rcu: Make callers awaken grace-period kthread
[deliverable/linux.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #define RCU_KTHREAD_PRIO 1
34
35 #ifdef CONFIG_RCU_BOOST
36 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37 #else
38 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39 #endif
40
41 #ifdef CONFIG_RCU_NOCB_CPU
42 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
44 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
45 static char __initdata nocb_buf[NR_CPUS * 5];
46 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47
48 /*
49 * Check the RCU kernel configuration parameters and print informative
50 * messages about anything out of the ordinary. If you like #ifdef, you
51 * will love this function.
52 */
53 static void __init rcu_bootup_announce_oddness(void)
54 {
55 #ifdef CONFIG_RCU_TRACE
56 pr_info("\tRCU debugfs-based tracing is enabled.\n");
57 #endif
58 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60 CONFIG_RCU_FANOUT);
61 #endif
62 #ifdef CONFIG_RCU_FANOUT_EXACT
63 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64 #endif
65 #ifdef CONFIG_RCU_FAST_NO_HZ
66 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67 #endif
68 #ifdef CONFIG_PROVE_RCU
69 pr_info("\tRCU lockdep checking is enabled.\n");
70 #endif
71 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72 pr_info("\tRCU torture testing starts during boot.\n");
73 #endif
74 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76 #endif
77 #if defined(CONFIG_RCU_CPU_STALL_INFO)
78 pr_info("\tAdditional per-CPU info printed with stalls.\n");
79 #endif
80 #if NUM_RCU_LVL_4 != 0
81 pr_info("\tFour-level hierarchy is enabled.\n");
82 #endif
83 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85 if (nr_cpu_ids != NR_CPUS)
86 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
87 #ifdef CONFIG_RCU_NOCB_CPU
88 #ifndef CONFIG_RCU_NOCB_CPU_NONE
89 if (!have_rcu_nocb_mask) {
90 zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91 have_rcu_nocb_mask = true;
92 }
93 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
94 pr_info("\tOffload RCU callbacks from CPU 0\n");
95 cpumask_set_cpu(0, rcu_nocb_mask);
96 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97 #ifdef CONFIG_RCU_NOCB_CPU_ALL
98 pr_info("\tOffload RCU callbacks from all CPUs\n");
99 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
100 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
102 if (have_rcu_nocb_mask) {
103 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
104 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
106 rcu_nocb_mask);
107 }
108 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
109 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
110 if (rcu_nocb_poll)
111 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
112 }
113 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
114 }
115
116 #ifdef CONFIG_TREE_PREEMPT_RCU
117
118 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
119 static struct rcu_state *rcu_state = &rcu_preempt_state;
120
121 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
122
123 /*
124 * Tell them what RCU they are running.
125 */
126 static void __init rcu_bootup_announce(void)
127 {
128 pr_info("Preemptible hierarchical RCU implementation.\n");
129 rcu_bootup_announce_oddness();
130 }
131
132 /*
133 * Return the number of RCU-preempt batches processed thus far
134 * for debug and statistics.
135 */
136 long rcu_batches_completed_preempt(void)
137 {
138 return rcu_preempt_state.completed;
139 }
140 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
141
142 /*
143 * Return the number of RCU batches processed thus far for debug & stats.
144 */
145 long rcu_batches_completed(void)
146 {
147 return rcu_batches_completed_preempt();
148 }
149 EXPORT_SYMBOL_GPL(rcu_batches_completed);
150
151 /*
152 * Force a quiescent state for preemptible RCU.
153 */
154 void rcu_force_quiescent_state(void)
155 {
156 force_quiescent_state(&rcu_preempt_state);
157 }
158 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
159
160 /*
161 * Record a preemptible-RCU quiescent state for the specified CPU. Note
162 * that this just means that the task currently running on the CPU is
163 * not in a quiescent state. There might be any number of tasks blocked
164 * while in an RCU read-side critical section.
165 *
166 * Unlike the other rcu_*_qs() functions, callers to this function
167 * must disable irqs in order to protect the assignment to
168 * ->rcu_read_unlock_special.
169 */
170 static void rcu_preempt_qs(int cpu)
171 {
172 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
173
174 if (rdp->passed_quiesce == 0)
175 trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
176 rdp->passed_quiesce = 1;
177 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
178 }
179
180 /*
181 * We have entered the scheduler, and the current task might soon be
182 * context-switched away from. If this task is in an RCU read-side
183 * critical section, we will no longer be able to rely on the CPU to
184 * record that fact, so we enqueue the task on the blkd_tasks list.
185 * The task will dequeue itself when it exits the outermost enclosing
186 * RCU read-side critical section. Therefore, the current grace period
187 * cannot be permitted to complete until the blkd_tasks list entries
188 * predating the current grace period drain, in other words, until
189 * rnp->gp_tasks becomes NULL.
190 *
191 * Caller must disable preemption.
192 */
193 static void rcu_preempt_note_context_switch(int cpu)
194 {
195 struct task_struct *t = current;
196 unsigned long flags;
197 struct rcu_data *rdp;
198 struct rcu_node *rnp;
199
200 if (t->rcu_read_lock_nesting > 0 &&
201 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
202
203 /* Possibly blocking in an RCU read-side critical section. */
204 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
205 rnp = rdp->mynode;
206 raw_spin_lock_irqsave(&rnp->lock, flags);
207 smp_mb__after_unlock_lock();
208 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
209 t->rcu_blocked_node = rnp;
210
211 /*
212 * If this CPU has already checked in, then this task
213 * will hold up the next grace period rather than the
214 * current grace period. Queue the task accordingly.
215 * If the task is queued for the current grace period
216 * (i.e., this CPU has not yet passed through a quiescent
217 * state for the current grace period), then as long
218 * as that task remains queued, the current grace period
219 * cannot end. Note that there is some uncertainty as
220 * to exactly when the current grace period started.
221 * We take a conservative approach, which can result
222 * in unnecessarily waiting on tasks that started very
223 * slightly after the current grace period began. C'est
224 * la vie!!!
225 *
226 * But first, note that the current CPU must still be
227 * on line!
228 */
229 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
230 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
231 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
232 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
233 rnp->gp_tasks = &t->rcu_node_entry;
234 #ifdef CONFIG_RCU_BOOST
235 if (rnp->boost_tasks != NULL)
236 rnp->boost_tasks = rnp->gp_tasks;
237 #endif /* #ifdef CONFIG_RCU_BOOST */
238 } else {
239 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
240 if (rnp->qsmask & rdp->grpmask)
241 rnp->gp_tasks = &t->rcu_node_entry;
242 }
243 trace_rcu_preempt_task(rdp->rsp->name,
244 t->pid,
245 (rnp->qsmask & rdp->grpmask)
246 ? rnp->gpnum
247 : rnp->gpnum + 1);
248 raw_spin_unlock_irqrestore(&rnp->lock, flags);
249 } else if (t->rcu_read_lock_nesting < 0 &&
250 t->rcu_read_unlock_special) {
251
252 /*
253 * Complete exit from RCU read-side critical section on
254 * behalf of preempted instance of __rcu_read_unlock().
255 */
256 rcu_read_unlock_special(t);
257 }
258
259 /*
260 * Either we were not in an RCU read-side critical section to
261 * begin with, or we have now recorded that critical section
262 * globally. Either way, we can now note a quiescent state
263 * for this CPU. Again, if we were in an RCU read-side critical
264 * section, and if that critical section was blocking the current
265 * grace period, then the fact that the task has been enqueued
266 * means that we continue to block the current grace period.
267 */
268 local_irq_save(flags);
269 rcu_preempt_qs(cpu);
270 local_irq_restore(flags);
271 }
272
273 /*
274 * Check for preempted RCU readers blocking the current grace period
275 * for the specified rcu_node structure. If the caller needs a reliable
276 * answer, it must hold the rcu_node's ->lock.
277 */
278 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
279 {
280 return rnp->gp_tasks != NULL;
281 }
282
283 /*
284 * Record a quiescent state for all tasks that were previously queued
285 * on the specified rcu_node structure and that were blocking the current
286 * RCU grace period. The caller must hold the specified rnp->lock with
287 * irqs disabled, and this lock is released upon return, but irqs remain
288 * disabled.
289 */
290 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
291 __releases(rnp->lock)
292 {
293 unsigned long mask;
294 struct rcu_node *rnp_p;
295
296 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
297 raw_spin_unlock_irqrestore(&rnp->lock, flags);
298 return; /* Still need more quiescent states! */
299 }
300
301 rnp_p = rnp->parent;
302 if (rnp_p == NULL) {
303 /*
304 * Either there is only one rcu_node in the tree,
305 * or tasks were kicked up to root rcu_node due to
306 * CPUs going offline.
307 */
308 rcu_report_qs_rsp(&rcu_preempt_state, flags);
309 return;
310 }
311
312 /* Report up the rest of the hierarchy. */
313 mask = rnp->grpmask;
314 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
315 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
316 smp_mb__after_unlock_lock();
317 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
318 }
319
320 /*
321 * Advance a ->blkd_tasks-list pointer to the next entry, instead
322 * returning NULL if at the end of the list.
323 */
324 static struct list_head *rcu_next_node_entry(struct task_struct *t,
325 struct rcu_node *rnp)
326 {
327 struct list_head *np;
328
329 np = t->rcu_node_entry.next;
330 if (np == &rnp->blkd_tasks)
331 np = NULL;
332 return np;
333 }
334
335 /*
336 * Handle special cases during rcu_read_unlock(), such as needing to
337 * notify RCU core processing or task having blocked during the RCU
338 * read-side critical section.
339 */
340 void rcu_read_unlock_special(struct task_struct *t)
341 {
342 int empty;
343 int empty_exp;
344 int empty_exp_now;
345 unsigned long flags;
346 struct list_head *np;
347 #ifdef CONFIG_RCU_BOOST
348 struct rt_mutex *rbmp = NULL;
349 #endif /* #ifdef CONFIG_RCU_BOOST */
350 struct rcu_node *rnp;
351 int special;
352
353 /* NMI handlers cannot block and cannot safely manipulate state. */
354 if (in_nmi())
355 return;
356
357 local_irq_save(flags);
358
359 /*
360 * If RCU core is waiting for this CPU to exit critical section,
361 * let it know that we have done so.
362 */
363 special = t->rcu_read_unlock_special;
364 if (special & RCU_READ_UNLOCK_NEED_QS) {
365 rcu_preempt_qs(smp_processor_id());
366 if (!t->rcu_read_unlock_special) {
367 local_irq_restore(flags);
368 return;
369 }
370 }
371
372 /* Hardware IRQ handlers cannot block, complain if they get here. */
373 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
374 local_irq_restore(flags);
375 return;
376 }
377
378 /* Clean up if blocked during RCU read-side critical section. */
379 if (special & RCU_READ_UNLOCK_BLOCKED) {
380 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
381
382 /*
383 * Remove this task from the list it blocked on. The
384 * task can migrate while we acquire the lock, but at
385 * most one time. So at most two passes through loop.
