Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include <trace/events/rcu.h>
62
63 #include "rcu.h"
64
65 MODULE_ALIAS("rcutree");
66 #ifdef MODULE_PARAM_PREFIX
67 #undef MODULE_PARAM_PREFIX
68 #endif
69 #define MODULE_PARAM_PREFIX "rcutree."
70
71 /* Data structures. */
72
73 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
74 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
75
76 /*
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
83 */
84 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
85 static char sname##_varname[] = #sname; \
86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
87 struct rcu_state sname##_state = { \
88 .level = { &sname##_state.node[0] }, \
89 .call = cr, \
90 .fqs_state = RCU_GP_IDLE, \
91 .gpnum = 0UL - 300UL, \
92 .completed = 0UL - 300UL, \
93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
95 .orphan_donetail = &sname##_state.orphan_donelist, \
96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
98 .name = sname##_varname, \
99 .abbr = sabbr, \
100 }; \
101 DEFINE_PER_CPU(struct rcu_data, sname##_data)
102
103 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
104 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
105
106 static struct rcu_state *rcu_state;
107 LIST_HEAD(rcu_struct_flavors);
108
109 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
114 NUM_RCU_LVL_0,
115 NUM_RCU_LVL_1,
116 NUM_RCU_LVL_2,
117 NUM_RCU_LVL_3,
118 NUM_RCU_LVL_4,
119 };
120 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
121
122 /*
123 * The rcu_scheduler_active variable transitions from zero to one just
124 * before the first task is spawned. So when this variable is zero, RCU
125 * can assume that there is but one task, allowing RCU to (for example)
126 * optimize synchronize_sched() to a simple barrier(). When this variable
127 * is one, RCU must actually do all the hard work required to detect real
128 * grace periods. This variable is also used to suppress boot-time false
129 * positives from lockdep-RCU error checking.
130 */
131 int rcu_scheduler_active __read_mostly;
132 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133
134 /*
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
141 *
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
144 * a time.
145 */
146 static int rcu_scheduler_fully_active __read_mostly;
147
148 #ifdef CONFIG_RCU_BOOST
149
150 /*
151 * Control variables for per-CPU and per-rcu_node kthreads. These
152 * handle all flavors of RCU.
153 */
154 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
155 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
156 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
157 DEFINE_PER_CPU(char, rcu_cpu_has_work);
158
159 #endif /* #ifdef CONFIG_RCU_BOOST */
160
161 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
162 static void invoke_rcu_core(void);
163 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
164
165 /*
166 * Track the rcutorture test sequence number and the update version
167 * number within a given test. The rcutorture_testseq is incremented
168 * on every rcutorture module load and unload, so has an odd value
169 * when a test is running. The rcutorture_vernum is set to zero
170 * when rcutorture starts and is incremented on each rcutorture update.
171 * These variables enable correlating rcutorture output with the
172 * RCU tracing information.
173 */
174 unsigned long rcutorture_testseq;
175 unsigned long rcutorture_vernum;
176
177 /*
178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
179 * permit this function to be invoked without holding the root rcu_node
180 * structure's ->lock, but of course results can be subject to change.
181 */
182 static int rcu_gp_in_progress(struct rcu_state *rsp)
183 {
184 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
185 }
186
187 /*
188 * Note a quiescent state. Because we do not need to know
189 * how many quiescent states passed, just if there was at least
190 * one since the start of the grace period, this just sets a flag.
191 * The caller must have disabled preemption.
192 */
193 void rcu_sched_qs(int cpu)
194 {
195 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
196
197 if (rdp->passed_quiesce == 0)
198 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
199 rdp->passed_quiesce = 1;
200 }
201
202 void rcu_bh_qs(int cpu)
203 {
204 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
205
206 if (rdp->passed_quiesce == 0)
207 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
208 rdp->passed_quiesce = 1;
209 }
210
211 /*
212 * Note a context switch. This is a quiescent state for RCU-sched,
213 * and requires special handling for preemptible RCU.
214 * The caller must have disabled preemption.
215 */
216 void rcu_note_context_switch(int cpu)
217 {
218 trace_rcu_utilization(TPS("Start context switch"));
219 rcu_sched_qs(cpu);
220 rcu_preempt_note_context_switch(cpu);
221 trace_rcu_utilization(TPS("End context switch"));
222 }
223 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
224
225 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
226 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
227 .dynticks = ATOMIC_INIT(1),
228 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
229 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
230 .dynticks_idle = ATOMIC_INIT(1),
231 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
232 };
233
234 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
235 static long qhimark = 10000; /* If this many pending, ignore blimit. */
236 static long qlowmark = 100; /* Once only this many pending, use blimit. */
237
238 module_param(blimit, long, 0444);
239 module_param(qhimark, long, 0444);
240 module_param(qlowmark, long, 0444);
241
242 static ulong jiffies_till_first_fqs = ULONG_MAX;
243 static ulong jiffies_till_next_fqs = ULONG_MAX;
244
245 module_param(jiffies_till_first_fqs, ulong, 0644);
246 module_param(jiffies_till_next_fqs, ulong, 0644);
247
248 static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
249 struct rcu_data *rdp);
250 static void force_qs_rnp(struct rcu_state *rsp,
251 int (*f)(struct rcu_data *rsp, bool *isidle,
252 unsigned long *maxj),
253 bool *isidle, unsigned long *maxj);
254 static void force_quiescent_state(struct rcu_state *rsp);
255 static int rcu_pending(int cpu);
256
257 /*
258 * Return the number of RCU-sched batches processed thus far for debug & stats.
259 */
260 long rcu_batches_completed_sched(void)
261 {
262 return rcu_sched_state.completed;
263 }
264 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
265
266 /*
267 * Return the number of RCU BH batches processed thus far for debug & stats.
268 */
269 long rcu_batches_completed_bh(void)
270 {
271 return rcu_bh_state.completed;
272 }
273 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
274
275 /*
276 * Force a quiescent state for RCU BH.
277 */
278 void rcu_bh_force_quiescent_state(void)
279 {
280 force_quiescent_state(&rcu_bh_state);
281 }
282 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
283
284 /*
285 * Record the number of times rcutorture tests have been initiated and
286 * terminated. This information allows the debugfs tracing stats to be
287 * correlated to the rcutorture messages, even when the rcutorture module
288 * is being repeatedly loaded and unloaded. In other words, we cannot
289 * store this state in rcutorture itself.
290 */
291 void rcutorture_record_test_transition(void)
292 {
293 rcutorture_testseq++;
294 rcutorture_vernum = 0;
295 }
296 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
297
298 /*
299 * Record the number of writer passes through the current rcutorture test.
300 * This is also used to correlate debugfs tracing stats with the rcutorture
301 * messages.
302 */
303 void rcutorture_record_progress(unsigned long vernum)
304 {
305 rcutorture_vernum++;
306 }
307 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
308
309 /*
310 * Force a quiescent state for RCU-sched.
311 */
312 void rcu_sched_force_quiescent_state(void)
313 {
314 force_quiescent_state(&rcu_sched_state);
315 }
316 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
317
318 /*
319 * Does the CPU have callbacks ready to be invoked?
320 */
321 static int
322 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
323 {
324 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
325 rdp->nxttail[RCU_DONE_TAIL] != NULL;
326 }
327
328 /*
329 * Does the current CPU require a not-yet-started grace period?
330 * The caller must have disabled interrupts to prevent races with
331 * normal callback registry.
332 */
333 static int
334 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
335 {
336 int i;
337
338 if (rcu_gp_in_progress(rsp))
339 return 0; /* No, a grace period is already in progress. */
340 if (rcu_nocb_needs_gp(rsp))
341 return 1; /* Yes, a no-CBs CPU needs one. */
342 if (!rdp->nxttail[RCU_NEXT_TAIL])
343 return 0; /* No, this is a no-CBs (or offline) CPU. */
344 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
345 return 1; /* Yes, this CPU has newly registered callbacks. */
346 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
347 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
348 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
349 rdp->nxtcompleted[i]))
350 return 1; /* Yes, CBs for future grace period. */
351 return 0; /* No grace period needed. */
352 }
353
354 /*
355 * Return the root node of the specified rcu_state structure.
356 */
357 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
358 {
359 return &rsp->node[0];
360 }
361
362 /*
363 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
364 *
365 * If the new value of the ->dynticks_nesting counter now is zero,
366 * we really have entered idle, and must do the appropriate accounting.
367 * The caller must have disabled interrupts.
368 */
369 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
370 bool user)
371 {
372 struct rcu_state *rsp;
373 struct rcu_data *rdp;
374
375 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
376 if (!user && !is_idle_task(current)) {
377 struct task_struct *idle __maybe_unused =
378 idle_task(smp_processor_id());
379
380 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
381 ftrace_dump(DUMP_ORIG);
382 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
383 current->pid, current->comm,
384 idle->pid, idle->comm); /* must be idle task! */
385 }
386 for_each_rcu_flavor(rsp) {
387 rdp = this_cpu_ptr(rsp->rda);
388 do_nocb_deferred_wakeup(rdp);
389 }
390 rcu_prepare_for_idle(smp_processor_id());
391 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
392 smp_mb__before_atomic_inc(); /* See above. */
393 atomic_inc(&rdtp->dynticks);
394 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
395 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
396
397 /*
398 * It is illegal to enter an extended quiescent state while
399 * in an RCU read-side critical section.
400 */
401 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
402 "Illegal idle entry in RCU read-side critical section.");
403 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
404 "Illegal idle entry in RCU-bh read-side critical section.");
405 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
406 "Illegal idle entry in RCU-sched read-side critical section.");
407 }
408
409 /*
410 * Enter an RCU extended quiescent state, which can be either the
411 * idle loop or adaptive-tickless usermode execution.
412 */
413 static void rcu_eqs_enter(bool user)
414 {
415 long long oldval;
416 struct rcu_dynticks *rdtp;
417
418 rdtp = this_cpu_ptr(&rcu_dynticks);
419 oldval = rdtp->dynticks_nesting;
420 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
421 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
422 rdtp->dynticks_nesting = 0;
423 rcu_eqs_enter_common(rdtp, oldval, user);
424 } else {
425 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
426 }
427 }
428
429 /**
430 * rcu_idle_enter - inform RCU that current CPU is entering idle
431 *
432 * Enter idle mode, in other words, -leave- the mode in which RCU
433 * read-side critical sections can occur. (Though RCU read-side
434 * critical sections can occur in irq handlers in idle, a possibility
435 * handled by irq_enter() and irq_exit().)
436 *
437 * We crowbar the ->dynticks_nesting field to zero to allow for
438 * the possibility of usermode upcalls having messed up our count
439 * of interrupt nesting level during the prior busy period.
440 */
441 void rcu_idle_enter(void)
442 {
443 unsigned long flags;
444
445 local_irq_save(flags);
446 rcu_eqs_enter(false);
447 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
448 local_irq_restore(flags);
449 }
450 EXPORT_SYMBOL_GPL(rcu_idle_enter);
451
452 #ifdef CONFIG_RCU_USER_QS
453 /**
454 * rcu_user_enter - inform RCU that we are resuming userspace.
455 *
456 * Enter RCU idle mode right before resuming userspace. No use of RCU
457 * is permitted between this call and rcu_user_exit(). This way the
458 * CPU doesn't need to maintain the tick for RCU maintenance purposes
459 * when the CPU runs in userspace.
460 */
461 void rcu_user_enter(void)
462 {
463 rcu_eqs_enter(1);
464 }
465 #endif /* CONFIG_RCU_USER_QS */
466
467 /**
468 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
469 *
470 * Exit from an interrupt handler, which might possibly result in entering
471 * idle mode, in other words, leaving the mode in which read-side critical
472 * sections can occur.
473 *
474 * This code assumes that the idle loop never does anything that might
475 * result in unbalanced calls to irq_enter() and irq_exit(). If your
476 * architecture violates this assumption, RCU will give you what you
477 * deserve, good and hard. But very infrequently and irreproducibly.
478 *
479 * Use things like work queues to work around this limitation.
480 *
481 * You have been warned.
482 */
483 void rcu_irq_exit(void)
484 {
485 unsigned long flags;
486 long long oldval;
487 struct rcu_dynticks *rdtp;
488
489 local_irq_save(flags);
490 rdtp = this_cpu_ptr(&rcu_dynticks);
491 oldval = rdtp->dynticks_nesting;
492 rdtp->dynticks_nesting--;
493 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
494 if (rdtp->dynticks_nesting)
495 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
496 else
497 rcu_eqs_enter_common(rdtp, oldval, true);
498 rcu_sysidle_enter(rdtp, 1);
499 local_irq_restore(flags);
500 }
501
502 /*
503 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
504 *
505 * If the new value of the ->dynticks_nesting counter was previously zero,
506 * we really have exited idle, and must do the appropriate accounting.
507 * The caller must have disabled interrupts.
508 */
509 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
510 int user)
511 {
512 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
513 atomic_inc(&rdtp->dynticks);
514 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
515 smp_mb__after_atomic_inc(); /* See above. */
516 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
517 rcu_cleanup_after_idle(smp_processor_id());
518 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
519 if (!user && !is_idle_task(current)) {
520 struct task_struct *idle __maybe_unused =
521 idle_task(smp_processor_id());
522
523 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
524 oldval, rdtp->dynticks_nesting);
525 ftrace_dump(DUMP_ORIG);
526 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
527 current->pid, current->comm,
528 idle->pid, idle->comm); /* must be idle task! */
529 }
530 }
531
532 /*
533 * Exit an RCU extended quiescent state, which can be either the
534 * idle loop or adaptive-tickless usermode execution.
