you
739 * deserve, good and hard. But very infrequently and irreproducibly.
740 *
741 * Use things like work queues to work around this limitation.
742 *
743 * You have been warned.
744 */
745 void rcu_irq_exit(void)
746 {
747 long long oldval;
748 struct rcu_dynticks *rdtp;
749
750 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
751 rdtp = this_cpu_ptr(&rcu_dynticks);
752 oldval = rdtp->dynticks_nesting;
753 rdtp->dynticks_nesting--;
754 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
755 rdtp->dynticks_nesting < 0);
756 if (rdtp->dynticks_nesting)
757 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
758 else
759 rcu_eqs_enter_common(oldval, true);
760 rcu_sysidle_enter(1);
761 }
762
763 /*
764 * Wrapper for rcu_irq_exit() where interrupts are enabled.
765 */
766 void rcu_irq_exit_irqson(void)
767 {
768 unsigned long flags;
769
770 local_irq_save(flags);
771 rcu_irq_exit();
772 local_irq_restore(flags);
773 }
774
775 /*
776 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
777 *
778 * If the new value of the ->dynticks_nesting counter was previously zero,
779 * we really have exited idle, and must do the appropriate accounting.
780 * The caller must have disabled interrupts.
781 */
782 static void rcu_eqs_exit_common(long long oldval, int user)
783 {
784 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
785
786 rcu_dynticks_task_exit();
787 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
788 atomic_inc(&rdtp->dynticks);
789 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
790 smp_mb__after_atomic(); /* See above. */
791 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
792 !(atomic_read(&rdtp->dynticks) & 0x1));
793 rcu_cleanup_after_idle();
794 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
795 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
796 !user && !is_idle_task(current)) {
797 struct task_struct *idle __maybe_unused =
798 idle_task(smp_processor_id());
799
800 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
801 oldval, rdtp->dynticks_nesting);
802 rcu_ftrace_dump(DUMP_ORIG);
803 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
804 current->pid, current->comm,
805 idle->pid, idle->comm); /* must be idle task! */
806 }
807 }
808
809 /*
810 * Exit an RCU extended quiescent state, which can be either the
811 * idle loop or adaptive-tickless usermode execution.
812 */
813 static void rcu_eqs_exit(bool user)
814 {
815 struct rcu_dynticks *rdtp;
816 long long oldval;
817
818 rdtp = this_cpu_ptr(&rcu_dynticks);
819 oldval = rdtp->dynticks_nesting;
820 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
821 if (oldval & DYNTICK_TASK_NEST_MASK) {
822 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
823 } else {
824 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
825 rcu_eqs_exit_common(oldval, user);
826 }
827 }
828
829 /**
830 * rcu_idle_exit - inform RCU that current CPU is leaving idle
831 *
832 * Exit idle mode, in other words, -enter- the mode in which RCU
833 * read-side critical sections can occur.
834 *
835 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
836 * allow for the possibility of usermode upcalls messing up our count
837 * of interrupt nesting level during the busy period that is just
838 * now starting.
839 */
840 void rcu_idle_exit(void)
841 {
842 unsigned long flags;
843
844 local_irq_save(flags);
845 rcu_eqs_exit(false);
846 rcu_sysidle_exit(0);
847 local_irq_restore(flags);
848 }
849 EXPORT_SYMBOL_GPL(rcu_idle_exit);
850
851 #ifdef CONFIG_NO_HZ_FULL
852 /**
853 * rcu_user_exit - inform RCU that we are exiting userspace.
854 *
855 * Exit RCU idle mode while entering the kernel because it can
856 * run a RCU read side critical section anytime.
857 */
858 void rcu_user_exit(void)
859 {
860 rcu_eqs_exit(1);
861 }
862 #endif /* CONFIG_NO_HZ_FULL */
863
864 /**
865 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
866 *
867 * Enter an interrupt handler, which might possibly result in exiting
868 * idle mode, in other words, entering the mode in which read-side critical
869 * sections can occur. The caller must have disabled interrupts.
870 *
871 * Note that the Linux kernel is fully capable of entering an interrupt
872 * handler that it never exits, for example when doing upcalls to
873 * user mode! This code assumes that the idle loop never does upcalls to
874 * user mode. If your architecture does do upcalls from the idle loop (or
875 * does anything else that results in unbalanced calls to the irq_enter()
876 * and irq_exit() functions), RCU will give you what you deserve, good
877 * and hard. But very infrequently and irreproducibly.
878 *
879 * Use things like work queues to work around this limitation.
880 *
881 * You have been warned.
882 */
883 void rcu_irq_enter(void)
884 {
885 struct rcu_dynticks *rdtp;
886 long long oldval;
887
888 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
889 rdtp = this_cpu_ptr(&rcu_dynticks);
890 oldval = rdtp->dynticks_nesting;
891 rdtp->dynticks_nesting++;
892 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
893 rdtp->dynticks_nesting == 0);
894 if (oldval)
895 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
896 else
897 rcu_eqs_exit_common(oldval, true);
898 rcu_sysidle_exit(1);
899 }
900
901 /*
902 * Wrapper for rcu_irq_enter() where interrupts are enabled.
903 */
904 void rcu_irq_enter_irqson(void)
905 {
906 unsigned long flags;
907
908 local_irq_save(flags);
909 rcu_irq_enter();
910 local_irq_restore(flags);
911 }
912
913 /**
914 * rcu_nmi_enter - inform RCU of entry to NMI context
915 *
916 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
917 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
918 * that the CPU is active. This implementation permits nested NMIs, as
919 * long as the nesting level does not overflow an int. (You will probably
920 * run out of stack space first.)
921 */
922 void rcu_nmi_enter(void)
923 {
924 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
925 int incby = 2;
926
927 /* Complain about underflow. */
928 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
929
930 /*
931 * If idle from RCU viewpoint, atomically increment ->dynticks
932 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
933 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
934 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
935 * to be in the outermost NMI handler that interrupted an RCU-idle
936 * period (observation due to Andy Lutomirski).
937 */
938 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
939 smp_mb__before_atomic(); /* Force delay from prior write. */
940 atomic_inc(&rdtp->dynticks);
941 /* atomic_inc() before later RCU read-side crit sects */
942 smp_mb__after_atomic(); /* See above. */
943 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
944 incby = 1;
945 }
946 rdtp->dynticks_nmi_nesting += incby;
947 barrier();
948 }
949
950 /**
951 * rcu_nmi_exit - inform RCU of exit from NMI context
952 *
953 * If we are returning from the outermost NMI handler that interrupted an
954 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
955 * to let the RCU grace-period handling know that the CPU is back to
956 * being RCU-idle.
957 */
958 void rcu_nmi_exit(void)
959 {
960 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
961
962 /*
963 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
964 * (We are exiting an NMI handler, so RCU better be paying attention
965 * to us!)
966 */
967 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
968 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
969
970 /*
971 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
972 * leave it in non-RCU-idle state.
973 */
974 if (rdtp->dynticks_nmi_nesting != 1) {
975 rdtp->dynticks_nmi_nesting -= 2;
976 return;
977 }
978
979 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
980 rdtp->dynticks_nmi_nesting = 0;
981 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
982 smp_mb__before_atomic(); /* See above. */
983 atomic_inc(&rdtp->dynticks);
984 smp_mb__after_atomic(); /* Force delay to next write. */
985 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
986 }
987
988 /**
989 * __rcu_is_watching - are RCU read-side critical sections safe?
990 *
991 * Return true if RCU is watching the running CPU, which means that
992 * this CPU can safely enter RCU read-side critical sections. Unlike
993 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
994 * least disabled preemption.
995 */
996 bool notrace __rcu_is_watching(void)
997 {
998 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
999 }
1000
1001 /**
1002 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1003 *
1004 * If the current CPU is in its idle loop and is neither in an interrupt
1005 * or NMI handler, return true.
1006 */
1007 bool notrace rcu_is_watching(void)
1008 {
1009 bool ret;
1010
1011 preempt_disable_notrace();
1012 ret = __rcu_is_watching();
1013 preempt_enable_notrace();
1014 return ret;
1015 }
1016 EXPORT_SYMBOL_GPL(rcu_is_watching);
1017
1018 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1019
1020 /*
1021 * Is the current CPU online? Disable preemption to avoid false positives
1022 * that could otherwise happen due to the current CPU number being sampled,
1023 * this task being preempted, its old CPU being taken offline, resuming
1024 * on some other CPU, then determining that its old CPU is now offline.
1025 * It is OK to use RCU on an offline processor during initial boot, hence
1026 * the check for rcu_scheduler_fully_active. Note also that it is OK
1027 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1028 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1029 * offline to continue to use RCU for one jiffy after marking itself
1030 * offline in the cpu_online_mask. This leniency is necessary given the
1031 * non-atomic nature of the online and offline processing, for example,
1032 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1033 * notifiers.
1034 *
1035 * This is also why RCU internally marks CPUs online during the
1036 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1037 *
1038 * Disable checking if in an NMI handler because we cannot safely report
1039 * errors from NMI handlers anyway.
1040 */
1041 bool rcu_lockdep_current_cpu_online(void)
1042 {
1043 struct rcu_data *rdp;
1044 struct rcu_node *rnp;
1045 bool ret;
1046
1047 if (in_nmi())
1048 return true;
1049 preempt_disable();
1050 rdp = this_cpu_ptr(&rcu_sched_data);
1051 rnp = rdp->mynode;
1052 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1053 !rcu_scheduler_fully_active;
1054 preempt_enable();
1055 return ret;
1056 }
1057 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1058
1059 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1060
1061 /**
1062 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1063 *
1064 * If the current CPU is idle or running at a first-level (not nested)
1065 * interrupt from idle, return true. The caller must have at least
1066 * disabled preemption.
1067 */
1068 static int rcu_is_cpu_rrupt_from_idle(void)
1069 {
1070 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1071 }
1072
1073 /*
1074 * Snapshot the specified CPU's dynticks counter so that we can later
1075 * credit them with an implicit quiescent state. Return 1 if this CPU
1076 * is in dynticks idle mode, which is an extended quiescent state.
1077 */
1078 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1079 bool *isidle, unsigned long *maxj)
1080 {
1081 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1082 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1083 if ((rdp->dynticks_snap & 0x1) == 0) {
1084 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1085 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1086 rdp->mynode->gpnum))
1087 WRITE_ONCE(rdp->gpwrap, true);
1088 return 1;
1089 }
1090 return 0;
1091 }
1092
1093 /*
1094 * Return true if the specified CPU has passed through a quiescent
1095 * state by virtue of being in or having passed through an dynticks
1096 * idle state since the last call to dyntick_save_progress_counter()
1097 * for this same CPU, or by virtue of having been offline.
1098 */
1099 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1100 bool *isidle, unsigned long *maxj)
1101 {
1102 unsigned int curr;
1103 int *rcrmp;
1104 unsigned int snap;
1105
1106 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1107 snap = (unsigned int)rdp->dynticks_snap;
1108
1109 /*
1110 * If the CPU passed through or entered a dynticks idle phase with
1111 * no active irq/NMI handlers, then we can safely pretend that the CPU
1112 * already acknowledged the request to pass through a quiescent
1113 * state. Either way, that CPU cannot possibly be in an RCU
1114 * read-side critical section that started before the beginning
1115 * of the current RCU grace period.
1116 */
1117 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1118 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1119 rdp->dynticks_fqs++;
1120 return 1;
1121 }
1122
1123 /*
1124 * Check for the CPU being offline, but only if the grace period
1125 * is old enough. We don't need to worry about the CPU changing
1126 * state: If we see it offline even once, it has been through a
1127 * quiescent state.
1128 *
1129 * The reason for insisting that the grace period be at least
1130 * one jiffy old is that CPUs that are not quite online and that
1131 * have just gone offline can still execute RCU read-side critical
1132 * sections.
1133 */
1134 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1135 return 0; /* Grace period is not old enough. */
1136 barrier();
1137 if (cpu_is_offline(rdp->cpu)) {
1138 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1139 rdp->offline_fqs++;
1140 return 1;
1141 }
1142
1143 /*
1144 * A CPU running for an extended time within the kernel can
1145 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1146 * even context-switching back and forth between a pair of
1147 * in-kernel CPU-bound tasks cannot advance grace periods.
1148 * So if the grace period is old enough, make the CPU pay attention.
1149 * Note that the unsynchronized assignments to the per-CPU
1150 * rcu_sched_qs_mask variable are safe. Yes, setting of
1151 * bits can be lost, but they will be set again on the next
1152 * force-quiescent-state pass. So lost bit sets do not result
1153 * in incorrect behavior, merely in a grace period lasting
1154 * a few jiffies longer than it might otherwise. Because
1155 * there are at most four threads involved, and because the
1156 * updates are only once every few jiffies, the probability of
1157 * lossage (and thus of slight grace-period extension) is
1158 * quite low.
1159 *
1160 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1161 * is set too high, we override with half of the RCU CPU stall
1162 * warning delay.
1163 */
1164 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1165 if (ULONG_CMP_GE(jiffies,
1166 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1167 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1168 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1169 WRITE_ONCE(rdp->cond_resched_completed,
1170 READ_ONCE(rdp->mynode->completed));
1171 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1172 WRITE_ONCE(*rcrmp,
1173 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1174 }
1175 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1176 }
1177
1178 /* And if it has been a really long time, kick the CPU as well. */
1179 if (ULONG_CMP_GE(jiffies,
1180 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1181 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1182 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1183
1184 return 0;
1185 }
1186
1187 static void record_gp_stall_check_time(struct rcu_state *rsp)
1188 {
1189 unsigned long j = jiffies;
1190 unsigned long j1;
1191
1192 rsp->gp_start = j;
1193 smp_wmb(); /* Record start time before stall time. */
1194 j1 = rcu_jiffies_till_stall_check();
1195 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1196 rsp->jiffies_resched = j + j1 / 2;
1197 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1198 }
1199
1200 /*
1201 * Convert a ->gp_state value to a character string.
1202 */
1203 static const char *gp_state_getname(short gs)
1204 {
1205 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1206 return "???";
1207 return gp_state_names[gs];
1208 }
1209
1210 /*
1211 * Complain about starvation of grace-period kthread.
1212 */
1213 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1214 {
1215 unsigned long gpa;
1216 unsigned long j;
1217
1218 j = jiffies;
1219 gpa = READ_ONCE(rsp->gp_activity);
1220 if (j - gpa > 2 * HZ) {
1221 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1222 rsp->name, j - gpa,
1223 rsp->gpnum, rsp->completed,
1224 rsp->gp_flags,
1225 gp_state_getname(rsp->gp_state), rsp->gp_state,
1226 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1227 if (rsp->gp_kthread) {
1228 sched_show_task(rsp->gp_kthread);
1229 wake_up_process(rsp->gp_kthread);
1230 }
1231 }
1232 }
1233
1234 /*
1235 * Dump stacks of all tasks running on stalled CPUs.
1236 */
1237 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1238 {
1239 int cpu;
1240 unsigned long flags;
1241 struct rcu_node *rnp;
1242
1243 rcu_for_each_leaf_node(rsp, rnp) {
1244 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1245 if (rnp->qsmask != 0) {
1246 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1247 if (rnp->qsmask & (1UL << cpu))
1248 dump_cpu_task(rnp->grplo + cpu);
1249 }
1250 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1251 }
1252 }
1253
1254 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1255 {
1256 int cpu;
1257 long delta;
1258 unsigned long flags;
1259 unsigned long gpa;
1260 unsigned long j;
1261 int ndetected = 0;
1262 struct rcu_node *rnp = rcu_get_root(rsp);
1263 long totqlen = 0;
1264
1265 /* Only let one CPU complain about others per time interval. */
1266
1267 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1268 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1269 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1270 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1271 return;
1272 }
1273 WRITE_ONCE(rsp->jiffies_stall,
1274 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1275 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1276
1277 /*
1278 * OK, time to rat on our buddy...
