rcu: Remove remaining read-modify-write ACCESS_ONCE() calls
[deliverable/linux.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #define RCU_KTHREAD_PRIO 1
34
35 #ifdef CONFIG_RCU_BOOST
36 #include "../locking/rtmutex_common.h"
37 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38 #else
39 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40 #endif
41
42 #ifdef CONFIG_RCU_NOCB_CPU
43 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
45 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
46 static char __initdata nocb_buf[NR_CPUS * 5];
47 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
49 /*
50 * Check the RCU kernel configuration parameters and print informative
51 * messages about anything out of the ordinary. If you like #ifdef, you
52 * will love this function.
53 */
54 static void __init rcu_bootup_announce_oddness(void)
55 {
56 #ifdef CONFIG_RCU_TRACE
57 pr_info("\tRCU debugfs-based tracing is enabled.\n");
58 #endif
59 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
60 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61 CONFIG_RCU_FANOUT);
62 #endif
63 #ifdef CONFIG_RCU_FANOUT_EXACT
64 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65 #endif
66 #ifdef CONFIG_RCU_FAST_NO_HZ
67 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68 #endif
69 #ifdef CONFIG_PROVE_RCU
70 pr_info("\tRCU lockdep checking is enabled.\n");
71 #endif
72 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73 pr_info("\tRCU torture testing starts during boot.\n");
74 #endif
75 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77 #endif
78 #if defined(CONFIG_RCU_CPU_STALL_INFO)
79 pr_info("\tAdditional per-CPU info printed with stalls.\n");
80 #endif
81 #if NUM_RCU_LVL_4 != 0
82 pr_info("\tFour-level hierarchy is enabled.\n");
83 #endif
84 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86 if (nr_cpu_ids != NR_CPUS)
87 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88 #ifdef CONFIG_RCU_NOCB_CPU
89 #ifndef CONFIG_RCU_NOCB_CPU_NONE
90 if (!have_rcu_nocb_mask) {
91 zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
92 have_rcu_nocb_mask = true;
93 }
94 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
95 pr_info("\tOffload RCU callbacks from CPU 0\n");
96 cpumask_set_cpu(0, rcu_nocb_mask);
97 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
98 #ifdef CONFIG_RCU_NOCB_CPU_ALL
99 pr_info("\tOffload RCU callbacks from all CPUs\n");
100 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
101 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
102 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
103 if (have_rcu_nocb_mask) {
104 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
105 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
106 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
107 rcu_nocb_mask);
108 }
109 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
110 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
111 if (rcu_nocb_poll)
112 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
113 }
114 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
115 }
116
117 #ifdef CONFIG_TREE_PREEMPT_RCU
118
119 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
120 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
121
122 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
123
124 /*
125 * Tell them what RCU they are running.
126 */
127 static void __init rcu_bootup_announce(void)
128 {
129 pr_info("Preemptible hierarchical RCU implementation.\n");
130 rcu_bootup_announce_oddness();
131 }
132
133 /*
134 * Return the number of RCU-preempt batches processed thus far
135 * for debug and statistics.
136 */
137 long rcu_batches_completed_preempt(void)
138 {
139 return rcu_preempt_state.completed;
140 }
141 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
142
143 /*
144 * Return the number of RCU batches processed thus far for debug & stats.
145 */
146 long rcu_batches_completed(void)
147 {
148 return rcu_batches_completed_preempt();
149 }
150 EXPORT_SYMBOL_GPL(rcu_batches_completed);
151
152 /*
153 * Record a preemptible-RCU quiescent state for the specified CPU. Note
154 * that this just means that the task currently running on the CPU is
155 * not in a quiescent state. There might be any number of tasks blocked
156 * while in an RCU read-side critical section.
157 *
158 * Unlike the other rcu_*_qs() functions, callers to this function
159 * must disable irqs in order to protect the assignment to
160 * ->rcu_read_unlock_special.
161 */
162 static void rcu_preempt_qs(int cpu)
163 {
164 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
165
166 if (rdp->passed_quiesce == 0)
167 trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
168 rdp->passed_quiesce = 1;
169 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
170 }
171
172 /*
173 * We have entered the scheduler, and the current task might soon be
174 * context-switched away from. If this task is in an RCU read-side
175 * critical section, we will no longer be able to rely on the CPU to
176 * record that fact, so we enqueue the task on the blkd_tasks list.
177 * The task will dequeue itself when it exits the outermost enclosing
178 * RCU read-side critical section. Therefore, the current grace period
179 * cannot be permitted to complete until the blkd_tasks list entries
180 * predating the current grace period drain, in other words, until
181 * rnp->gp_tasks becomes NULL.
182 *
183 * Caller must disable preemption.
184 */
185 static void rcu_preempt_note_context_switch(int cpu)
186 {
187 struct task_struct *t = current;
188 unsigned long flags;
189 struct rcu_data *rdp;
190 struct rcu_node *rnp;
191
192 if (t->rcu_read_lock_nesting > 0 &&
193 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
194
195 /* Possibly blocking in an RCU read-side critical section. */
196 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
197 rnp = rdp->mynode;
198 raw_spin_lock_irqsave(&rnp->lock, flags);
199 smp_mb__after_unlock_lock();
200 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
201 t->rcu_blocked_node = rnp;
202
203 /*
204 * If this CPU has already checked in, then this task
205 * will hold up the next grace period rather than the
206 * current grace period. Queue the task accordingly.
207 * If the task is queued for the current grace period
208 * (i.e., this CPU has not yet passed through a quiescent
209 * state for the current grace period), then as long
210 * as that task remains queued, the current grace period
211 * cannot end. Note that there is some uncertainty as
212 * to exactly when the current grace period started.
213 * We take a conservative approach, which can result
214 * in unnecessarily waiting on tasks that started very
215 * slightly after the current grace period began. C'est
216 * la vie!!!
217 *
218 * But first, note that the current CPU must still be
219 * on line!
220 */
221 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
222 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
223 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
224 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
225 rnp->gp_tasks = &t->rcu_node_entry;
226 #ifdef CONFIG_RCU_BOOST
227 if (rnp->boost_tasks != NULL)
228 rnp->boost_tasks = rnp->gp_tasks;
229 #endif /* #ifdef CONFIG_RCU_BOOST */
230 } else {
231 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
232 if (rnp->qsmask & rdp->grpmask)
233 rnp->gp_tasks = &t->rcu_node_entry;
234 }
235 trace_rcu_preempt_task(rdp->rsp->name,
236 t->pid,
237 (rnp->qsmask & rdp->grpmask)
238 ? rnp->gpnum
239 : rnp->gpnum + 1);
240 raw_spin_unlock_irqrestore(&rnp->lock, flags);
241 } else if (t->rcu_read_lock_nesting < 0 &&
242 t->rcu_read_unlock_special) {
243
244 /*
245 * Complete exit from RCU read-side critical section on
246 * behalf of preempted instance of __rcu_read_unlock().
247 */
248 rcu_read_unlock_special(t);
249 }
250
251 /*
252 * Either we were not in an RCU read-side critical section to
253 * begin with, or we have now recorded that critical section
254 * globally. Either way, we can now note a quiescent state
255 * for this CPU. Again, if we were in an RCU read-side critical
256 * section, and if that critical section was blocking the current
257 * grace period, then the fact that the task has been enqueued
258 * means that we continue to block the current grace period.
259 */
260 local_irq_save(flags);
261 rcu_preempt_qs(cpu);
262 local_irq_restore(flags);
263 }
264
265 /*
266 * Check for preempted RCU readers blocking the current grace period
267 * for the specified rcu_node structure. If the caller needs a reliable
268 * answer, it must hold the rcu_node's ->lock.
269 */
270 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
271 {
272 return rnp->gp_tasks != NULL;
273 }
274
275 /*
276 * Record a quiescent state for all tasks that were previously queued
277 * on the specified rcu_node structure and that were blocking the current
278 * RCU grace period. The caller must hold the specified rnp->lock with
279 * irqs disabled, and this lock is released upon return, but irqs remain
280 * disabled.
281 */
282 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
283 __releases(rnp->lock)
284 {
285 unsigned long mask;
286 struct rcu_node *rnp_p;
287
288 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
289 raw_spin_unlock_irqrestore(&rnp->lock, flags);
290 return; /* Still need more quiescent states! */
291 }
292
293 rnp_p = rnp->parent;
294 if (rnp_p == NULL) {
295 /*
296 * Either there is only one rcu_node in the tree,
297 * or tasks were kicked up to root rcu_node due to
298 * CPUs going offline.
299 */
300 rcu_report_qs_rsp(&rcu_preempt_state, flags);
301 return;
302 }
303
304 /* Report up the rest of the hierarchy. */
305 mask = rnp->grpmask;
306 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
307 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
308 smp_mb__after_unlock_lock();
309 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
310 }
311
312 /*
313 * Advance a ->blkd_tasks-list pointer to the next entry, instead
314 * returning NULL if at the end of the list.
315 */
316 static struct list_head *rcu_next_node_entry(struct task_struct *t,
317 struct rcu_node *rnp)
318 {
319 struct list_head *np;
320
321 np = t->rcu_node_entry.next;
322 if (np == &rnp->blkd_tasks)
323 np = NULL;
324 return np;
325 }
326
327 /*
328 * Handle special cases during rcu_read_unlock(), such as needing to
329 * notify RCU core processing or task having blocked during the RCU
330 * read-side critical section.
331 */
332 void rcu_read_unlock_special(struct task_struct *t)
333 {
334 int empty;
335 int empty_exp;
336 int empty_exp_now;
337 unsigned long flags;
338 struct list_head *np;
339 #ifdef CONFIG_RCU_BOOST
340 bool drop_boost_mutex = false;
341 #endif /* #ifdef CONFIG_RCU_BOOST */
342 struct rcu_node *rnp;
343 int special;
344
345 /* NMI handlers cannot block and cannot safely manipulate state. */
346 if (in_nmi())
347 return;
348
349 local_irq_save(flags);
350
351 /*
352 * If RCU core is waiting for this CPU to exit critical section,
353 * let it know that we have done so.
354 */
355 special = t->rcu_read_unlock_special;
356 if (special & RCU_READ_UNLOCK_NEED_QS) {
357 rcu_preempt_qs(smp_processor_id());
358 if (!t->rcu_read_unlock_special) {
359 local_irq_restore(flags);
360 return;
361 }
362 }
363
364 /* Hardware IRQ handlers cannot block, complain if they get here. */
365 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
366 local_irq_restore(flags);
367 return;
368 }
369
370 /* Clean up if blocked during RCU read-side critical section. */
371 if (special & RCU_READ_UNLOCK_BLOCKED) {
372 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
373
374 /*
375 * Remove this task from the list it blocked on. The
376 * task can migrate while we acquire the lock, but at
377 * most one time. So at most two passes through loop.