535 */
536 static void rcu_eqs_exit(bool user)
537 {
538 struct rcu_dynticks *rdtp;
539 long long oldval;
540
541 rdtp = this_cpu_ptr(&rcu_dynticks);
542 oldval = rdtp->dynticks_nesting;
543 WARN_ON_ONCE(oldval < 0);
544 if (oldval & DYNTICK_TASK_NEST_MASK) {
545 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
546 } else {
547 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
548 rcu_eqs_exit_common(rdtp, oldval, user);
549 }
550 }
551
552 /**
553 * rcu_idle_exit - inform RCU that current CPU is leaving idle
554 *
555 * Exit idle mode, in other words, -enter- the mode in which RCU
556 * read-side critical sections can occur.
557 *
558 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
559 * allow for the possibility of usermode upcalls messing up our count
560 * of interrupt nesting level during the busy period that is just
561 * now starting.
562 */
563 void rcu_idle_exit(void)
564 {
565 unsigned long flags;
566
567 local_irq_save(flags);
568 rcu_eqs_exit(false);
569 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
570 local_irq_restore(flags);
571 }
572 EXPORT_SYMBOL_GPL(rcu_idle_exit);
573
574 #ifdef CONFIG_RCU_USER_QS
575 /**
576 * rcu_user_exit - inform RCU that we are exiting userspace.
577 *
578 * Exit RCU idle mode while entering the kernel because it can
579 * run a RCU read side critical section anytime.
580 */
581 void rcu_user_exit(void)
582 {
583 rcu_eqs_exit(1);
584 }
585 #endif /* CONFIG_RCU_USER_QS */
586
587 /**
588 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
589 *
590 * Enter an interrupt handler, which might possibly result in exiting
591 * idle mode, in other words, entering the mode in which read-side critical
592 * sections can occur.
593 *
594 * Note that the Linux kernel is fully capable of entering an interrupt
595 * handler that it never exits, for example when doing upcalls to
596 * user mode! This code assumes that the idle loop never does upcalls to
597 * user mode. If your architecture does do upcalls from the idle loop (or
598 * does anything else that results in unbalanced calls to the irq_enter()
599 * and irq_exit() functions), RCU will give you what you deserve, good
600 * and hard. But very infrequently and irreproducibly.
601 *
602 * Use things like work queues to work around this limitation.
603 *
604 * You have been warned.
605 */
606 void rcu_irq_enter(void)
607 {
608 unsigned long flags;
609 struct rcu_dynticks *rdtp;
610 long long oldval;
611
612 local_irq_save(flags);
613 rdtp = this_cpu_ptr(&rcu_dynticks);
614 oldval = rdtp->dynticks_nesting;
615 rdtp->dynticks_nesting++;
616 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
617 if (oldval)
618 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
619 else
620 rcu_eqs_exit_common(rdtp, oldval, true);
621 rcu_sysidle_exit(rdtp, 1);
622 local_irq_restore(flags);
623 }
624
625 /**
626 * rcu_nmi_enter - inform RCU of entry to NMI context
627 *
628 * If the CPU was idle with dynamic ticks active, and there is no
629 * irq handler running, this updates rdtp->dynticks_nmi to let the
630 * RCU grace-period handling know that the CPU is active.
631 */
632 void rcu_nmi_enter(void)
633 {
634 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
635
636 if (rdtp->dynticks_nmi_nesting == 0 &&
637 (atomic_read(&rdtp->dynticks) & 0x1))
638 return;
639 rdtp->dynticks_nmi_nesting++;
640 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
641 atomic_inc(&rdtp->dynticks);
642 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
643 smp_mb__after_atomic_inc(); /* See above. */
644 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
645 }
646
647 /**
648 * rcu_nmi_exit - inform RCU of exit from NMI context
649 *
650 * If the CPU was idle with dynamic ticks active, and there is no
651 * irq handler running, this updates rdtp->dynticks_nmi to let the
652 * RCU grace-period handling know that the CPU is no longer active.
653 */
654 void rcu_nmi_exit(void)
655 {
656 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
657
658 if (rdtp->dynticks_nmi_nesting == 0 ||
659 --rdtp->dynticks_nmi_nesting != 0)
660 return;
661 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
662 smp_mb__before_atomic_inc(); /* See above. */
663 atomic_inc(&rdtp->dynticks);
664 smp_mb__after_atomic_inc(); /* Force delay to next write. */
665 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
666 }
667
668 /**
669 * __rcu_is_watching - are RCU read-side critical sections safe?
670 *
671 * Return true if RCU is watching the running CPU, which means that
672 * this CPU can safely enter RCU read-side critical sections. Unlike
673 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
674 * least disabled preemption.
675 */
676 bool notrace __rcu_is_watching(void)
677 {
678 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
679 }
680
681 /**
682 * rcu_is_watching - see if RCU thinks that the current CPU is idle
683 *
684 * If the current CPU is in its idle loop and is neither in an interrupt
685 * or NMI handler, return true.
686 */
687 bool notrace rcu_is_watching(void)
688 {
689 int ret;
690
691 preempt_disable();
692 ret = __rcu_is_watching();
693 preempt_enable();
694 return ret;
695 }
696 EXPORT_SYMBOL_GPL(rcu_is_watching);
697
698 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
699
700 /*
701 * Is the current CPU online? Disable preemption to avoid false positives
702 * that could otherwise happen due to the current CPU number being sampled,
703 * this task being preempted, its old CPU being taken offline, resuming
704 * on some other CPU, then determining that its old CPU is now offline.
705 * It is OK to use RCU on an offline processor during initial boot, hence
706 * the check for rcu_scheduler_fully_active. Note also that it is OK
707 * for a CPU coming online to use RCU for one jiffy prior to marking itself
708 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
709 * offline to continue to use RCU for one jiffy after marking itself
710 * offline in the cpu_online_mask. This leniency is necessary given the
711 * non-atomic nature of the online and offline processing, for example,
712 * the fact that a CPU enters the scheduler after completing the CPU_DYING
713 * notifiers.
714 *
715 * This is also why RCU internally marks CPUs online during the
716 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
717 *
718 * Disable checking if in an NMI handler because we cannot safely report
719 * errors from NMI handlers anyway.
720 */
721 bool rcu_lockdep_current_cpu_online(void)
722 {
723 struct rcu_data *rdp;
724 struct rcu_node *rnp;
725 bool ret;
726
727 if (in_nmi())
728 return true;
729 preempt_disable();
730 rdp = this_cpu_ptr(&rcu_sched_data);
731 rnp = rdp->mynode;
732 ret = (rdp->grpmask & rnp->qsmaskinit) ||
733 !rcu_scheduler_fully_active;
734 preempt_enable();
735 return ret;
736 }
737 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
738
739 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
740
741 /**
742 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
743 *
744 * If the current CPU is idle or running at a first-level (not nested)
745 * interrupt from idle, return true. The caller must have at least
746 * disabled preemption.
747 */
748 static int rcu_is_cpu_rrupt_from_idle(void)
749 {
750 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
751 }
752
753 /*
754 * Snapshot the specified CPU's dynticks counter so that we can later
755 * credit them with an implicit quiescent state. Return 1 if this CPU
756 * is in dynticks idle mode, which is an extended quiescent state.
757 */
758 static int dyntick_save_progress_counter(struct rcu_data *rdp,
759 bool *isidle, unsigned long *maxj)
760 {
761 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
762 rcu_sysidle_check_cpu(rdp, isidle, maxj);
763 return (rdp->dynticks_snap & 0x1) == 0;
764 }
765
766 /*
767 * This function really isn't for public consumption, but RCU is special in
768 * that context switches can allow the state machine to make progress.
769 */
770 extern void resched_cpu(int cpu);
771
772 /*
773 * Return true if the specified CPU has passed through a quiescent
774 * state by virtue of being in or having passed through an dynticks
775 * idle state since the last call to dyntick_save_progress_counter()
776 * for this same CPU, or by virtue of having been offline.
777 */
778 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
779 bool *isidle, unsigned long *maxj)
780 {
781 unsigned int curr;
782 unsigned int snap;
783
784 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
785 snap = (unsigned int)rdp->dynticks_snap;
786
787 /*
788 * If the CPU passed through or entered a dynticks idle phase with
789 * no active irq/NMI handlers, then we can safely pretend that the CPU
790 * already acknowledged the request to pass through a quiescent
791 * state. Either way, that CPU cannot possibly be in an RCU
792 * read-side critical section that started before the beginning
793 * of the current RCU grace period.
794 */
795 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
796 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
797 rdp->dynticks_fqs++;
798 return 1;
799 }
800
801 /*
802 * Check for the CPU being offline, but only if the grace period
803 * is old enough. We don't need to worry about the CPU changing
804 * state: If we see it offline even once, it has been through a
805 * quiescent state.
806 *
807 * The reason for insisting that the grace period be at least
808 * one jiffy old is that CPUs that are not quite online and that
809 * have just gone offline can still execute RCU read-side critical
810 * sections.
811 */
812 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
813 return 0; /* Grace period is not old enough. */
814 barrier();
815 if (cpu_is_offline(rdp->cpu)) {
816 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
817 rdp->offline_fqs++;
818 return 1;
819 }
820
821 /*
822 * There is a possibility that a CPU in adaptive-ticks state
823 * might run in the kernel with the scheduling-clock tick disabled
824 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
825 * force the CPU to restart the scheduling-clock tick in this
826 * CPU is in this state.
827 */
828 rcu_kick_nohz_cpu(rdp->cpu);
829
830 /*
831 * Alternatively, the CPU might be running in the kernel
832 * for an extended period of time without a quiescent state.
833 * Attempt to force the CPU through the scheduler to gain the
834 * needed quiescent state, but only if the grace period has gone
835 * on for an uncommonly long time. If there are many stuck CPUs,
836 * we will beat on the first one until it gets unstuck, then move
837 * to the next. Only do this for the primary flavor of RCU.
838 */
839 if (rdp->rsp == rcu_state &&
840 ULONG_CMP_GE(ACCESS_ONCE(jiffies), rdp->rsp->jiffies_resched)) {
841 rdp->rsp->jiffies_resched += 5;
842 resched_cpu(rdp->cpu);
843 }
844
845 return 0;
846 }
847
848 static void record_gp_stall_check_time(struct rcu_state *rsp)
849 {
850 unsigned long j = ACCESS_ONCE(jiffies);
851 unsigned long j1;
852
853 rsp->gp_start = j;
854 smp_wmb(); /* Record start time before stall time. */
855 j1 = rcu_jiffies_till_stall_check();
856 rsp->jiffies_stall = j + j1;
857 rsp->jiffies_resched = j + j1 / 2;
858 }
859
860 /*
861 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
862 * for architectures that do not implement trigger_all_cpu_backtrace().
863 * The NMI-triggered stack traces are more accurate because they are
864 * printed by the target CPU.
865 */
866 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
867 {
868 int cpu;
869 unsigned long flags;
870 struct rcu_node *rnp;
871
872 rcu_for_each_leaf_node(rsp, rnp) {
873 raw_spin_lock_irqsave(&rnp->lock, flags);
874 if (rnp->qsmask != 0) {
875 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
876 if (rnp->qsmask & (1UL << cpu))
877 dump_cpu_task(rnp->grplo + cpu);
878 }
879 raw_spin_unlock_irqrestore(&rnp->lock, flags);
880 }
881 }
882
883 static void print_other_cpu_stall(struct rcu_state *rsp)
884 {
885 int cpu;
886 long delta;
887 unsigned long flags;
888 int ndetected = 0;
889 struct rcu_node *rnp = rcu_get_root(rsp);
890 long totqlen = 0;
891
892 /* Only let one CPU complain about others per time interval. */
893
894 raw_spin_lock_irqsave(&rnp->lock, flags);
895 delta = jiffies - rsp->jiffies_stall;
896 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
897 raw_spin_unlock_irqrestore(&rnp->lock, flags);
898 return;
899 }
900 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
901 raw_spin_unlock_irqrestore(&rnp->lock, flags);
902
903 /*
904 * OK, time to rat on our buddy...
905 * See Documentation/RCU/stallwarn.txt for info on how to debug
906 * RCU CPU stall warnings.
907 */
908 pr_err("INFO: %s detected stalls on CPUs/tasks:",
909 rsp->name);
910 print_cpu_stall_info_begin();
911 rcu_for_each_leaf_node(rsp, rnp) {
912 raw_spin_lock_irqsave(&rnp->lock, flags);
913 ndetected += rcu_print_task_stall(rnp);
914 if (rnp->qsmask != 0) {
915 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
916 if (rnp->qsmask & (1UL << cpu)) {
917 print_cpu_stall_info(rsp,
918 rnp->grplo + cpu);
919 ndetected++;
920 }
921 }
922 raw_spin_unlock_irqrestore(&rnp->lock, flags);
923 }
924
925 /*
926 * Now rat on any tasks that got kicked up to the root rcu_node
927 * due to CPU offlining.
928 */
929 rnp = rcu_get_root(rsp);
930 raw_spin_lock_irqsave(&rnp->lock, flags);
931 ndetected += rcu_print_task_stall(rnp);
932 raw_spin_unlock_irqrestore(&rnp->lock, flags);
933
934 print_cpu_stall_info_end();
935 for_each_possible_cpu(cpu)
936 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
937 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
938 smp_processor_id(), (long)(jiffies - rsp->gp_start),
939 rsp->gpnum, rsp->completed, totqlen);
940 if (ndetected == 0)
941 pr_err("INFO: Stall ended before state dump start\n");
942 else if (!trigger_all_cpu_backtrace())
943 rcu_dump_cpu_stacks(rsp);
944
945 /* Complain about tasks blocking the grace period. */
946
947 rcu_print_detail_task_stall(rsp);
948
949 force_quiescent_state(rsp); /* Kick them all. */
950 }
951
952 /*
953 * This function really isn't for public consumption, but RCU is special in
954 * that context switches can allow the state machine to make progress.
955 */
956 extern void resched_cpu(int cpu);
957
958 static void print_cpu_stall(struct rcu_state *rsp)
959 {
960 int cpu;
961 unsigned long flags;
962 struct rcu_node *rnp = rcu_get_root(rsp);
963 long totqlen = 0;
964
965 /*
966 * OK, time to rat on ourselves...
