rcu: Associate quiescent-state reports with grace period
[deliverable/linux.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #endif /* #ifdef CONFIG_RCU_BOOST */
47
48 #ifdef CONFIG_RCU_NOCB_CPU
49 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
50 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
51 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
52 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
53
54 /*
55 * Check the RCU kernel configuration parameters and print informative
56 * messages about anything out of the ordinary. If you like #ifdef, you
57 * will love this function.
58 */
59 static void __init rcu_bootup_announce_oddness(void)
60 {
61 #ifdef CONFIG_RCU_TRACE
62 pr_info("\tRCU debugfs-based tracing is enabled.\n");
63 #endif
64 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
65 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
66 CONFIG_RCU_FANOUT);
67 #endif
68 #ifdef CONFIG_RCU_FANOUT_EXACT
69 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
70 #endif
71 #ifdef CONFIG_RCU_FAST_NO_HZ
72 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
73 #endif
74 #ifdef CONFIG_PROVE_RCU
75 pr_info("\tRCU lockdep checking is enabled.\n");
76 #endif
77 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
78 pr_info("\tRCU torture testing starts during boot.\n");
79 #endif
80 #if defined(CONFIG_RCU_CPU_STALL_INFO)
81 pr_info("\tAdditional per-CPU info printed with stalls.\n");
82 #endif
83 #if NUM_RCU_LVL_4 != 0
84 pr_info("\tFour-level hierarchy is enabled.\n");
85 #endif
86 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
87 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
88 if (nr_cpu_ids != NR_CPUS)
89 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
90 #ifdef CONFIG_RCU_BOOST
91 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
92 #endif
93 }
94
95 #ifdef CONFIG_PREEMPT_RCU
96
97 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
98 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
99
100 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
101 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
102 bool wake);
103
104 /*
105 * Tell them what RCU they are running.
106 */
107 static void __init rcu_bootup_announce(void)
108 {
109 pr_info("Preemptible hierarchical RCU implementation.\n");
110 rcu_bootup_announce_oddness();
111 }
112
113 /*
114 * Record a preemptible-RCU quiescent state for the specified CPU. Note
115 * that this just means that the task currently running on the CPU is
116 * not in a quiescent state. There might be any number of tasks blocked
117 * while in an RCU read-side critical section.
118 *
119 * As with the other rcu_*_qs() functions, callers to this function
120 * must disable preemption.
121 */
122 static void rcu_preempt_qs(void)
123 {
124 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
125 trace_rcu_grace_period(TPS("rcu_preempt"),
126 __this_cpu_read(rcu_preempt_data.gpnum),
127 TPS("cpuqs"));
128 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
129 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
130 current->rcu_read_unlock_special.b.need_qs = false;
131 }
132 }
133
134 /*
135 * We have entered the scheduler, and the current task might soon be
136 * context-switched away from. If this task is in an RCU read-side
137 * critical section, we will no longer be able to rely on the CPU to
138 * record that fact, so we enqueue the task on the blkd_tasks list.
139 * The task will dequeue itself when it exits the outermost enclosing
140 * RCU read-side critical section. Therefore, the current grace period
141 * cannot be permitted to complete until the blkd_tasks list entries
142 * predating the current grace period drain, in other words, until
143 * rnp->gp_tasks becomes NULL.
144 *
145 * Caller must disable preemption.
146 */
147 static void rcu_preempt_note_context_switch(void)
148 {
149 struct task_struct *t = current;
150 unsigned long flags;
151 struct rcu_data *rdp;
152 struct rcu_node *rnp;
153
154 if (t->rcu_read_lock_nesting > 0 &&
155 !t->rcu_read_unlock_special.b.blocked) {
156
157 /* Possibly blocking in an RCU read-side critical section. */
158 rdp = this_cpu_ptr(rcu_preempt_state.rda);
159 rnp = rdp->mynode;
160 raw_spin_lock_irqsave(&rnp->lock, flags);
161 smp_mb__after_unlock_lock();
162 t->rcu_read_unlock_special.b.blocked = true;
163 t->rcu_blocked_node = rnp;
164
165 /*
166 * If this CPU has already checked in, then this task
167 * will hold up the next grace period rather than the
168 * current grace period. Queue the task accordingly.
169 * If the task is queued for the current grace period
170 * (i.e., this CPU has not yet passed through a quiescent
171 * state for the current grace period), then as long
172 * as that task remains queued, the current grace period
173 * cannot end. Note that there is some uncertainty as
174 * to exactly when the current grace period started.
175 * We take a conservative approach, which can result
176 * in unnecessarily waiting on tasks that started very
177 * slightly after the current grace period began. C'est
178 * la vie!!!
179 *
180 * But first, note that the current CPU must still be
181 * on line!
182 */
183 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
184 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
185 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
186 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
187 rnp->gp_tasks = &t->rcu_node_entry;
188 #ifdef CONFIG_RCU_BOOST
189 if (rnp->boost_tasks != NULL)
190 rnp->boost_tasks = rnp->gp_tasks;
191 #endif /* #ifdef CONFIG_RCU_BOOST */
192 } else {
193 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
194 if (rnp->qsmask & rdp->grpmask)
195 rnp->gp_tasks = &t->rcu_node_entry;
196 }
197 trace_rcu_preempt_task(rdp->rsp->name,
198 t->pid,
199 (rnp->qsmask & rdp->grpmask)
200 ? rnp->gpnum
201 : rnp->gpnum + 1);
202 raw_spin_unlock_irqrestore(&rnp->lock, flags);
203 } else if (t->rcu_read_lock_nesting < 0 &&
204 t->rcu_read_unlock_special.s) {
205
206 /*
207 * Complete exit from RCU read-side critical section on
208 * behalf of preempted instance of __rcu_read_unlock().
209 */
210 rcu_read_unlock_special(t);
211 }
212
213 /*
214 * Either we were not in an RCU read-side critical section to
215 * begin with, or we have now recorded that critical section
216 * globally. Either way, we can now note a quiescent state
217 * for this CPU. Again, if we were in an RCU read-side critical
218 * section, and if that critical section was blocking the current
219 * grace period, then the fact that the task has been enqueued
220 * means that we continue to block the current grace period.