386 */
387 for (;;) {
388 rnp = t->rcu_blocked_node;
389 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
390 smp_mb__after_unlock_lock();
391 if (rnp == t->rcu_blocked_node)
392 break;
393 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
394 }
395 empty = !rcu_preempt_blocked_readers_cgp(rnp);
396 empty_exp = !rcu_preempted_readers_exp(rnp);
397 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
398 np = rcu_next_node_entry(t, rnp);
399 list_del_init(&t->rcu_node_entry);
400 t->rcu_blocked_node = NULL;
401 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
402 rnp->gpnum, t->pid);
403 if (&t->rcu_node_entry == rnp->gp_tasks)
404 rnp->gp_tasks = np;
405 if (&t->rcu_node_entry == rnp->exp_tasks)
406 rnp->exp_tasks = np;
407 #ifdef CONFIG_RCU_BOOST
408 if (&t->rcu_node_entry == rnp->boost_tasks)
409 rnp->boost_tasks = np;
410 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
411 if (t->rcu_boost_mutex) {
412 rbmp = t->rcu_boost_mutex;
413 t->rcu_boost_mutex = NULL;
414 }
415 #endif /* #ifdef CONFIG_RCU_BOOST */
416
417 /*
418 * If this was the last task on the current list, and if
419 * we aren't waiting on any CPUs, report the quiescent state.
420 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
421 * so we must take a snapshot of the expedited state.
422 */
423 empty_exp_now = !rcu_preempted_readers_exp(rnp);
424 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
425 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
426 rnp->gpnum,
427 0, rnp->qsmask,
428 rnp->level,
429 rnp->grplo,
430 rnp->grphi,
431 !!rnp->gp_tasks);
432 rcu_report_unblock_qs_rnp(rnp, flags);
433 } else {
434 raw_spin_unlock_irqrestore(&rnp->lock, flags);
435 }
436
437 #ifdef CONFIG_RCU_BOOST
438 /* Unboost if we were boosted. */
439 if (rbmp)
440 rt_mutex_unlock(rbmp);
441 #endif /* #ifdef CONFIG_RCU_BOOST */
442
443 /*
444 * If this was the last task on the expedited lists,
445 * then we need to report up the rcu_node hierarchy.
446 */
447 if (!empty_exp && empty_exp_now)
448 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
449 } else {
450 local_irq_restore(flags);
451 }
452 }
453
454 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
455
456 /*
457 * Dump detailed information for all tasks blocking the current RCU
458 * grace period on the specified rcu_node structure.
459 */
460 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
461 {
462 unsigned long flags;
463 struct task_struct *t;
464
465 raw_spin_lock_irqsave(&rnp->lock, flags);
466 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
467 raw_spin_unlock_irqrestore(&rnp->lock, flags);
468 return;
469 }
470 t = list_entry(rnp->gp_tasks,
471 struct task_struct, rcu_node_entry);
472 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
473 sched_show_task(t);
474 raw_spin_unlock_irqrestore(&rnp->lock, flags);
475 }
476
477 /*
478 * Dump detailed information for all tasks blocking the current RCU
479 * grace period.
480 */
481 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
482 {
483 struct rcu_node *rnp = rcu_get_root(rsp);
484
485 rcu_print_detail_task_stall_rnp(rnp);
486 rcu_for_each_leaf_node(rsp, rnp)
487 rcu_print_detail_task_stall_rnp(rnp);
488 }
489
490 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
491
492 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
493 {
494 }
495
496 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
497
498 #ifdef CONFIG_RCU_CPU_STALL_INFO
499
500 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
501 {
502 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
503 rnp->level, rnp->grplo, rnp->grphi);
504 }
505
506 static void rcu_print_task_stall_end(void)
507 {
508 pr_cont("\n");
509 }
510
511 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
512
513 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
514 {
515 }
516
517 static void rcu_print_task_stall_end(void)
518 {
519 }
520
521 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
522
523 /*
524 * Scan the current list of tasks blocked within RCU read-side critical
525 * sections, printing out the tid of each.
526 */
527 static int rcu_print_task_stall(struct rcu_node *rnp)
528 {
529 struct task_struct *t;
530 int ndetected = 0;
531
532 if (!rcu_preempt_blocked_readers_cgp(rnp))
533 return 0;
534 rcu_print_task_stall_begin(rnp);
535 t = list_entry(rnp->gp_tasks,
536 struct task_struct, rcu_node_entry);
537 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
538 pr_cont(" P%d", t->pid);
539 ndetected++;
540 }
541 rcu_print_task_stall_end();
542 return ndetected;
543 }
544
545 /*
546 * Check that the list of blocked tasks for the newly completed grace
547 * period is in fact empty. It is a serious bug to complete a grace
548 * period that still has RCU readers blocked! This function must be
549 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
550 * must be held by the caller.
551 *
552 * Also, if there are blocked tasks on the list, they automatically
553 * block the newly created grace period, so set up ->gp_tasks accordingly.
554 */
555 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
556 {
557 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
558 if (!list_empty(&rnp->blkd_tasks))
559 rnp->gp_tasks = rnp->blkd_tasks.next;
560 WARN_ON_ONCE(rnp->qsmask);
561 }
562
563 #ifdef CONFIG_HOTPLUG_CPU
564
565 /*
566 * Handle tasklist migration for case in which all CPUs covered by the
567 * specified rcu_node have gone offline. Move them up to the root
568 * rcu_node. The reason for not just moving them to the immediate
569 * parent is to remove the need for rcu_read_unlock_special() to
570 * make more than two attempts to acquire the target rcu_node's lock.
571 * Returns true if there were tasks blocking the current RCU grace
572 * period.
573 *
574 * Returns 1 if there was previously a task blocking the current grace
575 * period on the specified rcu_node structure.
576 *
577 * The caller must hold rnp->lock with irqs disabled.
578 */
579 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
580 struct rcu_node *rnp,
581 struct rcu_data *rdp)
582 {
583 struct list_head *lp;
584 struct list_head *lp_root;
585 int retval = 0;
586 struct rcu_node *rnp_root = rcu_get_root(rsp);
587 struct task_struct *t;
588
589 if (rnp == rnp_root) {
590 WARN_ONCE(1, "Last CPU thought to be offlined?");
591 return 0; /* Shouldn't happen: at least one CPU online. */
592 }
593
594 /* If we are on an internal node, complain bitterly. */
595 WARN_ON_ONCE(rnp != rdp->mynode);
596
597 /*
598 * Move tasks up to root rcu_node. Don't try to get fancy for
599 * this corner-case operation -- just put this node's tasks
600 * at the head of the root node's list, and update the root node's
601 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
602 * if non-NULL. This might result in waiting for more tasks than
603 * absolutely necessary, but this is a good performance/complexity
604 * tradeoff.
605 */
606 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
607 retval |= RCU_OFL_TASKS_NORM_GP;
608 if (rcu_preempted_readers_exp(rnp))
609 retval |= RCU_OFL_TASKS_EXP_GP;
610 lp = &rnp->blkd_tasks;
611 lp_root = &rnp_root->blkd_tasks;
612 while (!list_empty(lp)) {
613 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
614 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
615 smp_mb__after_unlock_lock();
616 list_del(&t->rcu_node_entry);
617 t->rcu_blocked_node = rnp_root;
618 list_add(&t->rcu_node_entry, lp_root);
619 if (&t->rcu_node_entry == rnp->gp_tasks)
620 rnp_root->gp_tasks = rnp->gp_tasks;
621 if (&t->rcu_node_entry == rnp->exp_tasks)
622 rnp_root->exp_tasks = rnp->exp_tasks;
623 #ifdef CONFIG_RCU_BOOST
624 if (&t->rcu_node_entry == rnp->boost_tasks)
625 rnp_root->boost_tasks = rnp->boost_tasks;
626 #endif /* #ifdef CONFIG_RCU_BOOST */
627 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
628 }
629
630 rnp->gp_tasks = NULL;
631 rnp->exp_tasks = NULL;
632 #ifdef CONFIG_RCU_BOOST
633 rnp->boost_tasks = NULL;
634 /*
635 * In case root is being boosted and leaf was not. Make sure
636 * that we boost the tasks blocking the current grace period
637 * in this case.
638 */
639 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
640 smp_mb__after_unlock_lock();
641 if (rnp_root->boost_tasks != NULL &&
642 rnp_root->boost_tasks != rnp_root->gp_tasks &&
643 rnp_root->boost_tasks != rnp_root->exp_tasks)
644 rnp_root->boost_tasks = rnp_root->gp_tasks;
645 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
646 #endif /* #ifdef CONFIG_RCU_BOOST */
647
648 return retval;
649 }
650
651 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
652
653 /*
654 * Check for a quiescent state from the current CPU. When a task blocks,
655 * the task is recorded in the corresponding CPU's rcu_node structure,
656 * which is checked elsewhere.
657 *
658 * Caller must disable hard irqs.
659 */
660 static void rcu_preempt_check_callbacks(int cpu)
661 {
662 struct task_struct *t = current;
663
664 if (t->rcu_read_lock_nesting == 0) {
665 rcu_preempt_qs(cpu);
666 return;
667 }
668 if (t->rcu_read_lock_nesting > 0 &&
669 per_cpu(rcu_preempt_data, cpu).qs_pending)
670 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
671 }
672
673 #ifdef CONFIG_RCU_BOOST
674
675 static void rcu_preempt_do_callbacks(void)
676 {
677 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
678 }
679
680 #endif /* #ifdef CONFIG_RCU_BOOST */
681
682 /*
683 * Queue a preemptible-RCU callback for invocation after a grace period.
684 */
685 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
686 {
687 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
688 }
689 EXPORT_SYMBOL_GPL(call_rcu);
690
691 /*
692 * Queue an RCU callback for lazy invocation after a grace period.
693 * This will likely be later named something like "call_rcu_lazy()",
694 * but this change will require some way of tagging the lazy RCU
695 * callbacks in the list of pending callbacks. Until then, this
696 * function may only be called from __kfree_rcu().
697 */
698 void kfree_call_rcu(struct rcu_head *head,
699 void (*func)(struct rcu_head *rcu))
700 {
701 __call_rcu(head, func, &rcu_preempt_state, -1, 1);
702 }
703 EXPORT_SYMBOL_GPL(kfree_call_rcu);
704
705 /**
706 * synchronize_rcu - wait until a grace period has elapsed.
707 *
708 * Control will return to the caller some time after a full grace
709 * period has elapsed, in other words after all currently executing RCU
710 * read-side critical sections have completed. Note, however, that
711 * upon return from synchronize_rcu(), the caller might well be executing
712 * concurrently with new RCU read-side critical sections that began while
713 * synchronize_rcu() was waiting. RCU read-side critical sections are
714 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
715 *
716 * See the description of synchronize_sched() for more detailed information
717 * on memory ordering guarantees.