967 * See Documentation/RCU/stallwarn.txt for info on how to debug
968 * RCU CPU stall warnings.
969 */
970 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
971 print_cpu_stall_info_begin();
972 print_cpu_stall_info(rsp, smp_processor_id());
973 print_cpu_stall_info_end();
974 for_each_possible_cpu(cpu)
975 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
976 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
977 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
978 if (!trigger_all_cpu_backtrace())
979 dump_stack();
980
981 raw_spin_lock_irqsave(&rnp->lock, flags);
982 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
983 rsp->jiffies_stall = jiffies +
984 3 * rcu_jiffies_till_stall_check() + 3;
985 raw_spin_unlock_irqrestore(&rnp->lock, flags);
986
987 /*
988 * Attempt to revive the RCU machinery by forcing a context switch.
989 *
990 * A context switch would normally allow the RCU state machine to make
991 * progress and it could be we're stuck in kernel space without context
992 * switches for an entirely unreasonable amount of time.
993 */
994 resched_cpu(smp_processor_id());
995 }
996
997 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
998 {
999 unsigned long completed;
1000 unsigned long gpnum;
1001 unsigned long gps;
1002 unsigned long j;
1003 unsigned long js;
1004 struct rcu_node *rnp;
1005
1006 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1007 return;
1008 j = ACCESS_ONCE(jiffies);
1009
1010 /*
1011 * Lots of memory barriers to reject false positives.
1012 *
1013 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1014 * then rsp->gp_start, and finally rsp->completed. These values
1015 * are updated in the opposite order with memory barriers (or
1016 * equivalent) during grace-period initialization and cleanup.
1017 * Now, a false positive can occur if we get an new value of
1018 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1019 * the memory barriers, the only way that this can happen is if one
1020 * grace period ends and another starts between these two fetches.
1021 * Detect this by comparing rsp->completed with the previous fetch
1022 * from rsp->gpnum.
1023 *
1024 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1025 * and rsp->gp_start suffice to forestall false positives.
1026 */
1027 gpnum = ACCESS_ONCE(rsp->gpnum);
1028 smp_rmb(); /* Pick up ->gpnum first... */
1029 js = ACCESS_ONCE(rsp->jiffies_stall);
1030 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1031 gps = ACCESS_ONCE(rsp->gp_start);
1032 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1033 completed = ACCESS_ONCE(rsp->completed);
1034 if (ULONG_CMP_GE(completed, gpnum) ||
1035 ULONG_CMP_LT(j, js) ||
1036 ULONG_CMP_GE(gps, js))
1037 return; /* No stall or GP completed since entering function. */
1038 rnp = rdp->mynode;
1039 if (rcu_gp_in_progress(rsp) &&
1040 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1041
1042 /* We haven't checked in, so go dump stack. */
1043 print_cpu_stall(rsp);
1044
1045 } else if (rcu_gp_in_progress(rsp) &&
1046 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1047
1048 /* They had a few time units to dump stack, so complain. */
1049 print_other_cpu_stall(rsp);
1050 }
1051 }
1052
1053 /**
1054 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1055 *
1056 * Set the stall-warning timeout way off into the future, thus preventing
1057 * any RCU CPU stall-warning messages from appearing in the current set of
1058 * RCU grace periods.
1059 *
1060 * The caller must disable hard irqs.
1061 */
1062 void rcu_cpu_stall_reset(void)
1063 {
1064 struct rcu_state *rsp;
1065
1066 for_each_rcu_flavor(rsp)
1067 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1068 }
1069
1070 /*
1071 * Initialize the specified rcu_data structure's callback list to empty.
1072 */
1073 static void init_callback_list(struct rcu_data *rdp)
1074 {
1075 int i;
1076
1077 if (init_nocb_callback_list(rdp))
1078 return;
1079 rdp->nxtlist = NULL;
1080 for (i = 0; i < RCU_NEXT_SIZE; i++)
1081 rdp->nxttail[i] = &rdp->nxtlist;
1082 }
1083
1084 /*
1085 * Determine the value that ->completed will have at the end of the
1086 * next subsequent grace period. This is used to tag callbacks so that
1087 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1088 * been dyntick-idle for an extended period with callbacks under the
1089 * influence of RCU_FAST_NO_HZ.
1090 *
1091 * The caller must hold rnp->lock with interrupts disabled.
1092 */
1093 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1094 struct rcu_node *rnp)
1095 {
1096 /*
1097 * If RCU is idle, we just wait for the next grace period.
1098 * But we can only be sure that RCU is idle if we are looking
1099 * at the root rcu_node structure -- otherwise, a new grace
1100 * period might have started, but just not yet gotten around
1101 * to initializing the current non-root rcu_node structure.
1102 */
1103 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1104 return rnp->completed + 1;
1105
1106 /*
1107 * Otherwise, wait for a possible partial grace period and
1108 * then the subsequent full grace period.
1109 */
1110 return rnp->completed + 2;
1111 }
1112
1113 /*
1114 * Trace-event helper function for rcu_start_future_gp() and
1115 * rcu_nocb_wait_gp().
1116 */
1117 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1118 unsigned long c, const char *s)
1119 {
1120 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1121 rnp->completed, c, rnp->level,
1122 rnp->grplo, rnp->grphi, s);
1123 }
1124
1125 /*
1126 * Start some future grace period, as needed to handle newly arrived
1127 * callbacks. The required future grace periods are recorded in each
1128 * rcu_node structure's ->need_future_gp field.
1129 *
1130 * The caller must hold the specified rcu_node structure's ->lock.
1131 */
1132 static unsigned long __maybe_unused
1133 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1134 {
1135 unsigned long c;
1136 int i;
1137 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1138
1139 /*
1140 * Pick up grace-period number for new callbacks. If this
1141 * grace period is already marked as needed, return to the caller.
1142 */
1143 c = rcu_cbs_completed(rdp->rsp, rnp);
1144 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1145 if (rnp->need_future_gp[c & 0x1]) {
1146 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1147 return c;
1148 }
1149
1150 /*
1151 * If either this rcu_node structure or the root rcu_node structure
1152 * believe that a grace period is in progress, then we must wait
1153 * for the one following, which is in "c". Because our request
1154 * will be noticed at the end of the current grace period, we don't
1155 * need to explicitly start one.
1156 */
1157 if (rnp->gpnum != rnp->completed ||
1158 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1159 rnp->need_future_gp[c & 0x1]++;
1160 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1161 return c;
1162 }
1163
1164 /*
1165 * There might be no grace period in progress. If we don't already
1166 * hold it, acquire the root rcu_node structure's lock in order to
1167 * start one (if needed).
1168 */
1169 if (rnp != rnp_root) {
1170 raw_spin_lock(&rnp_root->lock);
1171 smp_mb__after_unlock_lock();
1172 }
1173
1174 /*
1175 * Get a new grace-period number. If there really is no grace
1176 * period in progress, it will be smaller than the one we obtained
1177 * earlier. Adjust callbacks as needed. Note that even no-CBs
1178 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1179 */
1180 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1181 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1182 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1183 rdp->nxtcompleted[i] = c;
1184
1185 /*
1186 * If the needed for the required grace period is already
1187 * recorded, trace and leave.
1188 */
1189 if (rnp_root->need_future_gp[c & 0x1]) {
1190 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1191 goto unlock_out;
1192 }
1193
1194 /* Record the need for the future grace period. */
1195 rnp_root->need_future_gp[c & 0x1]++;
1196
1197 /* If a grace period is not already in progress, start one. */
1198 if (rnp_root->gpnum != rnp_root->completed) {
1199 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1200 } else {
1201 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1202 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1203 }
1204 unlock_out:
1205 if (rnp != rnp_root)
1206 raw_spin_unlock(&rnp_root->lock);
1207 return c;
1208 }
1209
1210 /*
1211 * Clean up any old requests for the just-ended grace period. Also return
1212 * whether any additional grace periods have been requested. Also invoke
1213 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1214 * waiting for this grace period to complete.
1215 */
1216 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1217 {
1218 int c = rnp->completed;
1219 int needmore;
1220 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1221
1222 rcu_nocb_gp_cleanup(rsp, rnp);
1223 rnp->need_future_gp[c & 0x1] = 0;
1224 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1225 trace_rcu_future_gp(rnp, rdp, c,
1226 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1227 return needmore;
1228 }
1229
1230 /*
1231 * If there is room, assign a ->completed number to any callbacks on
1232 * this CPU that have not already been assigned. Also accelerate any
1233 * callbacks that were previously assigned a ->completed number that has
1234 * since proven to be too conservative, which can happen if callbacks get
1235 * assigned a ->completed number while RCU is idle, but with reference to
1236 * a non-root rcu_node structure. This function is idempotent, so it does
1237 * not hurt to call it repeatedly.
1238 *
1239 * The caller must hold rnp->lock with interrupts disabled.
1240 */
1241 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1242 struct rcu_data *rdp)
1243 {
1244 unsigned long c;
1245 int i;
1246
1247 /* If the CPU has no callbacks, nothing to do. */
1248 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1249 return;
1250
1251 /*
1252 * Starting from the sublist containing the callbacks most
1253 * recently assigned a ->completed number and working down, find the
1254 * first sublist that is not assignable to an upcoming grace period.
1255 * Such a sublist has something in it (first two tests) and has
1256 * a ->completed number assigned that will complete sooner than
1257 * the ->completed number for newly arrived callbacks (last test).
1258 *
1259 * The key point is that any later sublist can be assigned the
1260 * same ->completed number as the newly arrived callbacks, which
1261 * means that the callbacks in any of these later sublist can be
1262 * grouped into a single sublist, whether or not they have already
1263 * been assigned a ->completed number.
1264 */
1265 c = rcu_cbs_completed(rsp, rnp);
1266 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1267 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1268 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1269 break;
1270
1271 /*
1272 * If there are no sublist for unassigned callbacks, leave.
1273 * At the same time, advance "i" one sublist, so that "i" will
1274 * index into the sublist where all the remaining callbacks should
1275 * be grouped into.
1276 */
1277 if (++i >= RCU_NEXT_TAIL)
1278 return;
1279
1280 /*
1281 * Assign all subsequent callbacks' ->completed number to the next
1282 * full grace period and group them all in the sublist initially
1283 * indexed by "i".
1284 */
1285 for (; i <= RCU_NEXT_TAIL; i++) {
1286 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1287 rdp->nxtcompleted[i] = c;
1288 }
1289 /* Record any needed additional grace periods. */
1290 rcu_start_future_gp(rnp, rdp);
1291
1292 /* Trace depending on how much we were able to accelerate. */
1293 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1294 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1295 else
1296 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1297 }
1298
1299 /*
1300 * Move any callbacks whose grace period has completed to the
1301 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1302 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1303 * sublist. This function is idempotent, so it does not hurt to
1304 * invoke it repeatedly. As long as it is not invoked -too- often...
1305 *
1306 * The caller must hold rnp->lock with interrupts disabled.
1307 */
1308 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1309 struct rcu_data *rdp)
1310 {
1311 int i, j;
1312
1313 /* If the CPU has no callbacks, nothing to do. */
1314 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1315 return;
1316
1317 /*
1318 * Find all callbacks whose ->completed numbers indicate that they
1319 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1320 */
1321 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1322 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1323 break;
1324 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1325 }
1326 /* Clean up any sublist tail pointers that were misordered above. */
1327 for (j = RCU_WAIT_TAIL; j < i; j++)
1328 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1329
1330 /* Copy down callbacks to fill in empty sublists. */
1331 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1332 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1333 break;
1334 rdp->nxttail[j] = rdp->nxttail[i];
1335 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1336 }
1337
1338 /* Classify any remaining callbacks. */
1339 rcu_accelerate_cbs(rsp, rnp, rdp);
1340 }
1341
1342 /*
1343 * Update CPU-local rcu_data state to record the beginnings and ends of
1344 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1345 * structure corresponding to the current CPU, and must have irqs disabled.
1346 */
1347 static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1348 {
1349 /* Handle the ends of any preceding grace periods first. */
1350 if (rdp->completed == rnp->completed) {
1351
1352 /* No grace period end, so just accelerate recent callbacks. */
1353 rcu_accelerate_cbs(rsp, rnp, rdp);
1354
1355 } else {
1356
1357 /* Advance callbacks. */
1358 rcu_advance_cbs(rsp, rnp, rdp);
1359
1360 /* Remember that we saw this grace-period completion. */
1361 rdp->completed = rnp->completed;
1362 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1363 }
1364
1365 if (rdp->gpnum != rnp->gpnum) {
1366 /*
1367 * If the current grace period is waiting for this CPU,
1368 * set up to detect a quiescent state, otherwise don't
1369 * go looking for one.
1370 */
1371 rdp->gpnum = rnp->gpnum;
1372 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1373 rdp->passed_quiesce = 0;
1374 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1375 zero_cpu_stall_ticks(rdp);
1376 }
1377 }
1378
1379 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1380 {
1381 unsigned long flags;
1382 struct rcu_node *rnp;
1383
1384 local_irq_save(flags);
1385 rnp = rdp->mynode;
1386 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1387 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1388 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1389 local_irq_restore(flags);
1390 return;
1391 }
1392 smp_mb__after_unlock_lock();
1393 __note_gp_changes(rsp, rnp, rdp);
1394 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1395 }
1396
1397 /*
1398 * Initialize a new grace period. Return 0 if no grace period required.
1399 */
1400 static int rcu_gp_init(struct rcu_state *rsp)
1401 {
1402 struct rcu_data *rdp;
1403 struct rcu_node *rnp = rcu_get_root(rsp);
1404
1405 rcu_bind_gp_kthread();
1406 raw_spin_lock_irq(&rnp->lock);
1407 smp_mb__after_unlock_lock();
1408 if (rsp->gp_flags == 0) {
1409 /* Spurious wakeup, tell caller to go back to sleep. */
1410 raw_spin_unlock_irq(&rnp->lock);
1411 return 0;
1412 }
1413 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1414
1415 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1416 /*
1417 * Grace period already in progress, don't start another.