221 */
222 rcu_preempt_qs();
223 }
224
225 /*
226 * Check for preempted RCU readers blocking the current grace period
227 * for the specified rcu_node structure. If the caller needs a reliable
228 * answer, it must hold the rcu_node's ->lock.
229 */
230 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
231 {
232 return rnp->gp_tasks != NULL;
233 }
234
235 /*
236 * Advance a ->blkd_tasks-list pointer to the next entry, instead
237 * returning NULL if at the end of the list.
238 */
239 static struct list_head *rcu_next_node_entry(struct task_struct *t,
240 struct rcu_node *rnp)
241 {
242 struct list_head *np;
243
244 np = t->rcu_node_entry.next;
245 if (np == &rnp->blkd_tasks)
246 np = NULL;
247 return np;
248 }
249
250 /*
251 * Return true if the specified rcu_node structure has tasks that were
252 * preempted within an RCU read-side critical section.
253 */
254 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
255 {
256 return !list_empty(&rnp->blkd_tasks);
257 }
258
259 /*
260 * Handle special cases during rcu_read_unlock(), such as needing to
261 * notify RCU core processing or task having blocked during the RCU
262 * read-side critical section.
263 */
264 void rcu_read_unlock_special(struct task_struct *t)
265 {
266 bool empty_exp;
267 bool empty_norm;
268 bool empty_exp_now;
269 unsigned long flags;
270 struct list_head *np;
271 #ifdef CONFIG_RCU_BOOST
272 bool drop_boost_mutex = false;
273 #endif /* #ifdef CONFIG_RCU_BOOST */
274 struct rcu_node *rnp;
275 union rcu_special special;
276
277 /* NMI handlers cannot block and cannot safely manipulate state. */
278 if (in_nmi())
279 return;
280
281 local_irq_save(flags);
282
283 /*
284 * If RCU core is waiting for this CPU to exit critical section,
285 * let it know that we have done so. Because irqs are disabled,
286 * t->rcu_read_unlock_special cannot change.
287 */
288 special = t->rcu_read_unlock_special;
289 if (special.b.need_qs) {
290 rcu_preempt_qs();
291 t->rcu_read_unlock_special.b.need_qs = false;
292 if (!t->rcu_read_unlock_special.s) {
293 local_irq_restore(flags);
294 return;
295 }
296 }
297
298 /* Hardware IRQ handlers cannot block, complain if they get here. */
299 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
300 local_irq_restore(flags);
301 return;
302 }
303
304 /* Clean up if blocked during RCU read-side critical section. */
305 if (special.b.blocked) {
306 t->rcu_read_unlock_special.b.blocked = false;
307
308 /*
309 * Remove this task from the list it blocked on. The
310 * task can migrate while we acquire the lock, but at
311 * most one time. So at most two passes through loop.
312 */
313 for (;;) {
314 rnp = t->rcu_blocked_node;
315 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
316 smp_mb__after_unlock_lock();
317 if (rnp == t->rcu_blocked_node)
318 break;
319 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
320 }
321 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
322 empty_exp = !rcu_preempted_readers_exp(rnp);
323 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
324 np = rcu_next_node_entry(t, rnp);
325 list_del_init(&t->rcu_node_entry);
326 t->rcu_blocked_node = NULL;
327 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
328 rnp->gpnum, t->pid);
329 if (&t->rcu_node_entry == rnp->gp_tasks)
330 rnp->gp_tasks = np;
331 if (&t->rcu_node_entry == rnp->exp_tasks)
332 rnp->exp_tasks = np;
333 #ifdef CONFIG_RCU_BOOST
334 if (&t->rcu_node_entry == rnp->boost_tasks)
335 rnp->boost_tasks = np;
336 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
337 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
338 #endif /* #ifdef CONFIG_RCU_BOOST */
339
340 /*
341 * If this was the last task on the current list, and if
342 * we aren't waiting on any CPUs, report the quiescent state.
343 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
344 * so we must take a snapshot of the expedited state.
345 */
346 empty_exp_now = !rcu_preempted_readers_exp(rnp);
347 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
348 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
349 rnp->gpnum,
350 0, rnp->qsmask,
351 rnp->level,
352 rnp->grplo,
353 rnp->grphi,
354 !!rnp->gp_tasks);
355 rcu_report_unblock_qs_rnp(&rcu_preempt_state,
356 rnp, flags);
357 } else {
358 raw_spin_unlock_irqrestore(&rnp->lock, flags);
359 }
360
361 #ifdef CONFIG_RCU_BOOST
362 /* Unboost if we were boosted. */
363 if (drop_boost_mutex)
364 rt_mutex_unlock(&rnp->boost_mtx);
365 #endif /* #ifdef CONFIG_RCU_BOOST */
366
367 /*
368 * If this was the last task on the expedited lists,
369 * then we need to report up the rcu_node hierarchy.
370 */
371 if (!empty_exp && empty_exp_now)
372 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
373 } else {
374 local_irq_restore(flags);
375 }
376 }
377
378 /*
379 * Dump detailed information for all tasks blocking the current RCU
380 * grace period on the specified rcu_node structure.
381 */
382 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
383 {
384 unsigned long flags;
385 struct task_struct *t;
386
387 raw_spin_lock_irqsave(&rnp->lock, flags);
388 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
389 raw_spin_unlock_irqrestore(&rnp->lock, flags);
390 return;
391 }
392 t = list_entry(rnp->gp_tasks,
393 struct task_struct, rcu_node_entry);
394 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
395 sched_show_task(t);
396 raw_spin_unlock_irqrestore(&rnp->lock, flags);
397 }
398
399 /*
400 * Dump detailed information for all tasks blocking the current RCU
401 * grace period.
402 */
403 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
404 {
405 struct rcu_node *rnp = rcu_get_root(rsp);
406
407 rcu_print_detail_task_stall_rnp(rnp);
408 rcu_for_each_leaf_node(rsp, rnp)
409 rcu_print_detail_task_stall_rnp(rnp);
410 }
411
412 #ifdef CONFIG_RCU_CPU_STALL_INFO
413
414 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
415 {
416 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
417 rnp->level, rnp->grplo, rnp->grphi);
418 }
419
420 static void rcu_print_task_stall_end(void)
421 {
422 pr_cont("\n");
423 }
424
425 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
426
427 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
428 {
429 }
430
431 static void rcu_print_task_stall_end(void)
432 {
433 }
434
435 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
436
437 /*
438 * Scan the current list of tasks blocked within RCU read-side critical
439 * sections, printing out the tid of each.