378 */
379 for (;;) {
380 rnp = t->rcu_blocked_node;
381 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
382 smp_mb__after_unlock_lock();
383 if (rnp == t->rcu_blocked_node)
384 break;
385 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
386 }
387 empty = !rcu_preempt_blocked_readers_cgp(rnp);
388 empty_exp = !rcu_preempted_readers_exp(rnp);
389 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
390 np = rcu_next_node_entry(t, rnp);
391 list_del_init(&t->rcu_node_entry);
392 t->rcu_blocked_node = NULL;
393 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
394 rnp->gpnum, t->pid);
395 if (&t->rcu_node_entry == rnp->gp_tasks)
396 rnp->gp_tasks = np;
397 if (&t->rcu_node_entry == rnp->exp_tasks)
398 rnp->exp_tasks = np;
399 #ifdef CONFIG_RCU_BOOST
400 if (&t->rcu_node_entry == rnp->boost_tasks)
401 rnp->boost_tasks = np;
402 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
403 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
404 #endif /* #ifdef CONFIG_RCU_BOOST */
405
406 /*
407 * If this was the last task on the current list, and if
408 * we aren't waiting on any CPUs, report the quiescent state.
409 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
410 * so we must take a snapshot of the expedited state.
411 */
412 empty_exp_now = !rcu_preempted_readers_exp(rnp);
413 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
414 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
415 rnp->gpnum,
416 0, rnp->qsmask,
417 rnp->level,
418 rnp->grplo,
419 rnp->grphi,
420 !!rnp->gp_tasks);
421 rcu_report_unblock_qs_rnp(rnp, flags);
422 } else {
423 raw_spin_unlock_irqrestore(&rnp->lock, flags);
424 }
425
426 #ifdef CONFIG_RCU_BOOST
427 /* Unboost if we were boosted. */
428 if (drop_boost_mutex) {
429 rt_mutex_unlock(&rnp->boost_mtx);
430 complete(&rnp->boost_completion);
431 }
432 #endif /* #ifdef CONFIG_RCU_BOOST */
433
434 /*
435 * If this was the last task on the expedited lists,
436 * then we need to report up the rcu_node hierarchy.
437 */
438 if (!empty_exp && empty_exp_now)
439 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
440 } else {
441 local_irq_restore(flags);
442 }
443 }
444
445 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
446
447 /*
448 * Dump detailed information for all tasks blocking the current RCU
449 * grace period on the specified rcu_node structure.
450 */
451 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
452 {
453 unsigned long flags;
454 struct task_struct *t;
455
456 raw_spin_lock_irqsave(&rnp->lock, flags);
457 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
458 raw_spin_unlock_irqrestore(&rnp->lock, flags);
459 return;
460 }
461 t = list_entry(rnp->gp_tasks,
462 struct task_struct, rcu_node_entry);
463 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
464 sched_show_task(t);
465 raw_spin_unlock_irqrestore(&rnp->lock, flags);
466 }
467
468 /*
469 * Dump detailed information for all tasks blocking the current RCU
470 * grace period.
471 */
472 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
473 {
474 struct rcu_node *rnp = rcu_get_root(rsp);
475
476 rcu_print_detail_task_stall_rnp(rnp);
477 rcu_for_each_leaf_node(rsp, rnp)
478 rcu_print_detail_task_stall_rnp(rnp);
479 }
480
481 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
482
483 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
484 {
485 }
486
487 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488
489 #ifdef CONFIG_RCU_CPU_STALL_INFO
490
491 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
492 {
493 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
494 rnp->level, rnp->grplo, rnp->grphi);
495 }
496
497 static void rcu_print_task_stall_end(void)
498 {
499 pr_cont("\n");
500 }
501
502 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
503
504 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
505 {
506 }
507
508 static void rcu_print_task_stall_end(void)
509 {
510 }
511
512 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
513
514 /*
515 * Scan the current list of tasks blocked within RCU read-side critical
516 * sections, printing out the tid of each.
517 */
518 static int rcu_print_task_stall(struct rcu_node *rnp)
519 {
520 struct task_struct *t;
521 int ndetected = 0;
522
523 if (!rcu_preempt_blocked_readers_cgp(rnp))
524 return 0;
525 rcu_print_task_stall_begin(rnp);
526 t = list_entry(rnp->gp_tasks,
527 struct task_struct, rcu_node_entry);
528 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
529 pr_cont(" P%d", t->pid);
530 ndetected++;
531 }
532 rcu_print_task_stall_end();
533 return ndetected;
534 }
535
536 /*
537 * Check that the list of blocked tasks for the newly completed grace
538 * period is in fact empty. It is a serious bug to complete a grace
539 * period that still has RCU readers blocked! This function must be
540 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
541 * must be held by the caller.
542 *
543 * Also, if there are blocked tasks on the list, they automatically
544 * block the newly created grace period, so set up ->gp_tasks accordingly.
545 */
546 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
547 {
548 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
549 if (!list_empty(&rnp->blkd_tasks))
550 rnp->gp_tasks = rnp->blkd_tasks.next;
551 WARN_ON_ONCE(rnp->qsmask);
552 }
553
554 #ifdef CONFIG_HOTPLUG_CPU
555
556 /*
557 * Handle tasklist migration for case in which all CPUs covered by the
558 * specified rcu_node have gone offline. Move them up to the root
559 * rcu_node. The reason for not just moving them to the immediate
560 * parent is to remove the need for rcu_read_unlock_special() to
561 * make more than two attempts to acquire the target rcu_node's lock.
562 * Returns true if there were tasks blocking the current RCU grace
563 * period.
564 *
565 * Returns 1 if there was previously a task blocking the current grace
566 * period on the specified rcu_node structure.
567 *
568 * The caller must hold rnp->lock with irqs disabled.
569 */
570 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
571 struct rcu_node *rnp,
572 struct rcu_data *rdp)
573 {
574 struct list_head *lp;
575 struct list_head *lp_root;
576 int retval = 0;
577 struct rcu_node *rnp_root = rcu_get_root(rsp);
578 struct task_struct *t;
579
580 if (rnp == rnp_root) {
581 WARN_ONCE(1, "Last CPU thought to be offlined?");
582 return 0; /* Shouldn't happen: at least one CPU online. */
583 }
584
585 /* If we are on an internal node, complain bitterly. */
586 WARN_ON_ONCE(rnp != rdp->mynode);
587
588 /*
589 * Move tasks up to root rcu_node. Don't try to get fancy for
590 * this corner-case operation -- just put this node's tasks
591 * at the head of the root node's list, and update the root node's
592 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
593 * if non-NULL. This might result in waiting for more tasks than
594 * absolutely necessary, but this is a good performance/complexity
595 * tradeoff.
596 */
597 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
598 retval |= RCU_OFL_TASKS_NORM_GP;
599 if (rcu_preempted_readers_exp(rnp))
600 retval |= RCU_OFL_TASKS_EXP_GP;
601 lp = &rnp->blkd_tasks;
602 lp_root = &rnp_root->blkd_tasks;
603 while (!list_empty(lp)) {
604 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
605 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
606 smp_mb__after_unlock_lock();
607 list_del(&t->rcu_node_entry);
608 t->rcu_blocked_node = rnp_root;
609 list_add(&t->rcu_node_entry, lp_root);
610 if (&t->rcu_node_entry == rnp->gp_tasks)
611 rnp_root->gp_tasks = rnp->gp_tasks;
612 if (&t->rcu_node_entry == rnp->exp_tasks)
613 rnp_root->exp_tasks = rnp->exp_tasks;
614 #ifdef CONFIG_RCU_BOOST
615 if (&t->rcu_node_entry == rnp->boost_tasks)
616 rnp_root->boost_tasks = rnp->boost_tasks;
617 #endif /* #ifdef CONFIG_RCU_BOOST */
618 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
619 }
620
621 rnp->gp_tasks = NULL;
622 rnp->exp_tasks = NULL;
623 #ifdef CONFIG_RCU_BOOST
624 rnp->boost_tasks = NULL;
625 /*
626 * In case root is being boosted and leaf was not. Make sure
627 * that we boost the tasks blocking the current grace period
628 * in this case.
629 */
630 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
631 smp_mb__after_unlock_lock();
632 if (rnp_root->boost_tasks != NULL &&
633 rnp_root->boost_tasks != rnp_root->gp_tasks &&
634 rnp_root->boost_tasks != rnp_root->exp_tasks)
635 rnp_root->boost_tasks = rnp_root->gp_tasks;
636 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
637 #endif /* #ifdef CONFIG_RCU_BOOST */
638
639 return retval;
640 }
641
642 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
643
644 /*
645 * Check for a quiescent state from the current CPU. When a task blocks,
646 * the task is recorded in the corresponding CPU's rcu_node structure,
647 * which is checked elsewhere.
648 *
649 * Caller must disable hard irqs.
650 */
651 static void rcu_preempt_check_callbacks(int cpu)
652 {
653 struct task_struct *t = current;
654
655 if (t->rcu_read_lock_nesting == 0) {
656 rcu_preempt_qs(cpu);
657 return;
658 }
659 if (t->rcu_read_lock_nesting > 0 &&
660 per_cpu(rcu_preempt_data, cpu).qs_pending)
661 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
662 }
663
664 #ifdef CONFIG_RCU_BOOST
665
666 static void rcu_preempt_do_callbacks(void)
667 {
668 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
669 }
670
671 #endif /* #ifdef CONFIG_RCU_BOOST */
672
673 /*
674 * Queue a preemptible-RCU callback for invocation after a grace period.
675 */
676 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
677 {
678 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
679 }
680 EXPORT_SYMBOL_GPL(call_rcu);
681
682 /**
683 * synchronize_rcu - wait until a grace period has elapsed.
684 *
685 * Control will return to the caller some time after a full grace
686 * period has elapsed, in other words after all currently executing RCU
687 * read-side critical sections have completed. Note, however, that
688 * upon return from synchronize_rcu(), the caller might well be executing
689 * concurrently with new RCU read-side critical sections that began while
690 * synchronize_rcu() was waiting. RCU read-side critical sections are
691 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
692 *
693 * See the description of synchronize_sched() for more detailed information
694 * on memory ordering guarantees.
695 */
696 void synchronize_rcu(void)
697 {
698 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
699 !lock_is_held(&rcu_lock_map) &&
700 !lock_is_held(&rcu_sched_lock_map),
701 "Illegal synchronize_rcu() in RCU read-side critical section");
702 if (!rcu_scheduler_active)
703 return;
704 if (rcu_expedited)
705 synchronize_rcu_expedited();
706 else
707 wait_rcu_gp(call_rcu);
708 }
709 EXPORT_SYMBOL_GPL(synchronize_rcu);
710
711 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
712 static unsigned long sync_rcu_preempt_exp_count;
713 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
714
715 /*
716 * Return non-zero if there are any tasks in RCU read-side critical
717 * sections blocking the current preemptible-RCU expedited grace period.
718 * If there is no preemptible-RCU expedited grace period currently in
719 * progress, returns zero unconditionally.
720 */
721 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
722 {
723 return rnp->exp_tasks != NULL;
724 }
725
726 /*
727 * return non-zero if there is no RCU expedited grace period in progress
728 * for the specified rcu_node structure, in other words, if all CPUs and
729 * tasks covered by the specified rcu_node structure have done their bit
730 * for the current expedited grace period. Works only for preemptible
731 * RCU -- other RCU implementation use other means.
732 *
733 * Caller must hold sync_rcu_preempt_exp_mutex.
734 */
735 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
736 {
737 return !rcu_preempted_readers_exp(rnp) &&
738 ACCESS_ONCE(rnp->expmask) == 0;
739 }
740
741 /*
742 * Report the exit from RCU read-side critical section for the last task
743 * that queued itself during or before the current expedited preemptible-RCU
744 * grace period. This event is reported either to the rcu_node structure on
745 * which the task was queued or to one of that rcu_node structure's ancestors,
746 * recursively up the tree. (Calm down, calm down, we do the recursion
747 * iteratively!)