1418 * Not supposed to be able to happen.
1419 */
1420 raw_spin_unlock_irq(&rnp->lock);
1421 return 0;
1422 }
1423
1424 /* Advance to a new grace period and initialize state. */
1425 record_gp_stall_check_time(rsp);
1426 smp_wmb(); /* Record GP times before starting GP. */
1427 rsp->gpnum++;
1428 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1429 raw_spin_unlock_irq(&rnp->lock);
1430
1431 /* Exclude any concurrent CPU-hotplug operations. */
1432 mutex_lock(&rsp->onoff_mutex);
1433
1434 /*
1435 * Set the quiescent-state-needed bits in all the rcu_node
1436 * structures for all currently online CPUs in breadth-first order,
1437 * starting from the root rcu_node structure, relying on the layout
1438 * of the tree within the rsp->node[] array. Note that other CPUs
1439 * will access only the leaves of the hierarchy, thus seeing that no
1440 * grace period is in progress, at least until the corresponding
1441 * leaf node has been initialized. In addition, we have excluded
1442 * CPU-hotplug operations.
1443 *
1444 * The grace period cannot complete until the initialization
1445 * process finishes, because this kthread handles both.
1446 */
1447 rcu_for_each_node_breadth_first(rsp, rnp) {
1448 raw_spin_lock_irq(&rnp->lock);
1449 smp_mb__after_unlock_lock();
1450 rdp = this_cpu_ptr(rsp->rda);
1451 rcu_preempt_check_blocked_tasks(rnp);
1452 rnp->qsmask = rnp->qsmaskinit;
1453 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1454 WARN_ON_ONCE(rnp->completed != rsp->completed);
1455 ACCESS_ONCE(rnp->completed) = rsp->completed;
1456 if (rnp == rdp->mynode)
1457 __note_gp_changes(rsp, rnp, rdp);
1458 rcu_preempt_boost_start_gp(rnp);
1459 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1460 rnp->level, rnp->grplo,
1461 rnp->grphi, rnp->qsmask);
1462 raw_spin_unlock_irq(&rnp->lock);
1463 #ifdef CONFIG_PROVE_RCU_DELAY
1464 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1465 system_state == SYSTEM_RUNNING)
1466 udelay(200);
1467 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1468 cond_resched();
1469 }
1470
1471 mutex_unlock(&rsp->onoff_mutex);
1472 return 1;
1473 }
1474
1475 /*
1476 * Do one round of quiescent-state forcing.
1477 */
1478 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1479 {
1480 int fqs_state = fqs_state_in;
1481 bool isidle = false;
1482 unsigned long maxj;
1483 struct rcu_node *rnp = rcu_get_root(rsp);
1484
1485 rsp->n_force_qs++;
1486 if (fqs_state == RCU_SAVE_DYNTICK) {
1487 /* Collect dyntick-idle snapshots. */
1488 if (is_sysidle_rcu_state(rsp)) {
1489 isidle = 1;
1490 maxj = jiffies - ULONG_MAX / 4;
1491 }
1492 force_qs_rnp(rsp, dyntick_save_progress_counter,
1493 &isidle, &maxj);
1494 rcu_sysidle_report_gp(rsp, isidle, maxj);
1495 fqs_state = RCU_FORCE_QS;
1496 } else {
1497 /* Handle dyntick-idle and offline CPUs. */
1498 isidle = 0;
1499 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1500 }
1501 /* Clear flag to prevent immediate re-entry. */
1502 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1503 raw_spin_lock_irq(&rnp->lock);
1504 smp_mb__after_unlock_lock();
1505 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1506 raw_spin_unlock_irq(&rnp->lock);
1507 }
1508 return fqs_state;
1509 }
1510
1511 /*
1512 * Clean up after the old grace period.
1513 */
1514 static void rcu_gp_cleanup(struct rcu_state *rsp)
1515 {
1516 unsigned long gp_duration;
1517 int nocb = 0;
1518 struct rcu_data *rdp;
1519 struct rcu_node *rnp = rcu_get_root(rsp);
1520
1521 raw_spin_lock_irq(&rnp->lock);
1522 smp_mb__after_unlock_lock();
1523 gp_duration = jiffies - rsp->gp_start;
1524 if (gp_duration > rsp->gp_max)
1525 rsp->gp_max = gp_duration;
1526
1527 /*
1528 * We know the grace period is complete, but to everyone else
1529 * it appears to still be ongoing. But it is also the case
1530 * that to everyone else it looks like there is nothing that
1531 * they can do to advance the grace period. It is therefore
1532 * safe for us to drop the lock in order to mark the grace
1533 * period as completed in all of the rcu_node structures.
1534 */
1535 raw_spin_unlock_irq(&rnp->lock);
1536
1537 /*
1538 * Propagate new ->completed value to rcu_node structures so
1539 * that other CPUs don't have to wait until the start of the next
1540 * grace period to process their callbacks. This also avoids
1541 * some nasty RCU grace-period initialization races by forcing
1542 * the end of the current grace period to be completely recorded in
1543 * all of the rcu_node structures before the beginning of the next
1544 * grace period is recorded in any of the rcu_node structures.
1545 */
1546 rcu_for_each_node_breadth_first(rsp, rnp) {
1547 raw_spin_lock_irq(&rnp->lock);
1548 smp_mb__after_unlock_lock();
1549 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1550 rdp = this_cpu_ptr(rsp->rda);
1551 if (rnp == rdp->mynode)
1552 __note_gp_changes(rsp, rnp, rdp);
1553 /* smp_mb() provided by prior unlock-lock pair. */
1554 nocb += rcu_future_gp_cleanup(rsp, rnp);
1555 raw_spin_unlock_irq(&rnp->lock);
1556 cond_resched();
1557 }
1558 rnp = rcu_get_root(rsp);
1559 raw_spin_lock_irq(&rnp->lock);
1560 smp_mb__after_unlock_lock();
1561 rcu_nocb_gp_set(rnp, nocb);
1562
1563 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1564 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1565 rsp->fqs_state = RCU_GP_IDLE;
1566 rdp = this_cpu_ptr(rsp->rda);
1567 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
1568 if (cpu_needs_another_gp(rsp, rdp)) {
1569 rsp->gp_flags = RCU_GP_FLAG_INIT;
1570 trace_rcu_grace_period(rsp->name,
1571 ACCESS_ONCE(rsp->gpnum),
1572 TPS("newreq"));
1573 }
1574 raw_spin_unlock_irq(&rnp->lock);
1575 }
1576
1577 /*
1578 * Body of kthread that handles grace periods.
1579 */
1580 static int __noreturn rcu_gp_kthread(void *arg)
1581 {
1582 int fqs_state;
1583 int gf;
1584 unsigned long j;
1585 int ret;
1586 struct rcu_state *rsp = arg;
1587 struct rcu_node *rnp = rcu_get_root(rsp);
1588
1589 for (;;) {
1590
1591 /* Handle grace-period start. */
1592 for (;;) {
1593 trace_rcu_grace_period(rsp->name,
1594 ACCESS_ONCE(rsp->gpnum),
1595 TPS("reqwait"));
1596 wait_event_interruptible(rsp->gp_wq,
1597 ACCESS_ONCE(rsp->gp_flags) &
1598 RCU_GP_FLAG_INIT);
1599 /* Locking provides needed memory barrier. */
1600 if (rcu_gp_init(rsp))
1601 break;
1602 cond_resched();
1603 flush_signals(current);
1604 trace_rcu_grace_period(rsp->name,
1605 ACCESS_ONCE(rsp->gpnum),
1606 TPS("reqwaitsig"));
1607 }
1608
1609 /* Handle quiescent-state forcing. */
1610 fqs_state = RCU_SAVE_DYNTICK;
1611 j = jiffies_till_first_fqs;
1612 if (j > HZ) {
1613 j = HZ;
1614 jiffies_till_first_fqs = HZ;
1615 }
1616 ret = 0;
1617 for (;;) {
1618 if (!ret)
1619 rsp->jiffies_force_qs = jiffies + j;
1620 trace_rcu_grace_period(rsp->name,
1621 ACCESS_ONCE(rsp->gpnum),
1622 TPS("fqswait"));
1623 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1624 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1625 RCU_GP_FLAG_FQS) ||
1626 (!ACCESS_ONCE(rnp->qsmask) &&
1627 !rcu_preempt_blocked_readers_cgp(rnp)),
1628 j);
1629 /* Locking provides needed memory barriers. */
1630 /* If grace period done, leave loop. */
1631 if (!ACCESS_ONCE(rnp->qsmask) &&
1632 !rcu_preempt_blocked_readers_cgp(rnp))
1633 break;
1634 /* If time for quiescent-state forcing, do it. */
1635 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1636 (gf & RCU_GP_FLAG_FQS)) {
1637 trace_rcu_grace_period(rsp->name,
1638 ACCESS_ONCE(rsp->gpnum),
1639 TPS("fqsstart"));
1640 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1641 trace_rcu_grace_period(rsp->name,
1642 ACCESS_ONCE(rsp->gpnum),
1643 TPS("fqsend"));
1644 cond_resched();
1645 } else {
1646 /* Deal with stray signal. */
1647 cond_resched();
1648 flush_signals(current);
1649 trace_rcu_grace_period(rsp->name,
1650 ACCESS_ONCE(rsp->gpnum),
1651 TPS("fqswaitsig"));
1652 }
1653 j = jiffies_till_next_fqs;
1654 if (j > HZ) {
1655 j = HZ;
1656 jiffies_till_next_fqs = HZ;
1657 } else if (j < 1) {
1658 j = 1;
1659 jiffies_till_next_fqs = 1;
1660 }
1661 }
1662
1663 /* Handle grace-period end. */
1664 rcu_gp_cleanup(rsp);
1665 }
1666 }
1667
1668 static void rsp_wakeup(struct irq_work *work)
1669 {
1670 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1671
1672 /* Wake up rcu_gp_kthread() to start the grace period. */
1673 wake_up(&rsp->gp_wq);
1674 }
1675
1676 /*
1677 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1678 * in preparation for detecting the next grace period. The caller must hold
1679 * the root node's ->lock and hard irqs must be disabled.
1680 *
1681 * Note that it is legal for a dying CPU (which is marked as offline) to
1682 * invoke this function. This can happen when the dying CPU reports its
1683 * quiescent state.
1684 */
1685 static void
1686 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1687 struct rcu_data *rdp)
1688 {
1689 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1690 /*
1691 * Either we have not yet spawned the grace-period
1692 * task, this CPU does not need another grace period,
1693 * or a grace period is already in progress.
1694 * Either way, don't start a new grace period.
1695 */
1696 return;
1697 }
1698 rsp->gp_flags = RCU_GP_FLAG_INIT;
1699 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1700 TPS("newreq"));
1701
1702 /*
1703 * We can't do wakeups while holding the rnp->lock, as that
1704 * could cause possible deadlocks with the rq->lock. Defer
1705 * the wakeup to interrupt context. And don't bother waking
1706 * up the running kthread.
1707 */
1708 if (current != rsp->gp_kthread)
1709 irq_work_queue(&rsp->wakeup_work);
1710 }
1711
1712 /*
1713 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1714 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1715 * is invoked indirectly from rcu_advance_cbs(), which would result in
1716 * endless recursion -- or would do so if it wasn't for the self-deadlock
1717 * that is encountered beforehand.
1718 */
1719 static void
1720 rcu_start_gp(struct rcu_state *rsp)
1721 {
1722 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1723 struct rcu_node *rnp = rcu_get_root(rsp);
1724
1725 /*
1726 * If there is no grace period in progress right now, any
1727 * callbacks we have up to this point will be satisfied by the
1728 * next grace period. Also, advancing the callbacks reduces the
1729 * probability of false positives from cpu_needs_another_gp()
1730 * resulting in pointless grace periods. So, advance callbacks
1731 * then start the grace period!
1732 */
1733 rcu_advance_cbs(rsp, rnp, rdp);
1734 rcu_start_gp_advanced(rsp, rnp, rdp);
1735 }
1736
1737 /*
1738 * Report a full set of quiescent states to the specified rcu_state
1739 * data structure. This involves cleaning up after the prior grace
1740 * period and letting rcu_start_gp() start up the next grace period
1741 * if one is needed. Note that the caller must hold rnp->lock, which
1742 * is released before return.
1743 */
1744 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1745 __releases(rcu_get_root(rsp)->lock)
1746 {
1747 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1748 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1749 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1750 }
1751
1752 /*
1753 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1754 * Allows quiescent states for a group of CPUs to be reported at one go
1755 * to the specified rcu_node structure, though all the CPUs in the group
1756 * must be represented by the same rcu_node structure (which need not be
1757 * a leaf rcu_node structure, though it often will be). That structure's
1758 * lock must be held upon entry, and it is released before return.
1759 */
1760 static void
1761 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1762 struct rcu_node *rnp, unsigned long flags)
1763 __releases(rnp->lock)
1764 {
1765 struct rcu_node *rnp_c;
1766
1767 /* Walk up the rcu_node hierarchy. */
1768 for (;;) {
1769 if (!(rnp->qsmask & mask)) {
1770
1771 /* Our bit has already been cleared, so done. */
1772 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1773 return;
1774 }
1775 rnp->qsmask &= ~mask;
1776 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1777 mask, rnp->qsmask, rnp->level,
1778 rnp->grplo, rnp->grphi,
1779 !!rnp->gp_tasks);
1780 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1781
1782 /* Other bits still set at this level, so done. */
1783 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1784 return;
1785 }
1786 mask = rnp->grpmask;
1787 if (rnp->parent == NULL) {
1788
1789 /* No more levels. Exit loop holding root lock. */
1790
1791 break;
1792 }
1793 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1794 rnp_c = rnp;
1795 rnp = rnp->parent;
1796 raw_spin_lock_irqsave(&rnp->lock, flags);
1797 smp_mb__after_unlock_lock();
1798 WARN_ON_ONCE(rnp_c->qsmask);
1799 }
1800
1801 /*
1802 * Get here if we are the last CPU to pass through a quiescent
1803 * state for this grace period. Invoke rcu_report_qs_rsp()
1804 * to clean up and start the next grace period if one is needed.