1279 * See Documentation/RCU/stallwarn.txt for info on how to debug
1280 * RCU CPU stall warnings.
1281 */
1282 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1283 rsp->name);
1284 print_cpu_stall_info_begin();
1285 rcu_for_each_leaf_node(rsp, rnp) {
1286 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1287 ndetected += rcu_print_task_stall(rnp);
1288 if (rnp->qsmask != 0) {
1289 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1290 if (rnp->qsmask & (1UL << cpu)) {
1291 print_cpu_stall_info(rsp,
1292 rnp->grplo + cpu);
1293 ndetected++;
1294 }
1295 }
1296 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1297 }
1298
1299 print_cpu_stall_info_end();
1300 for_each_possible_cpu(cpu)
1301 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1302 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1303 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1304 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1305 if (ndetected) {
1306 rcu_dump_cpu_stacks(rsp);
1307 } else {
1308 if (READ_ONCE(rsp->gpnum) != gpnum ||
1309 READ_ONCE(rsp->completed) == gpnum) {
1310 pr_err("INFO: Stall ended before state dump start\n");
1311 } else {
1312 j = jiffies;
1313 gpa = READ_ONCE(rsp->gp_activity);
1314 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1315 rsp->name, j - gpa, j, gpa,
1316 jiffies_till_next_fqs,
1317 rcu_get_root(rsp)->qsmask);
1318 /* In this case, the current CPU might be at fault. */
1319 sched_show_task(current);
1320 }
1321 }
1322
1323 /* Complain about tasks blocking the grace period. */
1324 rcu_print_detail_task_stall(rsp);
1325
1326 rcu_check_gp_kthread_starvation(rsp);
1327
1328 force_quiescent_state(rsp); /* Kick them all. */
1329 }
1330
1331 static void print_cpu_stall(struct rcu_state *rsp)
1332 {
1333 int cpu;
1334 unsigned long flags;
1335 struct rcu_node *rnp = rcu_get_root(rsp);
1336 long totqlen = 0;
1337
1338 /*
1339 * OK, time to rat on ourselves...
1340 * See Documentation/RCU/stallwarn.txt for info on how to debug
1341 * RCU CPU stall warnings.
1342 */
1343 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1344 print_cpu_stall_info_begin();
1345 print_cpu_stall_info(rsp, smp_processor_id());
1346 print_cpu_stall_info_end();
1347 for_each_possible_cpu(cpu)
1348 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1349 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1350 jiffies - rsp->gp_start,
1351 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1352
1353 rcu_check_gp_kthread_starvation(rsp);
1354
1355 rcu_dump_cpu_stacks(rsp);
1356
1357 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1358 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1359 WRITE_ONCE(rsp->jiffies_stall,
1360 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1361 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1362
1363 /*
1364 * Attempt to revive the RCU machinery by forcing a context switch.
1365 *
1366 * A context switch would normally allow the RCU state machine to make
1367 * progress and it could be we're stuck in kernel space without context
1368 * switches for an entirely unreasonable amount of time.
1369 */
1370 resched_cpu(smp_processor_id());
1371 }
1372
1373 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1374 {
1375 unsigned long completed;
1376 unsigned long gpnum;
1377 unsigned long gps;
1378 unsigned long j;
1379 unsigned long js;
1380 struct rcu_node *rnp;
1381
1382 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1383 return;
1384 j = jiffies;
1385
1386 /*
1387 * Lots of memory barriers to reject false positives.
1388 *
1389 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1390 * then rsp->gp_start, and finally rsp->completed. These values
1391 * are updated in the opposite order with memory barriers (or
1392 * equivalent) during grace-period initialization and cleanup.
1393 * Now, a false positive can occur if we get an new value of
1394 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1395 * the memory barriers, the only way that this can happen is if one
1396 * grace period ends and another starts between these two fetches.
1397 * Detect this by comparing rsp->completed with the previous fetch
1398 * from rsp->gpnum.
1399 *
1400 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1401 * and rsp->gp_start suffice to forestall false positives.
1402 */
1403 gpnum = READ_ONCE(rsp->gpnum);
1404 smp_rmb(); /* Pick up ->gpnum first... */
1405 js = READ_ONCE(rsp->jiffies_stall);
1406 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1407 gps = READ_ONCE(rsp->gp_start);
1408 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1409 completed = READ_ONCE(rsp->completed);
1410 if (ULONG_CMP_GE(completed, gpnum) ||
1411 ULONG_CMP_LT(j, js) ||
1412 ULONG_CMP_GE(gps, js))
1413 return; /* No stall or GP completed since entering function. */
1414 rnp = rdp->mynode;
1415 if (rcu_gp_in_progress(rsp) &&
1416 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1417
1418 /* We haven't checked in, so go dump stack. */
1419 print_cpu_stall(rsp);
1420
1421 } else if (rcu_gp_in_progress(rsp) &&
1422 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1423
1424 /* They had a few time units to dump stack, so complain. */
1425 print_other_cpu_stall(rsp, gpnum);
1426 }
1427 }
1428
1429 /**
1430 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1431 *
1432 * Set the stall-warning timeout way off into the future, thus preventing
1433 * any RCU CPU stall-warning messages from appearing in the current set of
1434 * RCU grace periods.
1435 *
1436 * The caller must disable hard irqs.
1437 */
1438 void rcu_cpu_stall_reset(void)
1439 {
1440 struct rcu_state *rsp;
1441
1442 for_each_rcu_flavor(rsp)
1443 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1444 }
1445
1446 /*
1447 * Initialize the specified rcu_data structure's default callback list
1448 * to empty. The default callback list is the one that is not used by
1449 * no-callbacks CPUs.
1450 */
1451 static void init_default_callback_list(struct rcu_data *rdp)
1452 {
1453 int i;
1454
1455 rdp->nxtlist = NULL;
1456 for (i = 0; i < RCU_NEXT_SIZE; i++)
1457 rdp->nxttail[i] = &rdp->nxtlist;
1458 }
1459
1460 /*
1461 * Initialize the specified rcu_data structure's callback list to empty.
1462 */
1463 static void init_callback_list(struct rcu_data *rdp)
1464 {
1465 if (init_nocb_callback_list(rdp))
1466 return;
1467 init_default_callback_list(rdp);
1468 }
1469
1470 /*
1471 * Determine the value that ->completed will have at the end of the
1472 * next subsequent grace period. This is used to tag callbacks so that
1473 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1474 * been dyntick-idle for an extended period with callbacks under the
1475 * influence of RCU_FAST_NO_HZ.
1476 *
1477 * The caller must hold rnp->lock with interrupts disabled.
1478 */
1479 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1480 struct rcu_node *rnp)
1481 {
1482 /*
1483 * If RCU is idle, we just wait for the next grace period.
1484 * But we can only be sure that RCU is idle if we are looking
1485 * at the root rcu_node structure -- otherwise, a new grace
1486 * period might have started, but just not yet gotten around
1487 * to initializing the current non-root rcu_node structure.
1488 */
1489 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1490 return rnp->completed + 1;
1491
1492 /*
1493 * Otherwise, wait for a possible partial grace period and
1494 * then the subsequent full grace period.
1495 */
1496 return rnp->completed + 2;
1497 }
1498
1499 /*
1500 * Trace-event helper function for rcu_start_future_gp() and
1501 * rcu_nocb_wait_gp().
1502 */
1503 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1504 unsigned long c, const char *s)
1505 {
1506 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1507 rnp->completed, c, rnp->level,
1508 rnp->grplo, rnp->grphi, s);
1509 }
1510
1511 /*
1512 * Start some future grace period, as needed to handle newly arrived
1513 * callbacks. The required future grace periods are recorded in each
1514 * rcu_node structure's ->need_future_gp field. Returns true if there
1515 * is reason to awaken the grace-period kthread.
1516 *
1517 * The caller must hold the specified rcu_node structure's ->lock.
1518 */
1519 static bool __maybe_unused
1520 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1521 unsigned long *c_out)
1522 {
1523 unsigned long c;
1524 int i;
1525 bool ret = false;
1526 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1527
1528 /*
1529 * Pick up grace-period number for new callbacks. If this
1530 * grace period is already marked as needed, return to the caller.
1531 */
1532 c = rcu_cbs_completed(rdp->rsp, rnp);
1533 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1534 if (rnp->need_future_gp[c & 0x1]) {
1535 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1536 goto out;
1537 }
1538
1539 /*
1540 * If either this rcu_node structure or the root rcu_node structure
1541 * believe that a grace period is in progress, then we must wait
1542 * for the one following, which is in "c". Because our request
1543 * will be noticed at the end of the current grace period, we don't
1544 * need to explicitly start one. We only do the lockless check
1545 * of rnp_root's fields if the current rcu_node structure thinks
1546 * there is no grace period in flight, and because we hold rnp->lock,
1547 * the only possible change is when rnp_root's two fields are
1548 * equal, in which case rnp_root->gpnum might be concurrently
1549 * incremented. But that is OK, as it will just result in our
1550 * doing some extra useless work.
1551 */
1552 if (rnp->gpnum != rnp->completed ||
1553 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1554 rnp->need_future_gp[c & 0x1]++;
1555 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1556 goto out;
1557 }
1558
1559 /*
1560 * There might be no grace period in progress. If we don't already
1561 * hold it, acquire the root rcu_node structure's lock in order to
1562 * start one (if needed).
1563 */
1564 if (rnp != rnp_root)
1565 raw_spin_lock_rcu_node(rnp_root);
1566
1567 /*
1568 * Get a new grace-period number. If there really is no grace
1569 * period in progress, it will be smaller than the one we obtained
1570 * earlier. Adjust callbacks as needed. Note that even no-CBs
1571 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1572 */
1573 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1574 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1575 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1576 rdp->nxtcompleted[i] = c;
1577
1578 /*
1579 * If the needed for the required grace period is already
1580 * recorded, trace and leave.
1581 */
1582 if (rnp_root->need_future_gp[c & 0x1]) {
1583 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1584 goto unlock_out;
1585 }
1586
1587 /* Record the need for the future grace period. */
1588 rnp_root->need_future_gp[c & 0x1]++;
1589
1590 /* If a grace period is not already in progress, start one. */
1591 if (rnp_root->gpnum != rnp_root->completed) {
1592 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1593 } else {
1594 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1595 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1596 }
1597 unlock_out:
1598 if (rnp != rnp_root)
1599 raw_spin_unlock_rcu_node(rnp_root);
1600 out:
1601 if (c_out != NULL)
1602 *c_out = c;
1603 return ret;
1604 }
1605
1606 /*
1607 * Clean up any old requests for the just-ended grace period. Also return
1608 * whether any additional grace periods have been requested. Also invoke
1609 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1610 * waiting for this grace period to complete.
1611 */
1612 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1613 {
1614 int c = rnp->completed;
1615 int needmore;
1616 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1617
1618 rnp->need_future_gp[c & 0x1] = 0;
1619 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1620 trace_rcu_future_gp(rnp, rdp, c,
1621 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1622 return needmore;
1623 }
1624
1625 /*
1626 * Awaken the grace-period kthread for the specified flavor of RCU.
1627 * Don't do a self-awaken, and don't bother awakening when there is
1628 * nothing for the grace-period kthread to do (as in several CPUs
1629 * raced to awaken, and we lost), and finally don't try to awaken
1630 * a kthread that has not yet been created.
1631 */
1632 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1633 {
1634 if (current == rsp->gp_kthread ||
1635 !READ_ONCE(rsp->gp_flags) ||
1636 !rsp->gp_kthread)
1637 return;
1638 swake_up(&rsp->gp_wq);
1639 }
1640
1641 /*
1642 * If there is room, assign a ->completed number to any callbacks on
1643 * this CPU that have not already been assigned. Also accelerate any
1644 * callbacks that were previously assigned a ->completed number that has
1645 * since proven to be too conservative, which can happen if callbacks get
1646 * assigned a ->completed number while RCU is idle, but with reference to
1647 * a non-root rcu_node structure. This function is idempotent, so it does
1648 * not hurt to call it repeatedly. Returns an flag saying that we should
1649 * awaken the RCU grace-period kthread.
1650 *
1651 * The caller must hold rnp->lock with interrupts disabled.
1652 */
1653 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1654 struct rcu_data *rdp)
1655 {
1656 unsigned long c;
1657 int i;
1658 bool ret;
1659
1660 /* If the CPU has no callbacks, nothing to do. */
1661 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1662 return false;
1663
1664 /*
1665 * Starting from the sublist containing the callbacks most
1666 * recently assigned a ->completed number and working down, find the
1667 * first sublist that is not assignable to an upcoming grace period.
1668 * Such a sublist has something in it (first two tests) and has
1669 * a ->completed number assigned that will complete sooner than
1670 * the ->completed number for newly arrived callbacks (last test).
1671 *
1672 * The key point is that any later sublist can be assigned the
1673 * same ->completed number as the newly arrived callbacks, which
1674 * means that the callbacks in any of these later sublist can be
1675 * grouped into a single sublist, whether or not they have already
1676 * been assigned a ->completed number.
1677 */
1678 c = rcu_cbs_completed(rsp, rnp);
1679 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1680 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1681 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1682 break;
1683
1684 /*
1685 * If there are no sublist for unassigned callbacks, leave.
1686 * At the same time, advance "i" one sublist, so that "i" will
1687 * index into the sublist where all the remaining callbacks should
1688 * be grouped into.
1689 */
1690 if (++i >= RCU_NEXT_TAIL)
1691 return false;
1692
1693 /*
1694 * Assign all subsequent callbacks' ->completed number to the next
1695 * full grace period and group them all in the sublist initially
1696 * indexed by "i".
1697 */
1698 for (; i <= RCU_NEXT_TAIL; i++) {
1699 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1700 rdp->nxtcompleted[i] = c;
1701 }
1702 /* Record any needed additional grace periods. */
1703 ret = rcu_start_future_gp(rnp, rdp, NULL);
1704
1705 /* Trace depending on how much we were able to accelerate. */
1706 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1707 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1708 else
1709 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1710 return ret;
1711 }
1712
1713 /*
1714 * Move any callbacks whose grace period has completed to the
1715 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1716 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1717 * sublist. This function is idempotent, so it does not hurt to
1718 * invoke it repeatedly. As long as it is not invoked -too- often...
1719 * Returns true if the RCU grace-period kthread needs to be awakened.
1720 *
1721 * The caller must hold rnp->lock with interrupts disabled.
1722 */
1723 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1724 struct rcu_data *rdp)
1725 {
1726 int i, j;
1727
1728 /* If the CPU has no callbacks, nothing to do. */
1729 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1730 return false;
1731
1732 /*
1733 * Find all callbacks whose ->completed numbers indicate that they
1734 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1735 */
1736 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1737 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1738 break;
1739 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1740 }
1741 /* Clean up any sublist tail pointers that were misordered above. */
1742 for (j = RCU_WAIT_TAIL; j < i; j++)
1743 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1744
1745 /* Copy down callbacks to fill in empty sublists. */
1746 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1747 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1748 break;
1749 rdp->nxttail[j] = rdp->nxttail[i];
1750 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1751 }
1752
1753 /* Classify any remaining callbacks. */
1754 return rcu_accelerate_cbs(rsp, rnp, rdp);
1755 }
1756
1757 /*
1758 * Update CPU-local rcu_data state to record the beginnings and ends of
1759 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1760 * structure corresponding to the current CPU, and must have irqs disabled.