718 */
719 void synchronize_rcu(void)
720 {
721 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
722 !lock_is_held(&rcu_lock_map) &&
723 !lock_is_held(&rcu_sched_lock_map),
724 "Illegal synchronize_rcu() in RCU read-side critical section");
725 if (!rcu_scheduler_active)
726 return;
727 if (rcu_expedited)
728 synchronize_rcu_expedited();
729 else
730 wait_rcu_gp(call_rcu);
731 }
732 EXPORT_SYMBOL_GPL(synchronize_rcu);
733
734 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
735 static unsigned long sync_rcu_preempt_exp_count;
736 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
737
738 /*
739 * Return non-zero if there are any tasks in RCU read-side critical
740 * sections blocking the current preemptible-RCU expedited grace period.
741 * If there is no preemptible-RCU expedited grace period currently in
742 * progress, returns zero unconditionally.
743 */
744 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
745 {
746 return rnp->exp_tasks != NULL;
747 }
748
749 /*
750 * return non-zero if there is no RCU expedited grace period in progress
751 * for the specified rcu_node structure, in other words, if all CPUs and
752 * tasks covered by the specified rcu_node structure have done their bit
753 * for the current expedited grace period. Works only for preemptible
754 * RCU -- other RCU implementation use other means.
755 *
756 * Caller must hold sync_rcu_preempt_exp_mutex.
757 */
758 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
759 {
760 return !rcu_preempted_readers_exp(rnp) &&
761 ACCESS_ONCE(rnp->expmask) == 0;
762 }
763
764 /*
765 * Report the exit from RCU read-side critical section for the last task
766 * that queued itself during or before the current expedited preemptible-RCU
767 * grace period. This event is reported either to the rcu_node structure on
768 * which the task was queued or to one of that rcu_node structure's ancestors,
769 * recursively up the tree. (Calm down, calm down, we do the recursion
770 * iteratively!)
771 *
772 * Most callers will set the "wake" flag, but the task initiating the
773 * expedited grace period need not wake itself.
774 *
775 * Caller must hold sync_rcu_preempt_exp_mutex.
776 */
777 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
778 bool wake)
779 {
780 unsigned long flags;
781 unsigned long mask;
782
783 raw_spin_lock_irqsave(&rnp->lock, flags);
784 smp_mb__after_unlock_lock();
785 for (;;) {
786 if (!sync_rcu_preempt_exp_done(rnp)) {
787 raw_spin_unlock_irqrestore(&rnp->lock, flags);
788 break;
789 }
790 if (rnp->parent == NULL) {
791 raw_spin_unlock_irqrestore(&rnp->lock, flags);
792 if (wake) {
793 smp_mb(); /* EGP done before wake_up(). */
794 wake_up(&sync_rcu_preempt_exp_wq);
795 }
796 break;
797 }
798 mask = rnp->grpmask;
799 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
800 rnp = rnp->parent;
801 raw_spin_lock(&rnp->lock); /* irqs already disabled */
802 smp_mb__after_unlock_lock();
803 rnp->expmask &= ~mask;
804 }
805 }
806
807 /*
808 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
809 * grace period for the specified rcu_node structure. If there are no such
810 * tasks, report it up the rcu_node hierarchy.
811 *
812 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
813 * CPU hotplug operations.
814 */
815 static void
816 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
817 {
818 unsigned long flags;
819 int must_wait = 0;
820
821 raw_spin_lock_irqsave(&rnp->lock, flags);
822 smp_mb__after_unlock_lock();
823 if (list_empty(&rnp->blkd_tasks)) {
824 raw_spin_unlock_irqrestore(&rnp->lock, flags);
825 } else {
826 rnp->exp_tasks = rnp->blkd_tasks.next;
827 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
828 must_wait = 1;
829 }
830 if (!must_wait)
831 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
832 }
833
834 /**
835 * synchronize_rcu_expedited - Brute-force RCU grace period
836 *
837 * Wait for an RCU-preempt grace period, but expedite it. The basic
838 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
839 * the ->blkd_tasks lists and wait for this list to drain. This consumes
840 * significant time on all CPUs and is unfriendly to real-time workloads,
841 * so is thus not recommended for any sort of common-case code.
842 * In fact, if you are using synchronize_rcu_expedited() in a loop,
843 * please restructure your code to batch your updates, and then Use a
844 * single synchronize_rcu() instead.
845 *
846 * Note that it is illegal to call this function while holding any lock
847 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
848 * to call this function from a CPU-hotplug notifier. Failing to observe
849 * these restriction will result in deadlock.
850 */
851 void synchronize_rcu_expedited(void)
852 {
853 unsigned long flags;
854 struct rcu_node *rnp;
855 struct rcu_state *rsp = &rcu_preempt_state;
856 unsigned long snap;
857 int trycount = 0;
858
859 smp_mb(); /* Caller's modifications seen first by other CPUs. */
860 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
861 smp_mb(); /* Above access cannot bleed into critical section. */
862
863 /*
864 * Block CPU-hotplug operations. This means that any CPU-hotplug
865 * operation that finds an rcu_node structure with tasks in the
866 * process of being boosted will know that all tasks blocking
867 * this expedited grace period will already be in the process of
868 * being boosted. This simplifies the process of moving tasks
869 * from leaf to root rcu_node structures.
870 */
871 get_online_cpus();
872
873 /*
874 * Acquire lock, falling back to synchronize_rcu() if too many
875 * lock-acquisition failures. Of course, if someone does the
876 * expedited grace period for us, just leave.
877 */
878 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
879 if (ULONG_CMP_LT(snap,
880 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
881 put_online_cpus();
882 goto mb_ret; /* Others did our work for us. */
883 }
884 if (trycount++ < 10) {
885 udelay(trycount * num_online_cpus());
886 } else {
887 put_online_cpus();
888 wait_rcu_gp(call_rcu);
889 return;
890 }
891 }
892 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
893 put_online_cpus();
894 goto unlock_mb_ret; /* Others did our work for us. */
895 }
896
897 /* force all RCU readers onto ->blkd_tasks lists. */
898 synchronize_sched_expedited();
899
900 /* Initialize ->expmask for all non-leaf rcu_node structures. */
901 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
902 raw_spin_lock_irqsave(&rnp->lock, flags);
903 smp_mb__after_unlock_lock();
904 rnp->expmask = rnp->qsmaskinit;
905 raw_spin_unlock_irqrestore(&rnp->lock, flags);
906 }
907
908 /* Snapshot current state of ->blkd_tasks lists. */
909 rcu_for_each_leaf_node(rsp, rnp)
910 sync_rcu_preempt_exp_init(rsp, rnp);
911 if (NUM_RCU_NODES > 1)
912 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
913
914 put_online_cpus();
915
916 /* Wait for snapshotted ->blkd_tasks lists to drain. */
917 rnp = rcu_get_root(rsp);
918 wait_event(sync_rcu_preempt_exp_wq,
919 sync_rcu_preempt_exp_done(rnp));
920
921 /* Clean up and exit. */
922 smp_mb(); /* ensure expedited GP seen before counter increment. */
923 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
924 unlock_mb_ret:
925 mutex_unlock(&sync_rcu_preempt_exp_mutex);
926 mb_ret:
927 smp_mb(); /* ensure subsequent action seen after grace period. */
928 }
929 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
930
931 /**
932 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
933 *
934 * Note that this primitive does not necessarily wait for an RCU grace period
935 * to complete. For example, if there are no RCU callbacks queued anywhere
936 * in the system, then rcu_barrier() is within its rights to return
937 * immediately, without waiting for anything, much less an RCU grace period.
938 */
939 void rcu_barrier(void)
940 {
941 _rcu_barrier(&rcu_preempt_state);
942 }
943 EXPORT_SYMBOL_GPL(rcu_barrier);
944
945 /*
946 * Initialize preemptible RCU's state structures.
947 */
948 static void __init __rcu_init_preempt(void)
949 {
950 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
951 }
952
953 /*
954 * Check for a task exiting while in a preemptible-RCU read-side
955 * critical section, clean up if so. No need to issue warnings,
956 * as debug_check_no_locks_held() already does this if lockdep
957 * is enabled.
958 */
959 void exit_rcu(void)
960 {
961 struct task_struct *t = current;
962
963 if (likely(list_empty(&current->rcu_node_entry)))
964 return;
965 t->rcu_read_lock_nesting = 1;
966 barrier();
967 t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
968 __rcu_read_unlock();
969 }
970
971 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
972
973 static struct rcu_state *rcu_state = &rcu_sched_state;
974
975 /*
976 * Tell them what RCU they are running.
977 */
978 static void __init rcu_bootup_announce(void)
979 {
980 pr_info("Hierarchical RCU implementation.\n");
981 rcu_bootup_announce_oddness();
982 }
983
984 /*
985 * Return the number of RCU batches processed thus far for debug & stats.
986 */
987 long rcu_batches_completed(void)
988 {
989 return rcu_batches_completed_sched();
990 }
991 EXPORT_SYMBOL_GPL(rcu_batches_completed);
992
993 /*
994 * Force a quiescent state for RCU, which, because there is no preemptible
995 * RCU, becomes the same as rcu-sched.
996 */
997 void rcu_force_quiescent_state(void)
998 {
999 rcu_sched_force_quiescent_state();
1000 }
1001 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
1002
1003 /*
1004 * Because preemptible RCU does not exist, we never have to check for
1005 * CPUs being in quiescent states.
1006 */
1007 static void rcu_preempt_note_context_switch(int cpu)
1008 {
1009 }
1010
1011 /*
1012 * Because preemptible RCU does not exist, there are never any preempted
1013 * RCU readers.
1014 */
1015 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1016 {
1017 return 0;
1018 }
1019
1020 #ifdef CONFIG_HOTPLUG_CPU
1021
1022 /* Because preemptible RCU does not exist, no quieting of tasks. */
1023 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1024 {
1025 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1026 }
1027
1028 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1029
1030 /*
1031 * Because preemptible RCU does not exist, we never have to check for
1032 * tasks blocked within RCU read-side critical sections.
1033 */
1034 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1035 {
1036 }
1037
1038 /*
1039 * Because preemptible RCU does not exist, we never have to check for
1040 * tasks blocked within RCU read-side critical sections.
1041 */
1042 static int rcu_print_task_stall(struct rcu_node *rnp)
1043 {
1044 return 0;
1045 }
1046
1047 /*
1048 * Because there is no preemptible RCU, there can be no readers blocked,
1049 * so there is no need to check for blocked tasks. So check only for
1050 * bogus qsmask values.
1051 */
1052 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1053 {
1054 WARN_ON_ONCE(rnp->qsmask);
1055 }
1056
1057 #ifdef CONFIG_HOTPLUG_CPU
1058
1059 /*
1060 * Because preemptible RCU does not exist, it never needs to migrate
1061 * tasks that were blocked within RCU read-side critical sections, and
1062 * such non-existent tasks cannot possibly have been blocking the current
1063 * grace period.