1805 */
1806 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1807 }
1808
1809 /*
1810 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1811 * structure. This must be either called from the specified CPU, or
1812 * called when the specified CPU is known to be offline (and when it is
1813 * also known that no other CPU is concurrently trying to help the offline
1814 * CPU). The lastcomp argument is used to make sure we are still in the
1815 * grace period of interest. We don't want to end the current grace period
1816 * based on quiescent states detected in an earlier grace period!
1817 */
1818 static void
1819 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1820 {
1821 unsigned long flags;
1822 unsigned long mask;
1823 struct rcu_node *rnp;
1824
1825 rnp = rdp->mynode;
1826 raw_spin_lock_irqsave(&rnp->lock, flags);
1827 smp_mb__after_unlock_lock();
1828 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1829 rnp->completed == rnp->gpnum) {
1830
1831 /*
1832 * The grace period in which this quiescent state was
1833 * recorded has ended, so don't report it upwards.
1834 * We will instead need a new quiescent state that lies
1835 * within the current grace period.
1836 */
1837 rdp->passed_quiesce = 0; /* need qs for new gp. */
1838 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1839 return;
1840 }
1841 mask = rdp->grpmask;
1842 if ((rnp->qsmask & mask) == 0) {
1843 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1844 } else {
1845 rdp->qs_pending = 0;
1846
1847 /*
1848 * This GP can't end until cpu checks in, so all of our
1849 * callbacks can be processed during the next GP.
1850 */
1851 rcu_accelerate_cbs(rsp, rnp, rdp);
1852
1853 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1854 }
1855 }
1856
1857 /*
1858 * Check to see if there is a new grace period of which this CPU
1859 * is not yet aware, and if so, set up local rcu_data state for it.
1860 * Otherwise, see if this CPU has just passed through its first
1861 * quiescent state for this grace period, and record that fact if so.
1862 */
1863 static void
1864 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1865 {
1866 /* Check for grace-period ends and beginnings. */
1867 note_gp_changes(rsp, rdp);
1868
1869 /*
1870 * Does this CPU still need to do its part for current grace period?
1871 * If no, return and let the other CPUs do their part as well.
1872 */
1873 if (!rdp->qs_pending)
1874 return;
1875
1876 /*
1877 * Was there a quiescent state since the beginning of the grace
1878 * period? If no, then exit and wait for the next call.
1879 */
1880 if (!rdp->passed_quiesce)
1881 return;
1882
1883 /*
1884 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1885 * judge of that).
1886 */
1887 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1888 }
1889
1890 #ifdef CONFIG_HOTPLUG_CPU
1891
1892 /*
1893 * Send the specified CPU's RCU callbacks to the orphanage. The
1894 * specified CPU must be offline, and the caller must hold the
1895 * ->orphan_lock.
1896 */
1897 static void
1898 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1899 struct rcu_node *rnp, struct rcu_data *rdp)
1900 {
1901 /* No-CBs CPUs do not have orphanable callbacks. */
1902 if (rcu_is_nocb_cpu(rdp->cpu))
1903 return;
1904
1905 /*
1906 * Orphan the callbacks. First adjust the counts. This is safe
1907 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1908 * cannot be running now. Thus no memory barrier is required.
1909 */
1910 if (rdp->nxtlist != NULL) {
1911 rsp->qlen_lazy += rdp->qlen_lazy;
1912 rsp->qlen += rdp->qlen;
1913 rdp->n_cbs_orphaned += rdp->qlen;
1914 rdp->qlen_lazy = 0;
1915 ACCESS_ONCE(rdp->qlen) = 0;
1916 }
1917
1918 /*
1919 * Next, move those callbacks still needing a grace period to
1920 * the orphanage, where some other CPU will pick them up.
1921 * Some of the callbacks might have gone partway through a grace
1922 * period, but that is too bad. They get to start over because we
1923 * cannot assume that grace periods are synchronized across CPUs.
1924 * We don't bother updating the ->nxttail[] array yet, instead
1925 * we just reset the whole thing later on.
1926 */
1927 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1928 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1929 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1930 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1931 }
1932
1933 /*
1934 * Then move the ready-to-invoke callbacks to the orphanage,
1935 * where some other CPU will pick them up. These will not be
1936 * required to pass though another grace period: They are done.
1937 */
1938 if (rdp->nxtlist != NULL) {
1939 *rsp->orphan_donetail = rdp->nxtlist;
1940 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1941 }
1942
1943 /* Finally, initialize the rcu_data structure's list to empty. */
1944 init_callback_list(rdp);
1945 }
1946
1947 /*
1948 * Adopt the RCU callbacks from the specified rcu_state structure's
1949 * orphanage. The caller must hold the ->orphan_lock.
1950 */
1951 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
1952 {
1953 int i;
1954 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1955
1956 /* No-CBs CPUs are handled specially. */
1957 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
1958 return;
1959
1960 /* Do the accounting first. */
1961 rdp->qlen_lazy += rsp->qlen_lazy;
1962 rdp->qlen += rsp->qlen;
1963 rdp->n_cbs_adopted += rsp->qlen;
1964 if (rsp->qlen_lazy != rsp->qlen)
1965 rcu_idle_count_callbacks_posted();
1966 rsp->qlen_lazy = 0;
1967 rsp->qlen = 0;
1968
1969 /*
1970 * We do not need a memory barrier here because the only way we
1971 * can get here if there is an rcu_barrier() in flight is if
1972 * we are the task doing the rcu_barrier().
1973 */
1974
1975 /* First adopt the ready-to-invoke callbacks. */
1976 if (rsp->orphan_donelist != NULL) {
1977 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1978 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1979 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1980 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1981 rdp->nxttail[i] = rsp->orphan_donetail;
1982 rsp->orphan_donelist = NULL;
1983 rsp->orphan_donetail = &rsp->orphan_donelist;
1984 }
1985
1986 /* And then adopt the callbacks that still need a grace period. */
1987 if (rsp->orphan_nxtlist != NULL) {
1988 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1989 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1990 rsp->orphan_nxtlist = NULL;
1991 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1992 }
1993 }
1994
1995 /*
1996 * Trace the fact that this CPU is going offline.
1997 */
1998 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1999 {
2000 RCU_TRACE(unsigned long mask);
2001 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2002 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2003
2004 RCU_TRACE(mask = rdp->grpmask);
2005 trace_rcu_grace_period(rsp->name,
2006 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2007 TPS("cpuofl"));
2008 }
2009
2010 /*
2011 * The CPU has been completely removed, and some other CPU is reporting
2012 * this fact from process context. Do the remainder of the cleanup,
2013 * including orphaning the outgoing CPU's RCU callbacks, and also
2014 * adopting them. There can only be one CPU hotplug operation at a time,
2015 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2016 */
2017 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2018 {
2019 unsigned long flags;
2020 unsigned long mask;
2021 int need_report = 0;
2022 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2023 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2024
2025 /* Adjust any no-longer-needed kthreads. */
2026 rcu_boost_kthread_setaffinity(rnp, -1);
2027
2028 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2029
2030 /* Exclude any attempts to start a new grace period. */
2031 mutex_lock(&rsp->onoff_mutex);
2032 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2033
2034 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2035 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2036 rcu_adopt_orphan_cbs(rsp, flags);
2037
2038 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2039 mask = rdp->grpmask; /* rnp->grplo is constant. */
2040 do {
2041 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2042 smp_mb__after_unlock_lock();
2043 rnp->qsmaskinit &= ~mask;
2044 if (rnp->qsmaskinit != 0) {
2045 if (rnp != rdp->mynode)
2046 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2047 break;
2048 }
2049 if (rnp == rdp->mynode)
2050 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2051 else
2052 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2053 mask = rnp->grpmask;
2054 rnp = rnp->parent;
2055 } while (rnp != NULL);
2056
2057 /*
2058 * We still hold the leaf rcu_node structure lock here, and
2059 * irqs are still disabled. The reason for this subterfuge is
2060 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2061 * held leads to deadlock.
2062 */
2063 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2064 rnp = rdp->mynode;
2065 if (need_report & RCU_OFL_TASKS_NORM_GP)
2066 rcu_report_unblock_qs_rnp(rnp, flags);
2067 else
2068 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2069 if (need_report & RCU_OFL_TASKS_EXP_GP)
2070 rcu_report_exp_rnp(rsp, rnp, true);
2071 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2072 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2073 cpu, rdp->qlen, rdp->nxtlist);
2074 init_callback_list(rdp);
2075 /* Disallow further callbacks on this CPU. */
2076 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2077 mutex_unlock(&rsp->onoff_mutex);
2078 }
2079
2080 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2081
2082 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2083 {
2084 }
2085
2086 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2087 {
2088 }
2089
2090 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2091
2092 /*
2093 * Invoke any RCU callbacks that have made it to the end of their grace
2094 * period. Thottle as specified by rdp->blimit.
2095 */
2096 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2097 {
2098 unsigned long flags;
2099 struct rcu_head *next, *list, **tail;
2100 long bl, count, count_lazy;
2101 int i;
2102
2103 /* If no callbacks are ready, just return. */
2104 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2105 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2106 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2107 need_resched(), is_idle_task(current),
2108 rcu_is_callbacks_kthread());
2109 return;
2110 }
2111
2112 /*
2113 * Extract the list of ready callbacks, disabling to prevent
2114 * races with call_rcu() from interrupt handlers.
2115 */
2116 local_irq_save(flags);
2117 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2118 bl = rdp->blimit;
2119 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2120 list = rdp->nxtlist;
2121 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2122 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2123 tail = rdp->nxttail[RCU_DONE_TAIL];
2124 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2125 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2126 rdp->nxttail[i] = &rdp->nxtlist;
2127 local_irq_restore(flags);
2128
2129 /* Invoke callbacks. */
2130 count = count_lazy = 0;
2131 while (list) {
2132 next = list->next;
2133 prefetch(next);
2134 debug_rcu_head_unqueue(list);
2135 if (__rcu_reclaim(rsp->name, list))
2136 count_lazy++;
2137 list = next;
2138 /* Stop only if limit reached and CPU has something to do. */
2139 if (++count >= bl &&
2140 (need_resched() ||
2141 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2142 break;
2143 }
2144
2145 local_irq_save(flags);
2146 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2147 is_idle_task(current),
2148 rcu_is_callbacks_kthread());
2149
2150 /* Update count, and requeue any remaining callbacks. */
2151 if (list != NULL) {
2152 *tail = rdp->nxtlist;
2153 rdp->nxtlist = list;
2154 for (i = 0; i < RCU_NEXT_SIZE; i++)
2155 if (&rdp->nxtlist == rdp->nxttail[i])
2156 rdp->nxttail[i] = tail;
2157 else
2158 break;
2159 }
2160 smp_mb(); /* List handling before counting for rcu_barrier(). */
2161 rdp->qlen_lazy -= count_lazy;
2162 ACCESS_ONCE(rdp->qlen) -= count;
2163 rdp->n_cbs_invoked += count;
2164
2165 /* Reinstate batch limit if we have worked down the excess. */
2166 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2167 rdp->blimit = blimit;
2168
2169 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2170 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2171 rdp->qlen_last_fqs_check = 0;
2172 rdp->n_force_qs_snap = rsp->n_force_qs;
2173 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2174 rdp->qlen_last_fqs_check = rdp->qlen;
2175 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2176
2177 local_irq_restore(flags);
2178
2179 /* Re-invoke RCU core processing if there are callbacks remaining. */
2180 if (cpu_has_callbacks_ready_to_invoke(rdp))
2181 invoke_rcu_core();
2182 }
2183
2184 /*
2185 * Check to see if this CPU is in a non-context-switch quiescent state
2186 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2187 * Also schedule RCU core processing.
2188 *
2189 * This function must be called from hardirq context. It is normally
2190 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2191 * false, there is no point in invoking rcu_check_callbacks().
2192 */
2193 void rcu_check_callbacks(int cpu, int user)
2194 {
2195 trace_rcu_utilization(TPS("Start scheduler-tick"));
2196 increment_cpu_stall_ticks();
2197 if (user || rcu_is_cpu_rrupt_from_idle()) {
2198
2199 /*
2200 * Get here if this CPU took its interrupt from user
2201 * mode or from the idle loop, and if this is not a
2202 * nested interrupt. In this case, the CPU is in
2203 * a quiescent state, so note it.
2204 *
2205 * No memory barrier is required here because both
2206 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2207 * variables that other CPUs neither access nor modify,
2208 * at least not while the corresponding CPU is online.
2209 */
2210
2211 rcu_sched_qs(cpu);
2212 rcu_bh_qs(cpu);
2213
2214 } else if (!in_softirq()) {
2215
2216 /*
2217 * Get here if this CPU did not take its interrupt from
2218 * softirq, in other words, if it is not interrupting
2219 * a rcu_bh read-side critical section. This is an _bh
2220 * critical section, so note it.
2221 */
2222
2223 rcu_bh_qs(cpu);
2224 }
2225 rcu_preempt_check_callbacks(cpu);
2226 if (rcu_pending(cpu))
2227 invoke_rcu_core();
2228 trace_rcu_utilization(TPS("End scheduler-tick"));
2229 }
2230
2231 /*
2232 * Scan the leaf rcu_node structures, processing dyntick state for any that
2233 * have not yet encountered a quiescent state, using the function specified.
2234 * Also initiate boosting for any threads blocked on the root rcu_node.