440 */
441 static int rcu_print_task_stall(struct rcu_node *rnp)
442 {
443 struct task_struct *t;
444 int ndetected = 0;
445
446 if (!rcu_preempt_blocked_readers_cgp(rnp))
447 return 0;
448 rcu_print_task_stall_begin(rnp);
449 t = list_entry(rnp->gp_tasks,
450 struct task_struct, rcu_node_entry);
451 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
452 pr_cont(" P%d", t->pid);
453 ndetected++;
454 }
455 rcu_print_task_stall_end();
456 return ndetected;
457 }
458
459 /*
460 * Check that the list of blocked tasks for the newly completed grace
461 * period is in fact empty. It is a serious bug to complete a grace
462 * period that still has RCU readers blocked! This function must be
463 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
464 * must be held by the caller.
465 *
466 * Also, if there are blocked tasks on the list, they automatically
467 * block the newly created grace period, so set up ->gp_tasks accordingly.
468 */
469 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
470 {
471 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
472 if (rcu_preempt_has_tasks(rnp))
473 rnp->gp_tasks = rnp->blkd_tasks.next;
474 WARN_ON_ONCE(rnp->qsmask);
475 }
476
477 /*
478 * Check for a quiescent state from the current CPU. When a task blocks,
479 * the task is recorded in the corresponding CPU's rcu_node structure,
480 * which is checked elsewhere.
481 *
482 * Caller must disable hard irqs.
483 */
484 static void rcu_preempt_check_callbacks(void)
485 {
486 struct task_struct *t = current;
487
488 if (t->rcu_read_lock_nesting == 0) {
489 rcu_preempt_qs();
490 return;
491 }
492 if (t->rcu_read_lock_nesting > 0 &&
493 __this_cpu_read(rcu_preempt_data.qs_pending) &&
494 !__this_cpu_read(rcu_preempt_data.passed_quiesce))
495 t->rcu_read_unlock_special.b.need_qs = true;
496 }
497
498 #ifdef CONFIG_RCU_BOOST
499
500 static void rcu_preempt_do_callbacks(void)
501 {
502 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
503 }
504
505 #endif /* #ifdef CONFIG_RCU_BOOST */
506
507 /*
508 * Queue a preemptible-RCU callback for invocation after a grace period.
509 */
510 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
511 {
512 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
513 }
514 EXPORT_SYMBOL_GPL(call_rcu);
515
516 /**
517 * synchronize_rcu - wait until a grace period has elapsed.
518 *
519 * Control will return to the caller some time after a full grace
520 * period has elapsed, in other words after all currently executing RCU
521 * read-side critical sections have completed. Note, however, that
522 * upon return from synchronize_rcu(), the caller might well be executing
523 * concurrently with new RCU read-side critical sections that began while
524 * synchronize_rcu() was waiting. RCU read-side critical sections are
525 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
526 *
527 * See the description of synchronize_sched() for more detailed information
528 * on memory ordering guarantees.
529 */
530 void synchronize_rcu(void)
531 {
532 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
533 !lock_is_held(&rcu_lock_map) &&
534 !lock_is_held(&rcu_sched_lock_map),
535 "Illegal synchronize_rcu() in RCU read-side critical section");
536 if (!rcu_scheduler_active)
537 return;
538 if (rcu_expedited)
539 synchronize_rcu_expedited();
540 else
541 wait_rcu_gp(call_rcu);
542 }
543 EXPORT_SYMBOL_GPL(synchronize_rcu);
544
545 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
546 static unsigned long sync_rcu_preempt_exp_count;
547 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
548
549 /*
550 * Return non-zero if there are any tasks in RCU read-side critical
551 * sections blocking the current preemptible-RCU expedited grace period.
552 * If there is no preemptible-RCU expedited grace period currently in
553 * progress, returns zero unconditionally.
554 */
555 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
556 {
557 return rnp->exp_tasks != NULL;
558 }
559
560 /*
561 * return non-zero if there is no RCU expedited grace period in progress
562 * for the specified rcu_node structure, in other words, if all CPUs and
563 * tasks covered by the specified rcu_node structure have done their bit
564 * for the current expedited grace period. Works only for preemptible
565 * RCU -- other RCU implementation use other means.
566 *
567 * Caller must hold sync_rcu_preempt_exp_mutex.
568 */
569 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
570 {
571 return !rcu_preempted_readers_exp(rnp) &&
572 ACCESS_ONCE(rnp->expmask) == 0;
573 }
574
575 /*
576 * Report the exit from RCU read-side critical section for the last task
577 * that queued itself during or before the current expedited preemptible-RCU
578 * grace period. This event is reported either to the rcu_node structure on
579 * which the task was queued or to one of that rcu_node structure's ancestors,
580 * recursively up the tree. (Calm down, calm down, we do the recursion
581 * iteratively!)
582 *
583 * Caller must hold sync_rcu_preempt_exp_mutex.
584 */
585 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
586 bool wake)
587 {
588 unsigned long flags;
589 unsigned long mask;
590
591 raw_spin_lock_irqsave(&rnp->lock, flags);
592 smp_mb__after_unlock_lock();
593 for (;;) {
594 if (!sync_rcu_preempt_exp_done(rnp)) {
595 raw_spin_unlock_irqrestore(&rnp->lock, flags);
596 break;
597 }
598 if (rnp->parent == NULL) {
599 raw_spin_unlock_irqrestore(&rnp->lock, flags);
600 if (wake) {
601 smp_mb(); /* EGP done before wake_up(). */
602 wake_up(&sync_rcu_preempt_exp_wq);
603 }
604 break;
605 }
606 mask = rnp->grpmask;
607 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
608 rnp = rnp->parent;
609 raw_spin_lock(&rnp->lock); /* irqs already disabled */
610 smp_mb__after_unlock_lock();
611 rnp->expmask &= ~mask;
612 }
613 }
614
615 /*
616 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
617 * grace period for the specified rcu_node structure, phase 1. If there
618 * are such tasks, set the ->expmask bits up the rcu_node tree and also
619 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
620 * that work is needed here.