748 *
749 * Most callers will set the "wake" flag, but the task initiating the
750 * expedited grace period need not wake itself.
751 *
752 * Caller must hold sync_rcu_preempt_exp_mutex.
753 */
754 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
755 bool wake)
756 {
757 unsigned long flags;
758 unsigned long mask;
759
760 raw_spin_lock_irqsave(&rnp->lock, flags);
761 smp_mb__after_unlock_lock();
762 for (;;) {
763 if (!sync_rcu_preempt_exp_done(rnp)) {
764 raw_spin_unlock_irqrestore(&rnp->lock, flags);
765 break;
766 }
767 if (rnp->parent == NULL) {
768 raw_spin_unlock_irqrestore(&rnp->lock, flags);
769 if (wake) {
770 smp_mb(); /* EGP done before wake_up(). */
771 wake_up(&sync_rcu_preempt_exp_wq);
772 }
773 break;
774 }
775 mask = rnp->grpmask;
776 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
777 rnp = rnp->parent;
778 raw_spin_lock(&rnp->lock); /* irqs already disabled */
779 smp_mb__after_unlock_lock();
780 rnp->expmask &= ~mask;
781 }
782 }
783
784 /*
785 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
786 * grace period for the specified rcu_node structure. If there are no such
787 * tasks, report it up the rcu_node hierarchy.
788 *
789 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
790 * CPU hotplug operations.
791 */
792 static void
793 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
794 {
795 unsigned long flags;
796 int must_wait = 0;
797
798 raw_spin_lock_irqsave(&rnp->lock, flags);
799 smp_mb__after_unlock_lock();
800 if (list_empty(&rnp->blkd_tasks)) {
801 raw_spin_unlock_irqrestore(&rnp->lock, flags);
802 } else {
803 rnp->exp_tasks = rnp->blkd_tasks.next;
804 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
805 must_wait = 1;
806 }
807 if (!must_wait)
808 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
809 }
810
811 /**
812 * synchronize_rcu_expedited - Brute-force RCU grace period
813 *
814 * Wait for an RCU-preempt grace period, but expedite it. The basic
815 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
816 * the ->blkd_tasks lists and wait for this list to drain. This consumes
817 * significant time on all CPUs and is unfriendly to real-time workloads,
818 * so is thus not recommended for any sort of common-case code.
819 * In fact, if you are using synchronize_rcu_expedited() in a loop,
820 * please restructure your code to batch your updates, and then Use a
821 * single synchronize_rcu() instead.
822 *
823 * Note that it is illegal to call this function while holding any lock
824 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
825 * to call this function from a CPU-hotplug notifier. Failing to observe
826 * these restriction will result in deadlock.
827 */
828 void synchronize_rcu_expedited(void)
829 {
830 unsigned long flags;
831 struct rcu_node *rnp;
832 struct rcu_state *rsp = &rcu_preempt_state;
833 unsigned long snap;
834 int trycount = 0;
835
836 smp_mb(); /* Caller's modifications seen first by other CPUs. */
837 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
838 smp_mb(); /* Above access cannot bleed into critical section. */
839
840 /*
841 * Block CPU-hotplug operations. This means that any CPU-hotplug
842 * operation that finds an rcu_node structure with tasks in the
843 * process of being boosted will know that all tasks blocking
844 * this expedited grace period will already be in the process of
845 * being boosted. This simplifies the process of moving tasks
846 * from leaf to root rcu_node structures.
847 */
848 get_online_cpus();
849
850 /*
851 * Acquire lock, falling back to synchronize_rcu() if too many
852 * lock-acquisition failures. Of course, if someone does the
853 * expedited grace period for us, just leave.
854 */
855 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
856 if (ULONG_CMP_LT(snap,
857 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
858 put_online_cpus();
859 goto mb_ret; /* Others did our work for us. */
860 }
861 if (trycount++ < 10) {
862 udelay(trycount * num_online_cpus());
863 } else {
864 put_online_cpus();
865 wait_rcu_gp(call_rcu);
866 return;
867 }
868 }
869 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
870 put_online_cpus();
871 goto unlock_mb_ret; /* Others did our work for us. */
872 }
873
874 /* force all RCU readers onto ->blkd_tasks lists. */
875 synchronize_sched_expedited();
876
877 /* Initialize ->expmask for all non-leaf rcu_node structures. */
878 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
879 raw_spin_lock_irqsave(&rnp->lock, flags);
880 smp_mb__after_unlock_lock();
881 rnp->expmask = rnp->qsmaskinit;
882 raw_spin_unlock_irqrestore(&rnp->lock, flags);
883 }
884
885 /* Snapshot current state of ->blkd_tasks lists. */
886 rcu_for_each_leaf_node(rsp, rnp)
887 sync_rcu_preempt_exp_init(rsp, rnp);
888 if (NUM_RCU_NODES > 1)
889 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
890
891 put_online_cpus();
892
893 /* Wait for snapshotted ->blkd_tasks lists to drain. */
894 rnp = rcu_get_root(rsp);
895 wait_event(sync_rcu_preempt_exp_wq,
896 sync_rcu_preempt_exp_done(rnp));
897
898 /* Clean up and exit. */
899 smp_mb(); /* ensure expedited GP seen before counter increment. */
900 ACCESS_ONCE(sync_rcu_preempt_exp_count) =
901 sync_rcu_preempt_exp_count + 1;
902 unlock_mb_ret:
903 mutex_unlock(&sync_rcu_preempt_exp_mutex);
904 mb_ret:
905 smp_mb(); /* ensure subsequent action seen after grace period. */
906 }
907 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
908
909 /**
910 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
911 *
912 * Note that this primitive does not necessarily wait for an RCU grace period
913 * to complete. For example, if there are no RCU callbacks queued anywhere
914 * in the system, then rcu_barrier() is within its rights to return
915 * immediately, without waiting for anything, much less an RCU grace period.
916 */
917 void rcu_barrier(void)
918 {
919 _rcu_barrier(&rcu_preempt_state);
920 }
921 EXPORT_SYMBOL_GPL(rcu_barrier);
922
923 /*
924 * Initialize preemptible RCU's state structures.
925 */
926 static void __init __rcu_init_preempt(void)
927 {
928 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
929 }
930
931 /*
932 * Check for a task exiting while in a preemptible-RCU read-side
933 * critical section, clean up if so. No need to issue warnings,
934 * as debug_check_no_locks_held() already does this if lockdep
935 * is enabled.
936 */
937 void exit_rcu(void)
938 {
939 struct task_struct *t = current;
940
941 if (likely(list_empty(&current->rcu_node_entry)))
942 return;
943 t->rcu_read_lock_nesting = 1;
944 barrier();
945 t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
946 __rcu_read_unlock();
947 }
948
949 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
950
951 static struct rcu_state *rcu_state_p = &rcu_sched_state;
952
953 /*
954 * Tell them what RCU they are running.
955 */
956 static void __init rcu_bootup_announce(void)
957 {
958 pr_info("Hierarchical RCU implementation.\n");
959 rcu_bootup_announce_oddness();
960 }
961
962 /*
963 * Return the number of RCU batches processed thus far for debug & stats.
964 */
965 long rcu_batches_completed(void)
966 {
967 return rcu_batches_completed_sched();
968 }
969 EXPORT_SYMBOL_GPL(rcu_batches_completed);
970
971 /*
972 * Because preemptible RCU does not exist, we never have to check for
973 * CPUs being in quiescent states.
974 */
975 static void rcu_preempt_note_context_switch(int cpu)
976 {
977 }
978
979 /*
980 * Because preemptible RCU does not exist, there are never any preempted
981 * RCU readers.
982 */
983 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
984 {
985 return 0;
986 }
987
988 #ifdef CONFIG_HOTPLUG_CPU
989
990 /* Because preemptible RCU does not exist, no quieting of tasks. */
991 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
992 __releases(rnp->lock)
993 {
994 raw_spin_unlock_irqrestore(&rnp->lock, flags);
995 }
996
997 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
998
999 /*
1000 * Because preemptible RCU does not exist, we never have to check for
1001 * tasks blocked within RCU read-side critical sections.
1002 */
1003 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1004 {
1005 }
1006
1007 /*
1008 * Because preemptible RCU does not exist, we never have to check for
1009 * tasks blocked within RCU read-side critical sections.
1010 */
1011 static int rcu_print_task_stall(struct rcu_node *rnp)
1012 {
1013 return 0;
1014 }
1015
1016 /*
1017 * Because there is no preemptible RCU, there can be no readers blocked,
1018 * so there is no need to check for blocked tasks. So check only for
1019 * bogus qsmask values.
1020 */
1021 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1022 {
1023 WARN_ON_ONCE(rnp->qsmask);
1024 }
1025
1026 #ifdef CONFIG_HOTPLUG_CPU
1027
1028 /*
1029 * Because preemptible RCU does not exist, it never needs to migrate
1030 * tasks that were blocked within RCU read-side critical sections, and
1031 * such non-existent tasks cannot possibly have been blocking the current
1032 * grace period.
1033 */
1034 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1035 struct rcu_node *rnp,
1036 struct rcu_data *rdp)
1037 {
1038 return 0;
1039 }
1040
1041 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1042
1043 /*
1044 * Because preemptible RCU does not exist, it never has any callbacks
1045 * to check.
1046 */
1047 static void rcu_preempt_check_callbacks(int cpu)
1048 {
1049 }
1050
1051 /*
1052 * Wait for an rcu-preempt grace period, but make it happen quickly.
1053 * But because preemptible RCU does not exist, map to rcu-sched.
1054 */
1055 void synchronize_rcu_expedited(void)
1056 {
1057 synchronize_sched_expedited();
1058 }
1059 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1060
1061 #ifdef CONFIG_HOTPLUG_CPU
1062
1063 /*
1064 * Because preemptible RCU does not exist, there is never any need to
1065 * report on tasks preempted in RCU read-side critical sections during
1066 * expedited RCU grace periods.
1067 */
1068 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1069 bool wake)
1070 {
1071 }
1072
1073 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1074
1075 /*
1076 * Because preemptible RCU does not exist, rcu_barrier() is just
1077 * another name for rcu_barrier_sched().
1078 */
1079 void rcu_barrier(void)
1080 {
1081 rcu_barrier_sched();
1082 }
1083 EXPORT_SYMBOL_GPL(rcu_barrier);
1084
1085 /*
1086 * Because preemptible RCU does not exist, it need not be initialized.
1087 */
1088 static void __init __rcu_init_preempt(void)
1089 {
1090 }
1091
1092 /*
1093 * Because preemptible RCU does not exist, tasks cannot possibly exit
1094 * while in preemptible RCU read-side critical sections.