1761 * Returns true if the grace-period kthread needs to be awakened.
1762 */
1763 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1764 struct rcu_data *rdp)
1765 {
1766 bool ret;
1767
1768 /* Handle the ends of any preceding grace periods first. */
1769 if (rdp->completed == rnp->completed &&
1770 !unlikely(READ_ONCE(rdp->gpwrap))) {
1771
1772 /* No grace period end, so just accelerate recent callbacks. */
1773 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1774
1775 } else {
1776
1777 /* Advance callbacks. */
1778 ret = rcu_advance_cbs(rsp, rnp, rdp);
1779
1780 /* Remember that we saw this grace-period completion. */
1781 rdp->completed = rnp->completed;
1782 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1783 }
1784
1785 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1786 /*
1787 * If the current grace period is waiting for this CPU,
1788 * set up to detect a quiescent state, otherwise don't
1789 * go looking for one.
1790 */
1791 rdp->gpnum = rnp->gpnum;
1792 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1793 rdp->cpu_no_qs.b.norm = true;
1794 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1795 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1796 zero_cpu_stall_ticks(rdp);
1797 WRITE_ONCE(rdp->gpwrap, false);
1798 }
1799 return ret;
1800 }
1801
1802 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1803 {
1804 unsigned long flags;
1805 bool needwake;
1806 struct rcu_node *rnp;
1807
1808 local_irq_save(flags);
1809 rnp = rdp->mynode;
1810 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1811 rdp->completed == READ_ONCE(rnp->completed) &&
1812 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1813 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1814 local_irq_restore(flags);
1815 return;
1816 }
1817 needwake = __note_gp_changes(rsp, rnp, rdp);
1818 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1819 if (needwake)
1820 rcu_gp_kthread_wake(rsp);
1821 }
1822
1823 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1824 {
1825 if (delay > 0 &&
1826 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1827 schedule_timeout_uninterruptible(delay);
1828 }
1829
1830 /*
1831 * Initialize a new grace period. Return false if no grace period required.
1832 */
1833 static bool rcu_gp_init(struct rcu_state *rsp)
1834 {
1835 unsigned long oldmask;
1836 struct rcu_data *rdp;
1837 struct rcu_node *rnp = rcu_get_root(rsp);
1838
1839 WRITE_ONCE(rsp->gp_activity, jiffies);
1840 raw_spin_lock_irq_rcu_node(rnp);
1841 if (!READ_ONCE(rsp->gp_flags)) {
1842 /* Spurious wakeup, tell caller to go back to sleep. */
1843 raw_spin_unlock_irq_rcu_node(rnp);
1844 return false;
1845 }
1846 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1847
1848 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1849 /*
1850 * Grace period already in progress, don't start another.
1851 * Not supposed to be able to happen.
1852 */
1853 raw_spin_unlock_irq_rcu_node(rnp);
1854 return false;
1855 }
1856
1857 /* Advance to a new grace period and initialize state. */
1858 record_gp_stall_check_time(rsp);
1859 /* Record GP times before starting GP, hence smp_store_release(). */
1860 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1861 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1862 raw_spin_unlock_irq_rcu_node(rnp);
1863
1864 /*
1865 * Apply per-leaf buffered online and offline operations to the
1866 * rcu_node tree. Note that this new grace period need not wait
1867 * for subsequent online CPUs, and that quiescent-state forcing
1868 * will handle subsequent offline CPUs.
1869 */
1870 rcu_for_each_leaf_node(rsp, rnp) {
1871 rcu_gp_slow(rsp, gp_preinit_delay);
1872 raw_spin_lock_irq_rcu_node(rnp);
1873 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1874 !rnp->wait_blkd_tasks) {
1875 /* Nothing to do on this leaf rcu_node structure. */
1876 raw_spin_unlock_irq_rcu_node(rnp);
1877 continue;
1878 }
1879
1880 /* Record old state, apply changes to ->qsmaskinit field. */
1881 oldmask = rnp->qsmaskinit;
1882 rnp->qsmaskinit = rnp->qsmaskinitnext;
1883
1884 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1885 if (!oldmask != !rnp->qsmaskinit) {
1886 if (!oldmask) /* First online CPU for this rcu_node. */
1887 rcu_init_new_rnp(rnp);
1888 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1889 rnp->wait_blkd_tasks = true;
1890 else /* Last offline CPU and can propagate. */
1891 rcu_cleanup_dead_rnp(rnp);
1892 }
1893
1894 /*
1895 * If all waited-on tasks from prior grace period are
1896 * done, and if all this rcu_node structure's CPUs are
1897 * still offline, propagate up the rcu_node tree and
1898 * clear ->wait_blkd_tasks. Otherwise, if one of this
1899 * rcu_node structure's CPUs has since come back online,
1900 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1901 * checks for this, so just call it unconditionally).
1902 */
1903 if (rnp->wait_blkd_tasks &&
1904 (!rcu_preempt_has_tasks(rnp) ||
1905 rnp->qsmaskinit)) {
1906 rnp->wait_blkd_tasks = false;
1907 rcu_cleanup_dead_rnp(rnp);
1908 }
1909
1910 raw_spin_unlock_irq_rcu_node(rnp);
1911 }
1912
1913 /*
1914 * Set the quiescent-state-needed bits in all the rcu_node
1915 * structures for all currently online CPUs in breadth-first order,
1916 * starting from the root rcu_node structure, relying on the layout
1917 * of the tree within the rsp->node[] array. Note that other CPUs
1918 * will access only the leaves of the hierarchy, thus seeing that no
1919 * grace period is in progress, at least until the corresponding
1920 * leaf node has been initialized. In addition, we have excluded
1921 * CPU-hotplug operations.
1922 *
1923 * The grace period cannot complete until the initialization
1924 * process finishes, because this kthread handles both.
1925 */
1926 rcu_for_each_node_breadth_first(rsp, rnp) {
1927 rcu_gp_slow(rsp, gp_init_delay);
1928 raw_spin_lock_irq_rcu_node(rnp);
1929 rdp = this_cpu_ptr(rsp->rda);
1930 rcu_preempt_check_blocked_tasks(rnp);
1931 rnp->qsmask = rnp->qsmaskinit;
1932 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1933 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1934 WRITE_ONCE(rnp->completed, rsp->completed);
1935 if (rnp == rdp->mynode)
1936 (void)__note_gp_changes(rsp, rnp, rdp);
1937 rcu_preempt_boost_start_gp(rnp);
1938 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1939 rnp->level, rnp->grplo,
1940 rnp->grphi, rnp->qsmask);
1941 raw_spin_unlock_irq_rcu_node(rnp);
1942 cond_resched_rcu_qs();
1943 WRITE_ONCE(rsp->gp_activity, jiffies);
1944 }
1945
1946 return true;
1947 }
1948
1949 /*
1950 * Helper function for wait_event_interruptible_timeout() wakeup
1951 * at force-quiescent-state time.
1952 */
1953 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1954 {
1955 struct rcu_node *rnp = rcu_get_root(rsp);
1956
1957 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1958 *gfp = READ_ONCE(rsp->gp_flags);
1959 if (*gfp & RCU_GP_FLAG_FQS)
1960 return true;
1961
1962 /* The current grace period has completed. */
1963 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1964 return true;
1965
1966 return false;
1967 }
1968
1969 /*
1970 * Do one round of quiescent-state forcing.
1971 */
1972 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1973 {
1974 bool isidle = false;
1975 unsigned long maxj;
1976 struct rcu_node *rnp = rcu_get_root(rsp);
1977
1978 WRITE_ONCE(rsp->gp_activity, jiffies);
1979 rsp->n_force_qs++;
1980 if (first_time) {
1981 /* Collect dyntick-idle snapshots. */
1982 if (is_sysidle_rcu_state(rsp)) {
1983 isidle = true;
1984 maxj = jiffies - ULONG_MAX / 4;
1985 }
1986 force_qs_rnp(rsp, dyntick_save_progress_counter,
1987 &isidle, &maxj);
1988 rcu_sysidle_report_gp(rsp, isidle, maxj);
1989 } else {
1990 /* Handle dyntick-idle and offline CPUs. */
1991 isidle = true;
1992 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1993 }
1994 /* Clear flag to prevent immediate re-entry. */
1995 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1996 raw_spin_lock_irq_rcu_node(rnp);
1997 WRITE_ONCE(rsp->gp_flags,
1998 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1999 raw_spin_unlock_irq_rcu_node(rnp);
2000 }
2001 }
2002
2003 /*
2004 * Clean up after the old grace period.
2005 */
2006 static void rcu_gp_cleanup(struct rcu_state *rsp)
2007 {
2008 unsigned long gp_duration;
2009 bool needgp = false;
2010 int nocb = 0;
2011 struct rcu_data *rdp;
2012 struct rcu_node *rnp = rcu_get_root(rsp);
2013 struct swait_queue_head *sq;
2014
2015 WRITE_ONCE(rsp->gp_activity, jiffies);
2016 raw_spin_lock_irq_rcu_node(rnp);
2017 gp_duration = jiffies - rsp->gp_start;
2018 if (gp_duration > rsp->gp_max)
2019 rsp->gp_max = gp_duration;
2020
2021 /*
2022 * We know the grace period is complete, but to everyone else
2023 * it appears to still be ongoing. But it is also the case
2024 * that to everyone else it looks like there is nothing that
2025 * they can do to advance the grace period. It is therefore
2026 * safe for us to drop the lock in order to mark the grace
2027 * period as completed in all of the rcu_node structures.
2028 */
2029 raw_spin_unlock_irq_rcu_node(rnp);
2030
2031 /*
2032 * Propagate new ->completed value to rcu_node structures so
2033 * that other CPUs don't have to wait until the start of the next
2034 * grace period to process their callbacks. This also avoids
2035 * some nasty RCU grace-period initialization races by forcing
2036 * the end of the current grace period to be completely recorded in
2037 * all of the rcu_node structures before the beginning of the next
2038 * grace period is recorded in any of the rcu_node structures.
2039 */
2040 rcu_for_each_node_breadth_first(rsp, rnp) {
2041 raw_spin_lock_irq_rcu_node(rnp);
2042 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2043 WARN_ON_ONCE(rnp->qsmask);
2044 WRITE_ONCE(rnp->completed, rsp->gpnum);
2045 rdp = this_cpu_ptr(rsp->rda);
2046 if (rnp == rdp->mynode)
2047 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2048 /* smp_mb() provided by prior unlock-lock pair. */
2049 nocb += rcu_future_gp_cleanup(rsp, rnp);
2050 sq = rcu_nocb_gp_get(rnp);
2051 raw_spin_unlock_irq_rcu_node(rnp);
2052 rcu_nocb_gp_cleanup(sq);
2053 cond_resched_rcu_qs();
2054 WRITE_ONCE(rsp->gp_activity, jiffies);
2055 rcu_gp_slow(rsp, gp_cleanup_delay);
2056 }
2057 rnp = rcu_get_root(rsp);
2058 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2059 rcu_nocb_gp_set(rnp, nocb);
2060
2061 /* Declare grace period done. */
2062 WRITE_ONCE(rsp->completed, rsp->gpnum);
2063 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2064 rsp->gp_state = RCU_GP_IDLE;
2065 rdp = this_cpu_ptr(rsp->rda);
2066 /* Advance CBs to reduce false positives below. */
2067 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2068 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2069 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2070 trace_rcu_grace_period(rsp->name,
2071 READ_ONCE(rsp->gpnum),
2072 TPS("newreq"));
2073 }
2074 raw_spin_unlock_irq_rcu_node(rnp);
2075 }
2076
2077 /*
2078 * Body of kthread that handles grace periods.
2079 */
2080 static int __noreturn rcu_gp_kthread(void *arg)
2081 {
2082 bool first_gp_fqs;
2083 int gf;
2084 unsigned long j;
2085 int ret;
2086 struct rcu_state *rsp = arg;
2087 struct rcu_node *rnp = rcu_get_root(rsp);
2088
2089 rcu_bind_gp_kthread();
2090 for (;;) {
2091
2092 /* Handle grace-period start. */
2093 for (;;) {
2094 trace_rcu_grace_period(rsp->name,
2095 READ_ONCE(rsp->gpnum),
2096 TPS("reqwait"));
2097 rsp->gp_state = RCU_GP_WAIT_GPS;
2098 swait_event_interruptible(rsp->gp_wq,
2099 READ_ONCE(rsp->gp_flags) &
2100 RCU_GP_FLAG_INIT);
2101 rsp->gp_state = RCU_GP_DONE_GPS;
2102 /* Locking provides needed memory barrier. */
2103 if (rcu_gp_init(rsp))
2104 break;
2105 cond_resched_rcu_qs();
2106 WRITE_ONCE(rsp->gp_activity, jiffies);
2107 WARN_ON(signal_pending(current));
2108 trace_rcu_grace_period(rsp->name,
2109 READ_ONCE(rsp->gpnum),
2110 TPS("reqwaitsig"));
2111 }
2112
2113 /* Handle quiescent-state forcing. */
2114 first_gp_fqs = true;
2115 j = jiffies_till_first_fqs;
2116 if (j > HZ) {
2117 j = HZ;
2118 jiffies_till_first_fqs = HZ;
2119 }
2120 ret = 0;
2121 for (;;) {
2122 if (!ret)
2123 rsp->jiffies_force_qs = jiffies + j;
2124 trace_rcu_grace_period(rsp->name,
2125 READ_ONCE(rsp->gpnum),
2126 TPS("fqswait"));
2127 rsp->gp_state = RCU_GP_WAIT_FQS;
2128 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2129 rcu_gp_fqs_check_wake(rsp, &gf), j);
2130 rsp->gp_state = RCU_GP_DOING_FQS;
2131 /* Locking provides needed memory barriers. */
2132 /* If grace period done, leave loop. */
2133 if (!READ_ONCE(rnp->qsmask) &&
2134 !rcu_preempt_blocked_readers_cgp(rnp))
2135 break;
2136 /* If time for quiescent-state forcing, do it. */
2137 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2138 (gf & RCU_GP_FLAG_FQS)) {
2139 trace_rcu_grace_period(rsp->name,
2140 READ_ONCE(rsp->gpnum),
2141 TPS("fqsstart"));
2142 rcu_gp_fqs(rsp, first_gp_fqs);
2143 first_gp_fqs = false;
2144 trace_rcu_grace_period(rsp->name,
2145 READ_ONCE(rsp->gpnum),
2146 TPS("fqsend"));
2147 cond_resched_rcu_qs();
2148 WRITE_ONCE(rsp->gp_activity, jiffies);
2149 } else {
2150 /* Deal with stray signal. */
2151 cond_resched_rcu_qs();
2152 WRITE_ONCE(rsp->gp_activity, jiffies);
2153 WARN_ON(signal_pending(current));
2154 trace_rcu_grace_period(rsp->name,
2155 READ_ONCE(rsp->gpnum),
2156 TPS("fqswaitsig"));
2157 }
2158 j = jiffies_till_next_fqs;
2159 if (j > HZ) {
2160 j = HZ;
2161 jiffies_till_next_fqs = HZ;
2162 } else if (j < 1) {
2163 j = 1;
2164 jiffies_till_next_fqs = 1;
2165 }
2166 }
2167
2168 /* Handle grace-period end. */
2169 rsp->gp_state = RCU_GP_CLEANUP;
2170 rcu_gp_cleanup(rsp);
2171 rsp->gp_state = RCU_GP_CLEANED;
2172 }
2173 }
2174
2175 /*
2176 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2177 * in preparation for detecting the next grace period. The caller must hold
2178 * the root node's ->lock and hard irqs must be disabled.