1064 */
1065 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1066 struct rcu_node *rnp,
1067 struct rcu_data *rdp)
1068 {
1069 return 0;
1070 }
1071
1072 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1073
1074 /*
1075 * Because preemptible RCU does not exist, it never has any callbacks
1076 * to check.
1077 */
1078 static void rcu_preempt_check_callbacks(int cpu)
1079 {
1080 }
1081
1082 /*
1083 * Queue an RCU callback for lazy invocation after a grace period.
1084 * This will likely be later named something like "call_rcu_lazy()",
1085 * but this change will require some way of tagging the lazy RCU
1086 * callbacks in the list of pending callbacks. Until then, this
1087 * function may only be called from __kfree_rcu().
1088 *
1089 * Because there is no preemptible RCU, we use RCU-sched instead.
1090 */
1091 void kfree_call_rcu(struct rcu_head *head,
1092 void (*func)(struct rcu_head *rcu))
1093 {
1094 __call_rcu(head, func, &rcu_sched_state, -1, 1);
1095 }
1096 EXPORT_SYMBOL_GPL(kfree_call_rcu);
1097
1098 /*
1099 * Wait for an rcu-preempt grace period, but make it happen quickly.
1100 * But because preemptible RCU does not exist, map to rcu-sched.
1101 */
1102 void synchronize_rcu_expedited(void)
1103 {
1104 synchronize_sched_expedited();
1105 }
1106 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1107
1108 #ifdef CONFIG_HOTPLUG_CPU
1109
1110 /*
1111 * Because preemptible RCU does not exist, there is never any need to
1112 * report on tasks preempted in RCU read-side critical sections during
1113 * expedited RCU grace periods.
1114 */
1115 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1116 bool wake)
1117 {
1118 }
1119
1120 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1121
1122 /*
1123 * Because preemptible RCU does not exist, rcu_barrier() is just
1124 * another name for rcu_barrier_sched().
1125 */
1126 void rcu_barrier(void)
1127 {
1128 rcu_barrier_sched();
1129 }
1130 EXPORT_SYMBOL_GPL(rcu_barrier);
1131
1132 /*
1133 * Because preemptible RCU does not exist, it need not be initialized.
1134 */
1135 static void __init __rcu_init_preempt(void)
1136 {
1137 }
1138
1139 /*
1140 * Because preemptible RCU does not exist, tasks cannot possibly exit
1141 * while in preemptible RCU read-side critical sections.
1142 */
1143 void exit_rcu(void)
1144 {
1145 }
1146
1147 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1148
1149 #ifdef CONFIG_RCU_BOOST
1150
1151 #include "../locking/rtmutex_common.h"
1152
1153 #ifdef CONFIG_RCU_TRACE
1154
1155 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1156 {
1157 if (list_empty(&rnp->blkd_tasks))
1158 rnp->n_balk_blkd_tasks++;
1159 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1160 rnp->n_balk_exp_gp_tasks++;
1161 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1162 rnp->n_balk_boost_tasks++;
1163 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1164 rnp->n_balk_notblocked++;
1165 else if (rnp->gp_tasks != NULL &&
1166 ULONG_CMP_LT(jiffies, rnp->boost_time))
1167 rnp->n_balk_notyet++;
1168 else
1169 rnp->n_balk_nos++;
1170 }
1171
1172 #else /* #ifdef CONFIG_RCU_TRACE */
1173
1174 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1175 {
1176 }
1177
1178 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1179
1180 static void rcu_wake_cond(struct task_struct *t, int status)
1181 {
1182 /*
1183 * If the thread is yielding, only wake it when this
1184 * is invoked from idle
1185 */
1186 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1187 wake_up_process(t);
1188 }
1189
1190 /*
1191 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1192 * or ->boost_tasks, advancing the pointer to the next task in the
1193 * ->blkd_tasks list.
1194 *
1195 * Note that irqs must be enabled: boosting the task can block.
1196 * Returns 1 if there are more tasks needing to be boosted.
1197 */
1198 static int rcu_boost(struct rcu_node *rnp)
1199 {
1200 unsigned long flags;
1201 struct rt_mutex mtx;
1202 struct task_struct *t;
1203 struct list_head *tb;
1204
1205 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1206 return 0; /* Nothing left to boost. */
1207
1208 raw_spin_lock_irqsave(&rnp->lock, flags);
1209 smp_mb__after_unlock_lock();
1210
1211 /*
1212 * Recheck under the lock: all tasks in need of boosting
1213 * might exit their RCU read-side critical sections on their own.
1214 */
1215 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1216 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1217 return 0;
1218 }
1219
1220 /*
1221 * Preferentially boost tasks blocking expedited grace periods.
1222 * This cannot starve the normal grace periods because a second
1223 * expedited grace period must boost all blocked tasks, including
1224 * those blocking the pre-existing normal grace period.
1225 */
1226 if (rnp->exp_tasks != NULL) {
1227 tb = rnp->exp_tasks;
1228 rnp->n_exp_boosts++;
1229 } else {
1230 tb = rnp->boost_tasks;
1231 rnp->n_normal_boosts++;
1232 }
1233 rnp->n_tasks_boosted++;
1234
1235 /*
1236 * We boost task t by manufacturing an rt_mutex that appears to
1237 * be held by task t. We leave a pointer to that rt_mutex where
1238 * task t can find it, and task t will release the mutex when it
1239 * exits its outermost RCU read-side critical section. Then
1240 * simply acquiring this artificial rt_mutex will boost task
1241 * t's priority. (Thanks to tglx for suggesting this approach!)
1242 *
1243 * Note that task t must acquire rnp->lock to remove itself from
1244 * the ->blkd_tasks list, which it will do from exit() if from
1245 * nowhere else. We therefore are guaranteed that task t will
1246 * stay around at least until we drop rnp->lock. Note that
1247 * rnp->lock also resolves races between our priority boosting
1248 * and task t's exiting its outermost RCU read-side critical
1249 * section.
1250 */
1251 t = container_of(tb, struct task_struct, rcu_node_entry);
1252 rt_mutex_init_proxy_locked(&mtx, t);
1253 t->rcu_boost_mutex = &mtx;
1254 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1255 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1256 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1257
1258 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1259 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1260 }
1261
1262 /*
1263 * Priority-boosting kthread. One per leaf rcu_node and one for the
1264 * root rcu_node.
1265 */
1266 static int rcu_boost_kthread(void *arg)
1267 {
1268 struct rcu_node *rnp = (struct rcu_node *)arg;
1269 int spincnt = 0;
1270 int more2boost;
1271
1272 trace_rcu_utilization(TPS("Start boost kthread@init"));
1273 for (;;) {
1274 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1275 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1276 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1277 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1278 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1279 more2boost = rcu_boost(rnp);
1280 if (more2boost)
1281 spincnt++;
1282 else
1283 spincnt = 0;
1284 if (spincnt > 10) {
1285 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1286 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1287 schedule_timeout_interruptible(2);
1288 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1289 spincnt = 0;
1290 }
1291 }
1292 /* NOTREACHED */
1293 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1294 return 0;
1295 }
1296
1297 /*
1298 * Check to see if it is time to start boosting RCU readers that are
1299 * blocking the current grace period, and, if so, tell the per-rcu_node
1300 * kthread to start boosting them. If there is an expedited grace
1301 * period in progress, it is always time to boost.
1302 *
1303 * The caller must hold rnp->lock, which this function releases.
1304 * The ->boost_kthread_task is immortal, so we don't need to worry
1305 * about it going away.
1306 */
1307 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1308 {
1309 struct task_struct *t;
1310
1311 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1312 rnp->n_balk_exp_gp_tasks++;
1313 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1314 return;
1315 }
1316 if (rnp->exp_tasks != NULL ||
1317 (rnp->gp_tasks != NULL &&
1318 rnp->boost_tasks == NULL &&
1319 rnp->qsmask == 0 &&
1320 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1321 if (rnp->exp_tasks == NULL)
1322 rnp->boost_tasks = rnp->gp_tasks;
1323 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1324 t = rnp->boost_kthread_task;
1325 if (t)
1326 rcu_wake_cond(t, rnp->boost_kthread_status);
1327 } else {
1328 rcu_initiate_boost_trace(rnp);
1329 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1330 }
1331 }
1332
1333 /*
1334 * Wake up the per-CPU kthread to invoke RCU callbacks.
1335 */
1336 static void invoke_rcu_callbacks_kthread(void)
1337 {
1338 unsigned long flags;
1339
1340 local_irq_save(flags);
1341 __this_cpu_write(rcu_cpu_has_work, 1);
1342 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1343 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1344 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1345 __this_cpu_read(rcu_cpu_kthread_status));
1346 }
1347 local_irq_restore(flags);
1348 }
1349
1350 /*
1351 * Is the current CPU running the RCU-callbacks kthread?
1352 * Caller must have preemption disabled.
1353 */
1354 static bool rcu_is_callbacks_kthread(void)
1355 {
1356 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1357 }
1358
1359 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1360
1361 /*
1362 * Do priority-boost accounting for the start of a new grace period.
1363 */
1364 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1365 {
1366 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1367 }
1368
1369 /*
1370 * Create an RCU-boost kthread for the specified node if one does not
1371 * already exist. We only create this kthread for preemptible RCU.
1372 * Returns zero if all is well, a negated errno otherwise.
1373 */
1374 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1375 struct rcu_node *rnp)
1376 {
1377 int rnp_index = rnp - &rsp->node[0];
1378 unsigned long flags;
1379 struct sched_param sp;
1380 struct task_struct *t;
1381
1382 if (&rcu_preempt_state != rsp)
1383 return 0;
1384
1385 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1386 return 0;
1387
1388 rsp->boost = 1;
1389 if (rnp->boost_kthread_task != NULL)
1390 return 0;
1391 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1392 "rcub/%d", rnp_index);
1393 if (IS_ERR(t))
1394 return PTR_ERR(t);
1395 raw_spin_lock_irqsave(&rnp->lock, flags);
1396 smp_mb__after_unlock_lock();
1397 rnp->boost_kthread_task = t;
1398 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1399 sp.sched_priority = RCU_BOOST_PRIO;
1400 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1401 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1402 return 0;
1403 }
1404
1405 static void rcu_kthread_do_work(void)
1406 {
1407 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1408 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1409 rcu_preempt_do_callbacks();
1410 }
1411
1412 static void rcu_cpu_kthread_setup(unsigned int cpu)
1413 {
1414 struct sched_param sp;
1415
1416 sp.sched_priority = RCU_KTHREAD_PRIO;
1417 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1418 }
1419
1420 static void rcu_cpu_kthread_park(unsigned int cpu)
1421 {
1422 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1423 }
1424
1425 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1426 {
1427 return __this_cpu_read(rcu_cpu_has_work);
1428 }
1429
1430 /*
1431 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1432 * RCU softirq used in flavors and configurations of RCU that do not
1433 * support RCU priority boosting.