1095 */
1096 void exit_rcu(void)
1097 {
1098 }
1099
1100 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1101
1102 #ifdef CONFIG_RCU_BOOST
1103
1104 #include "../locking/rtmutex_common.h"
1105
1106 #ifdef CONFIG_RCU_TRACE
1107
1108 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1109 {
1110 if (list_empty(&rnp->blkd_tasks))
1111 rnp->n_balk_blkd_tasks++;
1112 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1113 rnp->n_balk_exp_gp_tasks++;
1114 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1115 rnp->n_balk_boost_tasks++;
1116 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1117 rnp->n_balk_notblocked++;
1118 else if (rnp->gp_tasks != NULL &&
1119 ULONG_CMP_LT(jiffies, rnp->boost_time))
1120 rnp->n_balk_notyet++;
1121 else
1122 rnp->n_balk_nos++;
1123 }
1124
1125 #else /* #ifdef CONFIG_RCU_TRACE */
1126
1127 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1128 {
1129 }
1130
1131 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1132
1133 static void rcu_wake_cond(struct task_struct *t, int status)
1134 {
1135 /*
1136 * If the thread is yielding, only wake it when this
1137 * is invoked from idle
1138 */
1139 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1140 wake_up_process(t);
1141 }
1142
1143 /*
1144 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1145 * or ->boost_tasks, advancing the pointer to the next task in the
1146 * ->blkd_tasks list.
1147 *
1148 * Note that irqs must be enabled: boosting the task can block.
1149 * Returns 1 if there are more tasks needing to be boosted.
1150 */
1151 static int rcu_boost(struct rcu_node *rnp)
1152 {
1153 unsigned long flags;
1154 struct task_struct *t;
1155 struct list_head *tb;
1156
1157 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1158 return 0; /* Nothing left to boost. */
1159
1160 raw_spin_lock_irqsave(&rnp->lock, flags);
1161 smp_mb__after_unlock_lock();
1162
1163 /*
1164 * Recheck under the lock: all tasks in need of boosting
1165 * might exit their RCU read-side critical sections on their own.
1166 */
1167 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1168 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1169 return 0;
1170 }
1171
1172 /*
1173 * Preferentially boost tasks blocking expedited grace periods.
1174 * This cannot starve the normal grace periods because a second
1175 * expedited grace period must boost all blocked tasks, including
1176 * those blocking the pre-existing normal grace period.
1177 */
1178 if (rnp->exp_tasks != NULL) {
1179 tb = rnp->exp_tasks;
1180 rnp->n_exp_boosts++;
1181 } else {
1182 tb = rnp->boost_tasks;
1183 rnp->n_normal_boosts++;
1184 }
1185 rnp->n_tasks_boosted++;
1186
1187 /*
1188 * We boost task t by manufacturing an rt_mutex that appears to
1189 * be held by task t. We leave a pointer to that rt_mutex where
1190 * task t can find it, and task t will release the mutex when it
1191 * exits its outermost RCU read-side critical section. Then
1192 * simply acquiring this artificial rt_mutex will boost task
1193 * t's priority. (Thanks to tglx for suggesting this approach!)
1194 *
1195 * Note that task t must acquire rnp->lock to remove itself from
1196 * the ->blkd_tasks list, which it will do from exit() if from
1197 * nowhere else. We therefore are guaranteed that task t will
1198 * stay around at least until we drop rnp->lock. Note that
1199 * rnp->lock also resolves races between our priority boosting
1200 * and task t's exiting its outermost RCU read-side critical
1201 * section.
1202 */
1203 t = container_of(tb, struct task_struct, rcu_node_entry);
1204 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1205 init_completion(&rnp->boost_completion);
1206 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1207 /* Lock only for side effect: boosts task t's priority. */
1208 rt_mutex_lock(&rnp->boost_mtx);
1209 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1210
1211 /* Wait for boostee to be done w/boost_mtx before reinitializing. */
1212 wait_for_completion(&rnp->boost_completion);
1213
1214 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1215 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1216 }
1217
1218 /*
1219 * Priority-boosting kthread. One per leaf rcu_node and one for the
1220 * root rcu_node.
1221 */
1222 static int rcu_boost_kthread(void *arg)
1223 {
1224 struct rcu_node *rnp = (struct rcu_node *)arg;
1225 int spincnt = 0;
1226 int more2boost;
1227
1228 trace_rcu_utilization(TPS("Start boost kthread@init"));
1229 for (;;) {
1230 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1231 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1232 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1233 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1234 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1235 more2boost = rcu_boost(rnp);
1236 if (more2boost)
1237 spincnt++;
1238 else
1239 spincnt = 0;
1240 if (spincnt > 10) {
1241 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1242 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1243 schedule_timeout_interruptible(2);
1244 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1245 spincnt = 0;
1246 }
1247 }
1248 /* NOTREACHED */
1249 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1250 return 0;
1251 }
1252
1253 /*
1254 * Check to see if it is time to start boosting RCU readers that are
1255 * blocking the current grace period, and, if so, tell the per-rcu_node
1256 * kthread to start boosting them. If there is an expedited grace
1257 * period in progress, it is always time to boost.
1258 *
1259 * The caller must hold rnp->lock, which this function releases.
1260 * The ->boost_kthread_task is immortal, so we don't need to worry
1261 * about it going away.
1262 */
1263 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1264 __releases(rnp->lock)
1265 {
1266 struct task_struct *t;
1267
1268 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1269 rnp->n_balk_exp_gp_tasks++;
1270 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1271 return;
1272 }
1273 if (rnp->exp_tasks != NULL ||
1274 (rnp->gp_tasks != NULL &&
1275 rnp->boost_tasks == NULL &&
1276 rnp->qsmask == 0 &&
1277 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1278 if (rnp->exp_tasks == NULL)
1279 rnp->boost_tasks = rnp->gp_tasks;
1280 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1281 t = rnp->boost_kthread_task;
1282 if (t)
1283 rcu_wake_cond(t, rnp->boost_kthread_status);
1284 } else {
1285 rcu_initiate_boost_trace(rnp);
1286 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1287 }
1288 }
1289
1290 /*
1291 * Wake up the per-CPU kthread to invoke RCU callbacks.
1292 */
1293 static void invoke_rcu_callbacks_kthread(void)
1294 {
1295 unsigned long flags;
1296
1297 local_irq_save(flags);
1298 __this_cpu_write(rcu_cpu_has_work, 1);
1299 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1300 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1301 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1302 __this_cpu_read(rcu_cpu_kthread_status));
1303 }
1304 local_irq_restore(flags);
1305 }
1306
1307 /*
1308 * Is the current CPU running the RCU-callbacks kthread?
1309 * Caller must have preemption disabled.
1310 */
1311 static bool rcu_is_callbacks_kthread(void)
1312 {
1313 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1314 }
1315
1316 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1317
1318 /*
1319 * Do priority-boost accounting for the start of a new grace period.
1320 */
1321 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1322 {
1323 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1324 }
1325
1326 /*
1327 * Create an RCU-boost kthread for the specified node if one does not
1328 * already exist. We only create this kthread for preemptible RCU.
1329 * Returns zero if all is well, a negated errno otherwise.
1330 */
1331 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1332 struct rcu_node *rnp)
1333 {
1334 int rnp_index = rnp - &rsp->node[0];
1335 unsigned long flags;
1336 struct sched_param sp;
1337 struct task_struct *t;
1338
1339 if (&rcu_preempt_state != rsp)
1340 return 0;
1341
1342 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1343 return 0;
1344
1345 rsp->boost = 1;
1346 if (rnp->boost_kthread_task != NULL)
1347 return 0;
1348 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1349 "rcub/%d", rnp_index);
1350 if (IS_ERR(t))
1351 return PTR_ERR(t);
1352 raw_spin_lock_irqsave(&rnp->lock, flags);
1353 smp_mb__after_unlock_lock();
1354 rnp->boost_kthread_task = t;
1355 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1356 sp.sched_priority = RCU_BOOST_PRIO;
1357 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1358 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1359 return 0;
1360 }
1361
1362 static void rcu_kthread_do_work(void)
1363 {
1364 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1365 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1366 rcu_preempt_do_callbacks();
1367 }
1368
1369 static void rcu_cpu_kthread_setup(unsigned int cpu)
1370 {
1371 struct sched_param sp;
1372
1373 sp.sched_priority = RCU_KTHREAD_PRIO;
1374 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1375 }
1376
1377 static void rcu_cpu_kthread_park(unsigned int cpu)
1378 {
1379 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1380 }
1381
1382 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1383 {
1384 return __this_cpu_read(rcu_cpu_has_work);
1385 }
1386
1387 /*
1388 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1389 * RCU softirq used in flavors and configurations of RCU that do not
1390 * support RCU priority boosting.
1391 */
1392 static void rcu_cpu_kthread(unsigned int cpu)
1393 {
1394 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1395 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1396 int spincnt;
1397
1398 for (spincnt = 0; spincnt < 10; spincnt++) {
1399 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1400 local_bh_disable();
1401 *statusp = RCU_KTHREAD_RUNNING;
1402 this_cpu_inc(rcu_cpu_kthread_loops);
1403 local_irq_disable();
1404 work = *workp;
1405 *workp = 0;
1406 local_irq_enable();
1407 if (work)
1408 rcu_kthread_do_work();
1409 local_bh_enable();
1410 if (*workp == 0) {
1411 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1412 *statusp = RCU_KTHREAD_WAITING;
1413 return;
1414 }
1415 }
1416 *statusp = RCU_KTHREAD_YIELDING;
1417 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1418 schedule_timeout_interruptible(2);
1419 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1420 *statusp = RCU_KTHREAD_WAITING;
1421 }
1422
1423 /*
1424 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1425 * served by the rcu_node in question. The CPU hotplug lock is still
1426 * held, so the value of rnp->qsmaskinit will be stable.
1427 *
1428 * We don't include outgoingcpu in the affinity set, use -1 if there is
1429 * no outgoing CPU. If there are no CPUs left in the affinity set,
1430 * this function allows the kthread to execute on any CPU.
1431 */
1432 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1433 {
1434 struct task_struct *t = rnp->boost_kthread_task;
1435 unsigned long mask = rnp->qsmaskinit;
1436 cpumask_var_t cm;
1437 int cpu;
1438
1439 if (!t)
1440 return;
1441 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1442 return;
1443 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1444 if ((mask & 0x1) && cpu != outgoingcpu)
1445 cpumask_set_cpu(cpu, cm);
1446 if (cpumask_weight(cm) == 0) {
1447 cpumask_setall(cm);
1448 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1449 cpumask_clear_cpu(cpu, cm);
1450 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1451 }
1452 set_cpus_allowed_ptr(t, cm);
1453 free_cpumask_var(cm);
1454 }
1455
1456 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1457 .store = &rcu_cpu_kthread_task,
1458 .thread_should_run = rcu_cpu_kthread_should_run,
1459 .thread_fn = rcu_cpu_kthread,
1460 .thread_comm = "rcuc/%u",
1461 .setup = rcu_cpu_kthread_setup,
1462 .park = rcu_cpu_kthread_park,
1463 };
1464
1465 /*
1466 * Spawn all kthreads -- called as soon as the scheduler is running.