2179 *
2180 * Note that it is legal for a dying CPU (which is marked as offline) to
2181 * invoke this function. This can happen when the dying CPU reports its
2182 * quiescent state.
2183 *
2184 * Returns true if the grace-period kthread must be awakened.
2185 */
2186 static bool
2187 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2188 struct rcu_data *rdp)
2189 {
2190 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2191 /*
2192 * Either we have not yet spawned the grace-period
2193 * task, this CPU does not need another grace period,
2194 * or a grace period is already in progress.
2195 * Either way, don't start a new grace period.
2196 */
2197 return false;
2198 }
2199 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2200 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2201 TPS("newreq"));
2202
2203 /*
2204 * We can't do wakeups while holding the rnp->lock, as that
2205 * could cause possible deadlocks with the rq->lock. Defer
2206 * the wakeup to our caller.
2207 */
2208 return true;
2209 }
2210
2211 /*
2212 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2213 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2214 * is invoked indirectly from rcu_advance_cbs(), which would result in
2215 * endless recursion -- or would do so if it wasn't for the self-deadlock
2216 * that is encountered beforehand.
2217 *
2218 * Returns true if the grace-period kthread needs to be awakened.
2219 */
2220 static bool rcu_start_gp(struct rcu_state *rsp)
2221 {
2222 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2223 struct rcu_node *rnp = rcu_get_root(rsp);
2224 bool ret = false;
2225
2226 /*
2227 * If there is no grace period in progress right now, any
2228 * callbacks we have up to this point will be satisfied by the
2229 * next grace period. Also, advancing the callbacks reduces the
2230 * probability of false positives from cpu_needs_another_gp()
2231 * resulting in pointless grace periods. So, advance callbacks
2232 * then start the grace period!
2233 */
2234 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2235 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2236 return ret;
2237 }
2238
2239 /*
2240 * Report a full set of quiescent states to the specified rcu_state data
2241 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2242 * kthread if another grace period is required. Whether we wake
2243 * the grace-period kthread or it awakens itself for the next round
2244 * of quiescent-state forcing, that kthread will clean up after the
2245 * just-completed grace period. Note that the caller must hold rnp->lock,
2246 * which is released before return.
2247 */
2248 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2249 __releases(rcu_get_root(rsp)->lock)
2250 {
2251 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2252 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2253 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2254 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2255 }
2256
2257 /*
2258 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2259 * Allows quiescent states for a group of CPUs to be reported at one go
2260 * to the specified rcu_node structure, though all the CPUs in the group
2261 * must be represented by the same rcu_node structure (which need not be a
2262 * leaf rcu_node structure, though it often will be). The gps parameter
2263 * is the grace-period snapshot, which means that the quiescent states
2264 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2265 * must be held upon entry, and it is released before return.
2266 */
2267 static void
2268 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2269 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2270 __releases(rnp->lock)
2271 {
2272 unsigned long oldmask = 0;
2273 struct rcu_node *rnp_c;
2274
2275 /* Walk up the rcu_node hierarchy. */
2276 for (;;) {
2277 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2278
2279 /*
2280 * Our bit has already been cleared, or the
2281 * relevant grace period is already over, so done.
2282 */
2283 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2284 return;
2285 }
2286 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2287 rnp->qsmask &= ~mask;
2288 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2289 mask, rnp->qsmask, rnp->level,
2290 rnp->grplo, rnp->grphi,
2291 !!rnp->gp_tasks);
2292 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2293
2294 /* Other bits still set at this level, so done. */
2295 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2296 return;
2297 }
2298 mask = rnp->grpmask;
2299 if (rnp->parent == NULL) {
2300
2301 /* No more levels. Exit loop holding root lock. */
2302
2303 break;
2304 }
2305 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2306 rnp_c = rnp;
2307 rnp = rnp->parent;
2308 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2309 oldmask = rnp_c->qsmask;
2310 }
2311
2312 /*
2313 * Get here if we are the last CPU to pass through a quiescent
2314 * state for this grace period. Invoke rcu_report_qs_rsp()
2315 * to clean up and start the next grace period if one is needed.
2316 */
2317 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2318 }
2319
2320 /*
2321 * Record a quiescent state for all tasks that were previously queued
2322 * on the specified rcu_node structure and that were blocking the current
2323 * RCU grace period. The caller must hold the specified rnp->lock with
2324 * irqs disabled, and this lock is released upon return, but irqs remain
2325 * disabled.
2326 */
2327 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2328 struct rcu_node *rnp, unsigned long flags)
2329 __releases(rnp->lock)
2330 {
2331 unsigned long gps;
2332 unsigned long mask;
2333 struct rcu_node *rnp_p;
2334
2335 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2336 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2337 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2338 return; /* Still need more quiescent states! */
2339 }
2340
2341 rnp_p = rnp->parent;
2342 if (rnp_p == NULL) {
2343 /*
2344 * Only one rcu_node structure in the tree, so don't
2345 * try to report up to its nonexistent parent!
2346 */
2347 rcu_report_qs_rsp(rsp, flags);
2348 return;
2349 }
2350
2351 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2352 gps = rnp->gpnum;
2353 mask = rnp->grpmask;
2354 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2355 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2356 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2357 }
2358
2359 /*
2360 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2361 * structure. This must be called from the specified CPU.
2362 */
2363 static void
2364 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2365 {
2366 unsigned long flags;
2367 unsigned long mask;
2368 bool needwake;
2369 struct rcu_node *rnp;
2370
2371 rnp = rdp->mynode;
2372 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2373 if ((rdp->cpu_no_qs.b.norm &&
2374 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2375 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2376 rdp->gpwrap) {
2377
2378 /*
2379 * The grace period in which this quiescent state was
2380 * recorded has ended, so don't report it upwards.
2381 * We will instead need a new quiescent state that lies
2382 * within the current grace period.
2383 */
2384 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2385 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2386 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2387 return;
2388 }
2389 mask = rdp->grpmask;
2390 if ((rnp->qsmask & mask) == 0) {
2391 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2392 } else {
2393 rdp->core_needs_qs = false;
2394
2395 /*
2396 * This GP can't end until cpu checks in, so all of our
2397 * callbacks can be processed during the next GP.
2398 */
2399 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2400
2401 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2402 /* ^^^ Released rnp->lock */
2403 if (needwake)
2404 rcu_gp_kthread_wake(rsp);
2405 }
2406 }
2407
2408 /*
2409 * Check to see if there is a new grace period of which this CPU
2410 * is not yet aware, and if so, set up local rcu_data state for it.
2411 * Otherwise, see if this CPU has just passed through its first
2412 * quiescent state for this grace period, and record that fact if so.
2413 */
2414 static void
2415 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2416 {
2417 /* Check for grace-period ends and beginnings. */
2418 note_gp_changes(rsp, rdp);
2419
2420 /*
2421 * Does this CPU still need to do its part for current grace period?
2422 * If no, return and let the other CPUs do their part as well.
2423 */
2424 if (!rdp->core_needs_qs)
2425 return;
2426
2427 /*
2428 * Was there a quiescent state since the beginning of the grace
2429 * period? If no, then exit and wait for the next call.
2430 */
2431 if (rdp->cpu_no_qs.b.norm &&
2432 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2433 return;
2434
2435 /*
2436 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2437 * judge of that).
2438 */
2439 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2440 }
2441
2442 /*
2443 * Send the specified CPU's RCU callbacks to the orphanage. The
2444 * specified CPU must be offline, and the caller must hold the
2445 * ->orphan_lock.
2446 */
2447 static void
2448 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2449 struct rcu_node *rnp, struct rcu_data *rdp)
2450 {
2451 /* No-CBs CPUs do not have orphanable callbacks. */
2452 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2453 return;
2454
2455 /*
2456 * Orphan the callbacks. First adjust the counts. This is safe
2457 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2458 * cannot be running now. Thus no memory barrier is required.
2459 */
2460 if (rdp->nxtlist != NULL) {
2461 rsp->qlen_lazy += rdp->qlen_lazy;
2462 rsp->qlen += rdp->qlen;
2463 rdp->n_cbs_orphaned += rdp->qlen;
2464 rdp->qlen_lazy = 0;
2465 WRITE_ONCE(rdp->qlen, 0);
2466 }
2467
2468 /*
2469 * Next, move those callbacks still needing a grace period to
2470 * the orphanage, where some other CPU will pick them up.
2471 * Some of the callbacks might have gone partway through a grace
2472 * period, but that is too bad. They get to start over because we
2473 * cannot assume that grace periods are synchronized across CPUs.
2474 * We don't bother updating the ->nxttail[] array yet, instead
2475 * we just reset the whole thing later on.
2476 */
2477 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2478 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2479 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2480 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2481 }
2482
2483 /*
2484 * Then move the ready-to-invoke callbacks to the orphanage,
2485 * where some other CPU will pick them up. These will not be
2486 * required to pass though another grace period: They are done.
2487 */
2488 if (rdp->nxtlist != NULL) {
2489 *rsp->orphan_donetail = rdp->nxtlist;
2490 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2491 }
2492
2493 /*
2494 * Finally, initialize the rcu_data structure's list to empty and
2495 * disallow further callbacks on this CPU.
2496 */
2497 init_callback_list(rdp);
2498 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2499 }
2500
2501 /*
2502 * Adopt the RCU callbacks from the specified rcu_state structure's
2503 * orphanage. The caller must hold the ->orphan_lock.
2504 */
2505 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2506 {
2507 int i;
2508 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2509
2510 /* No-CBs CPUs are handled specially. */
2511 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2512 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2513 return;
2514
2515 /* Do the accounting first. */
2516 rdp->qlen_lazy += rsp->qlen_lazy;
2517 rdp->qlen += rsp->qlen;
2518 rdp->n_cbs_adopted += rsp->qlen;
2519 if (rsp->qlen_lazy != rsp->qlen)
2520 rcu_idle_count_callbacks_posted();
2521 rsp->qlen_lazy = 0;
2522 rsp->qlen = 0;
2523
2524 /*
2525 * We do not need a memory barrier here because the only way we
2526 * can get here if there is an rcu_barrier() in flight is if
2527 * we are the task doing the rcu_barrier().
2528 */
2529
2530 /* First adopt the ready-to-invoke callbacks. */
2531 if (rsp->orphan_donelist != NULL) {
2532 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2533 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2534 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2535 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2536 rdp->nxttail[i] = rsp->orphan_donetail;
2537 rsp->orphan_donelist = NULL;
2538 rsp->orphan_donetail = &rsp->orphan_donelist;
2539 }
2540
2541 /* And then adopt the callbacks that still need a grace period. */
2542 if (rsp->orphan_nxtlist != NULL) {
2543 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2544 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2545 rsp->orphan_nxtlist = NULL;
2546 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2547 }
2548 }
2549
2550 /*
2551 * Trace the fact that this CPU is going offline.
2552 */
2553 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2554 {
2555 RCU_TRACE(unsigned long mask);
2556 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2557 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2558
2559 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2560 return;
2561
2562 RCU_TRACE(mask = rdp->grpmask);
2563 trace_rcu_grace_period(rsp->name,
2564 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2565 TPS("cpuofl"));
2566 }
2567
2568 /*
2569 * All CPUs for the specified rcu_node structure have gone offline,
2570 * and all tasks that were preempted within an RCU read-side critical
2571 * section while running on one of those CPUs have since exited their RCU
2572 * read-side critical section. Some other CPU is reporting this fact with
2573 * the specified rcu_node structure's ->lock held and interrupts disabled.
2574 * This function therefore goes up the tree of rcu_node structures,
2575 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2576 * the leaf rcu_node structure's ->qsmaskinit field has already been
2577 * updated
2578 *
2579 * This function does check that the specified rcu_node structure has
2580 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2581 * prematurely. That said, invoking it after the fact will cost you
2582 * a needless lock acquisition. So once it has done its work, don't
2583 * invoke it again.
2584 */
2585 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2586 {
2587 long mask;
2588 struct rcu_node *rnp = rnp_leaf;
2589
2590 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2591 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2592 return;
2593 for (;;) {
2594 mask = rnp->grpmask;
2595 rnp = rnp->parent;
2596 if (!rnp)
2597 break;
2598 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2599 rnp->qsmaskinit &= ~mask;
2600 rnp->qsmask &= ~mask;
2601 if (rnp->qsmaskinit) {
2602 raw_spin_unlock_rcu_node(rnp);
2603 /* irqs remain disabled. */
2604 return;
2605 }
2606 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2607 }
2608 }
2609
2610 /*
2611 * The CPU has been completely removed, and some other CPU is reporting
2612 * this fact from process context. Do the remainder of the cleanup,
2613 * including orphaning the outgoing CPU's RCU callbacks, and also
2614 * adopting them. There can only be one CPU hotplug operation at a time,
2615 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2616 */
2617 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2618 {
2619 unsigned long flags;
2620 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2621 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2622
2623 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2624 return;
2625
2626 /* Adjust any no-longer-needed kthreads. */
2627 rcu_boost_kthread_setaffinity(rnp, -1);
2628
2629 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2630 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2631 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2632 rcu_adopt_orphan_cbs(rsp, flags);
2633 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2634
2635 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2636 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2637 cpu, rdp->qlen, rdp->nxtlist);
2638 }
2639
2640 /*
2641 * Invoke any RCU callbacks that have made it to the end of their grace
2642 * period. Thottle as specified by rdp->blimit.
2643 */
2644 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2645 {
2646 unsigned long flags;
2647 struct rcu_head *next, *list, **tail;
2648 long bl, count, count_lazy;
2649 int i;
2650
2651 /* If no callbacks are ready, just return. */
2652 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2653 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2654 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2655 need_resched(), is_idle_task(current),
2656 rcu_is_callbacks_kthread());
2657 return;
2658 }
2659
2660 /*
2661 * Extract the list of ready callbacks, disabling to prevent
2662 * races with call_rcu() from interrupt handlers.