621 *
622 * Caller must hold sync_rcu_preempt_exp_mutex.
623 */
624 static void
625 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
626 {
627 unsigned long flags;
628 unsigned long mask;
629 struct rcu_node *rnp_up;
630
631 raw_spin_lock_irqsave(&rnp->lock, flags);
632 smp_mb__after_unlock_lock();
633 WARN_ON_ONCE(rnp->expmask);
634 WARN_ON_ONCE(rnp->exp_tasks);
635 if (!rcu_preempt_has_tasks(rnp)) {
636 /* No blocked tasks, nothing to do. */
637 raw_spin_unlock_irqrestore(&rnp->lock, flags);
638 return;
639 }
640 /* Call for Phase 2 and propagate ->expmask bits up the tree. */
641 rnp->expmask = 1;
642 rnp_up = rnp;
643 while (rnp_up->parent) {
644 mask = rnp_up->grpmask;
645 rnp_up = rnp_up->parent;
646 if (rnp_up->expmask & mask)
647 break;
648 raw_spin_lock(&rnp_up->lock); /* irqs already off */
649 smp_mb__after_unlock_lock();
650 rnp_up->expmask |= mask;
651 raw_spin_unlock(&rnp_up->lock); /* irqs still off */
652 }
653 raw_spin_unlock_irqrestore(&rnp->lock, flags);
654 }
655
656 /*
657 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
658 * grace period for the specified rcu_node structure, phase 2. If the
659 * leaf rcu_node structure has its ->expmask field set, check for tasks.
660 * If there are some, clear ->expmask and set ->exp_tasks accordingly,
661 * then initiate RCU priority boosting. Otherwise, clear ->expmask and
662 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
663 * enabling rcu_read_unlock_special() to do the bit-clearing.
664 *
665 * Caller must hold sync_rcu_preempt_exp_mutex.
666 */
667 static void
668 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
669 {
670 unsigned long flags;
671
672 raw_spin_lock_irqsave(&rnp->lock, flags);
673 smp_mb__after_unlock_lock();
674 if (!rnp->expmask) {
675 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
676 raw_spin_unlock_irqrestore(&rnp->lock, flags);
677 return;
678 }
679
680 /* Phase 1 is over. */
681 rnp->expmask = 0;
682
683 /*
684 * If there are still blocked tasks, set up ->exp_tasks so that
685 * rcu_read_unlock_special() will wake us and then boost them.
686 */
687 if (rcu_preempt_has_tasks(rnp)) {
688 rnp->exp_tasks = rnp->blkd_tasks.next;
689 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
690 return;
691 }
692
693 /* No longer any blocked tasks, so undo bit setting. */
694 raw_spin_unlock_irqrestore(&rnp->lock, flags);
695 rcu_report_exp_rnp(rsp, rnp, false);
696 }
697
698 /**
699 * synchronize_rcu_expedited - Brute-force RCU grace period
700 *
701 * Wait for an RCU-preempt grace period, but expedite it. The basic
702 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
703 * the ->blkd_tasks lists and wait for this list to drain. This consumes
704 * significant time on all CPUs and is unfriendly to real-time workloads,
705 * so is thus not recommended for any sort of common-case code.
706 * In fact, if you are using synchronize_rcu_expedited() in a loop,
707 * please restructure your code to batch your updates, and then Use a
708 * single synchronize_rcu() instead.
709 */
710 void synchronize_rcu_expedited(void)
711 {
712 struct rcu_node *rnp;
713 struct rcu_state *rsp = &rcu_preempt_state;
714 unsigned long snap;
715 int trycount = 0;
716
717 smp_mb(); /* Caller's modifications seen first by other CPUs. */
718 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
719 smp_mb(); /* Above access cannot bleed into critical section. */
720
721 /*
722 * Block CPU-hotplug operations. This means that any CPU-hotplug
723 * operation that finds an rcu_node structure with tasks in the
724 * process of being boosted will know that all tasks blocking
725 * this expedited grace period will already be in the process of
726 * being boosted. This simplifies the process of moving tasks
727 * from leaf to root rcu_node structures.
728 */
729 if (!try_get_online_cpus()) {
730 /* CPU-hotplug operation in flight, fall back to normal GP. */
731 wait_rcu_gp(call_rcu);
732 return;
733 }
734
735 /*
736 * Acquire lock, falling back to synchronize_rcu() if too many
737 * lock-acquisition failures. Of course, if someone does the
738 * expedited grace period for us, just leave.
739 */
740 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
741 if (ULONG_CMP_LT(snap,
742 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
743 put_online_cpus();
744 goto mb_ret; /* Others did our work for us. */
745 }
746 if (trycount++ < 10) {
747 udelay(trycount * num_online_cpus());
748 } else {
749 put_online_cpus();
750 wait_rcu_gp(call_rcu);
751 return;
752 }
753 }
754 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
755 put_online_cpus();
756 goto unlock_mb_ret; /* Others did our work for us. */
757 }
758
759 /* force all RCU readers onto ->blkd_tasks lists. */
760 synchronize_sched_expedited();
761
762 /*
763 * Snapshot current state of ->blkd_tasks lists into ->expmask.
764 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
765 * to start clearing them. Doing this in one phase leads to
766 * strange races between setting and clearing bits, so just say "no"!