2235 *
2236 * The caller must have suppressed start of new grace periods.
2237 */
2238 static void force_qs_rnp(struct rcu_state *rsp,
2239 int (*f)(struct rcu_data *rsp, bool *isidle,
2240 unsigned long *maxj),
2241 bool *isidle, unsigned long *maxj)
2242 {
2243 unsigned long bit;
2244 int cpu;
2245 unsigned long flags;
2246 unsigned long mask;
2247 struct rcu_node *rnp;
2248
2249 rcu_for_each_leaf_node(rsp, rnp) {
2250 cond_resched();
2251 mask = 0;
2252 raw_spin_lock_irqsave(&rnp->lock, flags);
2253 smp_mb__after_unlock_lock();
2254 if (!rcu_gp_in_progress(rsp)) {
2255 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2256 return;
2257 }
2258 if (rnp->qsmask == 0) {
2259 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2260 continue;
2261 }
2262 cpu = rnp->grplo;
2263 bit = 1;
2264 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2265 if ((rnp->qsmask & bit) != 0) {
2266 if ((rnp->qsmaskinit & bit) != 0)
2267 *isidle = 0;
2268 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2269 mask |= bit;
2270 }
2271 }
2272 if (mask != 0) {
2273
2274 /* rcu_report_qs_rnp() releases rnp->lock. */
2275 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2276 continue;
2277 }
2278 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2279 }
2280 rnp = rcu_get_root(rsp);
2281 if (rnp->qsmask == 0) {
2282 raw_spin_lock_irqsave(&rnp->lock, flags);
2283 smp_mb__after_unlock_lock();
2284 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2285 }
2286 }
2287
2288 /*
2289 * Force quiescent states on reluctant CPUs, and also detect which
2290 * CPUs are in dyntick-idle mode.
2291 */
2292 static void force_quiescent_state(struct rcu_state *rsp)
2293 {
2294 unsigned long flags;
2295 bool ret;
2296 struct rcu_node *rnp;
2297 struct rcu_node *rnp_old = NULL;
2298
2299 /* Funnel through hierarchy to reduce memory contention. */
2300 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2301 for (; rnp != NULL; rnp = rnp->parent) {
2302 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2303 !raw_spin_trylock(&rnp->fqslock);
2304 if (rnp_old != NULL)
2305 raw_spin_unlock(&rnp_old->fqslock);
2306 if (ret) {
2307 rsp->n_force_qs_lh++;
2308 return;
2309 }
2310 rnp_old = rnp;
2311 }
2312 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2313
2314 /* Reached the root of the rcu_node tree, acquire lock. */
2315 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2316 smp_mb__after_unlock_lock();
2317 raw_spin_unlock(&rnp_old->fqslock);
2318 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2319 rsp->n_force_qs_lh++;
2320 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2321 return; /* Someone beat us to it. */
2322 }
2323 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2324 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2325 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2326 }
2327
2328 /*
2329 * This does the RCU core processing work for the specified rcu_state
2330 * and rcu_data structures. This may be called only from the CPU to
2331 * whom the rdp belongs.
2332 */
2333 static void
2334 __rcu_process_callbacks(struct rcu_state *rsp)
2335 {
2336 unsigned long flags;
2337 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2338
2339 WARN_ON_ONCE(rdp->beenonline == 0);
2340
2341 /* Update RCU state based on any recent quiescent states. */
2342 rcu_check_quiescent_state(rsp, rdp);
2343
2344 /* Does this CPU require a not-yet-started grace period? */
2345 local_irq_save(flags);
2346 if (cpu_needs_another_gp(rsp, rdp)) {
2347 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2348 rcu_start_gp(rsp);
2349 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2350 } else {
2351 local_irq_restore(flags);
2352 }
2353
2354 /* If there are callbacks ready, invoke them. */
2355 if (cpu_has_callbacks_ready_to_invoke(rdp))
2356 invoke_rcu_callbacks(rsp, rdp);
2357
2358 /* Do any needed deferred wakeups of rcuo kthreads. */
2359 do_nocb_deferred_wakeup(rdp);
2360 }
2361
2362 /*
2363 * Do RCU core processing for the current CPU.
2364 */
2365 static void rcu_process_callbacks(struct softirq_action *unused)
2366 {
2367 struct rcu_state *rsp;
2368
2369 if (cpu_is_offline(smp_processor_id()))
2370 return;
2371 trace_rcu_utilization(TPS("Start RCU core"));
2372 for_each_rcu_flavor(rsp)
2373 __rcu_process_callbacks(rsp);
2374 trace_rcu_utilization(TPS("End RCU core"));
2375 }
2376
2377 /*
2378 * Schedule RCU callback invocation. If the specified type of RCU
2379 * does not support RCU priority boosting, just do a direct call,
2380 * otherwise wake up the per-CPU kernel kthread. Note that because we
2381 * are running on the current CPU with interrupts disabled, the
2382 * rcu_cpu_kthread_task cannot disappear out from under us.
2383 */
2384 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2385 {
2386 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2387 return;
2388 if (likely(!rsp->boost)) {
2389 rcu_do_batch(rsp, rdp);
2390 return;
2391 }
2392 invoke_rcu_callbacks_kthread();
2393 }
2394
2395 static void invoke_rcu_core(void)
2396 {
2397 if (cpu_online(smp_processor_id()))
2398 raise_softirq(RCU_SOFTIRQ);
2399 }
2400
2401 /*
2402 * Handle any core-RCU processing required by a call_rcu() invocation.
2403 */
2404 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2405 struct rcu_head *head, unsigned long flags)
2406 {
2407 /*
2408 * If called from an extended quiescent state, invoke the RCU
2409 * core in order to force a re-evaluation of RCU's idleness.
2410 */
2411 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2412 invoke_rcu_core();
2413
2414 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2415 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2416 return;
2417
2418 /*
2419 * Force the grace period if too many callbacks or too long waiting.
2420 * Enforce hysteresis, and don't invoke force_quiescent_state()
2421 * if some other CPU has recently done so. Also, don't bother
2422 * invoking force_quiescent_state() if the newly enqueued callback
2423 * is the only one waiting for a grace period to complete.
2424 */
2425 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2426
2427 /* Are we ignoring a completed grace period? */
2428 note_gp_changes(rsp, rdp);
2429
2430 /* Start a new grace period if one not already started. */
2431 if (!rcu_gp_in_progress(rsp)) {
2432 struct rcu_node *rnp_root = rcu_get_root(rsp);
2433
2434 raw_spin_lock(&rnp_root->lock);
2435 smp_mb__after_unlock_lock();
2436 rcu_start_gp(rsp);
2437 raw_spin_unlock(&rnp_root->lock);
2438 } else {
2439 /* Give the grace period a kick. */
2440 rdp->blimit = LONG_MAX;
2441 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2442 *rdp->nxttail[RCU_DONE_TAIL] != head)
2443 force_quiescent_state(rsp);
2444 rdp->n_force_qs_snap = rsp->n_force_qs;
2445 rdp->qlen_last_fqs_check = rdp->qlen;
2446 }
2447 }
2448 }
2449
2450 /*
2451 * RCU callback function to leak a callback.
2452 */
2453 static void rcu_leak_callback(struct rcu_head *rhp)
2454 {
2455 }
2456
2457 /*
2458 * Helper function for call_rcu() and friends. The cpu argument will
2459 * normally be -1, indicating "currently running CPU". It may specify
2460 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2461 * is expected to specify a CPU.
2462 */
2463 static void
2464 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2465 struct rcu_state *rsp, int cpu, bool lazy)
2466 {
2467 unsigned long flags;
2468 struct rcu_data *rdp;
2469
2470 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2471 if (debug_rcu_head_queue(head)) {
2472 /* Probable double call_rcu(), so leak the callback. */
2473 ACCESS_ONCE(head->func) = rcu_leak_callback;
2474 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2475 return;
2476 }
2477 head->func = func;
2478 head->next = NULL;
2479
2480 /*
2481 * Opportunistically note grace-period endings and beginnings.
2482 * Note that we might see a beginning right after we see an
2483 * end, but never vice versa, since this CPU has to pass through
2484 * a quiescent state betweentimes.
2485 */
2486 local_irq_save(flags);
2487 rdp = this_cpu_ptr(rsp->rda);
2488
2489 /* Add the callback to our list. */
2490 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2491 int offline;
2492
2493 if (cpu != -1)
2494 rdp = per_cpu_ptr(rsp->rda, cpu);
2495 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2496 WARN_ON_ONCE(offline);
2497 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2498 local_irq_restore(flags);
2499 return;
2500 }
2501 ACCESS_ONCE(rdp->qlen)++;
2502 if (lazy)
2503 rdp->qlen_lazy++;
2504 else
2505 rcu_idle_count_callbacks_posted();
2506 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2507 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2508 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2509
2510 if (__is_kfree_rcu_offset((unsigned long)func))
2511 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2512 rdp->qlen_lazy, rdp->qlen);
2513 else
2514 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2515
2516 /* Go handle any RCU core processing required. */
2517 __call_rcu_core(rsp, rdp, head, flags);
2518 local_irq_restore(flags);
2519 }
2520
2521 /*
2522 * Queue an RCU-sched callback for invocation after a grace period.
2523 */
2524 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2525 {
2526 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2527 }
2528 EXPORT_SYMBOL_GPL(call_rcu_sched);
2529
2530 /*
2531 * Queue an RCU callback for invocation after a quicker grace period.
2532 */
2533 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2534 {
2535 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2536 }
2537 EXPORT_SYMBOL_GPL(call_rcu_bh);
2538
2539 /*
2540 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2541 * any blocking grace-period wait automatically implies a grace period
2542 * if there is only one CPU online at any point time during execution
2543 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2544 * occasionally incorrectly indicate that there are multiple CPUs online
2545 * when there was in fact only one the whole time, as this just adds
2546 * some overhead: RCU still operates correctly.
2547 */
2548 static inline int rcu_blocking_is_gp(void)
2549 {
2550 int ret;
2551
2552 might_sleep(); /* Check for RCU read-side critical section. */
2553 preempt_disable();
2554 ret = num_online_cpus() <= 1;
2555 preempt_enable();
2556 return ret;
2557 }
2558
2559 /**
2560 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2561 *
2562 * Control will return to the caller some time after a full rcu-sched
2563 * grace period has elapsed, in other words after all currently executing
2564 * rcu-sched read-side critical sections have completed. These read-side
2565 * critical sections are delimited by rcu_read_lock_sched() and
2566 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2567 * local_irq_disable(), and so on may be used in place of
2568 * rcu_read_lock_sched().
2569 *
2570 * This means that all preempt_disable code sequences, including NMI and
2571 * non-threaded hardware-interrupt handlers, in progress on entry will
2572 * have completed before this primitive returns. However, this does not
2573 * guarantee that softirq handlers will have completed, since in some
2574 * kernels, these handlers can run in process context, and can block.
2575 *
2576 * Note that this guarantee implies further memory-ordering guarantees.
2577 * On systems with more than one CPU, when synchronize_sched() returns,
2578 * each CPU is guaranteed to have executed a full memory barrier since the
2579 * end of its last RCU-sched read-side critical section whose beginning
2580 * preceded the call to synchronize_sched(). In addition, each CPU having
2581 * an RCU read-side critical section that extends beyond the return from
2582 * synchronize_sched() is guaranteed to have executed a full memory barrier
2583 * after the beginning of synchronize_sched() and before the beginning of
2584 * that RCU read-side critical section. Note that these guarantees include
2585 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2586 * that are executing in the kernel.
2587 *
2588 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2589 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2590 * to have executed a full memory barrier during the execution of
2591 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2592 * again only if the system has more than one CPU).
2593 *
2594 * This primitive provides the guarantees made by the (now removed)
2595 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2596 * guarantees that rcu_read_lock() sections will have completed.
2597 * In "classic RCU", these two guarantees happen to be one and
2598 * the same, but can differ in realtime RCU implementations.
2599 */
2600 void synchronize_sched(void)
2601 {
2602 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2603 !lock_is_held(&rcu_lock_map) &&
2604 !lock_is_held(&rcu_sched_lock_map),
2605 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2606 if (rcu_blocking_is_gp())
2607 return;
2608 if (rcu_expedited)
2609 synchronize_sched_expedited();
2610 else
2611 wait_rcu_gp(call_rcu_sched);
2612 }
2613 EXPORT_SYMBOL_GPL(synchronize_sched);
2614
2615 /**
2616 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2617 *
2618 * Control will return to the caller some time after a full rcu_bh grace
2619 * period has elapsed, in other words after all currently executing rcu_bh
2620 * read-side critical sections have completed. RCU read-side critical
2621 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2622 * and may be nested.
2623 *
2624 * See the description of synchronize_sched() for more detailed information
2625 * on memory ordering guarantees.
2626 */
2627 void synchronize_rcu_bh(void)
2628 {
2629 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2630 !lock_is_held(&rcu_lock_map) &&
2631 !lock_is_held(&rcu_sched_lock_map),
2632 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2633 if (rcu_blocking_is_gp())
2634 return;
2635 if (rcu_expedited)
2636 synchronize_rcu_bh_expedited();
2637 else
2638 wait_rcu_gp(call_rcu_bh);
2639 }
2640 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2641
2642 static int synchronize_sched_expedited_cpu_stop(void *data)
2643 {
2644 /*
2645 * There must be a full memory barrier on each affected CPU
2646 * between the time that try_stop_cpus() is called and the
2647 * time that it returns.
2648 *
2649 * In the current initial implementation of cpu_stop, the
2650 * above condition is already met when the control reaches
2651 * this point and the following smp_mb() is not strictly
2652 * necessary. Do smp_mb() anyway for documentation and
2653 * robustness against future implementation changes.