2663 */
2664 local_irq_save(flags);
2665 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2666 bl = rdp->blimit;
2667 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2668 list = rdp->nxtlist;
2669 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2670 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2671 tail = rdp->nxttail[RCU_DONE_TAIL];
2672 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2673 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2674 rdp->nxttail[i] = &rdp->nxtlist;
2675 local_irq_restore(flags);
2676
2677 /* Invoke callbacks. */
2678 count = count_lazy = 0;
2679 while (list) {
2680 next = list->next;
2681 prefetch(next);
2682 debug_rcu_head_unqueue(list);
2683 if (__rcu_reclaim(rsp->name, list))
2684 count_lazy++;
2685 list = next;
2686 /* Stop only if limit reached and CPU has something to do. */
2687 if (++count >= bl &&
2688 (need_resched() ||
2689 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2690 break;
2691 }
2692
2693 local_irq_save(flags);
2694 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2695 is_idle_task(current),
2696 rcu_is_callbacks_kthread());
2697
2698 /* Update count, and requeue any remaining callbacks. */
2699 if (list != NULL) {
2700 *tail = rdp->nxtlist;
2701 rdp->nxtlist = list;
2702 for (i = 0; i < RCU_NEXT_SIZE; i++)
2703 if (&rdp->nxtlist == rdp->nxttail[i])
2704 rdp->nxttail[i] = tail;
2705 else
2706 break;
2707 }
2708 smp_mb(); /* List handling before counting for rcu_barrier(). */
2709 rdp->qlen_lazy -= count_lazy;
2710 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2711 rdp->n_cbs_invoked += count;
2712
2713 /* Reinstate batch limit if we have worked down the excess. */
2714 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2715 rdp->blimit = blimit;
2716
2717 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2718 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2719 rdp->qlen_last_fqs_check = 0;
2720 rdp->n_force_qs_snap = rsp->n_force_qs;
2721 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2722 rdp->qlen_last_fqs_check = rdp->qlen;
2723 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2724
2725 local_irq_restore(flags);
2726
2727 /* Re-invoke RCU core processing if there are callbacks remaining. */
2728 if (cpu_has_callbacks_ready_to_invoke(rdp))
2729 invoke_rcu_core();
2730 }
2731
2732 /*
2733 * Check to see if this CPU is in a non-context-switch quiescent state
2734 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2735 * Also schedule RCU core processing.
2736 *
2737 * This function must be called from hardirq context. It is normally
2738 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2739 * false, there is no point in invoking rcu_check_callbacks().
2740 */
2741 void rcu_check_callbacks(int user)
2742 {
2743 trace_rcu_utilization(TPS("Start scheduler-tick"));
2744 increment_cpu_stall_ticks();
2745 if (user || rcu_is_cpu_rrupt_from_idle()) {
2746
2747 /*
2748 * Get here if this CPU took its interrupt from user
2749 * mode or from the idle loop, and if this is not a
2750 * nested interrupt. In this case, the CPU is in
2751 * a quiescent state, so note it.
2752 *
2753 * No memory barrier is required here because both
2754 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2755 * variables that other CPUs neither access nor modify,
2756 * at least not while the corresponding CPU is online.
2757 */
2758
2759 rcu_sched_qs();
2760 rcu_bh_qs();
2761
2762 } else if (!in_softirq()) {
2763
2764 /*
2765 * Get here if this CPU did not take its interrupt from
2766 * softirq, in other words, if it is not interrupting
2767 * a rcu_bh read-side critical section. This is an _bh
2768 * critical section, so note it.
2769 */
2770
2771 rcu_bh_qs();
2772 }
2773 rcu_preempt_check_callbacks();
2774 if (rcu_pending())
2775 invoke_rcu_core();
2776 if (user)
2777 rcu_note_voluntary_context_switch(current);
2778 trace_rcu_utilization(TPS("End scheduler-tick"));
2779 }
2780
2781 /*
2782 * Scan the leaf rcu_node structures, processing dyntick state for any that
2783 * have not yet encountered a quiescent state, using the function specified.
2784 * Also initiate boosting for any threads blocked on the root rcu_node.
2785 *
2786 * The caller must have suppressed start of new grace periods.
2787 */
2788 static void force_qs_rnp(struct rcu_state *rsp,
2789 int (*f)(struct rcu_data *rsp, bool *isidle,
2790 unsigned long *maxj),
2791 bool *isidle, unsigned long *maxj)
2792 {
2793 unsigned long bit;
2794 int cpu;
2795 unsigned long flags;
2796 unsigned long mask;
2797 struct rcu_node *rnp;
2798
2799 rcu_for_each_leaf_node(rsp, rnp) {
2800 cond_resched_rcu_qs();
2801 mask = 0;
2802 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2803 if (rnp->qsmask == 0) {
2804 if (rcu_state_p == &rcu_sched_state ||
2805 rsp != rcu_state_p ||
2806 rcu_preempt_blocked_readers_cgp(rnp)) {
2807 /*
2808 * No point in scanning bits because they
2809 * are all zero. But we might need to
2810 * priority-boost blocked readers.
2811 */
2812 rcu_initiate_boost(rnp, flags);
2813 /* rcu_initiate_boost() releases rnp->lock */
2814 continue;
2815 }
2816 if (rnp->parent &&
2817 (rnp->parent->qsmask & rnp->grpmask)) {
2818 /*
2819 * Race between grace-period
2820 * initialization and task exiting RCU
2821 * read-side critical section: Report.
2822 */
2823 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2824 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2825 continue;
2826 }
2827 }
2828 cpu = rnp->grplo;
2829 bit = 1;
2830 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2831 if ((rnp->qsmask & bit) != 0) {
2832 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2833 mask |= bit;
2834 }
2835 }
2836 if (mask != 0) {
2837 /* Idle/offline CPUs, report (releases rnp->lock. */
2838 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2839 } else {
2840 /* Nothing to do here, so just drop the lock. */
2841 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2842 }
2843 }
2844 }
2845
2846 /*
2847 * Force quiescent states on reluctant CPUs, and also detect which
2848 * CPUs are in dyntick-idle mode.
2849 */
2850 static void force_quiescent_state(struct rcu_state *rsp)
2851 {
2852 unsigned long flags;
2853 bool ret;
2854 struct rcu_node *rnp;
2855 struct rcu_node *rnp_old = NULL;
2856
2857 /* Funnel through hierarchy to reduce memory contention. */
2858 rnp = __this_cpu_read(rsp->rda->mynode);
2859 for (; rnp != NULL; rnp = rnp->parent) {
2860 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2861 !raw_spin_trylock(&rnp->fqslock);
2862 if (rnp_old != NULL)
2863 raw_spin_unlock(&rnp_old->fqslock);
2864 if (ret) {
2865 rsp->n_force_qs_lh++;
2866 return;
2867 }
2868 rnp_old = rnp;
2869 }
2870 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2871
2872 /* Reached the root of the rcu_node tree, acquire lock. */
2873 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2874 raw_spin_unlock(&rnp_old->fqslock);
2875 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2876 rsp->n_force_qs_lh++;
2877 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2878 return; /* Someone beat us to it. */
2879 }
2880 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2881 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2882 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2883 }
2884
2885 /*
2886 * This does the RCU core processing work for the specified rcu_state
2887 * and rcu_data structures. This may be called only from the CPU to
2888 * whom the rdp belongs.
2889 */
2890 static void
2891 __rcu_process_callbacks(struct rcu_state *rsp)
2892 {
2893 unsigned long flags;
2894 bool needwake;
2895 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2896
2897 WARN_ON_ONCE(rdp->beenonline == 0);
2898
2899 /* Update RCU state based on any recent quiescent states. */
2900 rcu_check_quiescent_state(rsp, rdp);
2901
2902 /* Does this CPU require a not-yet-started grace period? */
2903 local_irq_save(flags);
2904 if (cpu_needs_another_gp(rsp, rdp)) {
2905 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2906 needwake = rcu_start_gp(rsp);
2907 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2908 if (needwake)
2909 rcu_gp_kthread_wake(rsp);
2910 } else {
2911 local_irq_restore(flags);
2912 }
2913
2914 /* If there are callbacks ready, invoke them. */
2915 if (cpu_has_callbacks_ready_to_invoke(rdp))
2916 invoke_rcu_callbacks(rsp, rdp);
2917
2918 /* Do any needed deferred wakeups of rcuo kthreads. */
2919 do_nocb_deferred_wakeup(rdp);
2920 }
2921
2922 /*
2923 * Do RCU core processing for the current CPU.
2924 */
2925 static void rcu_process_callbacks(struct softirq_action *unused)
2926 {
2927 struct rcu_state *rsp;
2928
2929 if (cpu_is_offline(smp_processor_id()))
2930 return;
2931 trace_rcu_utilization(TPS("Start RCU core"));
2932 for_each_rcu_flavor(rsp)
2933 __rcu_process_callbacks(rsp);
2934 trace_rcu_utilization(TPS("End RCU core"));
2935 }
2936
2937 /*
2938 * Schedule RCU callback invocation. If the specified type of RCU
2939 * does not support RCU priority boosting, just do a direct call,
2940 * otherwise wake up the per-CPU kernel kthread. Note that because we
2941 * are running on the current CPU with softirqs disabled, the
2942 * rcu_cpu_kthread_task cannot disappear out from under us.
2943 */
2944 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2945 {
2946 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2947 return;
2948 if (likely(!rsp->boost)) {
2949 rcu_do_batch(rsp, rdp);
2950 return;
2951 }
2952 invoke_rcu_callbacks_kthread();
2953 }
2954
2955 static void invoke_rcu_core(void)
2956 {
2957 if (cpu_online(smp_processor_id()))
2958 raise_softirq(RCU_SOFTIRQ);
2959 }
2960
2961 /*
2962 * Handle any core-RCU processing required by a call_rcu() invocation.
2963 */
2964 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2965 struct rcu_head *head, unsigned long flags)
2966 {
2967 bool needwake;
2968
2969 /*
2970 * If called from an extended quiescent state, invoke the RCU
2971 * core in order to force a re-evaluation of RCU's idleness.
2972 */
2973 if (!rcu_is_watching())
2974 invoke_rcu_core();
2975
2976 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2977 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2978 return;
2979
2980 /*
2981 * Force the grace period if too many callbacks or too long waiting.
2982 * Enforce hysteresis, and don't invoke force_quiescent_state()
2983 * if some other CPU has recently done so. Also, don't bother
2984 * invoking force_quiescent_state() if the newly enqueued callback
2985 * is the only one waiting for a grace period to complete.
2986 */
2987 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2988
2989 /* Are we ignoring a completed grace period? */
2990 note_gp_changes(rsp, rdp);
2991
2992 /* Start a new grace period if one not already started. */
2993 if (!rcu_gp_in_progress(rsp)) {
2994 struct rcu_node *rnp_root = rcu_get_root(rsp);
2995
2996 raw_spin_lock_rcu_node(rnp_root);
2997 needwake = rcu_start_gp(rsp);
2998 raw_spin_unlock_rcu_node(rnp_root);
2999 if (needwake)
3000 rcu_gp_kthread_wake(rsp);
3001 } else {
3002 /* Give the grace period a kick. */
3003 rdp->blimit = LONG_MAX;
3004 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3005 *rdp->nxttail[RCU_DONE_TAIL] != head)
3006 force_quiescent_state(rsp);
3007 rdp->n_force_qs_snap = rsp->n_force_qs;
3008 rdp->qlen_last_fqs_check = rdp->qlen;
3009 }
3010 }
3011 }
3012
3013 /*
3014 * RCU callback function to leak a callback.
3015 */
3016 static void rcu_leak_callback(struct rcu_head *rhp)
3017 {
3018 }
3019
3020 /*
3021 * Helper function for call_rcu() and friends. The cpu argument will
3022 * normally be -1, indicating "currently running CPU". It may specify
3023 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3024 * is expected to specify a CPU.
3025 */
3026 static void
3027 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3028 struct rcu_state *rsp, int cpu, bool lazy)
3029 {
3030 unsigned long flags;
3031 struct rcu_data *rdp;
3032
3033 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3034 if (debug_rcu_head_queue(head)) {
3035 /* Probable double call_rcu(), so leak the callback. */
3036 WRITE_ONCE(head->func, rcu_leak_callback);
3037 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3038 return;
3039 }
3040 head->func = func;
3041 head->next = NULL;
3042
3043 /*
3044 * Opportunistically note grace-period endings and beginnings.
3045 * Note that we might see a beginning right after we see an
3046 * end, but never vice versa, since this CPU has to pass through
3047 * a quiescent state betweentimes.
3048 */
3049 local_irq_save(flags);
3050 rdp = this_cpu_ptr(rsp->rda);
3051
3052 /* Add the callback to our list. */
3053 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3054 int offline;
3055
3056 if (cpu != -1)
3057 rdp = per_cpu_ptr(rsp->rda, cpu);
3058 if (likely(rdp->mynode)) {
3059 /* Post-boot, so this should be for a no-CBs CPU. */
3060 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3061 WARN_ON_ONCE(offline);
3062 /* Offline CPU, _call_rcu() illegal, leak callback. */
3063 local_irq_restore(flags);
3064 return;
3065 }
3066 /*
3067 * Very early boot, before rcu_init(). Initialize if needed
3068 * and then drop through to queue the callback.
3069 */
3070 BUG_ON(cpu != -1);
3071 WARN_ON_ONCE(!rcu_is_watching());
3072 if (!likely(rdp->nxtlist))
3073 init_default_callback_list(rdp);
3074 }
3075 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3076 if (lazy)
3077 rdp->qlen_lazy++;
3078 else
3079 rcu_idle_count_callbacks_posted();
3080 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3081 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3082 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3083
3084 if (__is_kfree_rcu_offset((unsigned long)func))
3085 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3086 rdp->qlen_lazy, rdp->qlen);
3087 else
3088 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3089
3090 /* Go handle any RCU core processing required. */
3091 __call_rcu_core(rsp, rdp, head, flags);
3092 local_irq_restore(flags);
3093 }
3094
3095 /*
3096 * Queue an RCU-sched callback for invocation after a grace period.
3097 */
3098 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3099 {
3100 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3101 }
3102 EXPORT_SYMBOL_GPL(call_rcu_sched);
3103
3104 /*
3105 * Queue an RCU callback for invocation after a quicker grace period.
3106 */
3107 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3108 {
3109 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3110 }
3111 EXPORT_SYMBOL_GPL(call_rcu_bh);
3112
3113 /*
3114 * Queue an RCU callback for lazy invocation after a grace period.
3115 * This will likely be later named something like "call_rcu_lazy()",
3116 * but this change will require some way of tagging the lazy RCU
3117 * callbacks in the list of pending callbacks. Until then, this
3118 * function may only be called from __kfree_rcu().
3119 */
3120 void kfree_call_rcu(struct rcu_head *head,
3121 rcu_callback_t func)
3122 {
3123 __call_rcu(head, func, rcu_state_p, -1, 1);
3124 }
3125 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3126
3127 /*
3128 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3129 * any blocking grace-period wait automatically implies a grace period
3130 * if there is only one CPU online at any point time during execution
3131 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3132 * occasionally incorrectly indicate that there are multiple CPUs online
3133 * when there was in fact only one the whole time, as this just adds
3134 * some overhead: RCU still operates correctly.
3135 */
3136 static inline int rcu_blocking_is_gp(void)
3137 {
3138 int ret;
3139
3140 might_sleep(); /* Check for RCU read-side critical section. */
3141 preempt_disable();
3142 ret = num_online_cpus() <= 1;
3143 preempt_enable();
3144 return ret;
3145 }
3146
3147 /**
3148 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3149 *
3150 * Control will return to the caller some time after a full rcu-sched
3151 * grace period has elapsed, in other words after all currently executing
3152 * rcu-sched read-side critical sections have completed. These read-side
3153 * critical sections are delimited by rcu_read_lock_sched() and
3154 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3155 * local_irq_disable(), and so on may be used in place of
3156 * rcu_read_lock_sched().
3157 *
3158 * This means that all preempt_disable code sequences, including NMI and
3159 * non-threaded hardware-interrupt handlers, in progress on entry will
3160 * have completed before this primitive returns. However, this does not
3161 * guarantee that softirq handlers will have completed, since in some
3162 * kernels, these handlers can run in process context, and can block.