1467 */
1468 static int __init rcu_spawn_kthreads(void)
1469 {
1470 struct rcu_node *rnp;
1471 int cpu;
1472
1473 rcu_scheduler_fully_active = 1;
1474 for_each_possible_cpu(cpu)
1475 per_cpu(rcu_cpu_has_work, cpu) = 0;
1476 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1477 rnp = rcu_get_root(rcu_state_p);
1478 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1479 if (NUM_RCU_NODES > 1) {
1480 rcu_for_each_leaf_node(rcu_state_p, rnp)
1481 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1482 }
1483 return 0;
1484 }
1485 early_initcall(rcu_spawn_kthreads);
1486
1487 static void rcu_prepare_kthreads(int cpu)
1488 {
1489 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1490 struct rcu_node *rnp = rdp->mynode;
1491
1492 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1493 if (rcu_scheduler_fully_active)
1494 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1495 }
1496
1497 #else /* #ifdef CONFIG_RCU_BOOST */
1498
1499 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1500 __releases(rnp->lock)
1501 {
1502 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1503 }
1504
1505 static void invoke_rcu_callbacks_kthread(void)
1506 {
1507 WARN_ON_ONCE(1);
1508 }
1509
1510 static bool rcu_is_callbacks_kthread(void)
1511 {
1512 return false;
1513 }
1514
1515 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1516 {
1517 }
1518
1519 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1520 {
1521 }
1522
1523 static int __init rcu_scheduler_really_started(void)
1524 {
1525 rcu_scheduler_fully_active = 1;
1526 return 0;
1527 }
1528 early_initcall(rcu_scheduler_really_started);
1529
1530 static void rcu_prepare_kthreads(int cpu)
1531 {
1532 }
1533
1534 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1535
1536 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1537
1538 /*
1539 * Check to see if any future RCU-related work will need to be done
1540 * by the current CPU, even if none need be done immediately, returning
1541 * 1 if so. This function is part of the RCU implementation; it is -not-
1542 * an exported member of the RCU API.
1543 *
1544 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1545 * any flavor of RCU.
1546 */
1547 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1548 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1549 {
1550 *delta_jiffies = ULONG_MAX;
1551 return rcu_cpu_has_callbacks(cpu, NULL);
1552 }
1553 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1554
1555 /*
1556 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1557 * after it.
1558 */
1559 static void rcu_cleanup_after_idle(int cpu)
1560 {
1561 }
1562
1563 /*
1564 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1565 * is nothing.
1566 */
1567 static void rcu_prepare_for_idle(int cpu)
1568 {
1569 }
1570
1571 /*
1572 * Don't bother keeping a running count of the number of RCU callbacks
1573 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1574 */
1575 static void rcu_idle_count_callbacks_posted(void)
1576 {
1577 }
1578
1579 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1580
1581 /*
1582 * This code is invoked when a CPU goes idle, at which point we want
1583 * to have the CPU do everything required for RCU so that it can enter
1584 * the energy-efficient dyntick-idle mode. This is handled by a
1585 * state machine implemented by rcu_prepare_for_idle() below.
1586 *
1587 * The following three proprocessor symbols control this state machine:
1588 *
1589 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1590 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1591 * is sized to be roughly one RCU grace period. Those energy-efficiency
1592 * benchmarkers who might otherwise be tempted to set this to a large
1593 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1594 * system. And if you are -that- concerned about energy efficiency,
1595 * just power the system down and be done with it!
1596 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1597 * permitted to sleep in dyntick-idle mode with only lazy RCU
1598 * callbacks pending. Setting this too high can OOM your system.
1599 *
1600 * The values below work well in practice. If future workloads require
1601 * adjustment, they can be converted into kernel config parameters, though
1602 * making the state machine smarter might be a better option.
1603 */
1604 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1605 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1606
1607 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1608 module_param(rcu_idle_gp_delay, int, 0644);
1609 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1610 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1611
1612 extern int tick_nohz_active;
1613
1614 /*
1615 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1616 * only if it has been awhile since the last time we did so. Afterwards,
1617 * if there are any callbacks ready for immediate invocation, return true.
1618 */
1619 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1620 {
1621 bool cbs_ready = false;
1622 struct rcu_data *rdp;
1623 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1624 struct rcu_node *rnp;
1625 struct rcu_state *rsp;
1626
1627 /* Exit early if we advanced recently. */
1628 if (jiffies == rdtp->last_advance_all)
1629 return 0;
1630 rdtp->last_advance_all = jiffies;
1631
1632 for_each_rcu_flavor(rsp) {
1633 rdp = this_cpu_ptr(rsp->rda);
1634 rnp = rdp->mynode;
1635
1636 /*
1637 * Don't bother checking unless a grace period has
1638 * completed since we last checked and there are
1639 * callbacks not yet ready to invoke.
1640 */
1641 if (rdp->completed != rnp->completed &&
1642 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1643 note_gp_changes(rsp, rdp);
1644
1645 if (cpu_has_callbacks_ready_to_invoke(rdp))
1646 cbs_ready = true;
1647 }
1648 return cbs_ready;
1649 }
1650
1651 /*
1652 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1653 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1654 * caller to set the timeout based on whether or not there are non-lazy
1655 * callbacks.
1656 *
1657 * The caller must have disabled interrupts.
1658 */
1659 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1660 int rcu_needs_cpu(int cpu, unsigned long *dj)
1661 {
1662 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1663
1664 /* Snapshot to detect later posting of non-lazy callback. */
1665 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1666
1667 /* If no callbacks, RCU doesn't need the CPU. */
1668 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1669 *dj = ULONG_MAX;
1670 return 0;
1671 }
1672
1673 /* Attempt to advance callbacks. */
1674 if (rcu_try_advance_all_cbs()) {
1675 /* Some ready to invoke, so initiate later invocation. */
1676 invoke_rcu_core();
1677 return 1;
1678 }
1679 rdtp->last_accelerate = jiffies;
1680
1681 /* Request timer delay depending on laziness, and round. */
1682 if (!rdtp->all_lazy) {
1683 *dj = round_up(rcu_idle_gp_delay + jiffies,
1684 rcu_idle_gp_delay) - jiffies;
1685 } else {
1686 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1687 }
1688 return 0;
1689 }
1690 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1691
1692 /*
1693 * Prepare a CPU for idle from an RCU perspective. The first major task
1694 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1695 * The second major task is to check to see if a non-lazy callback has
1696 * arrived at a CPU that previously had only lazy callbacks. The third
1697 * major task is to accelerate (that is, assign grace-period numbers to)
1698 * any recently arrived callbacks.
1699 *
1700 * The caller must have disabled interrupts.
1701 */
1702 static void rcu_prepare_for_idle(int cpu)
1703 {
1704 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1705 bool needwake;
1706 struct rcu_data *rdp;
1707 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1708 struct rcu_node *rnp;
1709 struct rcu_state *rsp;
1710 int tne;
1711
1712 /* Handle nohz enablement switches conservatively. */
1713 tne = ACCESS_ONCE(tick_nohz_active);
1714 if (tne != rdtp->tick_nohz_enabled_snap) {
1715 if (rcu_cpu_has_callbacks(cpu, NULL))
1716 invoke_rcu_core(); /* force nohz to see update. */
1717 rdtp->tick_nohz_enabled_snap = tne;
1718 return;
1719 }
1720 if (!tne)
1721 return;
1722
1723 /* If this is a no-CBs CPU, no callbacks, just return. */
1724 if (rcu_is_nocb_cpu(cpu))
1725 return;
1726
1727 /*
1728 * If a non-lazy callback arrived at a CPU having only lazy
1729 * callbacks, invoke RCU core for the side-effect of recalculating
1730 * idle duration on re-entry to idle.
1731 */
1732 if (rdtp->all_lazy &&
1733 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1734 rdtp->all_lazy = false;
1735 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1736 invoke_rcu_core();
1737 return;
1738 }
1739
1740 /*
1741 * If we have not yet accelerated this jiffy, accelerate all
1742 * callbacks on this CPU.
1743 */
1744 if (rdtp->last_accelerate == jiffies)
1745 return;
1746 rdtp->last_accelerate = jiffies;
1747 for_each_rcu_flavor(rsp) {
1748 rdp = per_cpu_ptr(rsp->rda, cpu);
1749 if (!*rdp->nxttail[RCU_DONE_TAIL])
1750 continue;
1751 rnp = rdp->mynode;
1752 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1753 smp_mb__after_unlock_lock();
1754 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1755 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1756 if (needwake)
1757 rcu_gp_kthread_wake(rsp);
1758 }
1759 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1760 }
1761
1762 /*
1763 * Clean up for exit from idle. Attempt to advance callbacks based on
1764 * any grace periods that elapsed while the CPU was idle, and if any
1765 * callbacks are now ready to invoke, initiate invocation.
1766 */
1767 static void rcu_cleanup_after_idle(int cpu)
1768 {
1769 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1770 if (rcu_is_nocb_cpu(cpu))
1771 return;
1772 if (rcu_try_advance_all_cbs())
1773 invoke_rcu_core();
1774 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1775 }
1776
1777 /*
1778 * Keep a running count of the number of non-lazy callbacks posted
1779 * on this CPU. This running counter (which is never decremented) allows
1780 * rcu_prepare_for_idle() to detect when something out of the idle loop
1781 * posts a callback, even if an equal number of callbacks are invoked.
1782 * Of course, callbacks should only be posted from within a trace event
1783 * designed to be called from idle or from within RCU_NONIDLE().
1784 */
1785 static void rcu_idle_count_callbacks_posted(void)
1786 {
1787 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1788 }
1789
1790 /*
1791 * Data for flushing lazy RCU callbacks at OOM time.
1792 */
1793 static atomic_t oom_callback_count;
1794 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1795
1796 /*
1797 * RCU OOM callback -- decrement the outstanding count and deliver the
1798 * wake-up if we are the last one.
1799 */
1800 static void rcu_oom_callback(struct rcu_head *rhp)
1801 {
1802 if (atomic_dec_and_test(&oom_callback_count))
1803 wake_up(&oom_callback_wq);
1804 }
1805
1806 /*
1807 * Post an rcu_oom_notify callback on the current CPU if it has at
1808 * least one lazy callback. This will unnecessarily post callbacks
1809 * to CPUs that already have a non-lazy callback at the end of their
1810 * callback list, but this is an infrequent operation, so accept some
1811 * extra overhead to keep things simple.
1812 */
1813 static void rcu_oom_notify_cpu(void *unused)
1814 {
1815 struct rcu_state *rsp;
1816 struct rcu_data *rdp;
1817
1818 for_each_rcu_flavor(rsp) {
1819 rdp = raw_cpu_ptr(rsp->rda);
1820 if (rdp->qlen_lazy != 0) {
1821 atomic_inc(&oom_callback_count);
1822 rsp->call(&rdp->oom_head, rcu_oom_callback);
1823 }
1824 }
1825 }
1826
1827 /*
1828 * If low on memory, ensure that each CPU has a non-lazy callback.
1829 * This will wake up CPUs that have only lazy callbacks, in turn
1830 * ensuring that they free up the corresponding memory in a timely manner.
1831 * Because an uncertain amount of memory will be freed in some uncertain
1832 * timeframe, we do not claim to have freed anything.
1833 */
1834 static int rcu_oom_notify(struct notifier_block *self,
1835 unsigned long notused, void *nfreed)
1836 {
1837 int cpu;
1838
1839 /* Wait for callbacks from earlier instance to complete. */
1840 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1841 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1842
1843 /*
1844 * Prevent premature wakeup: ensure that all increments happen
1845 * before there is a chance of the counter reaching zero.