767 */
768 rcu_for_each_leaf_node(rsp, rnp)
769 sync_rcu_preempt_exp_init1(rsp, rnp);
770 rcu_for_each_leaf_node(rsp, rnp)
771 sync_rcu_preempt_exp_init2(rsp, rnp);
772
773 put_online_cpus();
774
775 /* Wait for snapshotted ->blkd_tasks lists to drain. */
776 rnp = rcu_get_root(rsp);
777 wait_event(sync_rcu_preempt_exp_wq,
778 sync_rcu_preempt_exp_done(rnp));
779
780 /* Clean up and exit. */
781 smp_mb(); /* ensure expedited GP seen before counter increment. */
782 ACCESS_ONCE(sync_rcu_preempt_exp_count) =
783 sync_rcu_preempt_exp_count + 1;
784 unlock_mb_ret:
785 mutex_unlock(&sync_rcu_preempt_exp_mutex);
786 mb_ret:
787 smp_mb(); /* ensure subsequent action seen after grace period. */
788 }
789 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
790
791 /**
792 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
793 *
794 * Note that this primitive does not necessarily wait for an RCU grace period
795 * to complete. For example, if there are no RCU callbacks queued anywhere
796 * in the system, then rcu_barrier() is within its rights to return
797 * immediately, without waiting for anything, much less an RCU grace period.
798 */
799 void rcu_barrier(void)
800 {
801 _rcu_barrier(&rcu_preempt_state);
802 }
803 EXPORT_SYMBOL_GPL(rcu_barrier);
804
805 /*
806 * Initialize preemptible RCU's state structures.
807 */
808 static void __init __rcu_init_preempt(void)
809 {
810 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
811 }
812
813 /*
814 * Check for a task exiting while in a preemptible-RCU read-side
815 * critical section, clean up if so. No need to issue warnings,
816 * as debug_check_no_locks_held() already does this if lockdep
817 * is enabled.
818 */
819 void exit_rcu(void)
820 {
821 struct task_struct *t = current;
822
823 if (likely(list_empty(&current->rcu_node_entry)))
824 return;
825 t->rcu_read_lock_nesting = 1;
826 barrier();
827 t->rcu_read_unlock_special.b.blocked = true;
828 __rcu_read_unlock();
829 }
830
831 #else /* #ifdef CONFIG_PREEMPT_RCU */
832
833 static struct rcu_state *rcu_state_p = &rcu_sched_state;
834
835 /*
836 * Tell them what RCU they are running.
837 */
838 static void __init rcu_bootup_announce(void)
839 {
840 pr_info("Hierarchical RCU implementation.\n");
841 rcu_bootup_announce_oddness();
842 }
843
844 /*
845 * Because preemptible RCU does not exist, we never have to check for
846 * CPUs being in quiescent states.
847 */
848 static void rcu_preempt_note_context_switch(void)
849 {
850 }
851
852 /*
853 * Because preemptible RCU does not exist, there are never any preempted
854 * RCU readers.
855 */
856 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
857 {
858 return 0;
859 }
860
861 /*
862 * Because there is no preemptible RCU, there can be no readers blocked.
863 */
864 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
865 {
866 return false;
867 }
868
869 /*
870 * Because preemptible RCU does not exist, we never have to check for
871 * tasks blocked within RCU read-side critical sections.
872 */
873 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
874 {
875 }
876
877 /*
878 * Because preemptible RCU does not exist, we never have to check for
879 * tasks blocked within RCU read-side critical sections.
880 */
881 static int rcu_print_task_stall(struct rcu_node *rnp)
882 {
883 return 0;
884 }
885
886 /*
887 * Because there is no preemptible RCU, there can be no readers blocked,
888 * so there is no need to check for blocked tasks. So check only for
889 * bogus qsmask values.
890 */
891 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
892 {
893 WARN_ON_ONCE(rnp->qsmask);
894 }
895
896 /*
897 * Because preemptible RCU does not exist, it never has any callbacks
898 * to check.
899 */
900 static void rcu_preempt_check_callbacks(void)
901 {
902 }
903
904 /*
905 * Wait for an rcu-preempt grace period, but make it happen quickly.
906 * But because preemptible RCU does not exist, map to rcu-sched.
907 */
908 void synchronize_rcu_expedited(void)
909 {
910 synchronize_sched_expedited();
911 }
912 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
913
914 /*
915 * Because preemptible RCU does not exist, rcu_barrier() is just
916 * another name for rcu_barrier_sched().
917 */
918 void rcu_barrier(void)
919 {
920 rcu_barrier_sched();
921 }
922 EXPORT_SYMBOL_GPL(rcu_barrier);
923
924 /*
925 * Because preemptible RCU does not exist, it need not be initialized.
926 */
927 static void __init __rcu_init_preempt(void)
928 {
929 }
930
931 /*
932 * Because preemptible RCU does not exist, tasks cannot possibly exit
933 * while in preemptible RCU read-side critical sections.
934 */
935 void exit_rcu(void)
936 {
937 }
938
939 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
940
941 #ifdef CONFIG_RCU_BOOST
942
943 #include "../locking/rtmutex_common.h"
944
945 #ifdef CONFIG_RCU_TRACE
946
947 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
948 {
949 if (!rcu_preempt_has_tasks(rnp))
950 rnp->n_balk_blkd_tasks++;
951 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
952 rnp->n_balk_exp_gp_tasks++;
953 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
954 rnp->n_balk_boost_tasks++;
955 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
956 rnp->n_balk_notblocked++;
957 else if (rnp->gp_tasks != NULL &&
958 ULONG_CMP_LT(jiffies, rnp->boost_time))
959 rnp->n_balk_notyet++;
960 else
961 rnp->n_balk_nos++;
962 }
963
964 #else /* #ifdef CONFIG_RCU_TRACE */
965
966 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
967 {
968 }
969
970 #endif /* #else #ifdef CONFIG_RCU_TRACE */
971
972 static void rcu_wake_cond(struct task_struct *t, int status)
973 {
974 /*
975 * If the thread is yielding, only wake it when this
976 * is invoked from idle
977 */
978 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
979 wake_up_process(t);
980 }
981
982 /*
983 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
984 * or ->boost_tasks, advancing the pointer to the next task in the
985 * ->blkd_tasks list.
986 *
987 * Note that irqs must be enabled: boosting the task can block.
988 * Returns 1 if there are more tasks needing to be boosted.
989 */
990 static int rcu_boost(struct rcu_node *rnp)
991 {
992 unsigned long flags;
993 struct task_struct *t;
994 struct list_head *tb;
995
996 if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
997 ACCESS_ONCE(rnp->boost_tasks) == NULL)
998 return 0; /* Nothing left to boost. */
999
1000 raw_spin_lock_irqsave(&rnp->lock, flags);
1001 smp_mb__after_unlock_lock();
1002
1003 /*
1004 * Recheck under the lock: all tasks in need of boosting
1005 * might exit their RCU read-side critical sections on their own.