3163 *
3164 * Note that this guarantee implies further memory-ordering guarantees.
3165 * On systems with more than one CPU, when synchronize_sched() returns,
3166 * each CPU is guaranteed to have executed a full memory barrier since the
3167 * end of its last RCU-sched read-side critical section whose beginning
3168 * preceded the call to synchronize_sched(). In addition, each CPU having
3169 * an RCU read-side critical section that extends beyond the return from
3170 * synchronize_sched() is guaranteed to have executed a full memory barrier
3171 * after the beginning of synchronize_sched() and before the beginning of
3172 * that RCU read-side critical section. Note that these guarantees include
3173 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3174 * that are executing in the kernel.
3175 *
3176 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3177 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3178 * to have executed a full memory barrier during the execution of
3179 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3180 * again only if the system has more than one CPU).
3181 *
3182 * This primitive provides the guarantees made by the (now removed)
3183 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3184 * guarantees that rcu_read_lock() sections will have completed.
3185 * In "classic RCU", these two guarantees happen to be one and
3186 * the same, but can differ in realtime RCU implementations.
3187 */
3188 void synchronize_sched(void)
3189 {
3190 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3191 lock_is_held(&rcu_lock_map) ||
3192 lock_is_held(&rcu_sched_lock_map),
3193 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3194 if (rcu_blocking_is_gp())
3195 return;
3196 if (rcu_gp_is_expedited())
3197 synchronize_sched_expedited();
3198 else
3199 wait_rcu_gp(call_rcu_sched);
3200 }
3201 EXPORT_SYMBOL_GPL(synchronize_sched);
3202
3203 /**
3204 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3205 *
3206 * Control will return to the caller some time after a full rcu_bh grace
3207 * period has elapsed, in other words after all currently executing rcu_bh
3208 * read-side critical sections have completed. RCU read-side critical
3209 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3210 * and may be nested.
3211 *
3212 * See the description of synchronize_sched() for more detailed information
3213 * on memory ordering guarantees.
3214 */
3215 void synchronize_rcu_bh(void)
3216 {
3217 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3218 lock_is_held(&rcu_lock_map) ||
3219 lock_is_held(&rcu_sched_lock_map),
3220 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3221 if (rcu_blocking_is_gp())
3222 return;
3223 if (rcu_gp_is_expedited())
3224 synchronize_rcu_bh_expedited();
3225 else
3226 wait_rcu_gp(call_rcu_bh);
3227 }
3228 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3229
3230 /**
3231 * get_state_synchronize_rcu - Snapshot current RCU state
3232 *
3233 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3234 * to determine whether or not a full grace period has elapsed in the
3235 * meantime.
3236 */
3237 unsigned long get_state_synchronize_rcu(void)
3238 {
3239 /*
3240 * Any prior manipulation of RCU-protected data must happen
3241 * before the load from ->gpnum.
3242 */
3243 smp_mb(); /* ^^^ */
3244
3245 /*
3246 * Make sure this load happens before the purportedly
3247 * time-consuming work between get_state_synchronize_rcu()
3248 * and cond_synchronize_rcu().
3249 */
3250 return smp_load_acquire(&rcu_state_p->gpnum);
3251 }
3252 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3253
3254 /**
3255 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3256 *
3257 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3258 *
3259 * If a full RCU grace period has elapsed since the earlier call to
3260 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3261 * synchronize_rcu() to wait for a full grace period.
3262 *
3263 * Yes, this function does not take counter wrap into account. But
3264 * counter wrap is harmless. If the counter wraps, we have waited for
3265 * more than 2 billion grace periods (and way more on a 64-bit system!),
3266 * so waiting for one additional grace period should be just fine.
3267 */
3268 void cond_synchronize_rcu(unsigned long oldstate)
3269 {
3270 unsigned long newstate;
3271
3272 /*
3273 * Ensure that this load happens before any RCU-destructive
3274 * actions the caller might carry out after we return.
3275 */
3276 newstate = smp_load_acquire(&rcu_state_p->completed);
3277 if (ULONG_CMP_GE(oldstate, newstate))
3278 synchronize_rcu();
3279 }
3280 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3281
3282 /**
3283 * get_state_synchronize_sched - Snapshot current RCU-sched state
3284 *
3285 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3286 * to determine whether or not a full grace period has elapsed in the
3287 * meantime.
3288 */
3289 unsigned long get_state_synchronize_sched(void)
3290 {
3291 /*
3292 * Any prior manipulation of RCU-protected data must happen
3293 * before the load from ->gpnum.
3294 */
3295 smp_mb(); /* ^^^ */
3296
3297 /*
3298 * Make sure this load happens before the purportedly
3299 * time-consuming work between get_state_synchronize_sched()
3300 * and cond_synchronize_sched().
3301 */
3302 return smp_load_acquire(&rcu_sched_state.gpnum);
3303 }
3304 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3305
3306 /**
3307 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3308 *
3309 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3310 *
3311 * If a full RCU-sched grace period has elapsed since the earlier call to
3312 * get_state_synchronize_sched(), just return. Otherwise, invoke
3313 * synchronize_sched() to wait for a full grace period.
3314 *
3315 * Yes, this function does not take counter wrap into account. But
3316 * counter wrap is harmless. If the counter wraps, we have waited for
3317 * more than 2 billion grace periods (and way more on a 64-bit system!),
3318 * so waiting for one additional grace period should be just fine.
3319 */
3320 void cond_synchronize_sched(unsigned long oldstate)
3321 {
3322 unsigned long newstate;
3323
3324 /*
3325 * Ensure that this load happens before any RCU-destructive
3326 * actions the caller might carry out after we return.
3327 */
3328 newstate = smp_load_acquire(&rcu_sched_state.completed);
3329 if (ULONG_CMP_GE(oldstate, newstate))
3330 synchronize_sched();
3331 }
3332 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3333
3334 /* Adjust sequence number for start of update-side operation. */
3335 static void rcu_seq_start(unsigned long *sp)
3336 {
3337 WRITE_ONCE(*sp, *sp + 1);
3338 smp_mb(); /* Ensure update-side operation after counter increment. */
3339 WARN_ON_ONCE(!(*sp & 0x1));
3340 }
3341
3342 /* Adjust sequence number for end of update-side operation. */
3343 static void rcu_seq_end(unsigned long *sp)
3344 {
3345 smp_mb(); /* Ensure update-side operation before counter increment. */
3346 WRITE_ONCE(*sp, *sp + 1);
3347 WARN_ON_ONCE(*sp & 0x1);
3348 }
3349
3350 /* Take a snapshot of the update side's sequence number. */
3351 static unsigned long rcu_seq_snap(unsigned long *sp)
3352 {
3353 unsigned long s;
3354
3355 s = (READ_ONCE(*sp) + 3) & ~0x1;
3356 smp_mb(); /* Above access must not bleed into critical section. */
3357 return s;
3358 }
3359
3360 /*
3361 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3362 * full update-side operation has occurred.
3363 */
3364 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3365 {
3366 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3367 }
3368
3369 /* Wrapper functions for expedited grace periods. */
3370 static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3371 {
3372 rcu_seq_start(&rsp->expedited_sequence);
3373 }
3374 static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3375 {
3376 rcu_seq_end(&rsp->expedited_sequence);
3377 smp_mb(); /* Ensure that consecutive grace periods serialize. */
3378 }
3379 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3380 {
3381 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3382 return rcu_seq_snap(&rsp->expedited_sequence);
3383 }
3384 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3385 {
3386 return rcu_seq_done(&rsp->expedited_sequence, s);
3387 }
3388
3389 /*
3390 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3391 * recent CPU-online activity. Note that these masks are not cleared
3392 * when CPUs go offline, so they reflect the union of all CPUs that have
3393 * ever been online. This means that this function normally takes its
3394 * no-work-to-do fastpath.
3395 */
3396 static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3397 {
3398 bool done;
3399 unsigned long flags;
3400 unsigned long mask;
3401 unsigned long oldmask;
3402 int ncpus = READ_ONCE(rsp->ncpus);
3403 struct rcu_node *rnp;
3404 struct rcu_node *rnp_up;
3405
3406 /* If no new CPUs onlined since last time, nothing to do. */
3407 if (likely(ncpus == rsp->ncpus_snap))
3408 return;
3409 rsp->ncpus_snap = ncpus;
3410
3411 /*
3412 * Each pass through the following loop propagates newly onlined
3413 * CPUs for the current rcu_node structure up the rcu_node tree.
3414 */
3415 rcu_for_each_leaf_node(rsp, rnp) {
3416 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3417 if (rnp->expmaskinit == rnp->expmaskinitnext) {
3418 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3419 continue; /* No new CPUs, nothing to do. */
3420 }
3421
3422 /* Update this node's mask, track old value for propagation. */
3423 oldmask = rnp->expmaskinit;
3424 rnp->expmaskinit = rnp->expmaskinitnext;
3425 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3426
3427 /* If was already nonzero, nothing to propagate. */
3428 if (oldmask)
3429 continue;
3430
3431 /* Propagate the new CPU up the tree. */
3432 mask = rnp->grpmask;
3433 rnp_up = rnp->parent;
3434 done = false;
3435 while (rnp_up) {
3436 raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3437 if (rnp_up->expmaskinit)
3438 done = true;
3439 rnp_up->expmaskinit |= mask;
3440 raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
3441 if (done)
3442 break;
3443 mask = rnp_up->grpmask;
3444 rnp_up = rnp_up->parent;
3445 }
3446 }
3447 }
3448
3449 /*
3450 * Reset the ->expmask values in the rcu_node tree in preparation for
3451 * a new expedited grace period.
3452 */
3453 static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3454 {
3455 unsigned long flags;
3456 struct rcu_node *rnp;
3457
3458 sync_exp_reset_tree_hotplug(rsp);
3459 rcu_for_each_node_breadth_first(rsp, rnp) {
3460 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3461 WARN_ON_ONCE(rnp->expmask);
3462 rnp->expmask = rnp->expmaskinit;
3463 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3464 }
3465 }
3466
3467 /*
3468 * Return non-zero if there is no RCU expedited grace period in progress
3469 * for the specified rcu_node structure, in other words, if all CPUs and
3470 * tasks covered by the specified rcu_node structure have done their bit
3471 * for the current expedited grace period. Works only for preemptible
3472 * RCU -- other RCU implementation use other means.
3473 *
3474 * Caller must hold the root rcu_node's exp_funnel_mutex.
3475 */
3476 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3477 {
3478 return rnp->exp_tasks == NULL &&
3479 READ_ONCE(rnp->expmask) == 0;
3480 }
3481
3482 /*
3483 * Report the exit from RCU read-side critical section for the last task
3484 * that queued itself during or before the current expedited preemptible-RCU
3485 * grace period. This event is reported either to the rcu_node structure on
3486 * which the task was queued or to one of that rcu_node structure's ancestors,
3487 * recursively up the tree. (Calm down, calm down, we do the recursion
3488 * iteratively!)
3489 *
3490 * Caller must hold the root rcu_node's exp_funnel_mutex and the
3491 * specified rcu_node structure's ->lock.
3492 */
3493 static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3494 bool wake, unsigned long flags)
3495 __releases(rnp->lock)
3496 {
3497 unsigned long mask;
3498
3499 for (;;) {
3500 if (!sync_rcu_preempt_exp_done(rnp)) {
3501 if (!rnp->expmask)
3502 rcu_initiate_boost(rnp, flags);
3503 else
3504 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3505 break;
3506 }
3507 if (rnp->parent == NULL) {
3508 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3509 if (wake) {
3510 smp_mb(); /* EGP done before wake_up(). */
3511 swake_up(&rsp->expedited_wq);
3512 }
3513 break;
3514 }
3515 mask = rnp->grpmask;
3516 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
3517 rnp = rnp->parent;
3518 raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3519 WARN_ON_ONCE(!(rnp->expmask & mask));
3520 rnp->expmask &= ~mask;
3521 }
3522 }
3523
3524 /*
3525 * Report expedited quiescent state for specified node. This is a
3526 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3527 *
3528 * Caller must hold the root rcu_node's exp_funnel_mutex.
3529 */
3530 static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3531 struct rcu_node *rnp, bool wake)
3532 {
3533 unsigned long flags;
3534
3535 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3536 __rcu_report_exp_rnp(rsp, rnp, wake, flags);
3537 }
3538
3539 /*
3540 * Report expedited quiescent state for multiple CPUs, all covered by the
3541 * specified leaf rcu_node structure. Caller must hold the root
3542 * rcu_node's exp_funnel_mutex.
3543 */
3544 static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3545 unsigned long mask, bool wake)
3546 {
3547 unsigned long flags;
3548
3549 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3550 if (!(rnp->expmask & mask)) {
3551 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3552 return;
3553 }
3554 rnp->expmask &= ~mask;
3555 __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3556 }
3557
3558 /*
3559 * Report expedited quiescent state for specified rcu_data (CPU).
3560 * Caller must hold the root rcu_node's exp_funnel_mutex.
3561 */
3562 static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3563 bool wake)
3564 {
3565 rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3566 }
3567
3568 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3569 static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3570 struct rcu_data *rdp,
3571 atomic_long_t *stat, unsigned long s)
3572 {
3573 if (rcu_exp_gp_seq_done(rsp, s)) {
3574 if (rnp)
3575 mutex_unlock(&rnp->exp_funnel_mutex);
3576 else if (rdp)
3577 mutex_unlock(&rdp->exp_funnel_mutex);
3578 /* Ensure test happens before caller kfree(). */
3579 smp_mb__before_atomic(); /* ^^^ */
3580 atomic_long_inc(stat);
3581 return true;
3582 }
3583 return false;
3584 }
3585
3586 /*
3587 * Funnel-lock acquisition for expedited grace periods. Returns a
3588 * pointer to the root rcu_node structure, or NULL if some other
3589 * task did the expedited grace period for us.
3590 */
3591 static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3592 {
3593 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3594 struct rcu_node *rnp0;
3595 struct rcu_node *rnp1 = NULL;
3596
3597 /*
3598 * First try directly acquiring the root lock in order to reduce
3599 * latency in the common case where expedited grace periods are
3600 * rare. We check mutex_is_locked() to avoid pathological levels of
3601 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3602 */
3603 rnp0 = rcu_get_root(rsp);
3604 if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3605 if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3606 if (sync_exp_work_done(rsp, rnp0, NULL,
3607 &rdp->expedited_workdone0, s))
3608 return NULL;
3609 return rnp0;
3610 }
3611 }
3612
3613 /*
3614 * Each pass through the following loop works its way
3615 * up the rcu_node tree, returning if others have done the
3616 * work or otherwise falls through holding the root rnp's
3617 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3618 * can be inexact, as it is just promoting locality and is not
3619 * strictly needed for correctness.