1434 */
1435 static void rcu_cpu_kthread(unsigned int cpu)
1436 {
1437 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1438 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1439 int spincnt;
1440
1441 for (spincnt = 0; spincnt < 10; spincnt++) {
1442 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1443 local_bh_disable();
1444 *statusp = RCU_KTHREAD_RUNNING;
1445 this_cpu_inc(rcu_cpu_kthread_loops);
1446 local_irq_disable();
1447 work = *workp;
1448 *workp = 0;
1449 local_irq_enable();
1450 if (work)
1451 rcu_kthread_do_work();
1452 local_bh_enable();
1453 if (*workp == 0) {
1454 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1455 *statusp = RCU_KTHREAD_WAITING;
1456 return;
1457 }
1458 }
1459 *statusp = RCU_KTHREAD_YIELDING;
1460 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1461 schedule_timeout_interruptible(2);
1462 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1463 *statusp = RCU_KTHREAD_WAITING;
1464 }
1465
1466 /*
1467 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1468 * served by the rcu_node in question. The CPU hotplug lock is still
1469 * held, so the value of rnp->qsmaskinit will be stable.
1470 *
1471 * We don't include outgoingcpu in the affinity set, use -1 if there is
1472 * no outgoing CPU. If there are no CPUs left in the affinity set,
1473 * this function allows the kthread to execute on any CPU.
1474 */
1475 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1476 {
1477 struct task_struct *t = rnp->boost_kthread_task;
1478 unsigned long mask = rnp->qsmaskinit;
1479 cpumask_var_t cm;
1480 int cpu;
1481
1482 if (!t)
1483 return;
1484 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1485 return;
1486 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1487 if ((mask & 0x1) && cpu != outgoingcpu)
1488 cpumask_set_cpu(cpu, cm);
1489 if (cpumask_weight(cm) == 0) {
1490 cpumask_setall(cm);
1491 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1492 cpumask_clear_cpu(cpu, cm);
1493 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1494 }
1495 set_cpus_allowed_ptr(t, cm);
1496 free_cpumask_var(cm);
1497 }
1498
1499 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1500 .store = &rcu_cpu_kthread_task,
1501 .thread_should_run = rcu_cpu_kthread_should_run,
1502 .thread_fn = rcu_cpu_kthread,
1503 .thread_comm = "rcuc/%u",
1504 .setup = rcu_cpu_kthread_setup,
1505 .park = rcu_cpu_kthread_park,
1506 };
1507
1508 /*
1509 * Spawn all kthreads -- called as soon as the scheduler is running.
1510 */
1511 static int __init rcu_spawn_kthreads(void)
1512 {
1513 struct rcu_node *rnp;
1514 int cpu;
1515
1516 rcu_scheduler_fully_active = 1;
1517 for_each_possible_cpu(cpu)
1518 per_cpu(rcu_cpu_has_work, cpu) = 0;
1519 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1520 rnp = rcu_get_root(rcu_state);
1521 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1522 if (NUM_RCU_NODES > 1) {
1523 rcu_for_each_leaf_node(rcu_state, rnp)
1524 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1525 }
1526 return 0;
1527 }
1528 early_initcall(rcu_spawn_kthreads);
1529
1530 static void rcu_prepare_kthreads(int cpu)
1531 {
1532 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1533 struct rcu_node *rnp = rdp->mynode;
1534
1535 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1536 if (rcu_scheduler_fully_active)
1537 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1538 }
1539
1540 #else /* #ifdef CONFIG_RCU_BOOST */
1541
1542 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1543 {
1544 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1545 }
1546
1547 static void invoke_rcu_callbacks_kthread(void)
1548 {
1549 WARN_ON_ONCE(1);
1550 }
1551
1552 static bool rcu_is_callbacks_kthread(void)
1553 {
1554 return false;
1555 }
1556
1557 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1558 {
1559 }
1560
1561 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1562 {
1563 }
1564
1565 static int __init rcu_scheduler_really_started(void)
1566 {
1567 rcu_scheduler_fully_active = 1;
1568 return 0;
1569 }
1570 early_initcall(rcu_scheduler_really_started);
1571
1572 static void rcu_prepare_kthreads(int cpu)
1573 {
1574 }
1575
1576 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1577
1578 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1579
1580 /*
1581 * Check to see if any future RCU-related work will need to be done
1582 * by the current CPU, even if none need be done immediately, returning
1583 * 1 if so. This function is part of the RCU implementation; it is -not-
1584 * an exported member of the RCU API.
1585 *
1586 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1587 * any flavor of RCU.
1588 */
1589 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1590 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1591 {
1592 *delta_jiffies = ULONG_MAX;
1593 return rcu_cpu_has_callbacks(cpu, NULL);
1594 }
1595 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1596
1597 /*
1598 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1599 * after it.
1600 */
1601 static void rcu_cleanup_after_idle(int cpu)
1602 {
1603 }
1604
1605 /*
1606 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1607 * is nothing.
1608 */
1609 static void rcu_prepare_for_idle(int cpu)
1610 {
1611 }
1612
1613 /*
1614 * Don't bother keeping a running count of the number of RCU callbacks
1615 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1616 */
1617 static void rcu_idle_count_callbacks_posted(void)
1618 {
1619 }
1620
1621 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1622
1623 /*
1624 * This code is invoked when a CPU goes idle, at which point we want
1625 * to have the CPU do everything required for RCU so that it can enter
1626 * the energy-efficient dyntick-idle mode. This is handled by a
1627 * state machine implemented by rcu_prepare_for_idle() below.
1628 *
1629 * The following three proprocessor symbols control this state machine:
1630 *
1631 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1632 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1633 * is sized to be roughly one RCU grace period. Those energy-efficiency
1634 * benchmarkers who might otherwise be tempted to set this to a large
1635 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1636 * system. And if you are -that- concerned about energy efficiency,
1637 * just power the system down and be done with it!
1638 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1639 * permitted to sleep in dyntick-idle mode with only lazy RCU
1640 * callbacks pending. Setting this too high can OOM your system.
1641 *
1642 * The values below work well in practice. If future workloads require
1643 * adjustment, they can be converted into kernel config parameters, though
1644 * making the state machine smarter might be a better option.
1645 */
1646 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1647 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1648
1649 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1650 module_param(rcu_idle_gp_delay, int, 0644);
1651 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1652 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1653
1654 extern int tick_nohz_active;
1655
1656 /*
1657 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1658 * only if it has been awhile since the last time we did so. Afterwards,
1659 * if there are any callbacks ready for immediate invocation, return true.
1660 */
1661 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1662 {
1663 bool cbs_ready = false;
1664 struct rcu_data *rdp;
1665 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1666 struct rcu_node *rnp;
1667 struct rcu_state *rsp;
1668
1669 /* Exit early if we advanced recently. */
1670 if (jiffies == rdtp->last_advance_all)
1671 return 0;
1672 rdtp->last_advance_all = jiffies;
1673
1674 for_each_rcu_flavor(rsp) {
1675 rdp = this_cpu_ptr(rsp->rda);
1676 rnp = rdp->mynode;
1677
1678 /*
1679 * Don't bother checking unless a grace period has
1680 * completed since we last checked and there are
1681 * callbacks not yet ready to invoke.
1682 */
1683 if (rdp->completed != rnp->completed &&
1684 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1685 note_gp_changes(rsp, rdp);
1686
1687 if (cpu_has_callbacks_ready_to_invoke(rdp))
1688 cbs_ready = true;
1689 }
1690 return cbs_ready;
1691 }
1692
1693 /*
1694 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1695 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1696 * caller to set the timeout based on whether or not there are non-lazy
1697 * callbacks.
1698 *
1699 * The caller must have disabled interrupts.
1700 */
1701 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1702 int rcu_needs_cpu(int cpu, unsigned long *dj)
1703 {
1704 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1705
1706 /* Snapshot to detect later posting of non-lazy callback. */
1707 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1708
1709 /* If no callbacks, RCU doesn't need the CPU. */
1710 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1711 *dj = ULONG_MAX;
1712 return 0;
1713 }
1714
1715 /* Attempt to advance callbacks. */
1716 if (rcu_try_advance_all_cbs()) {
1717 /* Some ready to invoke, so initiate later invocation. */
1718 invoke_rcu_core();
1719 return 1;
1720 }
1721 rdtp->last_accelerate = jiffies;
1722
1723 /* Request timer delay depending on laziness, and round. */
1724 if (!rdtp->all_lazy) {
1725 *dj = round_up(rcu_idle_gp_delay + jiffies,
1726 rcu_idle_gp_delay) - jiffies;
1727 } else {
1728 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1729 }
1730 return 0;
1731 }
1732 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1733
1734 /*
1735 * Prepare a CPU for idle from an RCU perspective. The first major task
1736 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1737 * The second major task is to check to see if a non-lazy callback has
1738 * arrived at a CPU that previously had only lazy callbacks. The third
1739 * major task is to accelerate (that is, assign grace-period numbers to)
1740 * any recently arrived callbacks.
1741 *
1742 * The caller must have disabled interrupts.
1743 */
1744 static void rcu_prepare_for_idle(int cpu)
1745 {
1746 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1747 bool needwake;
1748 struct rcu_data *rdp;
1749 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1750 struct rcu_node *rnp;
1751 struct rcu_state *rsp;
1752 int tne;
1753
1754 /* Handle nohz enablement switches conservatively. */
1755 tne = ACCESS_ONCE(tick_nohz_active);
1756 if (tne != rdtp->tick_nohz_enabled_snap) {
1757 if (rcu_cpu_has_callbacks(cpu, NULL))
1758 invoke_rcu_core(); /* force nohz to see update. */
1759 rdtp->tick_nohz_enabled_snap = tne;
1760 return;
1761 }
1762 if (!tne)
1763 return;
1764
1765 /* If this is a no-CBs CPU, no callbacks, just return. */
1766 if (rcu_is_nocb_cpu(cpu))
1767 return;
1768
1769 /*
1770 * If a non-lazy callback arrived at a CPU having only lazy
1771 * callbacks, invoke RCU core for the side-effect of recalculating
1772 * idle duration on re-entry to idle.
1773 */
1774 if (rdtp->all_lazy &&
1775 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1776 rdtp->all_lazy = false;
1777 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1778 invoke_rcu_core();
1779 return;
1780 }
1781
1782 /*
1783 * If we have not yet accelerated this jiffy, accelerate all
1784 * callbacks on this CPU.