1846 */
1847 atomic_set(&oom_callback_count, 1);
1848
1849 get_online_cpus();
1850 for_each_online_cpu(cpu) {
1851 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1852 cond_resched();
1853 }
1854 put_online_cpus();
1855
1856 /* Unconditionally decrement: no need to wake ourselves up. */
1857 atomic_dec(&oom_callback_count);
1858
1859 return NOTIFY_OK;
1860 }
1861
1862 static struct notifier_block rcu_oom_nb = {
1863 .notifier_call = rcu_oom_notify
1864 };
1865
1866 static int __init rcu_register_oom_notifier(void)
1867 {
1868 register_oom_notifier(&rcu_oom_nb);
1869 return 0;
1870 }
1871 early_initcall(rcu_register_oom_notifier);
1872
1873 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1874
1875 #ifdef CONFIG_RCU_CPU_STALL_INFO
1876
1877 #ifdef CONFIG_RCU_FAST_NO_HZ
1878
1879 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1880 {
1881 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1882 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1883
1884 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1885 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1886 ulong2long(nlpd),
1887 rdtp->all_lazy ? 'L' : '.',
1888 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1889 }
1890
1891 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1892
1893 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1894 {
1895 *cp = '\0';
1896 }
1897
1898 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1899
1900 /* Initiate the stall-info list. */
1901 static void print_cpu_stall_info_begin(void)
1902 {
1903 pr_cont("\n");
1904 }
1905
1906 /*
1907 * Print out diagnostic information for the specified stalled CPU.
1908 *
1909 * If the specified CPU is aware of the current RCU grace period
1910 * (flavor specified by rsp), then print the number of scheduling
1911 * clock interrupts the CPU has taken during the time that it has
1912 * been aware. Otherwise, print the number of RCU grace periods
1913 * that this CPU is ignorant of, for example, "1" if the CPU was
1914 * aware of the previous grace period.
1915 *
1916 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1917 */
1918 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1919 {
1920 char fast_no_hz[72];
1921 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1922 struct rcu_dynticks *rdtp = rdp->dynticks;
1923 char *ticks_title;
1924 unsigned long ticks_value;
1925
1926 if (rsp->gpnum == rdp->gpnum) {
1927 ticks_title = "ticks this GP";
1928 ticks_value = rdp->ticks_this_gp;
1929 } else {
1930 ticks_title = "GPs behind";
1931 ticks_value = rsp->gpnum - rdp->gpnum;
1932 }
1933 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1934 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1935 cpu, ticks_value, ticks_title,
1936 atomic_read(&rdtp->dynticks) & 0xfff,
1937 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1938 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1939 fast_no_hz);
1940 }
1941
1942 /* Terminate the stall-info list. */
1943 static void print_cpu_stall_info_end(void)
1944 {
1945 pr_err("\t");
1946 }
1947
1948 /* Zero ->ticks_this_gp for all flavors of RCU. */
1949 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1950 {
1951 rdp->ticks_this_gp = 0;
1952 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1953 }
1954
1955 /* Increment ->ticks_this_gp for all flavors of RCU. */
1956 static void increment_cpu_stall_ticks(void)
1957 {
1958 struct rcu_state *rsp;
1959
1960 for_each_rcu_flavor(rsp)
1961 raw_cpu_inc(rsp->rda->ticks_this_gp);
1962 }
1963
1964 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1965
1966 static void print_cpu_stall_info_begin(void)
1967 {
1968 pr_cont(" {");
1969 }
1970
1971 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1972 {
1973 pr_cont(" %d", cpu);
1974 }
1975
1976 static void print_cpu_stall_info_end(void)
1977 {
1978 pr_cont("} ");
1979 }
1980
1981 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1982 {
1983 }
1984
1985 static void increment_cpu_stall_ticks(void)
1986 {
1987 }
1988
1989 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1990
1991 #ifdef CONFIG_RCU_NOCB_CPU
1992
1993 /*
1994 * Offload callback processing from the boot-time-specified set of CPUs
1995 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1996 * kthread created that pulls the callbacks from the corresponding CPU,
1997 * waits for a grace period to elapse, and invokes the callbacks.
1998 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1999 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2000 * has been specified, in which case each kthread actively polls its
2001 * CPU. (Which isn't so great for energy efficiency, but which does
2002 * reduce RCU's overhead on that CPU.)
2003 *
2004 * This is intended to be used in conjunction with Frederic Weisbecker's
2005 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2006 * running CPU-bound user-mode computations.
2007 *
2008 * Offloading of callback processing could also in theory be used as
2009 * an energy-efficiency measure because CPUs with no RCU callbacks
2010 * queued are more aggressive about entering dyntick-idle mode.
2011 */
2012
2013
2014 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2015 static int __init rcu_nocb_setup(char *str)
2016 {
2017 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2018 have_rcu_nocb_mask = true;
2019 cpulist_parse(str, rcu_nocb_mask);
2020 return 1;
2021 }
2022 __setup("rcu_nocbs=", rcu_nocb_setup);
2023
2024 static int __init parse_rcu_nocb_poll(char *arg)
2025 {
2026 rcu_nocb_poll = 1;
2027 return 0;
2028 }
2029 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2030
2031 /*
2032 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2033 * grace period.
2034 */
2035 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2036 {
2037 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2038 }
2039
2040 /*
2041 * Set the root rcu_node structure's ->need_future_gp field
2042 * based on the sum of those of all rcu_node structures. This does
2043 * double-count the root rcu_node structure's requests, but this
2044 * is necessary to handle the possibility of a rcu_nocb_kthread()
2045 * having awakened during the time that the rcu_node structures
2046 * were being updated for the end of the previous grace period.
2047 */
2048 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2049 {
2050 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2051 }
2052
2053 static void rcu_init_one_nocb(struct rcu_node *rnp)
2054 {
2055 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2056 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2057 }
2058
2059 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2060 /* Is the specified CPU a no-CBs CPU? */
2061 bool rcu_is_nocb_cpu(int cpu)
2062 {
2063 if (have_rcu_nocb_mask)
2064 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2065 return false;
2066 }
2067 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2068
2069 /*
2070 * Kick the leader kthread for this NOCB group.
2071 */
2072 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2073 {
2074 struct rcu_data *rdp_leader = rdp->nocb_leader;
2075
2076 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2077 return;
2078 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2079 /* Prior xchg orders against prior callback enqueue. */
2080 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2081 wake_up(&rdp_leader->nocb_wq);
2082 }
2083 }
2084
2085 /*
2086 * Enqueue the specified string of rcu_head structures onto the specified
2087 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2088 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2089 * counts are supplied by rhcount and rhcount_lazy.
2090 *
2091 * If warranted, also wake up the kthread servicing this CPUs queues.
2092 */
2093 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2094 struct rcu_head *rhp,
2095 struct rcu_head **rhtp,
2096 int rhcount, int rhcount_lazy,
2097 unsigned long flags)
2098 {
2099 int len;
2100 struct rcu_head **old_rhpp;
2101 struct task_struct *t;
2102
2103 /* Enqueue the callback on the nocb list and update counts. */
2104 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2105 ACCESS_ONCE(*old_rhpp) = rhp;
2106 atomic_long_add(rhcount, &rdp->nocb_q_count);
2107 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2108
2109 /* If we are not being polled and there is a kthread, awaken it ... */
2110 t = ACCESS_ONCE(rdp->nocb_kthread);
2111 if (rcu_nocb_poll || !t) {
2112 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2113 TPS("WakeNotPoll"));
2114 return;
2115 }
2116 len = atomic_long_read(&rdp->nocb_q_count);
2117 if (old_rhpp == &rdp->nocb_head) {
2118 if (!irqs_disabled_flags(flags)) {
2119 /* ... if queue was empty ... */
2120 wake_nocb_leader(rdp, false);
2121 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2122 TPS("WakeEmpty"));
2123 } else {
2124 rdp->nocb_defer_wakeup = true;
2125 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2126 TPS("WakeEmptyIsDeferred"));
2127 }
2128 rdp->qlen_last_fqs_check = 0;
2129 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2130 /* ... or if many callbacks queued. */
2131 wake_nocb_leader(rdp, true);
2132 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2133 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2134 } else {
2135 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2136 }
2137 return;
2138 }
2139
2140 /*
2141 * This is a helper for __call_rcu(), which invokes this when the normal
2142 * callback queue is inoperable. If this is not a no-CBs CPU, this
2143 * function returns failure back to __call_rcu(), which can complain
2144 * appropriately.
2145 *
2146 * Otherwise, this function queues the callback where the corresponding
2147 * "rcuo" kthread can find it.
2148 */
2149 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2150 bool lazy, unsigned long flags)
2151 {
2152
2153 if (!rcu_is_nocb_cpu(rdp->cpu))
2154 return 0;
2155 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2156 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2157 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2158 (unsigned long)rhp->func,
2159 -atomic_long_read(&rdp->nocb_q_count_lazy),
2160 -atomic_long_read(&rdp->nocb_q_count));
2161 else
2162 trace_rcu_callback(rdp->rsp->name, rhp,
2163 -atomic_long_read(&rdp->nocb_q_count_lazy),
2164 -atomic_long_read(&rdp->nocb_q_count));
2165 return 1;
2166 }
2167
2168 /*
2169 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2170 * not a no-CBs CPU.
2171 */
2172 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2173 struct rcu_data *rdp,
2174 unsigned long flags)
2175 {
2176 long ql = rsp->qlen;
2177 long qll = rsp->qlen_lazy;
2178
2179 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2180 if (!rcu_is_nocb_cpu(smp_processor_id()))
2181 return 0;
2182 rsp->qlen = 0;
2183 rsp->qlen_lazy = 0;
2184
2185 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2186 if (rsp->orphan_donelist != NULL) {
2187 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2188 rsp->orphan_donetail, ql, qll, flags);
2189 ql = qll = 0;
2190 rsp->orphan_donelist = NULL;
2191 rsp->orphan_donetail = &rsp->orphan_donelist;
2192 }
2193 if (rsp->orphan_nxtlist != NULL) {
2194 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2195 rsp->orphan_nxttail, ql, qll, flags);
2196 ql = qll = 0;
2197 rsp->orphan_nxtlist = NULL;
2198 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2199 }
2200 return 1;
2201 }
2202
2203 /*
2204 * If necessary, kick off a new grace period, and either way wait
2205 * for a subsequent grace period to complete.
2206 */
2207 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2208 {
2209 unsigned long c;
2210 bool d;
2211 unsigned long flags;
2212 bool needwake;
2213 struct rcu_node *rnp = rdp->mynode;
2214
2215 raw_spin_lock_irqsave(&rnp->lock, flags);
2216 smp_mb__after_unlock_lock();
2217 needwake = rcu_start_future_gp(rnp, rdp, &c);
2218 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2219 if (needwake)
2220 rcu_gp_kthread_wake(rdp->rsp);
2221
2222 /*
2223 * Wait for the grace period. Do so interruptibly to avoid messing
2224 * up the load average.
2225 */
2226 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2227 for (;;) {
2228 wait_event_interruptible(
2229 rnp->nocb_gp_wq[c & 0x1],
2230 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2231 if (likely(d))
2232 break;
2233 flush_signals(current);
2234 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2235 }
2236 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2237 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2238 }
2239
2240 /*
2241 * Leaders come here to wait for additional callbacks to show up.
2242 * This function does not return until callbacks appear.
2243 */
2244 static void nocb_leader_wait(struct rcu_data *my_rdp)
2245 {
2246 bool firsttime = true;
2247 bool gotcbs;
2248 struct rcu_data *rdp;
2249 struct rcu_head **tail;
2250
2251 wait_again:
2252
2253 /* Wait for callbacks to appear. */
2254 if (!rcu_nocb_poll) {
2255 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2256 wait_event_interruptible(my_rdp->nocb_wq,
2257 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2258 /* Memory barrier handled by smp_mb() calls below and repoll. */
2259 } else if (firsttime) {
2260 firsttime = false; /* Don't drown trace log with "Poll"! */
2261 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2262 }
2263
2264 /*
2265 * Each pass through the following loop checks a follower for CBs.