3620 */
3621 if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s))
3622 return NULL;
3623 mutex_lock(&rdp->exp_funnel_mutex);
3624 rnp0 = rdp->mynode;
3625 for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3626 if (sync_exp_work_done(rsp, rnp1, rdp,
3627 &rdp->expedited_workdone2, s))
3628 return NULL;
3629 mutex_lock(&rnp0->exp_funnel_mutex);
3630 if (rnp1)
3631 mutex_unlock(&rnp1->exp_funnel_mutex);
3632 else
3633 mutex_unlock(&rdp->exp_funnel_mutex);
3634 rnp1 = rnp0;
3635 }
3636 if (sync_exp_work_done(rsp, rnp1, rdp,
3637 &rdp->expedited_workdone3, s))
3638 return NULL;
3639 return rnp1;
3640 }
3641
3642 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3643 static void sync_sched_exp_handler(void *data)
3644 {
3645 struct rcu_data *rdp;
3646 struct rcu_node *rnp;
3647 struct rcu_state *rsp = data;
3648
3649 rdp = this_cpu_ptr(rsp->rda);
3650 rnp = rdp->mynode;
3651 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3652 __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3653 return;
3654 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3655 resched_cpu(smp_processor_id());
3656 }
3657
3658 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3659 static void sync_sched_exp_online_cleanup(int cpu)
3660 {
3661 struct rcu_data *rdp;
3662 int ret;
3663 struct rcu_node *rnp;
3664 struct rcu_state *rsp = &rcu_sched_state;
3665
3666 rdp = per_cpu_ptr(rsp->rda, cpu);
3667 rnp = rdp->mynode;
3668 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3669 return;
3670 ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3671 WARN_ON_ONCE(ret);
3672 }
3673
3674 /*
3675 * Select the nodes that the upcoming expedited grace period needs
3676 * to wait for.
3677 */
3678 static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3679 smp_call_func_t func)
3680 {
3681 int cpu;
3682 unsigned long flags;
3683 unsigned long mask;
3684 unsigned long mask_ofl_test;
3685 unsigned long mask_ofl_ipi;
3686 int ret;
3687 struct rcu_node *rnp;
3688
3689 sync_exp_reset_tree(rsp);
3690 rcu_for_each_leaf_node(rsp, rnp) {
3691 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3692
3693 /* Each pass checks a CPU for identity, offline, and idle. */
3694 mask_ofl_test = 0;
3695 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3696 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3697 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3698
3699 if (raw_smp_processor_id() == cpu ||
3700 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3701 mask_ofl_test |= rdp->grpmask;
3702 }
3703 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3704
3705 /*
3706 * Need to wait for any blocked tasks as well. Note that
3707 * additional blocking tasks will also block the expedited
3708 * GP until such time as the ->expmask bits are cleared.
3709 */
3710 if (rcu_preempt_has_tasks(rnp))
3711 rnp->exp_tasks = rnp->blkd_tasks.next;
3712 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3713
3714 /* IPI the remaining CPUs for expedited quiescent state. */
3715 mask = 1;
3716 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3717 if (!(mask_ofl_ipi & mask))
3718 continue;
3719 retry_ipi:
3720 ret = smp_call_function_single(cpu, func, rsp, 0);
3721 if (!ret) {
3722 mask_ofl_ipi &= ~mask;
3723 continue;
3724 }
3725 /* Failed, raced with offline. */
3726 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3727 if (cpu_online(cpu) &&
3728 (rnp->expmask & mask)) {
3729 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3730 schedule_timeout_uninterruptible(1);
3731 if (cpu_online(cpu) &&
3732 (rnp->expmask & mask))
3733 goto retry_ipi;
3734 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3735 }
3736 if (!(rnp->expmask & mask))
3737 mask_ofl_ipi &= ~mask;
3738 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3739 }
3740 /* Report quiescent states for those that went offline. */
3741 mask_ofl_test |= mask_ofl_ipi;
3742 if (mask_ofl_test)
3743 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3744 }
3745 }
3746
3747 static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3748 {
3749 int cpu;
3750 unsigned long jiffies_stall;
3751 unsigned long jiffies_start;
3752 unsigned long mask;
3753 int ndetected;
3754 struct rcu_node *rnp;
3755 struct rcu_node *rnp_root = rcu_get_root(rsp);
3756 int ret;
3757
3758 jiffies_stall = rcu_jiffies_till_stall_check();
3759 jiffies_start = jiffies;
3760
3761 for (;;) {
3762 ret = swait_event_timeout(
3763 rsp->expedited_wq,
3764 sync_rcu_preempt_exp_done(rnp_root),
3765 jiffies_stall);
3766 if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
3767 return;
3768 if (ret < 0) {
3769 /* Hit a signal, disable CPU stall warnings. */
3770 swait_event(rsp->expedited_wq,
3771 sync_rcu_preempt_exp_done(rnp_root));
3772 return;
3773 }
3774 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3775 rsp->name);
3776 ndetected = 0;
3777 rcu_for_each_leaf_node(rsp, rnp) {
3778 ndetected = rcu_print_task_exp_stall(rnp);
3779 mask = 1;
3780 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3781 struct rcu_data *rdp;
3782
3783 if (!(rnp->expmask & mask))
3784 continue;
3785 ndetected++;
3786 rdp = per_cpu_ptr(rsp->rda, cpu);
3787 pr_cont(" %d-%c%c%c", cpu,
3788 "O."[cpu_online(cpu)],
3789 "o."[!!(rdp->grpmask & rnp->expmaskinit)],
3790 "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3791 }
3792 mask <<= 1;
3793 }
3794 pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
3795 jiffies - jiffies_start, rsp->expedited_sequence,
3796 rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
3797 if (!ndetected) {
3798 pr_err("blocking rcu_node structures:");
3799 rcu_for_each_node_breadth_first(rsp, rnp) {
3800 if (rnp == rnp_root)
3801 continue; /* printed unconditionally */
3802 if (sync_rcu_preempt_exp_done(rnp))
3803 continue;
3804 pr_cont(" l=%u:%d-%d:%#lx/%c",
3805 rnp->level, rnp->grplo, rnp->grphi,
3806 rnp->expmask,
3807 ".T"[!!rnp->exp_tasks]);
3808 }
3809 pr_cont("\n");
3810 }
3811 rcu_for_each_leaf_node(rsp, rnp) {
3812 mask = 1;
3813 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3814 if (!(rnp->expmask & mask))
3815 continue;
3816 dump_cpu_task(cpu);
3817 }
3818 }
3819 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3820 }
3821 }
3822
3823 /**
3824 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3825 *
3826 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3827 * approach to force the grace period to end quickly. This consumes
3828 * significant time on all CPUs and is unfriendly to real-time workloads,
3829 * so is thus not recommended for any sort of common-case code. In fact,
3830 * if you are using synchronize_sched_expedited() in a loop, please
3831 * restructure your code to batch your updates, and then use a single
3832 * synchronize_sched() instead.
3833 *
3834 * This implementation can be thought of as an application of sequence
3835 * locking to expedited grace periods, but using the sequence counter to
3836 * determine when someone else has already done the work instead of for
3837 * retrying readers.
3838 */
3839 void synchronize_sched_expedited(void)
3840 {
3841 unsigned long s;
3842 struct rcu_node *rnp;
3843 struct rcu_state *rsp = &rcu_sched_state;
3844
3845 /* If only one CPU, this is automatically a grace period. */
3846 if (rcu_blocking_is_gp())
3847 return;
3848
3849 /* If expedited grace periods are prohibited, fall back to normal. */
3850 if (rcu_gp_is_normal()) {
3851 wait_rcu_gp(call_rcu_sched);
3852 return;
3853 }
3854
3855 /* Take a snapshot of the sequence number. */
3856 s = rcu_exp_gp_seq_snap(rsp);
3857
3858 rnp = exp_funnel_lock(rsp, s);
3859 if (rnp == NULL)
3860 return; /* Someone else did our work for us. */
3861
3862 rcu_exp_gp_seq_start(rsp);
3863 sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3864 synchronize_sched_expedited_wait(rsp);
3865
3866 rcu_exp_gp_seq_end(rsp);
3867 mutex_unlock(&rnp->exp_funnel_mutex);
3868 }
3869 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3870
3871 /*
3872 * Check to see if there is any immediate RCU-related work to be done
3873 * by the current CPU, for the specified type of RCU, returning 1 if so.
3874 * The checks are in order of increasing expense: checks that can be
3875 * carried out against CPU-local state are performed first. However,
3876 * we must check for CPU stalls first, else we might not get a chance.
3877 */
3878 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3879 {
3880 struct rcu_node *rnp = rdp->mynode;
3881
3882 rdp->n_rcu_pending++;
3883
3884 /* Check for CPU stalls, if enabled. */
3885 check_cpu_stall(rsp, rdp);
3886
3887 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3888 if (rcu_nohz_full_cpu(rsp))
3889 return 0;
3890
3891 /* Is the RCU core waiting for a quiescent state from this CPU? */
3892 if (rcu_scheduler_fully_active &&
3893 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3894 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3895 rdp->n_rp_core_needs_qs++;
3896 } else if (rdp->core_needs_qs &&
3897 (!rdp->cpu_no_qs.b.norm ||
3898 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3899 rdp->n_rp_report_qs++;
3900 return 1;
3901 }
3902
3903 /* Does this CPU have callbacks ready to invoke? */
3904 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3905 rdp->n_rp_cb_ready++;
3906 return 1;
3907 }
3908
3909 /* Has RCU gone idle with this CPU needing another grace period? */
3910 if (cpu_needs_another_gp(rsp, rdp)) {
3911 rdp->n_rp_cpu_needs_gp++;
3912 return 1;
3913 }
3914
3915 /* Has another RCU grace period completed? */
3916 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3917 rdp->n_rp_gp_completed++;
3918 return 1;
3919 }
3920
3921 /* Has a new RCU grace period started? */
3922 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3923 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3924 rdp->n_rp_gp_started++;
3925 return 1;
3926 }
3927
3928 /* Does this CPU need a deferred NOCB wakeup? */
3929 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3930 rdp->n_rp_nocb_defer_wakeup++;
3931 return 1;
3932 }
3933
3934 /* nothing to do */
3935 rdp->n_rp_need_nothing++;
3936 return 0;
3937 }
3938
3939 /*
3940 * Check to see if there is any immediate RCU-related work to be done
3941 * by the current CPU, returning 1 if so. This function is part of the
3942 * RCU implementation; it is -not- an exported member of the RCU API.
3943 */
3944 static int rcu_pending(void)
3945 {
3946 struct rcu_state *rsp;
3947
3948 for_each_rcu_flavor(rsp)
3949 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3950 return 1;
3951 return 0;
3952 }
3953
3954 /*
3955 * Return true if the specified CPU has any callback. If all_lazy is
3956 * non-NULL, store an indication of whether all callbacks are lazy.
3957 * (If there are no callbacks, all of them are deemed to be lazy.)
3958 */
3959 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3960 {
3961 bool al = true;
3962 bool hc = false;
3963 struct rcu_data *rdp;
3964 struct rcu_state *rsp;
3965
3966 for_each_rcu_flavor(rsp) {
3967 rdp = this_cpu_ptr(rsp->rda);
3968 if (!rdp->nxtlist)
3969 continue;
3970 hc = true;
3971 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3972 al = false;
3973 break;
3974 }
3975 }
3976 if (all_lazy)
3977 *all_lazy = al;
3978 return hc;
3979 }
3980
3981 /*
3982 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3983 * the compiler is expected to optimize this away.
3984 */
3985 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3986 int cpu, unsigned long done)
3987 {
3988 trace_rcu_barrier(rsp->name, s, cpu,
3989 atomic_read(&rsp->barrier_cpu_count), done);
3990 }
3991
3992 /*
3993 * RCU callback function for _rcu_barrier(). If we are last, wake
3994 * up the task executing _rcu_barrier().
3995 */
3996 static void rcu_barrier_callback(struct rcu_head *rhp)
3997 {
3998 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3999 struct rcu_state *rsp = rdp->rsp;
4000
4001 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4002 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4003 complete(&rsp->barrier_completion);
4004 } else {
4005 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4006 }
4007 }
4008
4009 /*
4010 * Called with preemption disabled, and from cross-cpu IRQ context.
4011 */
4012 static void rcu_barrier_func(void *type)
4013 {
4014 struct rcu_state *rsp = type;
4015 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4016
4017 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4018 atomic_inc(&rsp->barrier_cpu_count);
4019 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4020 }
4021
4022 /*
4023 * Orchestrate the specified type of RCU barrier, waiting for all
4024 * RCU callbacks of the specified type to complete.
4025 */
4026 static void _rcu_barrier(struct rcu_state *rsp)
4027 {
4028 int cpu;
4029 struct rcu_data *rdp;
4030 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4031
4032 _rcu_barrier_trace(rsp, "Begin", -1, s);
4033
4034 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4035 mutex_lock(&rsp->barrier_mutex);
4036
4037 /* Did someone else do our work for us? */
4038 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4039 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4040 smp_mb(); /* caller's subsequent code after above check. */
4041 mutex_unlock(&rsp->barrier_mutex);
4042 return;
4043 }
4044
4045 /* Mark the start of the barrier operation. */
4046 rcu_seq_start(&rsp->barrier_sequence);
4047 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4048
4049 /*
4050 * Initialize the count to one rather than to zero in order to
4051 * avoid a too-soon return to zero in case of a short grace period
4052 * (or preemption of this task). Exclude CPU-hotplug operations
4053 * to ensure that no offline CPU has callbacks queued.
4054 */
4055 init_completion(&rsp->barrier_completion);
4056 atomic_set(&rsp->barrier_cpu_count, 1);
4057 get_online_cpus();
4058
4059 /*
4060 * Force each CPU with callbacks to register a new callback.
4061 * When that callback is invoked, we will know that all of the
4062 * corresponding CPU's preceding callbacks have been invoked.
4063 */
4064 for_each_possible_cpu(cpu) {
4065 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
4066 continue;
4067 rdp = per_cpu_ptr(rsp->rda, cpu);
4068 if (rcu_is_nocb_cpu(cpu)) {
4069 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4070 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4071 rsp->barrier_sequence);
4072 } else {
4073 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4074 rsp->barrier_sequence);
4075 smp_mb__before_atomic();
4076 atomic_inc(&rsp->barrier_cpu_count);
4077 __call_rcu(&rdp->barrier_head,
4078 rcu_barrier_callback, rsp, cpu, 0);
4079 }
4080 } else if (READ_ONCE(rdp->qlen)) {
4081 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4082 rsp->barrier_sequence);
4083 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4084 } else {
4085 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4086 rsp->barrier_sequence);
4087 }
4088 }
4089 put_online_cpus();
4090
4091 /*
4092 * Now that we have an rcu_barrier_callback() callback on each
4093 * CPU, and thus each counted, remove the initial count.
4094 */
4095 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4096 complete(&rsp->barrier_completion);
4097
4098 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4099 wait_for_completion(&rsp->barrier_completion);
4100
4101 /* Mark the end of the barrier operation. */
4102 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4103 rcu_seq_end(&rsp->barrier_sequence);
4104
4105 /* Other rcu_barrier() invocations can now safely proceed. */
4106 mutex_unlock(&rsp->barrier_mutex);
4107 }
4108
4109 /**
4110 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4111 */
4112 void rcu_barrier_bh(void)
4113 {
4114 _rcu_barrier(&rcu_bh_state);
4115 }
4116 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4117
4118 /**
4119 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4120 */
4121 void rcu_barrier_sched(void)
4122 {
4123 _rcu_barrier(&rcu_sched_state);
4124 }
4125 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4126
4127 /*
4128 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4129 * first CPU in a given leaf rcu_node structure coming online. The caller
4130 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4131 * disabled.
4132 */
4133 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4134 {
4135 long mask;
4136 struct rcu_node *rnp = rnp_leaf;
4137
4138 for (;;) {
4139 mask = rnp->grpmask;
4140 rnp = rnp->parent;
4141 if (rnp == NULL)
4142 return;
4143 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4144 rnp->qsmaskinit |= mask;
4145 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4146 }
4147 }
4148
4149 /*
4150 * Do boot-time initialization of a CPU's per-CPU RCU data.