1785 */
1786 if (rdtp->last_accelerate == jiffies)
1787 return;
1788 rdtp->last_accelerate = jiffies;
1789 for_each_rcu_flavor(rsp) {
1790 rdp = per_cpu_ptr(rsp->rda, cpu);
1791 if (!*rdp->nxttail[RCU_DONE_TAIL])
1792 continue;
1793 rnp = rdp->mynode;
1794 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1795 smp_mb__after_unlock_lock();
1796 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1797 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1798 if (needwake)
1799 rcu_gp_kthread_wake(rsp);
1800 }
1801 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1802 }
1803
1804 /*
1805 * Clean up for exit from idle. Attempt to advance callbacks based on
1806 * any grace periods that elapsed while the CPU was idle, and if any
1807 * callbacks are now ready to invoke, initiate invocation.
1808 */
1809 static void rcu_cleanup_after_idle(int cpu)
1810 {
1811 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1812 if (rcu_is_nocb_cpu(cpu))
1813 return;
1814 if (rcu_try_advance_all_cbs())
1815 invoke_rcu_core();
1816 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1817 }
1818
1819 /*
1820 * Keep a running count of the number of non-lazy callbacks posted
1821 * on this CPU. This running counter (which is never decremented) allows
1822 * rcu_prepare_for_idle() to detect when something out of the idle loop
1823 * posts a callback, even if an equal number of callbacks are invoked.
1824 * Of course, callbacks should only be posted from within a trace event
1825 * designed to be called from idle or from within RCU_NONIDLE().
1826 */
1827 static void rcu_idle_count_callbacks_posted(void)
1828 {
1829 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1830 }
1831
1832 /*
1833 * Data for flushing lazy RCU callbacks at OOM time.
1834 */
1835 static atomic_t oom_callback_count;
1836 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1837
1838 /*
1839 * RCU OOM callback -- decrement the outstanding count and deliver the
1840 * wake-up if we are the last one.
1841 */
1842 static void rcu_oom_callback(struct rcu_head *rhp)
1843 {
1844 if (atomic_dec_and_test(&oom_callback_count))
1845 wake_up(&oom_callback_wq);
1846 }
1847
1848 /*
1849 * Post an rcu_oom_notify callback on the current CPU if it has at
1850 * least one lazy callback. This will unnecessarily post callbacks
1851 * to CPUs that already have a non-lazy callback at the end of their
1852 * callback list, but this is an infrequent operation, so accept some
1853 * extra overhead to keep things simple.
1854 */
1855 static void rcu_oom_notify_cpu(void *unused)
1856 {
1857 struct rcu_state *rsp;
1858 struct rcu_data *rdp;
1859
1860 for_each_rcu_flavor(rsp) {
1861 rdp = __this_cpu_ptr(rsp->rda);
1862 if (rdp->qlen_lazy != 0) {
1863 atomic_inc(&oom_callback_count);
1864 rsp->call(&rdp->oom_head, rcu_oom_callback);
1865 }
1866 }
1867 }
1868
1869 /*
1870 * If low on memory, ensure that each CPU has a non-lazy callback.
1871 * This will wake up CPUs that have only lazy callbacks, in turn
1872 * ensuring that they free up the corresponding memory in a timely manner.
1873 * Because an uncertain amount of memory will be freed in some uncertain
1874 * timeframe, we do not claim to have freed anything.
1875 */
1876 static int rcu_oom_notify(struct notifier_block *self,
1877 unsigned long notused, void *nfreed)
1878 {
1879 int cpu;
1880
1881 /* Wait for callbacks from earlier instance to complete. */
1882 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1883 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1884
1885 /*
1886 * Prevent premature wakeup: ensure that all increments happen
1887 * before there is a chance of the counter reaching zero.
1888 */
1889 atomic_set(&oom_callback_count, 1);
1890
1891 get_online_cpus();
1892 for_each_online_cpu(cpu) {
1893 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1894 cond_resched();
1895 }
1896 put_online_cpus();
1897
1898 /* Unconditionally decrement: no need to wake ourselves up. */
1899 atomic_dec(&oom_callback_count);
1900
1901 return NOTIFY_OK;
1902 }
1903
1904 static struct notifier_block rcu_oom_nb = {
1905 .notifier_call = rcu_oom_notify
1906 };
1907
1908 static int __init rcu_register_oom_notifier(void)
1909 {
1910 register_oom_notifier(&rcu_oom_nb);
1911 return 0;
1912 }
1913 early_initcall(rcu_register_oom_notifier);
1914
1915 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1916
1917 #ifdef CONFIG_RCU_CPU_STALL_INFO
1918
1919 #ifdef CONFIG_RCU_FAST_NO_HZ
1920
1921 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1922 {
1923 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1924 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1925
1926 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1927 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1928 ulong2long(nlpd),
1929 rdtp->all_lazy ? 'L' : '.',
1930 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1931 }
1932
1933 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1934
1935 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1936 {
1937 *cp = '\0';
1938 }
1939
1940 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1941
1942 /* Initiate the stall-info list. */
1943 static void print_cpu_stall_info_begin(void)
1944 {
1945 pr_cont("\n");
1946 }
1947
1948 /*
1949 * Print out diagnostic information for the specified stalled CPU.
1950 *
1951 * If the specified CPU is aware of the current RCU grace period
1952 * (flavor specified by rsp), then print the number of scheduling
1953 * clock interrupts the CPU has taken during the time that it has
1954 * been aware. Otherwise, print the number of RCU grace periods
1955 * that this CPU is ignorant of, for example, "1" if the CPU was
1956 * aware of the previous grace period.
1957 *
1958 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1959 */
1960 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1961 {
1962 char fast_no_hz[72];
1963 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1964 struct rcu_dynticks *rdtp = rdp->dynticks;
1965 char *ticks_title;
1966 unsigned long ticks_value;
1967
1968 if (rsp->gpnum == rdp->gpnum) {
1969 ticks_title = "ticks this GP";
1970 ticks_value = rdp->ticks_this_gp;
1971 } else {
1972 ticks_title = "GPs behind";
1973 ticks_value = rsp->gpnum - rdp->gpnum;
1974 }
1975 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1976 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1977 cpu, ticks_value, ticks_title,
1978 atomic_read(&rdtp->dynticks) & 0xfff,
1979 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1980 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1981 fast_no_hz);
1982 }
1983
1984 /* Terminate the stall-info list. */
1985 static void print_cpu_stall_info_end(void)
1986 {
1987 pr_err("\t");
1988 }
1989
1990 /* Zero ->ticks_this_gp for all flavors of RCU. */
1991 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1992 {
1993 rdp->ticks_this_gp = 0;
1994 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1995 }
1996
1997 /* Increment ->ticks_this_gp for all flavors of RCU. */
1998 static void increment_cpu_stall_ticks(void)
1999 {
2000 struct rcu_state *rsp;
2001
2002 for_each_rcu_flavor(rsp)
2003 __this_cpu_ptr(rsp->rda)->ticks_this_gp++;
2004 }
2005
2006 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2007
2008 static void print_cpu_stall_info_begin(void)
2009 {
2010 pr_cont(" {");
2011 }
2012
2013 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2014 {
2015 pr_cont(" %d", cpu);
2016 }
2017
2018 static void print_cpu_stall_info_end(void)
2019 {
2020 pr_cont("} ");
2021 }
2022
2023 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2024 {
2025 }
2026
2027 static void increment_cpu_stall_ticks(void)
2028 {
2029 }
2030
2031 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2032
2033 #ifdef CONFIG_RCU_NOCB_CPU
2034
2035 /*
2036 * Offload callback processing from the boot-time-specified set of CPUs
2037 * specified by rcu_nocb_mask. For each CPU in the set, there is a
2038 * kthread created that pulls the callbacks from the corresponding CPU,
2039 * waits for a grace period to elapse, and invokes the callbacks.
2040 * The no-CBs CPUs do a wake_up() on their kthread when they insert
2041 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2042 * has been specified, in which case each kthread actively polls its
2043 * CPU. (Which isn't so great for energy efficiency, but which does
2044 * reduce RCU's overhead on that CPU.)
2045 *
2046 * This is intended to be used in conjunction with Frederic Weisbecker's
2047 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2048 * running CPU-bound user-mode computations.
2049 *
2050 * Offloading of callback processing could also in theory be used as
2051 * an energy-efficiency measure because CPUs with no RCU callbacks
2052 * queued are more aggressive about entering dyntick-idle mode.
2053 */
2054
2055
2056 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2057 static int __init rcu_nocb_setup(char *str)
2058 {
2059 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2060 have_rcu_nocb_mask = true;
2061 cpulist_parse(str, rcu_nocb_mask);
2062 return 1;
2063 }
2064 __setup("rcu_nocbs=", rcu_nocb_setup);
2065
2066 static int __init parse_rcu_nocb_poll(char *arg)
2067 {
2068 rcu_nocb_poll = 1;
2069 return 0;
2070 }
2071 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2072
2073 /*
2074 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2075 * grace period.
2076 */
2077 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2078 {
2079 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2080 }
2081
2082 /*
2083 * Set the root rcu_node structure's ->need_future_gp field
2084 * based on the sum of those of all rcu_node structures. This does
2085 * double-count the root rcu_node structure's requests, but this
2086 * is necessary to handle the possibility of a rcu_nocb_kthread()
2087 * having awakened during the time that the rcu_node structures
2088 * were being updated for the end of the previous grace period.
2089 */
2090 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2091 {
2092 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2093 }
2094
2095 static void rcu_init_one_nocb(struct rcu_node *rnp)
2096 {
2097 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2098 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2099 }
2100
2101 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2102 /* Is the specified CPU a no-CBs CPU? */
2103 bool rcu_is_nocb_cpu(int cpu)
2104 {
2105 if (have_rcu_nocb_mask)
2106 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2107 return false;
2108 }
2109 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2110
2111 /*
2112 * Enqueue the specified string of rcu_head structures onto the specified
2113 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2114 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2115 * counts are supplied by rhcount and rhcount_lazy.
2116 *
2117 * If warranted, also wake up the kthread servicing this CPUs queues.
2118 */
2119 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2120 struct rcu_head *rhp,
2121 struct rcu_head **rhtp,
2122 int rhcount, int rhcount_lazy,
2123 unsigned long flags)
2124 {
2125 int len;
2126 struct rcu_head **old_rhpp;
2127 struct task_struct *t;
2128
2129 /* Enqueue the callback on the nocb list and update counts. */
2130 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2131 ACCESS_ONCE(*old_rhpp) = rhp;
2132 atomic_long_add(rhcount, &rdp->nocb_q_count);
2133 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2134
2135 /* If we are not being polled and there is a kthread, awaken it ... */
2136 t = ACCESS_ONCE(rdp->nocb_kthread);
2137 if (rcu_nocb_poll || !t) {
2138 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2139 TPS("WakeNotPoll"));
2140 return;
2141 }
2142 len = atomic_long_read(&rdp->nocb_q_count);
2143 if (old_rhpp == &rdp->nocb_head) {
2144 if (!irqs_disabled_flags(flags)) {
2145 wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
2146 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2147 TPS("WakeEmpty"));
2148 } else {
2149 rdp->nocb_defer_wakeup = true;
2150 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2151 TPS("WakeEmptyIsDeferred"));
2152 }
2153 rdp->qlen_last_fqs_check = 0;
2154 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2155 wake_up_process(t); /* ... or if many callbacks queued. */
2156 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2157 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2158 } else {
2159 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2160 }
2161 return;
2162 }
2163
2164 /*
2165 * This is a helper for __call_rcu(), which invokes this when the normal
2166 * callback queue is inoperable. If this is not a no-CBs CPU, this
2167 * function returns failure back to __call_rcu(), which can complain
2168 * appropriately.