2266 * We are our own first follower. Any CBs found are moved to
2267 * nocb_gp_head, where they await a grace period.
2268 */
2269 gotcbs = false;
2270 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2271 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2272 if (!rdp->nocb_gp_head)
2273 continue; /* No CBs here, try next follower. */
2274
2275 /* Move callbacks to wait-for-GP list, which is empty. */
2276 ACCESS_ONCE(rdp->nocb_head) = NULL;
2277 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2278 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2279 rdp->nocb_gp_count_lazy =
2280 atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2281 gotcbs = true;
2282 }
2283
2284 /*
2285 * If there were no callbacks, sleep a bit, rescan after a
2286 * memory barrier, and go retry.
2287 */
2288 if (unlikely(!gotcbs)) {
2289 if (!rcu_nocb_poll)
2290 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2291 "WokeEmpty");
2292 flush_signals(current);
2293 schedule_timeout_interruptible(1);
2294
2295 /* Rescan in case we were a victim of memory ordering. */
2296 my_rdp->nocb_leader_sleep = true;
2297 smp_mb(); /* Ensure _sleep true before scan. */
2298 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2299 if (ACCESS_ONCE(rdp->nocb_head)) {
2300 /* Found CB, so short-circuit next wait. */
2301 my_rdp->nocb_leader_sleep = false;
2302 break;
2303 }
2304 goto wait_again;
2305 }
2306
2307 /* Wait for one grace period. */
2308 rcu_nocb_wait_gp(my_rdp);
2309
2310 /*
2311 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2312 * We set it now, but recheck for new callbacks while
2313 * traversing our follower list.
2314 */
2315 my_rdp->nocb_leader_sleep = true;
2316 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2317
2318 /* Each pass through the following loop wakes a follower, if needed. */
2319 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2320 if (ACCESS_ONCE(rdp->nocb_head))
2321 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2322 if (!rdp->nocb_gp_head)
2323 continue; /* No CBs, so no need to wake follower. */
2324
2325 /* Append callbacks to follower's "done" list. */
2326 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2327 *tail = rdp->nocb_gp_head;
2328 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2329 atomic_long_add(rdp->nocb_gp_count_lazy,
2330 &rdp->nocb_follower_count_lazy);
2331 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2332 /*
2333 * List was empty, wake up the follower.
2334 * Memory barriers supplied by atomic_long_add().
2335 */
2336 wake_up(&rdp->nocb_wq);
2337 }
2338 }
2339
2340 /* If we (the leader) don't have CBs, go wait some more. */
2341 if (!my_rdp->nocb_follower_head)
2342 goto wait_again;
2343 }
2344
2345 /*
2346 * Followers come here to wait for additional callbacks to show up.
2347 * This function does not return until callbacks appear.
2348 */
2349 static void nocb_follower_wait(struct rcu_data *rdp)
2350 {
2351 bool firsttime = true;
2352
2353 for (;;) {
2354 if (!rcu_nocb_poll) {
2355 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2356 "FollowerSleep");
2357 wait_event_interruptible(rdp->nocb_wq,
2358 ACCESS_ONCE(rdp->nocb_follower_head));
2359 } else if (firsttime) {
2360 /* Don't drown trace log with "Poll"! */
2361 firsttime = false;
2362 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2363 }
2364 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2365 /* ^^^ Ensure CB invocation follows _head test. */
2366 return;
2367 }
2368 if (!rcu_nocb_poll)
2369 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2370 "WokeEmpty");
2371 flush_signals(current);
2372 schedule_timeout_interruptible(1);
2373 }
2374 }
2375
2376 /*
2377 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2378 * callbacks queued by the corresponding no-CBs CPU, however, there is
2379 * an optional leader-follower relationship so that the grace-period
2380 * kthreads don't have to do quite so many wakeups.
2381 */
2382 static int rcu_nocb_kthread(void *arg)
2383 {
2384 int c, cl;
2385 struct rcu_head *list;
2386 struct rcu_head *next;
2387 struct rcu_head **tail;
2388 struct rcu_data *rdp = arg;
2389
2390 /* Each pass through this loop invokes one batch of callbacks */
2391 for (;;) {
2392 /* Wait for callbacks. */
2393 if (rdp->nocb_leader == rdp)
2394 nocb_leader_wait(rdp);
2395 else
2396 nocb_follower_wait(rdp);
2397
2398 /* Pull the ready-to-invoke callbacks onto local list. */
2399 list = ACCESS_ONCE(rdp->nocb_follower_head);
2400 BUG_ON(!list);
2401 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2402 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2403 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2404 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2405 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2406 rdp->nocb_p_count += c;
2407 rdp->nocb_p_count_lazy += cl;
2408
2409 /* Each pass through the following loop invokes a callback. */
2410 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2411 c = cl = 0;
2412 while (list) {
2413 next = list->next;
2414 /* Wait for enqueuing to complete, if needed. */
2415 while (next == NULL && &list->next != tail) {
2416 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2417 TPS("WaitQueue"));
2418 schedule_timeout_interruptible(1);
2419 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2420 TPS("WokeQueue"));
2421 next = list->next;
2422 }
2423 debug_rcu_head_unqueue(list);
2424 local_bh_disable();
2425 if (__rcu_reclaim(rdp->rsp->name, list))
2426 cl++;
2427 c++;
2428 local_bh_enable();
2429 list = next;
2430 }
2431 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2432 ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2433 ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2434 rdp->nocb_p_count_lazy - cl;
2435 rdp->n_nocbs_invoked += c;
2436 }
2437 return 0;
2438 }
2439
2440 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2441 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2442 {
2443 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2444 }
2445
2446 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2447 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2448 {
2449 if (!rcu_nocb_need_deferred_wakeup(rdp))
2450 return;
2451 ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2452 wake_nocb_leader(rdp, false);
2453 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2454 }
2455
2456 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2457 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2458 {
2459 rdp->nocb_tail = &rdp->nocb_head;
2460 init_waitqueue_head(&rdp->nocb_wq);
2461 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2462 }
2463
2464 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2465 static int rcu_nocb_leader_stride = -1;
2466 module_param(rcu_nocb_leader_stride, int, 0444);
2467
2468 /*
2469 * Create a kthread for each RCU flavor for each no-CBs CPU.
2470 * Also initialize leader-follower relationships.
2471 */
2472 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2473 {
2474 int cpu;
2475 int ls = rcu_nocb_leader_stride;
2476 int nl = 0; /* Next leader. */
2477 struct rcu_data *rdp;
2478 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2479 struct rcu_data *rdp_prev = NULL;
2480 struct task_struct *t;
2481
2482 if (rcu_nocb_mask == NULL)
2483 return;
2484 #if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL)
2485 if (tick_nohz_full_running)
2486 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2487 #endif /* #if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL) */
2488 if (ls == -1) {
2489 ls = int_sqrt(nr_cpu_ids);
2490 rcu_nocb_leader_stride = ls;
2491 }
2492
2493 /*
2494 * Each pass through this loop sets up one rcu_data structure and
2495 * spawns one rcu_nocb_kthread().
2496 */
2497 for_each_cpu(cpu, rcu_nocb_mask) {
2498 rdp = per_cpu_ptr(rsp->rda, cpu);
2499 if (rdp->cpu >= nl) {
2500 /* New leader, set up for followers & next leader. */
2501 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2502 rdp->nocb_leader = rdp;
2503 rdp_leader = rdp;
2504 } else {
2505 /* Another follower, link to previous leader. */
2506 rdp->nocb_leader = rdp_leader;
2507 rdp_prev->nocb_next_follower = rdp;
2508 }
2509 rdp_prev = rdp;
2510
2511 /* Spawn the kthread for this CPU. */
2512 t = kthread_run(rcu_nocb_kthread, rdp,
2513 "rcuo%c/%d", rsp->abbr, cpu);
2514 BUG_ON(IS_ERR(t));
2515 ACCESS_ONCE(rdp->nocb_kthread) = t;
2516 }
2517 }
2518
2519 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2520 static bool init_nocb_callback_list(struct rcu_data *rdp)
2521 {
2522 if (rcu_nocb_mask == NULL ||
2523 !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2524 return false;
2525 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2526 return true;
2527 }
2528
2529 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2530
2531 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2532 {
2533 }
2534
2535 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2536 {
2537 }
2538
2539 static void rcu_init_one_nocb(struct rcu_node *rnp)
2540 {
2541 }
2542
2543 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2544 bool lazy, unsigned long flags)
2545 {
2546 return 0;
2547 }
2548
2549 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2550 struct rcu_data *rdp,
2551 unsigned long flags)
2552 {
2553 return 0;
2554 }
2555
2556 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2557 {
2558 }
2559
2560 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2561 {
2562 return false;
2563 }
2564
2565 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2566 {
2567 }
2568
2569 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2570 {
2571 }
2572
2573 static bool init_nocb_callback_list(struct rcu_data *rdp)
2574 {
2575 return false;
2576 }
2577
2578 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2579
2580 /*
2581 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2582 * arbitrarily long period of time with the scheduling-clock tick turned
2583 * off. RCU will be paying attention to this CPU because it is in the
2584 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2585 * machine because the scheduling-clock tick has been disabled. Therefore,
2586 * if an adaptive-ticks CPU is failing to respond to the current grace
2587 * period and has not be idle from an RCU perspective, kick it.
2588 */
2589 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2590 {
2591 #ifdef CONFIG_NO_HZ_FULL
2592 if (tick_nohz_full_cpu(cpu))
2593 smp_send_reschedule(cpu);
2594 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2595 }
2596
2597
2598 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2599
2600 /*
2601 * Define RCU flavor that holds sysidle state. This needs to be the
2602 * most active flavor of RCU.
2603 */
2604 #ifdef CONFIG_PREEMPT_RCU
2605 static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2606 #else /* #ifdef CONFIG_PREEMPT_RCU */
2607 static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2608 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2609
2610 static int full_sysidle_state; /* Current system-idle state. */
2611 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2612 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2613 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2614 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2615 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2616
2617 /*
2618 * Invoked to note exit from irq or task transition to idle. Note that
2619 * usermode execution does -not- count as idle here! After all, we want
2620 * to detect full-system idle states, not RCU quiescent states and grace
2621 * periods. The caller must have disabled interrupts.
2622 */
2623 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2624 {
2625 unsigned long j;
2626
2627 /* Adjust nesting, check for fully idle. */
2628 if (irq) {
2629 rdtp->dynticks_idle_nesting--;
2630 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2631 if (rdtp->dynticks_idle_nesting != 0)
2632 return; /* Still not fully idle. */
2633 } else {
2634 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2635 DYNTICK_TASK_NEST_VALUE) {
2636 rdtp->dynticks_idle_nesting = 0;
2637 } else {
2638 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2639 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2640 return; /* Still not fully idle. */
2641 }
2642 }
2643
2644 /* Record start of fully idle period. */
2645 j = jiffies;
2646 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2647 smp_mb__before_atomic();
2648 atomic_inc(&rdtp->dynticks_idle);
2649 smp_mb__after_atomic();
2650 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2651 }
2652
2653 /*
2654 * Unconditionally force exit from full system-idle state. This is
2655 * invoked when a normal CPU exits idle, but must be called separately
2656 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2657 * is that the timekeeping CPU is permitted to take scheduling-clock
2658 * interrupts while the system is in system-idle state, and of course
2659 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2660 * interrupt from any other type of interrupt.