1006 */
1007 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1008 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1009 return 0;
1010 }
1011
1012 /*
1013 * Preferentially boost tasks blocking expedited grace periods.
1014 * This cannot starve the normal grace periods because a second
1015 * expedited grace period must boost all blocked tasks, including
1016 * those blocking the pre-existing normal grace period.
1017 */
1018 if (rnp->exp_tasks != NULL) {
1019 tb = rnp->exp_tasks;
1020 rnp->n_exp_boosts++;
1021 } else {
1022 tb = rnp->boost_tasks;
1023 rnp->n_normal_boosts++;
1024 }
1025 rnp->n_tasks_boosted++;
1026
1027 /*
1028 * We boost task t by manufacturing an rt_mutex that appears to
1029 * be held by task t. We leave a pointer to that rt_mutex where
1030 * task t can find it, and task t will release the mutex when it
1031 * exits its outermost RCU read-side critical section. Then
1032 * simply acquiring this artificial rt_mutex will boost task
1033 * t's priority. (Thanks to tglx for suggesting this approach!)
1034 *
1035 * Note that task t must acquire rnp->lock to remove itself from
1036 * the ->blkd_tasks list, which it will do from exit() if from
1037 * nowhere else. We therefore are guaranteed that task t will
1038 * stay around at least until we drop rnp->lock. Note that
1039 * rnp->lock also resolves races between our priority boosting
1040 * and task t's exiting its outermost RCU read-side critical
1041 * section.
1042 */
1043 t = container_of(tb, struct task_struct, rcu_node_entry);
1044 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1045 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1046 /* Lock only for side effect: boosts task t's priority. */
1047 rt_mutex_lock(&rnp->boost_mtx);
1048 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1049
1050 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1051 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1052 }
1053
1054 /*
1055 * Priority-boosting kthread. One per leaf rcu_node and one for the
1056 * root rcu_node.
1057 */
1058 static int rcu_boost_kthread(void *arg)
1059 {
1060 struct rcu_node *rnp = (struct rcu_node *)arg;
1061 int spincnt = 0;
1062 int more2boost;
1063
1064 trace_rcu_utilization(TPS("Start boost kthread@init"));
1065 for (;;) {
1066 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1067 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1068 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1069 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1070 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1071 more2boost = rcu_boost(rnp);
1072 if (more2boost)
1073 spincnt++;
1074 else
1075 spincnt = 0;
1076 if (spincnt > 10) {
1077 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1078 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1079 schedule_timeout_interruptible(2);
1080 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1081 spincnt = 0;
1082 }
1083 }
1084 /* NOTREACHED */
1085 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1086 return 0;
1087 }
1088
1089 /*
1090 * Check to see if it is time to start boosting RCU readers that are
1091 * blocking the current grace period, and, if so, tell the per-rcu_node
1092 * kthread to start boosting them. If there is an expedited grace
1093 * period in progress, it is always time to boost.
1094 *
1095 * The caller must hold rnp->lock, which this function releases.
1096 * The ->boost_kthread_task is immortal, so we don't need to worry
1097 * about it going away.
1098 */
1099 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1100 __releases(rnp->lock)
1101 {
1102 struct task_struct *t;
1103
1104 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1105 rnp->n_balk_exp_gp_tasks++;
1106 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1107 return;
1108 }
1109 if (rnp->exp_tasks != NULL ||
1110 (rnp->gp_tasks != NULL &&
1111 rnp->boost_tasks == NULL &&
1112 rnp->qsmask == 0 &&
1113 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1114 if (rnp->exp_tasks == NULL)
1115 rnp->boost_tasks = rnp->gp_tasks;
1116 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1117 t = rnp->boost_kthread_task;
1118 if (t)
1119 rcu_wake_cond(t, rnp->boost_kthread_status);
1120 } else {
1121 rcu_initiate_boost_trace(rnp);
1122 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1123 }
1124 }
1125
1126 /*
1127 * Wake up the per-CPU kthread to invoke RCU callbacks.
1128 */
1129 static void invoke_rcu_callbacks_kthread(void)
1130 {
1131 unsigned long flags;
1132
1133 local_irq_save(flags);
1134 __this_cpu_write(rcu_cpu_has_work, 1);
1135 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1136 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1137 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1138 __this_cpu_read(rcu_cpu_kthread_status));
1139 }
1140 local_irq_restore(flags);
1141 }
1142
1143 /*
1144 * Is the current CPU running the RCU-callbacks kthread?
1145 * Caller must have preemption disabled.
1146 */
1147 static bool rcu_is_callbacks_kthread(void)
1148 {
1149 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1150 }
1151
1152 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1153
1154 /*
1155 * Do priority-boost accounting for the start of a new grace period.
1156 */
1157 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1158 {
1159 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1160 }
1161
1162 /*
1163 * Create an RCU-boost kthread for the specified node if one does not
1164 * already exist. We only create this kthread for preemptible RCU.
1165 * Returns zero if all is well, a negated errno otherwise.
1166 */
1167 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1168 struct rcu_node *rnp)
1169 {
1170 int rnp_index = rnp - &rsp->node[0];
1171 unsigned long flags;
1172 struct sched_param sp;
1173 struct task_struct *t;
1174
1175 if (&rcu_preempt_state != rsp)
1176 return 0;
1177
1178 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1179 return 0;
1180
1181 rsp->boost = 1;
1182 if (rnp->boost_kthread_task != NULL)
1183 return 0;
1184 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1185 "rcub/%d", rnp_index);
1186 if (IS_ERR(t))
1187 return PTR_ERR(t);
1188 raw_spin_lock_irqsave(&rnp->lock, flags);
1189 smp_mb__after_unlock_lock();
1190 rnp->boost_kthread_task = t;
1191 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1192 sp.sched_priority = kthread_prio;
1193 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1194 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1195 return 0;
1196 }
1197
1198 static void rcu_kthread_do_work(void)
1199 {
1200 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1201 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1202 rcu_preempt_do_callbacks();
1203 }
1204
1205 static void rcu_cpu_kthread_setup(unsigned int cpu)
1206 {
1207 struct sched_param sp;
1208
1209 sp.sched_priority = kthread_prio;
1210 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1211 }
1212
1213 static void rcu_cpu_kthread_park(unsigned int cpu)
1214 {
1215 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1216 }
1217
1218 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1219 {
1220 return __this_cpu_read(rcu_cpu_has_work);
1221 }
1222
1223 /*
1224 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1225 * RCU softirq used in flavors and configurations of RCU that do not
1226 * support RCU priority boosting.