4151 */
4152 static void __init
4153 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4154 {
4155 unsigned long flags;
4156 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4157 struct rcu_node *rnp = rcu_get_root(rsp);
4158
4159 /* Set up local state, ensuring consistent view of global state. */
4160 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4161 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
4162 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4163 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4164 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4165 rdp->cpu = cpu;
4166 rdp->rsp = rsp;
4167 mutex_init(&rdp->exp_funnel_mutex);
4168 rcu_boot_init_nocb_percpu_data(rdp);
4169 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4170 }
4171
4172 /*
4173 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4174 * offline event can be happening at a given time. Note also that we
4175 * can accept some slop in the rsp->completed access due to the fact
4176 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4177 */
4178 static void
4179 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4180 {
4181 unsigned long flags;
4182 unsigned long mask;
4183 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4184 struct rcu_node *rnp = rcu_get_root(rsp);
4185
4186 /* Set up local state, ensuring consistent view of global state. */
4187 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4188 rdp->qlen_last_fqs_check = 0;
4189 rdp->n_force_qs_snap = rsp->n_force_qs;
4190 rdp->blimit = blimit;
4191 if (!rdp->nxtlist)
4192 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
4193 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4194 rcu_sysidle_init_percpu_data(rdp->dynticks);
4195 atomic_set(&rdp->dynticks->dynticks,
4196 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
4197 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4198
4199 /*
4200 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4201 * propagation up the rcu_node tree will happen at the beginning
4202 * of the next grace period.
4203 */
4204 rnp = rdp->mynode;
4205 mask = rdp->grpmask;
4206 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4207 rnp->qsmaskinitnext |= mask;
4208 rnp->expmaskinitnext |= mask;
4209 if (!rdp->beenonline)
4210 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4211 rdp->beenonline = true; /* We have now been online. */
4212 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4213 rdp->completed = rnp->completed;
4214 rdp->cpu_no_qs.b.norm = true;
4215 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4216 rdp->core_needs_qs = false;
4217 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4218 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4219 }
4220
4221 static void rcu_prepare_cpu(int cpu)
4222 {
4223 struct rcu_state *rsp;
4224
4225 for_each_rcu_flavor(rsp)
4226 rcu_init_percpu_data(cpu, rsp);
4227 }
4228
4229 #ifdef CONFIG_HOTPLUG_CPU
4230 /*
4231 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4232 * function. We now remove it from the rcu_node tree's ->qsmaskinit
4233 * bit masks.
4234 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4235 * function. We now remove it from the rcu_node tree's ->qsmaskinit
4236 * bit masks.
4237 */
4238 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
4239 {
4240 unsigned long flags;
4241 unsigned long mask;
4242 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4243 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4244
4245 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4246 return;
4247
4248 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4249 mask = rdp->grpmask;
4250 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4251 rnp->qsmaskinitnext &= ~mask;
4252 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4253 }
4254
4255 void rcu_report_dead(unsigned int cpu)
4256 {
4257 struct rcu_state *rsp;
4258
4259 /* QS for any half-done expedited RCU-sched GP. */
4260 preempt_disable();
4261 rcu_report_exp_rdp(&rcu_sched_state,
4262 this_cpu_ptr(rcu_sched_state.rda), true);
4263 preempt_enable();
4264 for_each_rcu_flavor(rsp)
4265 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4266 }
4267 #endif
4268
4269 /*
4270 * Handle CPU online/offline notification events.
4271 */
4272 int rcu_cpu_notify(struct notifier_block *self,
4273 unsigned long action, void *hcpu)
4274 {
4275 long cpu = (long)hcpu;
4276 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4277 struct rcu_node *rnp = rdp->mynode;
4278 struct rcu_state *rsp;
4279
4280 switch (action) {
4281 case CPU_UP_PREPARE:
4282 case CPU_UP_PREPARE_FROZEN:
4283 rcu_prepare_cpu(cpu);
4284 rcu_prepare_kthreads(cpu);
4285 rcu_spawn_all_nocb_kthreads(cpu);
4286 break;
4287 case CPU_ONLINE:
4288 case CPU_DOWN_FAILED:
4289 sync_sched_exp_online_cleanup(cpu);
4290 rcu_boost_kthread_setaffinity(rnp, -1);
4291 break;
4292 case CPU_DOWN_PREPARE:
4293 rcu_boost_kthread_setaffinity(rnp, cpu);
4294 break;
4295 case CPU_DYING:
4296 case CPU_DYING_FROZEN:
4297 for_each_rcu_flavor(rsp)
4298 rcu_cleanup_dying_cpu(rsp);
4299 break;
4300 case CPU_DEAD:
4301 case CPU_DEAD_FROZEN:
4302 case CPU_UP_CANCELED:
4303 case CPU_UP_CANCELED_FROZEN:
4304 for_each_rcu_flavor(rsp) {
4305 rcu_cleanup_dead_cpu(cpu, rsp);
4306 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4307 }
4308 break;
4309 default:
4310 break;
4311 }
4312 return NOTIFY_OK;
4313 }
4314
4315 static int rcu_pm_notify(struct notifier_block *self,
4316 unsigned long action, void *hcpu)
4317 {
4318 switch (action) {
4319 case PM_HIBERNATION_PREPARE:
4320 case PM_SUSPEND_PREPARE:
4321 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4322 rcu_expedite_gp();
4323 break;
4324 case PM_POST_HIBERNATION:
4325 case PM_POST_SUSPEND:
4326 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4327 rcu_unexpedite_gp();
4328 break;
4329 default:
4330 break;
4331 }
4332 return NOTIFY_OK;
4333 }
4334
4335 /*
4336 * Spawn the kthreads that handle each RCU flavor's grace periods.
4337 */
4338 static int __init rcu_spawn_gp_kthread(void)
4339 {
4340 unsigned long flags;
4341 int kthread_prio_in = kthread_prio;
4342 struct rcu_node *rnp;
4343 struct rcu_state *rsp;
4344 struct sched_param sp;
4345 struct task_struct *t;
4346
4347 /* Force priority into range. */
4348 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4349 kthread_prio = 1;
4350 else if (kthread_prio < 0)
4351 kthread_prio = 0;
4352 else if (kthread_prio > 99)
4353 kthread_prio = 99;
4354 if (kthread_prio != kthread_prio_in)
4355 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4356 kthread_prio, kthread_prio_in);
4357
4358 rcu_scheduler_fully_active = 1;
4359 for_each_rcu_flavor(rsp) {
4360 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4361 BUG_ON(IS_ERR(t));
4362 rnp = rcu_get_root(rsp);
4363 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4364 rsp->gp_kthread = t;
4365 if (kthread_prio) {
4366 sp.sched_priority = kthread_prio;
4367 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4368 }
4369 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4370 wake_up_process(t);
4371 }
4372 rcu_spawn_nocb_kthreads();
4373 rcu_spawn_boost_kthreads();
4374 return 0;
4375 }
4376 early_initcall(rcu_spawn_gp_kthread);
4377
4378 /*
4379 * This function is invoked towards the end of the scheduler's initialization
4380 * process. Before this is called, the idle task might contain
4381 * RCU read-side critical sections (during which time, this idle
4382 * task is booting the system). After this function is called, the
4383 * idle tasks are prohibited from containing RCU read-side critical
4384 * sections. This function also enables RCU lockdep checking.
4385 */
4386 void rcu_scheduler_starting(void)
4387 {
4388 WARN_ON(num_online_cpus() != 1);
4389 WARN_ON(nr_context_switches() > 0);
4390 rcu_scheduler_active = 1;
4391 }
4392
4393 /*
4394 * Compute the per-level fanout, either using the exact fanout specified
4395 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4396 */
4397 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4398 {
4399 int i;
4400
4401 if (rcu_fanout_exact) {
4402 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4403 for (i = rcu_num_lvls - 2; i >= 0; i--)
4404 levelspread[i] = RCU_FANOUT;
4405 } else {
4406 int ccur;
4407 int cprv;
4408
4409 cprv = nr_cpu_ids;
4410 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4411 ccur = levelcnt[i];
4412 levelspread[i] = (cprv + ccur - 1) / ccur;
4413 cprv = ccur;
4414 }
4415 }
4416 }
4417
4418 /*
4419 * Helper function for rcu_init() that initializes one rcu_state structure.
4420 */
4421 static void __init rcu_init_one(struct rcu_state *rsp)
4422 {
4423 static const char * const buf[] = RCU_NODE_NAME_INIT;
4424 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4425 static const char * const exp[] = RCU_EXP_NAME_INIT;
4426 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4427 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4428 static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
4429 static u8 fl_mask = 0x1;
4430
4431 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4432 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4433 int cpustride = 1;
4434 int i;
4435 int j;
4436 struct rcu_node *rnp;
4437
4438 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4439
4440 /* Silence gcc 4.8 false positive about array index out of range. */
4441 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4442 panic("rcu_init_one: rcu_num_lvls out of range");
4443
4444 /* Initialize the level-tracking arrays. */
4445
4446 for (i = 0; i < rcu_num_lvls; i++)
4447 levelcnt[i] = num_rcu_lvl[i];
4448 for (i = 1; i < rcu_num_lvls; i++)
4449 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4450 rcu_init_levelspread(levelspread, levelcnt);
4451 rsp->flavor_mask = fl_mask;
4452 fl_mask <<= 1;
4453
4454 /* Initialize the elements themselves, starting from the leaves. */
4455
4456 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4457 cpustride *= levelspread[i];
4458 rnp = rsp->level[i];
4459 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4460 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4461 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4462 &rcu_node_class[i], buf[i]);
4463 raw_spin_lock_init(&rnp->fqslock);
4464 lockdep_set_class_and_name(&rnp->fqslock,
4465 &rcu_fqs_class[i], fqs[i]);
4466 rnp->gpnum = rsp->gpnum;
4467 rnp->completed = rsp->completed;
4468 rnp->qsmask = 0;
4469 rnp->qsmaskinit = 0;
4470 rnp->grplo = j * cpustride;
4471 rnp->grphi = (j + 1) * cpustride - 1;
4472 if (rnp->grphi >= nr_cpu_ids)
4473 rnp->grphi = nr_cpu_ids - 1;
4474 if (i == 0) {
4475 rnp->grpnum = 0;
4476 rnp->grpmask = 0;
4477 rnp->parent = NULL;
4478 } else {
4479 rnp->grpnum = j % levelspread[i - 1];
4480 rnp->grpmask = 1UL << rnp->grpnum;
4481 rnp->parent = rsp->level[i - 1] +
4482 j / levelspread[i - 1];
4483 }
4484 rnp->level = i;
4485 INIT_LIST_HEAD(&rnp->blkd_tasks);
4486 rcu_init_one_nocb(rnp);
4487 mutex_init(&rnp->exp_funnel_mutex);
4488 lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
4489 &rcu_exp_class[i], exp[i]);
4490 }
4491 }
4492
4493 init_swait_queue_head(&rsp->gp_wq);
4494 init_swait_queue_head(&rsp->expedited_wq);
4495 rnp = rsp->level[rcu_num_lvls - 1];
4496 for_each_possible_cpu(i) {
4497 while (i > rnp->grphi)
4498 rnp++;
4499 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4500 rcu_boot_init_percpu_data(i, rsp);
4501 }
4502 list_add(&rsp->flavors, &rcu_struct_flavors);
4503 }
4504
4505 /*
4506 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4507 * replace the definitions in tree.h because those are needed to size
4508 * the ->node array in the rcu_state structure.
4509 */
4510 static void __init rcu_init_geometry(void)
4511 {
4512 ulong d;
4513 int i;
4514 int rcu_capacity[RCU_NUM_LVLS];
4515
4516 /*
4517 * Initialize any unspecified boot parameters.
4518 * The default values of jiffies_till_first_fqs and
4519 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4520 * value, which is a function of HZ, then adding one for each
4521 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4522 */
4523 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4524 if (jiffies_till_first_fqs == ULONG_MAX)
4525 jiffies_till_first_fqs = d;
4526 if (jiffies_till_next_fqs == ULONG_MAX)
4527 jiffies_till_next_fqs = d;
4528
4529 /* If the compile-time values are accurate, just leave. */
4530 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4531 nr_cpu_ids == NR_CPUS)
4532 return;
4533 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4534 rcu_fanout_leaf, nr_cpu_ids);
4535
4536 /*
4537 * The boot-time rcu_fanout_leaf parameter must be at least two
4538 * and cannot exceed the number of bits in the rcu_node masks.
4539 * Complain and fall back to the compile-time values if this
4540 * limit is exceeded.
4541 */
4542 if (rcu_fanout_leaf < 2 ||
4543 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4544 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4545 WARN_ON(1);
4546 return;
4547 }
4548
4549 /*
4550 * Compute number of nodes that can be handled an rcu_node tree
4551 * with the given number of levels.
4552 */
4553 rcu_capacity[0] = rcu_fanout_leaf;
4554 for (i = 1; i < RCU_NUM_LVLS; i++)
4555 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4556
4557 /*
4558 * The tree must be able to accommodate the configured number of CPUs.
4559 * If this limit is exceeded, fall back to the compile-time values.
4560 */
4561 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4562 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4563 WARN_ON(1);
4564 return;
4565 }
4566
4567 /* Calculate the number of levels in the tree. */
4568 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4569 }
4570 rcu_num_lvls = i + 1;
4571
4572 /* Calculate the number of rcu_nodes at each level of the tree. */
4573 for (i = 0; i < rcu_num_lvls; i++) {
4574 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4575 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4576 }
4577
4578 /* Calculate the total number of rcu_node structures. */
4579 rcu_num_nodes = 0;
4580 for (i = 0; i < rcu_num_lvls; i++)
4581 rcu_num_nodes += num_rcu_lvl[i];
4582 }
4583
4584 /*
4585 * Dump out the structure of the rcu_node combining tree associated
4586 * with the rcu_state structure referenced by rsp.
4587 */
4588 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4589 {
4590 int level = 0;
4591 struct rcu_node *rnp;
4592
4593 pr_info("rcu_node tree layout dump\n");
4594 pr_info(" ");
4595 rcu_for_each_node_breadth_first(rsp, rnp) {
4596 if (rnp->level != level) {
4597 pr_cont("\n");
4598 pr_info(" ");
4599 level = rnp->level;
4600 }
4601 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4602 }
4603 pr_cont("\n");
4604 }
4605
4606 void __init rcu_init(void)
4607 {
4608 int cpu;
4609
4610 rcu_early_boot_tests();
4611
4612 rcu_bootup_announce();
4613 rcu_init_geometry();
4614 rcu_init_one(&rcu_bh_state);
4615 rcu_init_one(&rcu_sched_state);
4616 if (dump_tree)
4617 rcu_dump_rcu_node_tree(&rcu_sched_state);
4618 __rcu_init_preempt();
4619 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4620
4621 /*
4622 * We don't need protection against CPU-hotplug here because
4623 * this is called early in boot, before either interrupts
4624 * or the scheduler are operational.
4625 */
4626 cpu_notifier(rcu_cpu_notify, 0);
4627 pm_notifier(rcu_pm_notify, 0);
4628 for_each_online_cpu(cpu)
4629 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4630 }
4631
4632 #include "tree_plugin.h"
This page took 0.216606 seconds and 6 git commands to generate.