2654 */
2655 smp_mb(); /* See above comment block. */
2656 return 0;
2657 }
2658
2659 /**
2660 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2661 *
2662 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2663 * approach to force the grace period to end quickly. This consumes
2664 * significant time on all CPUs and is unfriendly to real-time workloads,
2665 * so is thus not recommended for any sort of common-case code. In fact,
2666 * if you are using synchronize_sched_expedited() in a loop, please
2667 * restructure your code to batch your updates, and then use a single
2668 * synchronize_sched() instead.
2669 *
2670 * Note that it is illegal to call this function while holding any lock
2671 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2672 * to call this function from a CPU-hotplug notifier. Failing to observe
2673 * these restriction will result in deadlock.
2674 *
2675 * This implementation can be thought of as an application of ticket
2676 * locking to RCU, with sync_sched_expedited_started and
2677 * sync_sched_expedited_done taking on the roles of the halves
2678 * of the ticket-lock word. Each task atomically increments
2679 * sync_sched_expedited_started upon entry, snapshotting the old value,
2680 * then attempts to stop all the CPUs. If this succeeds, then each
2681 * CPU will have executed a context switch, resulting in an RCU-sched
2682 * grace period. We are then done, so we use atomic_cmpxchg() to
2683 * update sync_sched_expedited_done to match our snapshot -- but
2684 * only if someone else has not already advanced past our snapshot.
2685 *
2686 * On the other hand, if try_stop_cpus() fails, we check the value
2687 * of sync_sched_expedited_done. If it has advanced past our
2688 * initial snapshot, then someone else must have forced a grace period
2689 * some time after we took our snapshot. In this case, our work is
2690 * done for us, and we can simply return. Otherwise, we try again,
2691 * but keep our initial snapshot for purposes of checking for someone
2692 * doing our work for us.
2693 *
2694 * If we fail too many times in a row, we fall back to synchronize_sched().
2695 */
2696 void synchronize_sched_expedited(void)
2697 {
2698 long firstsnap, s, snap;
2699 int trycount = 0;
2700 struct rcu_state *rsp = &rcu_sched_state;
2701
2702 /*
2703 * If we are in danger of counter wrap, just do synchronize_sched().
2704 * By allowing sync_sched_expedited_started to advance no more than
2705 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2706 * that more than 3.5 billion CPUs would be required to force a
2707 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2708 * course be required on a 64-bit system.
2709 */
2710 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2711 (ulong)atomic_long_read(&rsp->expedited_done) +
2712 ULONG_MAX / 8)) {
2713 synchronize_sched();
2714 atomic_long_inc(&rsp->expedited_wrap);
2715 return;
2716 }
2717
2718 /*
2719 * Take a ticket. Note that atomic_inc_return() implies a
2720 * full memory barrier.
2721 */
2722 snap = atomic_long_inc_return(&rsp->expedited_start);
2723 firstsnap = snap;
2724 get_online_cpus();
2725 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2726
2727 /*
2728 * Each pass through the following loop attempts to force a
2729 * context switch on each CPU.
2730 */
2731 while (try_stop_cpus(cpu_online_mask,
2732 synchronize_sched_expedited_cpu_stop,
2733 NULL) == -EAGAIN) {
2734 put_online_cpus();
2735 atomic_long_inc(&rsp->expedited_tryfail);
2736
2737 /* Check to see if someone else did our work for us. */
2738 s = atomic_long_read(&rsp->expedited_done);
2739 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2740 /* ensure test happens before caller kfree */
2741 smp_mb__before_atomic_inc(); /* ^^^ */
2742 atomic_long_inc(&rsp->expedited_workdone1);
2743 return;
2744 }
2745
2746 /* No joy, try again later. Or just synchronize_sched(). */
2747 if (trycount++ < 10) {
2748 udelay(trycount * num_online_cpus());
2749 } else {
2750 wait_rcu_gp(call_rcu_sched);
2751 atomic_long_inc(&rsp->expedited_normal);
2752 return;
2753 }
2754
2755 /* Recheck to see if someone else did our work for us. */
2756 s = atomic_long_read(&rsp->expedited_done);
2757 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2758 /* ensure test happens before caller kfree */
2759 smp_mb__before_atomic_inc(); /* ^^^ */
2760 atomic_long_inc(&rsp->expedited_workdone2);
2761 return;
2762 }
2763
2764 /*
2765 * Refetching sync_sched_expedited_started allows later
2766 * callers to piggyback on our grace period. We retry
2767 * after they started, so our grace period works for them,
2768 * and they started after our first try, so their grace
2769 * period works for us.
2770 */
2771 get_online_cpus();
2772 snap = atomic_long_read(&rsp->expedited_start);
2773 smp_mb(); /* ensure read is before try_stop_cpus(). */
2774 }
2775 atomic_long_inc(&rsp->expedited_stoppedcpus);
2776
2777 /*
2778 * Everyone up to our most recent fetch is covered by our grace
2779 * period. Update the counter, but only if our work is still
2780 * relevant -- which it won't be if someone who started later
2781 * than we did already did their update.
2782 */
2783 do {
2784 atomic_long_inc(&rsp->expedited_done_tries);
2785 s = atomic_long_read(&rsp->expedited_done);
2786 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2787 /* ensure test happens before caller kfree */
2788 smp_mb__before_atomic_inc(); /* ^^^ */
2789 atomic_long_inc(&rsp->expedited_done_lost);
2790 break;
2791 }
2792 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2793 atomic_long_inc(&rsp->expedited_done_exit);
2794
2795 put_online_cpus();
2796 }
2797 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2798
2799 /*
2800 * Check to see if there is any immediate RCU-related work to be done
2801 * by the current CPU, for the specified type of RCU, returning 1 if so.
2802 * The checks are in order of increasing expense: checks that can be
2803 * carried out against CPU-local state are performed first. However,
2804 * we must check for CPU stalls first, else we might not get a chance.
2805 */
2806 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2807 {
2808 struct rcu_node *rnp = rdp->mynode;
2809
2810 rdp->n_rcu_pending++;
2811
2812 /* Check for CPU stalls, if enabled. */
2813 check_cpu_stall(rsp, rdp);
2814
2815 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2816 if (rcu_nohz_full_cpu(rsp))
2817 return 0;
2818
2819 /* Is the RCU core waiting for a quiescent state from this CPU? */
2820 if (rcu_scheduler_fully_active &&
2821 rdp->qs_pending && !rdp->passed_quiesce) {
2822 rdp->n_rp_qs_pending++;
2823 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2824 rdp->n_rp_report_qs++;
2825 return 1;
2826 }
2827
2828 /* Does this CPU have callbacks ready to invoke? */
2829 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2830 rdp->n_rp_cb_ready++;
2831 return 1;
2832 }
2833
2834 /* Has RCU gone idle with this CPU needing another grace period? */
2835 if (cpu_needs_another_gp(rsp, rdp)) {
2836 rdp->n_rp_cpu_needs_gp++;
2837 return 1;
2838 }
2839
2840 /* Has another RCU grace period completed? */
2841 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2842 rdp->n_rp_gp_completed++;
2843 return 1;
2844 }
2845
2846 /* Has a new RCU grace period started? */
2847 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2848 rdp->n_rp_gp_started++;
2849 return 1;
2850 }
2851
2852 /* Does this CPU need a deferred NOCB wakeup? */
2853 if (rcu_nocb_need_deferred_wakeup(rdp)) {
2854 rdp->n_rp_nocb_defer_wakeup++;
2855 return 1;
2856 }
2857
2858 /* nothing to do */
2859 rdp->n_rp_need_nothing++;
2860 return 0;
2861 }
2862
2863 /*
2864 * Check to see if there is any immediate RCU-related work to be done
2865 * by the current CPU, returning 1 if so. This function is part of the
2866 * RCU implementation; it is -not- an exported member of the RCU API.
2867 */
2868 static int rcu_pending(int cpu)
2869 {
2870 struct rcu_state *rsp;
2871
2872 for_each_rcu_flavor(rsp)
2873 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2874 return 1;
2875 return 0;
2876 }
2877
2878 /*
2879 * Return true if the specified CPU has any callback. If all_lazy is
2880 * non-NULL, store an indication of whether all callbacks are lazy.
2881 * (If there are no callbacks, all of them are deemed to be lazy.)
2882 */
2883 static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2884 {
2885 bool al = true;
2886 bool hc = false;
2887 struct rcu_data *rdp;
2888 struct rcu_state *rsp;
2889
2890 for_each_rcu_flavor(rsp) {
2891 rdp = per_cpu_ptr(rsp->rda, cpu);
2892 if (!rdp->nxtlist)
2893 continue;
2894 hc = true;
2895 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
2896 al = false;
2897 break;
2898 }
2899 }
2900 if (all_lazy)
2901 *all_lazy = al;
2902 return hc;
2903 }
2904
2905 /*
2906 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2907 * the compiler is expected to optimize this away.
2908 */
2909 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
2910 int cpu, unsigned long done)
2911 {
2912 trace_rcu_barrier(rsp->name, s, cpu,
2913 atomic_read(&rsp->barrier_cpu_count), done);
2914 }
2915
2916 /*
2917 * RCU callback function for _rcu_barrier(). If we are last, wake
2918 * up the task executing _rcu_barrier().
2919 */
2920 static void rcu_barrier_callback(struct rcu_head *rhp)
2921 {
2922 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2923 struct rcu_state *rsp = rdp->rsp;
2924
2925 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2926 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2927 complete(&rsp->barrier_completion);
2928 } else {
2929 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2930 }
2931 }
2932
2933 /*
2934 * Called with preemption disabled, and from cross-cpu IRQ context.
2935 */
2936 static void rcu_barrier_func(void *type)
2937 {
2938 struct rcu_state *rsp = type;
2939 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2940
2941 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2942 atomic_inc(&rsp->barrier_cpu_count);
2943 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2944 }
2945
2946 /*
2947 * Orchestrate the specified type of RCU barrier, waiting for all
2948 * RCU callbacks of the specified type to complete.
2949 */
2950 static void _rcu_barrier(struct rcu_state *rsp)
2951 {
2952 int cpu;
2953 struct rcu_data *rdp;
2954 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2955 unsigned long snap_done;
2956
2957 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2958
2959 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2960 mutex_lock(&rsp->barrier_mutex);
2961
2962 /*
2963 * Ensure that all prior references, including to ->n_barrier_done,
2964 * are ordered before the _rcu_barrier() machinery.
2965 */
2966 smp_mb(); /* See above block comment. */
2967
2968 /*
2969 * Recheck ->n_barrier_done to see if others did our work for us.
2970 * This means checking ->n_barrier_done for an even-to-odd-to-even
2971 * transition. The "if" expression below therefore rounds the old
2972 * value up to the next even number and adds two before comparing.
2973 */
2974 snap_done = rsp->n_barrier_done;
2975 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2976
2977 /*
2978 * If the value in snap is odd, we needed to wait for the current
2979 * rcu_barrier() to complete, then wait for the next one, in other
2980 * words, we need the value of snap_done to be three larger than
2981 * the value of snap. On the other hand, if the value in snap is
2982 * even, we only had to wait for the next rcu_barrier() to complete,
2983 * in other words, we need the value of snap_done to be only two
2984 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
2985 * this for us (thank you, Linus!).
2986 */
2987 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
2988 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2989 smp_mb(); /* caller's subsequent code after above check. */
2990 mutex_unlock(&rsp->barrier_mutex);
2991 return;
2992 }
2993
2994 /*
2995 * Increment ->n_barrier_done to avoid duplicate work. Use
2996 * ACCESS_ONCE() to prevent the compiler from speculating
2997 * the increment to precede the early-exit check.
2998 */
2999 ACCESS_ONCE(rsp->n_barrier_done)++;
3000 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3001 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3002 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3003
3004 /*
3005 * Initialize the count to one rather than to zero in order to
3006 * avoid a too-soon return to zero in case of a short grace period
3007 * (or preemption of this task). Exclude CPU-hotplug operations
3008 * to ensure that no offline CPU has callbacks queued.
3009 */
3010 init_completion(&rsp->barrier_completion);
3011 atomic_set(&rsp->barrier_cpu_count, 1);
3012 get_online_cpus();
3013
3014 /*
3015 * Force each CPU with callbacks to register a new callback.
3016 * When that callback is invoked, we will know that all of the
3017 * corresponding CPU's preceding callbacks have been invoked.
3018 */
3019 for_each_possible_cpu(cpu) {
3020 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3021 continue;
3022 rdp = per_cpu_ptr(rsp->rda, cpu);
3023 if (rcu_is_nocb_cpu(cpu)) {
3024 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3025 rsp->n_barrier_done);
3026 atomic_inc(&rsp->barrier_cpu_count);
3027 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3028 rsp, cpu, 0);
3029 } else if (ACCESS_ONCE(rdp->qlen)) {
3030 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3031 rsp->n_barrier_done);
3032 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3033 } else {
3034 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3035 rsp->n_barrier_done);
3036 }
3037 }
3038 put_online_cpus();
3039
3040 /*
3041 * Now that we have an rcu_barrier_callback() callback on each
3042 * CPU, and thus each counted, remove the initial count.
3043 */
3044 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3045 complete(&rsp->barrier_completion);
3046
3047 /* Increment ->n_barrier_done to prevent duplicate work. */
3048 smp_mb(); /* Keep increment after above mechanism. */
3049 ACCESS_ONCE(rsp->n_barrier_done)++;
3050 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3051 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3052 smp_mb(); /* Keep increment before caller's subsequent code. */
3053
3054 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3055 wait_for_completion(&rsp->barrier_completion);
3056
3057 /* Other rcu_barrier() invocations can now safely proceed. */
3058 mutex_unlock(&rsp->barrier_mutex);
3059 }
3060
3061 /**
3062 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3063 */
3064 void rcu_barrier_bh(void)
3065 {
3066 _rcu_barrier(&rcu_bh_state);
3067 }
3068 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3069
3070 /**
3071 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3072 */
3073 void rcu_barrier_sched(void)
3074 {
3075 _rcu_barrier(&rcu_sched_state);
3076 }
3077 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3078
3079 /*
3080 * Do boot-time initialization of a CPU's per-CPU RCU data.