2169 *
2170 * Otherwise, this function queues the callback where the corresponding
2171 * "rcuo" kthread can find it.
2172 */
2173 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2174 bool lazy, unsigned long flags)
2175 {
2176
2177 if (!rcu_is_nocb_cpu(rdp->cpu))
2178 return 0;
2179 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2180 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2181 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2182 (unsigned long)rhp->func,
2183 -atomic_long_read(&rdp->nocb_q_count_lazy),
2184 -atomic_long_read(&rdp->nocb_q_count));
2185 else
2186 trace_rcu_callback(rdp->rsp->name, rhp,
2187 -atomic_long_read(&rdp->nocb_q_count_lazy),
2188 -atomic_long_read(&rdp->nocb_q_count));
2189 return 1;
2190 }
2191
2192 /*
2193 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2194 * not a no-CBs CPU.
2195 */
2196 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2197 struct rcu_data *rdp,
2198 unsigned long flags)
2199 {
2200 long ql = rsp->qlen;
2201 long qll = rsp->qlen_lazy;
2202
2203 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2204 if (!rcu_is_nocb_cpu(smp_processor_id()))
2205 return 0;
2206 rsp->qlen = 0;
2207 rsp->qlen_lazy = 0;
2208
2209 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2210 if (rsp->orphan_donelist != NULL) {
2211 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2212 rsp->orphan_donetail, ql, qll, flags);
2213 ql = qll = 0;
2214 rsp->orphan_donelist = NULL;
2215 rsp->orphan_donetail = &rsp->orphan_donelist;
2216 }
2217 if (rsp->orphan_nxtlist != NULL) {
2218 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2219 rsp->orphan_nxttail, ql, qll, flags);
2220 ql = qll = 0;
2221 rsp->orphan_nxtlist = NULL;
2222 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2223 }
2224 return 1;
2225 }
2226
2227 /*
2228 * If necessary, kick off a new grace period, and either way wait
2229 * for a subsequent grace period to complete.
2230 */
2231 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2232 {
2233 unsigned long c;
2234 bool d;
2235 unsigned long flags;
2236 bool needwake;
2237 struct rcu_node *rnp = rdp->mynode;
2238
2239 raw_spin_lock_irqsave(&rnp->lock, flags);
2240 smp_mb__after_unlock_lock();
2241 needwake = rcu_start_future_gp(rnp, rdp, &c);
2242 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2243 if (needwake)
2244 rcu_gp_kthread_wake(rdp->rsp);
2245
2246 /*
2247 * Wait for the grace period. Do so interruptibly to avoid messing
2248 * up the load average.
2249 */
2250 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2251 for (;;) {
2252 wait_event_interruptible(
2253 rnp->nocb_gp_wq[c & 0x1],
2254 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2255 if (likely(d))
2256 break;
2257 flush_signals(current);
2258 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2259 }
2260 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2261 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2262 }
2263
2264 /*
2265 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2266 * callbacks queued by the corresponding no-CBs CPU.
2267 */
2268 static int rcu_nocb_kthread(void *arg)
2269 {
2270 int c, cl;
2271 bool firsttime = 1;
2272 struct rcu_head *list;
2273 struct rcu_head *next;
2274 struct rcu_head **tail;
2275 struct rcu_data *rdp = arg;
2276
2277 /* Each pass through this loop invokes one batch of callbacks */
2278 for (;;) {
2279 /* If not polling, wait for next batch of callbacks. */
2280 if (!rcu_nocb_poll) {
2281 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2282 TPS("Sleep"));
2283 wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2284 /* Memory barrier provide by xchg() below. */
2285 } else if (firsttime) {
2286 firsttime = 0;
2287 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2288 TPS("Poll"));
2289 }
2290 list = ACCESS_ONCE(rdp->nocb_head);
2291 if (!list) {
2292 if (!rcu_nocb_poll)
2293 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2294 TPS("WokeEmpty"));
2295 schedule_timeout_interruptible(1);
2296 flush_signals(current);
2297 continue;
2298 }
2299 firsttime = 1;
2300 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2301 TPS("WokeNonEmpty"));
2302
2303 /*
2304 * Extract queued callbacks, update counts, and wait
2305 * for a grace period to elapse.
2306 */
2307 ACCESS_ONCE(rdp->nocb_head) = NULL;
2308 tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2309 c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2310 cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2311 ACCESS_ONCE(rdp->nocb_p_count) += c;
2312 ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2313 rcu_nocb_wait_gp(rdp);
2314
2315 /* Each pass through the following loop invokes a callback. */
2316 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2317 c = cl = 0;
2318 while (list) {
2319 next = list->next;
2320 /* Wait for enqueuing to complete, if needed. */
2321 while (next == NULL && &list->next != tail) {
2322 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2323 TPS("WaitQueue"));
2324 schedule_timeout_interruptible(1);
2325 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2326 TPS("WokeQueue"));
2327 next = list->next;
2328 }
2329 debug_rcu_head_unqueue(list);
2330 local_bh_disable();
2331 if (__rcu_reclaim(rdp->rsp->name, list))
2332 cl++;
2333 c++;
2334 local_bh_enable();
2335 list = next;
2336 }
2337 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2338 ACCESS_ONCE(rdp->nocb_p_count) -= c;
2339 ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2340 rdp->n_nocbs_invoked += c;
2341 }
2342 return 0;
2343 }
2344
2345 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2346 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2347 {
2348 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2349 }
2350
2351 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2352 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2353 {
2354 if (!rcu_nocb_need_deferred_wakeup(rdp))
2355 return;
2356 ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2357 wake_up(&rdp->nocb_wq);
2358 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2359 }
2360
2361 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2362 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2363 {
2364 rdp->nocb_tail = &rdp->nocb_head;
2365 init_waitqueue_head(&rdp->nocb_wq);
2366 }
2367
2368 /* Create a kthread for each RCU flavor for each no-CBs CPU. */
2369 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2370 {
2371 int cpu;
2372 struct rcu_data *rdp;
2373 struct task_struct *t;
2374
2375 if (rcu_nocb_mask == NULL)
2376 return;
2377 for_each_cpu(cpu, rcu_nocb_mask) {
2378 rdp = per_cpu_ptr(rsp->rda, cpu);
2379 t = kthread_run(rcu_nocb_kthread, rdp,
2380 "rcuo%c/%d", rsp->abbr, cpu);
2381 BUG_ON(IS_ERR(t));
2382 ACCESS_ONCE(rdp->nocb_kthread) = t;
2383 }
2384 }
2385
2386 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2387 static bool init_nocb_callback_list(struct rcu_data *rdp)
2388 {
2389 if (rcu_nocb_mask == NULL ||
2390 !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2391 return false;
2392 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2393 return true;
2394 }
2395
2396 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2397
2398 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2399 {
2400 }
2401
2402 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2403 {
2404 }
2405
2406 static void rcu_init_one_nocb(struct rcu_node *rnp)
2407 {
2408 }
2409
2410 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2411 bool lazy, unsigned long flags)
2412 {
2413 return 0;
2414 }
2415
2416 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2417 struct rcu_data *rdp,
2418 unsigned long flags)
2419 {
2420 return 0;
2421 }
2422
2423 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2424 {
2425 }
2426
2427 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2428 {
2429 return false;
2430 }
2431
2432 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2433 {
2434 }
2435
2436 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2437 {
2438 }
2439
2440 static bool init_nocb_callback_list(struct rcu_data *rdp)
2441 {
2442 return false;
2443 }
2444
2445 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2446
2447 /*
2448 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2449 * arbitrarily long period of time with the scheduling-clock tick turned
2450 * off. RCU will be paying attention to this CPU because it is in the
2451 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2452 * machine because the scheduling-clock tick has been disabled. Therefore,
2453 * if an adaptive-ticks CPU is failing to respond to the current grace
2454 * period and has not be idle from an RCU perspective, kick it.
2455 */
2456 static void rcu_kick_nohz_cpu(int cpu)
2457 {
2458 #ifdef CONFIG_NO_HZ_FULL
2459 if (tick_nohz_full_cpu(cpu))
2460 smp_send_reschedule(cpu);
2461 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2462 }
2463
2464
2465 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2466
2467 /*
2468 * Define RCU flavor that holds sysidle state. This needs to be the
2469 * most active flavor of RCU.
2470 */
2471 #ifdef CONFIG_PREEMPT_RCU
2472 static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2473 #else /* #ifdef CONFIG_PREEMPT_RCU */
2474 static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2475 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2476
2477 static int full_sysidle_state; /* Current system-idle state. */
2478 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2479 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2480 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2481 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2482 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2483
2484 /*
2485 * Invoked to note exit from irq or task transition to idle. Note that
2486 * usermode execution does -not- count as idle here! After all, we want
2487 * to detect full-system idle states, not RCU quiescent states and grace
2488 * periods. The caller must have disabled interrupts.
2489 */
2490 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2491 {
2492 unsigned long j;
2493
2494 /* Adjust nesting, check for fully idle. */
2495 if (irq) {
2496 rdtp->dynticks_idle_nesting--;
2497 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2498 if (rdtp->dynticks_idle_nesting != 0)
2499 return; /* Still not fully idle. */
2500 } else {
2501 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2502 DYNTICK_TASK_NEST_VALUE) {
2503 rdtp->dynticks_idle_nesting = 0;
2504 } else {
2505 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2506 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2507 return; /* Still not fully idle. */
2508 }
2509 }
2510
2511 /* Record start of fully idle period. */
2512 j = jiffies;
2513 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2514 smp_mb__before_atomic_inc();
2515 atomic_inc(&rdtp->dynticks_idle);
2516 smp_mb__after_atomic_inc();
2517 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2518 }
2519
2520 /*
2521 * Unconditionally force exit from full system-idle state. This is
2522 * invoked when a normal CPU exits idle, but must be called separately
2523 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2524 * is that the timekeeping CPU is permitted to take scheduling-clock
2525 * interrupts while the system is in system-idle state, and of course
2526 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2527 * interrupt from any other type of interrupt.
2528 */
2529 void rcu_sysidle_force_exit(void)
2530 {
2531 int oldstate = ACCESS_ONCE(full_sysidle_state);
2532 int newoldstate;
2533
2534 /*
2535 * Each pass through the following loop attempts to exit full
2536 * system-idle state. If contention proves to be a problem,
2537 * a trylock-based contention tree could be used here.