2661 */
2662 void rcu_sysidle_force_exit(void)
2663 {
2664 int oldstate = ACCESS_ONCE(full_sysidle_state);
2665 int newoldstate;
2666
2667 /*
2668 * Each pass through the following loop attempts to exit full
2669 * system-idle state. If contention proves to be a problem,
2670 * a trylock-based contention tree could be used here.
2671 */
2672 while (oldstate > RCU_SYSIDLE_SHORT) {
2673 newoldstate = cmpxchg(&full_sysidle_state,
2674 oldstate, RCU_SYSIDLE_NOT);
2675 if (oldstate == newoldstate &&
2676 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2677 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2678 return; /* We cleared it, done! */
2679 }
2680 oldstate = newoldstate;
2681 }
2682 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2683 }
2684
2685 /*
2686 * Invoked to note entry to irq or task transition from idle. Note that
2687 * usermode execution does -not- count as idle here! The caller must
2688 * have disabled interrupts.
2689 */
2690 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2691 {
2692 /* Adjust nesting, check for already non-idle. */
2693 if (irq) {
2694 rdtp->dynticks_idle_nesting++;
2695 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2696 if (rdtp->dynticks_idle_nesting != 1)
2697 return; /* Already non-idle. */
2698 } else {
2699 /*
2700 * Allow for irq misnesting. Yes, it really is possible
2701 * to enter an irq handler then never leave it, and maybe
2702 * also vice versa. Handle both possibilities.
2703 */
2704 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2705 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2706 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2707 return; /* Already non-idle. */
2708 } else {
2709 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2710 }
2711 }
2712
2713 /* Record end of idle period. */
2714 smp_mb__before_atomic();
2715 atomic_inc(&rdtp->dynticks_idle);
2716 smp_mb__after_atomic();
2717 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2718
2719 /*
2720 * If we are the timekeeping CPU, we are permitted to be non-idle
2721 * during a system-idle state. This must be the case, because
2722 * the timekeeping CPU has to take scheduling-clock interrupts
2723 * during the time that the system is transitioning to full
2724 * system-idle state. This means that the timekeeping CPU must
2725 * invoke rcu_sysidle_force_exit() directly if it does anything
2726 * more than take a scheduling-clock interrupt.
2727 */
2728 if (smp_processor_id() == tick_do_timer_cpu)
2729 return;
2730
2731 /* Update system-idle state: We are clearly no longer fully idle! */
2732 rcu_sysidle_force_exit();
2733 }
2734
2735 /*
2736 * Check to see if the current CPU is idle. Note that usermode execution
2737 * does not count as idle. The caller must have disabled interrupts.
2738 */
2739 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2740 unsigned long *maxj)
2741 {
2742 int cur;
2743 unsigned long j;
2744 struct rcu_dynticks *rdtp = rdp->dynticks;
2745
2746 /*
2747 * If some other CPU has already reported non-idle, if this is
2748 * not the flavor of RCU that tracks sysidle state, or if this
2749 * is an offline or the timekeeping CPU, nothing to do.
2750 */
2751 if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2752 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2753 return;
2754 if (rcu_gp_in_progress(rdp->rsp))
2755 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2756
2757 /* Pick up current idle and NMI-nesting counter and check. */
2758 cur = atomic_read(&rdtp->dynticks_idle);
2759 if (cur & 0x1) {
2760 *isidle = false; /* We are not idle! */
2761 return;
2762 }
2763 smp_mb(); /* Read counters before timestamps. */
2764
2765 /* Pick up timestamps. */
2766 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2767 /* If this CPU entered idle more recently, update maxj timestamp. */
2768 if (ULONG_CMP_LT(*maxj, j))
2769 *maxj = j;
2770 }
2771
2772 /*
2773 * Is this the flavor of RCU that is handling full-system idle?
2774 */
2775 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2776 {
2777 return rsp == rcu_sysidle_state;
2778 }
2779
2780 /*
2781 * Return a delay in jiffies based on the number of CPUs, rcu_node
2782 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2783 * systems more time to transition to full-idle state in order to
2784 * avoid the cache thrashing that otherwise occur on the state variable.
2785 * Really small systems (less than a couple of tens of CPUs) should
2786 * instead use a single global atomically incremented counter, and later
2787 * versions of this will automatically reconfigure themselves accordingly.
2788 */
2789 static unsigned long rcu_sysidle_delay(void)
2790 {
2791 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2792 return 0;
2793 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2794 }
2795
2796 /*
2797 * Advance the full-system-idle state. This is invoked when all of
2798 * the non-timekeeping CPUs are idle.
2799 */
2800 static void rcu_sysidle(unsigned long j)
2801 {
2802 /* Check the current state. */
2803 switch (ACCESS_ONCE(full_sysidle_state)) {
2804 case RCU_SYSIDLE_NOT:
2805
2806 /* First time all are idle, so note a short idle period. */
2807 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2808 break;
2809
2810 case RCU_SYSIDLE_SHORT:
2811
2812 /*
2813 * Idle for a bit, time to advance to next state?
2814 * cmpxchg failure means race with non-idle, let them win.
2815 */
2816 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2817 (void)cmpxchg(&full_sysidle_state,
2818 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2819 break;
2820
2821 case RCU_SYSIDLE_LONG:
2822
2823 /*
2824 * Do an additional check pass before advancing to full.
2825 * cmpxchg failure means race with non-idle, let them win.
2826 */
2827 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2828 (void)cmpxchg(&full_sysidle_state,
2829 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2830 break;
2831
2832 default:
2833 break;
2834 }
2835 }
2836
2837 /*
2838 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2839 * back to the beginning.
2840 */
2841 static void rcu_sysidle_cancel(void)
2842 {
2843 smp_mb();
2844 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2845 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2846 }
2847
2848 /*
2849 * Update the sysidle state based on the results of a force-quiescent-state
2850 * scan of the CPUs' dyntick-idle state.
2851 */
2852 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2853 unsigned long maxj, bool gpkt)
2854 {
2855 if (rsp != rcu_sysidle_state)
2856 return; /* Wrong flavor, ignore. */
2857 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2858 return; /* Running state machine from timekeeping CPU. */
2859 if (isidle)
2860 rcu_sysidle(maxj); /* More idle! */
2861 else
2862 rcu_sysidle_cancel(); /* Idle is over. */
2863 }
2864
2865 /*
2866 * Wrapper for rcu_sysidle_report() when called from the grace-period
2867 * kthread's context.
2868 */
2869 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2870 unsigned long maxj)
2871 {
2872 rcu_sysidle_report(rsp, isidle, maxj, true);
2873 }
2874
2875 /* Callback and function for forcing an RCU grace period. */
2876 struct rcu_sysidle_head {
2877 struct rcu_head rh;
2878 int inuse;
2879 };
2880
2881 static void rcu_sysidle_cb(struct rcu_head *rhp)
2882 {
2883 struct rcu_sysidle_head *rshp;
2884
2885 /*
2886 * The following memory barrier is needed to replace the
2887 * memory barriers that would normally be in the memory
2888 * allocator.
2889 */
2890 smp_mb(); /* grace period precedes setting inuse. */
2891
2892 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2893 ACCESS_ONCE(rshp->inuse) = 0;
2894 }
2895
2896 /*
2897 * Check to see if the system is fully idle, other than the timekeeping CPU.
2898 * The caller must have disabled interrupts.
2899 */
2900 bool rcu_sys_is_idle(void)
2901 {
2902 static struct rcu_sysidle_head rsh;
2903 int rss = ACCESS_ONCE(full_sysidle_state);
2904
2905 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2906 return false;
2907
2908 /* Handle small-system case by doing a full scan of CPUs. */
2909 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2910 int oldrss = rss - 1;
2911
2912 /*
2913 * One pass to advance to each state up to _FULL.
2914 * Give up if any pass fails to advance the state.
2915 */
2916 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2917 int cpu;
2918 bool isidle = true;
2919 unsigned long maxj = jiffies - ULONG_MAX / 4;
2920 struct rcu_data *rdp;
2921
2922 /* Scan all the CPUs looking for nonidle CPUs. */
2923 for_each_possible_cpu(cpu) {
2924 rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2925 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2926 if (!isidle)
2927 break;
2928 }
2929 rcu_sysidle_report(rcu_sysidle_state,
2930 isidle, maxj, false);
2931 oldrss = rss;
2932 rss = ACCESS_ONCE(full_sysidle_state);
2933 }
2934 }
2935
2936 /* If this is the first observation of an idle period, record it. */
2937 if (rss == RCU_SYSIDLE_FULL) {
2938 rss = cmpxchg(&full_sysidle_state,
2939 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2940 return rss == RCU_SYSIDLE_FULL;
2941 }
2942
2943 smp_mb(); /* ensure rss load happens before later caller actions. */
2944
2945 /* If already fully idle, tell the caller (in case of races). */
2946 if (rss == RCU_SYSIDLE_FULL_NOTED)
2947 return true;
2948
2949 /*
2950 * If we aren't there yet, and a grace period is not in flight,
2951 * initiate a grace period. Either way, tell the caller that
2952 * we are not there yet. We use an xchg() rather than an assignment
2953 * to make up for the memory barriers that would otherwise be
2954 * provided by the memory allocator.
2955 */
2956 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2957 !rcu_gp_in_progress(rcu_sysidle_state) &&
2958 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2959 call_rcu(&rsh.rh, rcu_sysidle_cb);
2960 return false;
2961 }
2962
2963 /*
2964 * Initialize dynticks sysidle state for CPUs coming online.
2965 */
2966 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2967 {
2968 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2969 }
2970
2971 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2972
2973 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2974 {
2975 }
2976
2977 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2978 {
2979 }
2980
2981 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2982 unsigned long *maxj)
2983 {
2984 }
2985
2986 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2987 {
2988 return false;
2989 }
2990
2991 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2992 unsigned long maxj)
2993 {
2994 }
2995
2996 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2997 {
2998 }
2999
3000 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3001
3002 /*
3003 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3004 * grace-period kthread will do force_quiescent_state() processing?
3005 * The idea is to avoid waking up RCU core processing on such a
3006 * CPU unless the grace period has extended for too long.
3007 *
3008 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3009 * CONFIG_RCU_NOCB_CPU CPUs.
3010 */
3011 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3012 {
3013 #ifdef CONFIG_NO_HZ_FULL
3014 if (tick_nohz_full_cpu(smp_processor_id()) &&
3015 (!rcu_gp_in_progress(rsp) ||
3016 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3017 return 1;
3018 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3019 return 0;
3020 }
3021
3022 /*
3023 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3024 * timekeeping CPU.
3025 */
3026 static void rcu_bind_gp_kthread(void)
3027 {
3028 int __maybe_unused cpu;
3029
3030 if (!tick_nohz_full_enabled())
3031 return;
3032 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3033 cpu = tick_do_timer_cpu;
3034 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3035 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3036 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3037 if (!is_housekeeping_cpu(raw_smp_processor_id()))
3038 housekeeping_affine(current);
3039 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3040 }
This page took 0.096509 seconds and 5 git commands to generate.