3081 */
3082 static void __init
3083 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3084 {
3085 unsigned long flags;
3086 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3087 struct rcu_node *rnp = rcu_get_root(rsp);
3088
3089 /* Set up local state, ensuring consistent view of global state. */
3090 raw_spin_lock_irqsave(&rnp->lock, flags);
3091 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3092 init_callback_list(rdp);
3093 rdp->qlen_lazy = 0;
3094 ACCESS_ONCE(rdp->qlen) = 0;
3095 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3096 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3097 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3098 rdp->cpu = cpu;
3099 rdp->rsp = rsp;
3100 rcu_boot_init_nocb_percpu_data(rdp);
3101 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3102 }
3103
3104 /*
3105 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3106 * offline event can be happening at a given time. Note also that we
3107 * can accept some slop in the rsp->completed access due to the fact
3108 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3109 */
3110 static void
3111 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3112 {
3113 unsigned long flags;
3114 unsigned long mask;
3115 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3116 struct rcu_node *rnp = rcu_get_root(rsp);
3117
3118 /* Exclude new grace periods. */
3119 mutex_lock(&rsp->onoff_mutex);
3120
3121 /* Set up local state, ensuring consistent view of global state. */
3122 raw_spin_lock_irqsave(&rnp->lock, flags);
3123 rdp->beenonline = 1; /* We have now been online. */
3124 rdp->preemptible = preemptible;
3125 rdp->qlen_last_fqs_check = 0;
3126 rdp->n_force_qs_snap = rsp->n_force_qs;
3127 rdp->blimit = blimit;
3128 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3129 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3130 rcu_sysidle_init_percpu_data(rdp->dynticks);
3131 atomic_set(&rdp->dynticks->dynticks,
3132 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3133 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3134
3135 /* Add CPU to rcu_node bitmasks. */
3136 rnp = rdp->mynode;
3137 mask = rdp->grpmask;
3138 do {
3139 /* Exclude any attempts to start a new GP on small systems. */
3140 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3141 rnp->qsmaskinit |= mask;
3142 mask = rnp->grpmask;
3143 if (rnp == rdp->mynode) {
3144 /*
3145 * If there is a grace period in progress, we will
3146 * set up to wait for it next time we run the
3147 * RCU core code.
3148 */
3149 rdp->gpnum = rnp->completed;
3150 rdp->completed = rnp->completed;
3151 rdp->passed_quiesce = 0;
3152 rdp->qs_pending = 0;
3153 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3154 }
3155 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3156 rnp = rnp->parent;
3157 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3158 local_irq_restore(flags);
3159
3160 mutex_unlock(&rsp->onoff_mutex);
3161 }
3162
3163 static void rcu_prepare_cpu(int cpu)
3164 {
3165 struct rcu_state *rsp;
3166
3167 for_each_rcu_flavor(rsp)
3168 rcu_init_percpu_data(cpu, rsp,
3169 strcmp(rsp->name, "rcu_preempt") == 0);
3170 }
3171
3172 /*
3173 * Handle CPU online/offline notification events.
3174 */
3175 static int rcu_cpu_notify(struct notifier_block *self,
3176 unsigned long action, void *hcpu)
3177 {
3178 long cpu = (long)hcpu;
3179 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3180 struct rcu_node *rnp = rdp->mynode;
3181 struct rcu_state *rsp;
3182
3183 trace_rcu_utilization(TPS("Start CPU hotplug"));
3184 switch (action) {
3185 case CPU_UP_PREPARE:
3186 case CPU_UP_PREPARE_FROZEN:
3187 rcu_prepare_cpu(cpu);
3188 rcu_prepare_kthreads(cpu);
3189 break;
3190 case CPU_ONLINE:
3191 case CPU_DOWN_FAILED:
3192 rcu_boost_kthread_setaffinity(rnp, -1);
3193 break;
3194 case CPU_DOWN_PREPARE:
3195 rcu_boost_kthread_setaffinity(rnp, cpu);
3196 break;
3197 case CPU_DYING:
3198 case CPU_DYING_FROZEN:
3199 for_each_rcu_flavor(rsp)
3200 rcu_cleanup_dying_cpu(rsp);
3201 break;
3202 case CPU_DEAD:
3203 case CPU_DEAD_FROZEN:
3204 case CPU_UP_CANCELED:
3205 case CPU_UP_CANCELED_FROZEN:
3206 for_each_rcu_flavor(rsp)
3207 rcu_cleanup_dead_cpu(cpu, rsp);
3208 break;
3209 default:
3210 break;
3211 }
3212 trace_rcu_utilization(TPS("End CPU hotplug"));
3213 return NOTIFY_OK;
3214 }
3215
3216 static int rcu_pm_notify(struct notifier_block *self,
3217 unsigned long action, void *hcpu)
3218 {
3219 switch (action) {
3220 case PM_HIBERNATION_PREPARE:
3221 case PM_SUSPEND_PREPARE:
3222 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3223 rcu_expedited = 1;
3224 break;
3225 case PM_POST_HIBERNATION:
3226 case PM_POST_SUSPEND:
3227 rcu_expedited = 0;
3228 break;
3229 default:
3230 break;
3231 }
3232 return NOTIFY_OK;
3233 }
3234
3235 /*
3236 * Spawn the kthread that handles this RCU flavor's grace periods.
3237 */
3238 static int __init rcu_spawn_gp_kthread(void)
3239 {
3240 unsigned long flags;
3241 struct rcu_node *rnp;
3242 struct rcu_state *rsp;
3243 struct task_struct *t;
3244
3245 for_each_rcu_flavor(rsp) {
3246 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3247 BUG_ON(IS_ERR(t));
3248 rnp = rcu_get_root(rsp);
3249 raw_spin_lock_irqsave(&rnp->lock, flags);
3250 rsp->gp_kthread = t;
3251 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3252 rcu_spawn_nocb_kthreads(rsp);
3253 }
3254 return 0;
3255 }
3256 early_initcall(rcu_spawn_gp_kthread);
3257
3258 /*
3259 * This function is invoked towards the end of the scheduler's initialization
3260 * process. Before this is called, the idle task might contain
3261 * RCU read-side critical sections (during which time, this idle
3262 * task is booting the system). After this function is called, the
3263 * idle tasks are prohibited from containing RCU read-side critical
3264 * sections. This function also enables RCU lockdep checking.
3265 */
3266 void rcu_scheduler_starting(void)
3267 {
3268 WARN_ON(num_online_cpus() != 1);
3269 WARN_ON(nr_context_switches() > 0);
3270 rcu_scheduler_active = 1;
3271 }
3272
3273 /*
3274 * Compute the per-level fanout, either using the exact fanout specified
3275 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3276 */
3277 #ifdef CONFIG_RCU_FANOUT_EXACT
3278 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3279 {
3280 int i;
3281
3282 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3283 for (i = rcu_num_lvls - 2; i >= 0; i--)
3284 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3285 }
3286 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3287 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3288 {
3289 int ccur;
3290 int cprv;
3291 int i;
3292
3293 cprv = nr_cpu_ids;
3294 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3295 ccur = rsp->levelcnt[i];
3296 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3297 cprv = ccur;
3298 }
3299 }
3300 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3301
3302 /*
3303 * Helper function for rcu_init() that initializes one rcu_state structure.
3304 */
3305 static void __init rcu_init_one(struct rcu_state *rsp,
3306 struct rcu_data __percpu *rda)
3307 {
3308 static char *buf[] = { "rcu_node_0",
3309 "rcu_node_1",
3310 "rcu_node_2",
3311 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3312 static char *fqs[] = { "rcu_node_fqs_0",
3313 "rcu_node_fqs_1",
3314 "rcu_node_fqs_2",
3315 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3316 int cpustride = 1;
3317 int i;
3318 int j;
3319 struct rcu_node *rnp;
3320
3321 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3322
3323 /* Silence gcc 4.8 warning about array index out of range. */
3324 if (rcu_num_lvls > RCU_NUM_LVLS)
3325 panic("rcu_init_one: rcu_num_lvls overflow");
3326
3327 /* Initialize the level-tracking arrays. */
3328
3329 for (i = 0; i < rcu_num_lvls; i++)
3330 rsp->levelcnt[i] = num_rcu_lvl[i];
3331 for (i = 1; i < rcu_num_lvls; i++)
3332 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3333 rcu_init_levelspread(rsp);
3334
3335 /* Initialize the elements themselves, starting from the leaves. */
3336
3337 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3338 cpustride *= rsp->levelspread[i];
3339 rnp = rsp->level[i];
3340 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3341 raw_spin_lock_init(&rnp->lock);
3342 lockdep_set_class_and_name(&rnp->lock,
3343 &rcu_node_class[i], buf[i]);
3344 raw_spin_lock_init(&rnp->fqslock);
3345 lockdep_set_class_and_name(&rnp->fqslock,
3346 &rcu_fqs_class[i], fqs[i]);
3347 rnp->gpnum = rsp->gpnum;
3348 rnp->completed = rsp->completed;
3349 rnp->qsmask = 0;
3350 rnp->qsmaskinit = 0;
3351 rnp->grplo = j * cpustride;
3352 rnp->grphi = (j + 1) * cpustride - 1;
3353 if (rnp->grphi >= NR_CPUS)
3354 rnp->grphi = NR_CPUS - 1;
3355 if (i == 0) {
3356 rnp->grpnum = 0;
3357 rnp->grpmask = 0;
3358 rnp->parent = NULL;
3359 } else {
3360 rnp->grpnum = j % rsp->levelspread[i - 1];
3361 rnp->grpmask = 1UL << rnp->grpnum;
3362 rnp->parent = rsp->level[i - 1] +
3363 j / rsp->levelspread[i - 1];
3364 }
3365 rnp->level = i;
3366 INIT_LIST_HEAD(&rnp->blkd_tasks);
3367 rcu_init_one_nocb(rnp);
3368 }
3369 }
3370
3371 rsp->rda = rda;
3372 init_waitqueue_head(&rsp->gp_wq);
3373 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3374 rnp = rsp->level[rcu_num_lvls - 1];
3375 for_each_possible_cpu(i) {
3376 while (i > rnp->grphi)
3377 rnp++;
3378 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3379 rcu_boot_init_percpu_data(i, rsp);
3380 }
3381 list_add(&rsp->flavors, &rcu_struct_flavors);
3382 }
3383
3384 /*
3385 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3386 * replace the definitions in tree.h because those are needed to size
3387 * the ->node array in the rcu_state structure.
3388 */
3389 static void __init rcu_init_geometry(void)
3390 {
3391 ulong d;
3392 int i;
3393 int j;
3394 int n = nr_cpu_ids;
3395 int rcu_capacity[MAX_RCU_LVLS + 1];
3396
3397 /*
3398 * Initialize any unspecified boot parameters.
3399 * The default values of jiffies_till_first_fqs and
3400 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3401 * value, which is a function of HZ, then adding one for each
3402 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3403 */
3404 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3405 if (jiffies_till_first_fqs == ULONG_MAX)
3406 jiffies_till_first_fqs = d;
3407 if (jiffies_till_next_fqs == ULONG_MAX)
3408 jiffies_till_next_fqs = d;
3409
3410 /* If the compile-time values are accurate, just leave. */
3411 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3412 nr_cpu_ids == NR_CPUS)
3413 return;
3414 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3415 rcu_fanout_leaf, nr_cpu_ids);
3416
3417 /*
3418 * Compute number of nodes that can be handled an rcu_node tree
3419 * with the given number of levels. Setting rcu_capacity[0] makes
3420 * some of the arithmetic easier.
3421 */
3422 rcu_capacity[0] = 1;
3423 rcu_capacity[1] = rcu_fanout_leaf;
3424 for (i = 2; i <= MAX_RCU_LVLS; i++)
3425 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3426
3427 /*
3428 * The boot-time rcu_fanout_leaf parameter is only permitted
3429 * to increase the leaf-level fanout, not decrease it. Of course,
3430 * the leaf-level fanout cannot exceed the number of bits in
3431 * the rcu_node masks. Finally, the tree must be able to accommodate
3432 * the configured number of CPUs. Complain and fall back to the
3433 * compile-time values if these limits are exceeded.
3434 */
3435 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3436 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3437 n > rcu_capacity[MAX_RCU_LVLS]) {
3438 WARN_ON(1);
3439 return;
3440 }
3441
3442 /* Calculate the number of rcu_nodes at each level of the tree. */
3443 for (i = 1; i <= MAX_RCU_LVLS; i++)
3444 if (n <= rcu_capacity[i]) {
3445 for (j = 0; j <= i; j++)
3446 num_rcu_lvl[j] =
3447 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3448 rcu_num_lvls = i;
3449 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3450 num_rcu_lvl[j] = 0;
3451 break;
3452 }
3453
3454 /* Calculate the total number of rcu_node structures. */
3455 rcu_num_nodes = 0;
3456 for (i = 0; i <= MAX_RCU_LVLS; i++)
3457 rcu_num_nodes += num_rcu_lvl[i];
3458 rcu_num_nodes -= n;
3459 }
3460
3461 void __init rcu_init(void)
3462 {
3463 int cpu;
3464
3465 rcu_bootup_announce();
3466 rcu_init_geometry();
3467 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3468 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3469 __rcu_init_preempt();
3470 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3471
3472 /*
3473 * We don't need protection against CPU-hotplug here because
3474 * this is called early in boot, before either interrupts
3475 * or the scheduler are operational.
3476 */
3477 cpu_notifier(rcu_cpu_notify, 0);
3478 pm_notifier(rcu_pm_notify, 0);
3479 for_each_online_cpu(cpu)
3480 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3481 }
3482
3483 #include "tree_plugin.h"
This page took 0.291702 seconds and 6 git commands to generate.