2538 */
2539 while (oldstate > RCU_SYSIDLE_SHORT) {
2540 newoldstate = cmpxchg(&full_sysidle_state,
2541 oldstate, RCU_SYSIDLE_NOT);
2542 if (oldstate == newoldstate &&
2543 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2544 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2545 return; /* We cleared it, done! */
2546 }
2547 oldstate = newoldstate;
2548 }
2549 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2550 }
2551
2552 /*
2553 * Invoked to note entry to irq or task transition from idle. Note that
2554 * usermode execution does -not- count as idle here! The caller must
2555 * have disabled interrupts.
2556 */
2557 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2558 {
2559 /* Adjust nesting, check for already non-idle. */
2560 if (irq) {
2561 rdtp->dynticks_idle_nesting++;
2562 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2563 if (rdtp->dynticks_idle_nesting != 1)
2564 return; /* Already non-idle. */
2565 } else {
2566 /*
2567 * Allow for irq misnesting. Yes, it really is possible
2568 * to enter an irq handler then never leave it, and maybe
2569 * also vice versa. Handle both possibilities.
2570 */
2571 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2572 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2573 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2574 return; /* Already non-idle. */
2575 } else {
2576 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2577 }
2578 }
2579
2580 /* Record end of idle period. */
2581 smp_mb__before_atomic_inc();
2582 atomic_inc(&rdtp->dynticks_idle);
2583 smp_mb__after_atomic_inc();
2584 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2585
2586 /*
2587 * If we are the timekeeping CPU, we are permitted to be non-idle
2588 * during a system-idle state. This must be the case, because
2589 * the timekeeping CPU has to take scheduling-clock interrupts
2590 * during the time that the system is transitioning to full
2591 * system-idle state. This means that the timekeeping CPU must
2592 * invoke rcu_sysidle_force_exit() directly if it does anything
2593 * more than take a scheduling-clock interrupt.
2594 */
2595 if (smp_processor_id() == tick_do_timer_cpu)
2596 return;
2597
2598 /* Update system-idle state: We are clearly no longer fully idle! */
2599 rcu_sysidle_force_exit();
2600 }
2601
2602 /*
2603 * Check to see if the current CPU is idle. Note that usermode execution
2604 * does not count as idle. The caller must have disabled interrupts.
2605 */
2606 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2607 unsigned long *maxj)
2608 {
2609 int cur;
2610 unsigned long j;
2611 struct rcu_dynticks *rdtp = rdp->dynticks;
2612
2613 /*
2614 * If some other CPU has already reported non-idle, if this is
2615 * not the flavor of RCU that tracks sysidle state, or if this
2616 * is an offline or the timekeeping CPU, nothing to do.
2617 */
2618 if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2619 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2620 return;
2621 if (rcu_gp_in_progress(rdp->rsp))
2622 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2623
2624 /* Pick up current idle and NMI-nesting counter and check. */
2625 cur = atomic_read(&rdtp->dynticks_idle);
2626 if (cur & 0x1) {
2627 *isidle = false; /* We are not idle! */
2628 return;
2629 }
2630 smp_mb(); /* Read counters before timestamps. */
2631
2632 /* Pick up timestamps. */
2633 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2634 /* If this CPU entered idle more recently, update maxj timestamp. */
2635 if (ULONG_CMP_LT(*maxj, j))
2636 *maxj = j;
2637 }
2638
2639 /*
2640 * Is this the flavor of RCU that is handling full-system idle?
2641 */
2642 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2643 {
2644 return rsp == rcu_sysidle_state;
2645 }
2646
2647 /*
2648 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2649 * timekeeping CPU.
2650 */
2651 static void rcu_bind_gp_kthread(void)
2652 {
2653 int cpu = ACCESS_ONCE(tick_do_timer_cpu);
2654
2655 if (cpu < 0 || cpu >= nr_cpu_ids)
2656 return;
2657 if (raw_smp_processor_id() != cpu)
2658 set_cpus_allowed_ptr(current, cpumask_of(cpu));
2659 }
2660
2661 /*
2662 * Return a delay in jiffies based on the number of CPUs, rcu_node
2663 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2664 * systems more time to transition to full-idle state in order to
2665 * avoid the cache thrashing that otherwise occur on the state variable.
2666 * Really small systems (less than a couple of tens of CPUs) should
2667 * instead use a single global atomically incremented counter, and later
2668 * versions of this will automatically reconfigure themselves accordingly.
2669 */
2670 static unsigned long rcu_sysidle_delay(void)
2671 {
2672 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2673 return 0;
2674 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2675 }
2676
2677 /*
2678 * Advance the full-system-idle state. This is invoked when all of
2679 * the non-timekeeping CPUs are idle.
2680 */
2681 static void rcu_sysidle(unsigned long j)
2682 {
2683 /* Check the current state. */
2684 switch (ACCESS_ONCE(full_sysidle_state)) {
2685 case RCU_SYSIDLE_NOT:
2686
2687 /* First time all are idle, so note a short idle period. */
2688 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2689 break;
2690
2691 case RCU_SYSIDLE_SHORT:
2692
2693 /*
2694 * Idle for a bit, time to advance to next state?
2695 * cmpxchg failure means race with non-idle, let them win.
2696 */
2697 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2698 (void)cmpxchg(&full_sysidle_state,
2699 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2700 break;
2701
2702 case RCU_SYSIDLE_LONG:
2703
2704 /*
2705 * Do an additional check pass before advancing to full.
2706 * cmpxchg failure means race with non-idle, let them win.
2707 */
2708 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2709 (void)cmpxchg(&full_sysidle_state,
2710 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2711 break;
2712
2713 default:
2714 break;
2715 }
2716 }
2717
2718 /*
2719 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2720 * back to the beginning.
2721 */
2722 static void rcu_sysidle_cancel(void)
2723 {
2724 smp_mb();
2725 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2726 }
2727
2728 /*
2729 * Update the sysidle state based on the results of a force-quiescent-state
2730 * scan of the CPUs' dyntick-idle state.
2731 */
2732 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2733 unsigned long maxj, bool gpkt)
2734 {
2735 if (rsp != rcu_sysidle_state)
2736 return; /* Wrong flavor, ignore. */
2737 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2738 return; /* Running state machine from timekeeping CPU. */
2739 if (isidle)
2740 rcu_sysidle(maxj); /* More idle! */
2741 else
2742 rcu_sysidle_cancel(); /* Idle is over. */
2743 }
2744
2745 /*
2746 * Wrapper for rcu_sysidle_report() when called from the grace-period
2747 * kthread's context.
2748 */
2749 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2750 unsigned long maxj)
2751 {
2752 rcu_sysidle_report(rsp, isidle, maxj, true);
2753 }
2754
2755 /* Callback and function for forcing an RCU grace period. */
2756 struct rcu_sysidle_head {
2757 struct rcu_head rh;
2758 int inuse;
2759 };
2760
2761 static void rcu_sysidle_cb(struct rcu_head *rhp)
2762 {
2763 struct rcu_sysidle_head *rshp;
2764
2765 /*
2766 * The following memory barrier is needed to replace the
2767 * memory barriers that would normally be in the memory
2768 * allocator.
2769 */
2770 smp_mb(); /* grace period precedes setting inuse. */
2771
2772 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2773 ACCESS_ONCE(rshp->inuse) = 0;
2774 }
2775
2776 /*
2777 * Check to see if the system is fully idle, other than the timekeeping CPU.
2778 * The caller must have disabled interrupts.
2779 */
2780 bool rcu_sys_is_idle(void)
2781 {
2782 static struct rcu_sysidle_head rsh;
2783 int rss = ACCESS_ONCE(full_sysidle_state);
2784
2785 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2786 return false;
2787
2788 /* Handle small-system case by doing a full scan of CPUs. */
2789 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2790 int oldrss = rss - 1;
2791
2792 /*
2793 * One pass to advance to each state up to _FULL.
2794 * Give up if any pass fails to advance the state.
2795 */
2796 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2797 int cpu;
2798 bool isidle = true;
2799 unsigned long maxj = jiffies - ULONG_MAX / 4;
2800 struct rcu_data *rdp;
2801
2802 /* Scan all the CPUs looking for nonidle CPUs. */
2803 for_each_possible_cpu(cpu) {
2804 rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2805 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2806 if (!isidle)
2807 break;
2808 }
2809 rcu_sysidle_report(rcu_sysidle_state,
2810 isidle, maxj, false);
2811 oldrss = rss;
2812 rss = ACCESS_ONCE(full_sysidle_state);
2813 }
2814 }
2815
2816 /* If this is the first observation of an idle period, record it. */
2817 if (rss == RCU_SYSIDLE_FULL) {
2818 rss = cmpxchg(&full_sysidle_state,
2819 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2820 return rss == RCU_SYSIDLE_FULL;
2821 }
2822
2823 smp_mb(); /* ensure rss load happens before later caller actions. */
2824
2825 /* If already fully idle, tell the caller (in case of races). */
2826 if (rss == RCU_SYSIDLE_FULL_NOTED)
2827 return true;
2828
2829 /*
2830 * If we aren't there yet, and a grace period is not in flight,
2831 * initiate a grace period. Either way, tell the caller that
2832 * we are not there yet. We use an xchg() rather than an assignment
2833 * to make up for the memory barriers that would otherwise be
2834 * provided by the memory allocator.
2835 */
2836 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2837 !rcu_gp_in_progress(rcu_sysidle_state) &&
2838 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2839 call_rcu(&rsh.rh, rcu_sysidle_cb);
2840 return false;
2841 }
2842
2843 /*
2844 * Initialize dynticks sysidle state for CPUs coming online.
2845 */
2846 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2847 {
2848 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2849 }
2850
2851 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2852
2853 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2854 {
2855 }
2856
2857 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2858 {
2859 }
2860
2861 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2862 unsigned long *maxj)
2863 {
2864 }
2865
2866 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2867 {
2868 return false;
2869 }
2870
2871 static void rcu_bind_gp_kthread(void)
2872 {
2873 }
2874
2875 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2876 unsigned long maxj)
2877 {
2878 }
2879
2880 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2881 {
2882 }
2883
2884 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2885
2886 /*
2887 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2888 * grace-period kthread will do force_quiescent_state() processing?
2889 * The idea is to avoid waking up RCU core processing on such a
2890 * CPU unless the grace period has extended for too long.
2891 *
2892 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2893 * CONFIG_RCU_NOCB_CPU CPUs.
2894 */
2895 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2896 {
2897 #ifdef CONFIG_NO_HZ_FULL
2898 if (tick_nohz_full_cpu(smp_processor_id()) &&
2899 (!rcu_gp_in_progress(rsp) ||
2900 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
2901 return 1;
2902 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2903 return 0;
2904 }
This page took 0.123068 seconds and 5 git commands to generate.