1227 */
1228 static void rcu_cpu_kthread(unsigned int cpu)
1229 {
1230 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1231 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1232 int spincnt;
1233
1234 for (spincnt = 0; spincnt < 10; spincnt++) {
1235 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1236 local_bh_disable();
1237 *statusp = RCU_KTHREAD_RUNNING;
1238 this_cpu_inc(rcu_cpu_kthread_loops);
1239 local_irq_disable();
1240 work = *workp;
1241 *workp = 0;
1242 local_irq_enable();
1243 if (work)
1244 rcu_kthread_do_work();
1245 local_bh_enable();
1246 if (*workp == 0) {
1247 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1248 *statusp = RCU_KTHREAD_WAITING;
1249 return;
1250 }
1251 }
1252 *statusp = RCU_KTHREAD_YIELDING;
1253 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1254 schedule_timeout_interruptible(2);
1255 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1256 *statusp = RCU_KTHREAD_WAITING;
1257 }
1258
1259 /*
1260 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1261 * served by the rcu_node in question. The CPU hotplug lock is still
1262 * held, so the value of rnp->qsmaskinit will be stable.
1263 *
1264 * We don't include outgoingcpu in the affinity set, use -1 if there is
1265 * no outgoing CPU. If there are no CPUs left in the affinity set,
1266 * this function allows the kthread to execute on any CPU.
1267 */
1268 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1269 {
1270 struct task_struct *t = rnp->boost_kthread_task;
1271 unsigned long mask = rcu_rnp_online_cpus(rnp);
1272 cpumask_var_t cm;
1273 int cpu;
1274
1275 if (!t)
1276 return;
1277 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1278 return;
1279 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1280 if ((mask & 0x1) && cpu != outgoingcpu)
1281 cpumask_set_cpu(cpu, cm);
1282 if (cpumask_weight(cm) == 0)
1283 cpumask_setall(cm);
1284 set_cpus_allowed_ptr(t, cm);
1285 free_cpumask_var(cm);
1286 }
1287
1288 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1289 .store = &rcu_cpu_kthread_task,
1290 .thread_should_run = rcu_cpu_kthread_should_run,
1291 .thread_fn = rcu_cpu_kthread,
1292 .thread_comm = "rcuc/%u",
1293 .setup = rcu_cpu_kthread_setup,
1294 .park = rcu_cpu_kthread_park,
1295 };
1296
1297 /*
1298 * Spawn boost kthreads -- called as soon as the scheduler is running.
1299 */
1300 static void __init rcu_spawn_boost_kthreads(void)
1301 {
1302 struct rcu_node *rnp;
1303 int cpu;
1304
1305 for_each_possible_cpu(cpu)
1306 per_cpu(rcu_cpu_has_work, cpu) = 0;
1307 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1308 rcu_for_each_leaf_node(rcu_state_p, rnp)
1309 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1310 }
1311
1312 static void rcu_prepare_kthreads(int cpu)
1313 {
1314 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1315 struct rcu_node *rnp = rdp->mynode;
1316
1317 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1318 if (rcu_scheduler_fully_active)
1319 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1320 }
1321
1322 #else /* #ifdef CONFIG_RCU_BOOST */
1323
1324 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1325 __releases(rnp->lock)
1326 {
1327 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1328 }
1329
1330 static void invoke_rcu_callbacks_kthread(void)
1331 {
1332 WARN_ON_ONCE(1);
1333 }
1334
1335 static bool rcu_is_callbacks_kthread(void)
1336 {
1337 return false;
1338 }
1339
1340 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1341 {
1342 }
1343
1344 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1345 {
1346 }
1347
1348 static void __init rcu_spawn_boost_kthreads(void)
1349 {
1350 }
1351
1352 static void rcu_prepare_kthreads(int cpu)
1353 {
1354 }
1355
1356 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1357
1358 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1359
1360 /*
1361 * Check to see if any future RCU-related work will need to be done
1362 * by the current CPU, even if none need be done immediately, returning
1363 * 1 if so. This function is part of the RCU implementation; it is -not-
1364 * an exported member of the RCU API.
1365 *
1366 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1367 * any flavor of RCU.
1368 */
1369 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1370 int rcu_needs_cpu(unsigned long *delta_jiffies)
1371 {
1372 *delta_jiffies = ULONG_MAX;
1373 return rcu_cpu_has_callbacks(NULL);
1374 }
1375 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1376
1377 /*
1378 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1379 * after it.
1380 */
1381 static void rcu_cleanup_after_idle(void)
1382 {
1383 }
1384
1385 /*
1386 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1387 * is nothing.
1388 */
1389 static void rcu_prepare_for_idle(void)
1390 {
1391 }
1392
1393 /*
1394 * Don't bother keeping a running count of the number of RCU callbacks
1395 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1396 */
1397 static void rcu_idle_count_callbacks_posted(void)
1398 {
1399 }
1400
1401 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1402
1403 /*
1404 * This code is invoked when a CPU goes idle, at which point we want
1405 * to have the CPU do everything required for RCU so that it can enter
1406 * the energy-efficient dyntick-idle mode. This is handled by a
1407 * state machine implemented by rcu_prepare_for_idle() below.
1408 *
1409 * The following three proprocessor symbols control this state machine:
1410 *
1411 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1412 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1413 * is sized to be roughly one RCU grace period. Those energy-efficiency
1414 * benchmarkers who might otherwise be tempted to set this to a large
1415 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1416 * system. And if you are -that- concerned about energy efficiency,
1417 * just power the system down and be done with it!
1418 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1419 * permitted to sleep in dyntick-idle mode with only lazy RCU
1420 * callbacks pending. Setting this too high can OOM your system.
1421 *
1422 * The values below work well in practice. If future workloads require
1423 * adjustment, they can be converted into kernel config parameters, though
1424 * making the state machine smarter might be a better option.
1425 */
1426 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1427 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1428
1429 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1430 module_param(rcu_idle_gp_delay, int, 0644);
1431 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1432 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1433
1434 extern int tick_nohz_active;
1435
1436 /*
1437 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1438 * only if it has been awhile since the last time we did so. Afterwards,
1439 * if there are any callbacks ready for immediate invocation, return true.
1440 */
1441 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1442 {
1443 bool cbs_ready = false;
1444 struct rcu_data *rdp;
1445 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1446 struct rcu_node *rnp;
1447 struct rcu_state *rsp;
1448
1449 /* Exit early if we advanced recently. */
1450 if (jiffies == rdtp->last_advance_all)
1451 return false;
1452 rdtp->last_advance_all = jiffies;
1453
1454 for_each_rcu_flavor(rsp) {
1455 rdp = this_cpu_ptr(rsp->rda);
1456 rnp = rdp->mynode;
1457
1458 /*
1459 * Don't bother checking unless a grace period has
1460 * completed since we last checked and there are
1461 * callbacks not yet ready to invoke.
1462 */
1463 if ((rdp->completed != rnp->completed ||
1464 unlikely(ACCESS_ONCE(rdp->gpwrap))) &&
1465 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1466 note_gp_changes(rsp, rdp);
1467
1468 if (cpu_has_callbacks_ready_to_invoke(rdp))
1469 cbs_ready = true;
1470 }
1471 return cbs_ready;
1472 }
1473
1474 /*
1475 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1476 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1477 * caller to set the timeout based on whether or not there are non-lazy
1478 * callbacks.
1479 *
1480 * The caller must have disabled interrupts.
1481 */
1482 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1483 int rcu_needs_cpu(unsigned long *dj)
1484 {
1485 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1486
1487 /* Snapshot to detect later posting of non-lazy callback. */
1488 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1489
1490 /* If no callbacks, RCU doesn't need the CPU. */
1491 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1492 *dj = ULONG_MAX;
1493 return 0;
1494 }
1495
1496 /* Attempt to advance callbacks. */
1497 if (rcu_try_advance_all_cbs()) {
1498 /* Some ready to invoke, so initiate later invocation. */
1499 invoke_rcu_core();
1500 return 1;
1501 }
1502 rdtp->last_accelerate = jiffies;
1503
1504 /* Request timer delay depending on laziness, and round. */
1505 if (!rdtp->all_lazy) {
1506 *dj = round_up(rcu_idle_gp_delay + jiffies,
1507 rcu_idle_gp_delay) - jiffies;
1508 } else {
1509 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1510 }
1511 return 0;
1512 }
1513 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1514
1515 /*
1516 * Prepare a CPU for idle from an RCU perspective. The first major task
1517 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1518 * The second major task is to check to see if a non-lazy callback has
1519 * arrived at a CPU that previously had only lazy callbacks. The third
1520 * major task is to accelerate (that is, assign grace-period numbers to)
1521 * any recently arrived callbacks.
1522 *
1523 * The caller must have disabled interrupts.
1524 */
1525 static void rcu_prepare_for_idle(void)
1526 {
1527 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1528 bool needwake;
1529 struct rcu_data *rdp;
1530 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1531 struct rcu_node *rnp;
1532 struct rcu_state *rsp;
1533 int tne;
1534
1535 /* Handle nohz enablement switches conservatively. */
1536 tne = ACCESS_ONCE(tick_nohz_active);
1537 if (tne != rdtp->tick_nohz_enabled_snap) {
1538 if (rcu_cpu_has_callbacks(NULL))
1539 invoke_rcu_core(); /* force nohz to see update. */
1540 rdtp->tick_nohz_enabled_snap = tne;
1541 return;
1542 }
1543 if (!tne)
1544 return;
1545
1546 /* If this is a no-CBs CPU, no callbacks, just return. */
1547 if (rcu_is_nocb_cpu(smp_processor_id()))
1548 return;
1549
1550 /*
1551 * If a non-lazy callback arrived at a CPU having only lazy
1552 * callbacks, invoke RCU core for the side-effect of recalculating
1553 * idle duration on re-entry to idle.
1554 */
1555 if (rdtp->all_lazy &&
1556 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1557 rdtp->all_lazy = false;
1558 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1559 invoke_rcu_core();
1560 return;
1561 }
1562
1563 /*
1564 * If we have not yet accelerated this jiffy, accelerate all
1565 * callbacks on this CPU.
1566 */
1567 if (rdtp->last_accelerate == jiffies)
1568 return;
1569 rdtp->last_accelerate = jiffies;
1570 for_each_rcu_flavor(rsp) {
1571 rdp = this_cpu_ptr(rsp->rda);
1572 if (!*rdp->nxttail[RCU_DONE_TAIL])
1573 continue;
1574 rnp = rdp->mynode;
1575 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1576 smp_mb__after_unlock_lock();
1577 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1578 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1579 if (needwake)
1580 rcu_gp_kthread_wake(rsp);
1581 }
1582 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1583 }
1584
1585 /*
1586 * Clean up for exit from idle. Attempt to advance callbacks based on
1587 * any grace periods that elapsed while the CPU was idle, and if any
1588 * callbacks are now ready to invoke, initiate invocation.
1589 */
1590 static void rcu_cleanup_after_idle(void)
1591 {
1592 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1593 if (rcu_is_nocb_cpu(smp_processor_id()))
1594 return;
1595 if (rcu_try_advance_all_cbs())
1596 invoke_rcu_core();
1597 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1598 }
1599
1600 /*
1601 * Keep a running count of the number of non-lazy callbacks posted
1602 * on this CPU. This running counter (which is never decremented) allows
1603 * rcu_prepare_for_idle() to detect when something out of the idle loop
1604 * posts a callback, even if an equal number of callbacks are invoked.
1605 * Of course, callbacks should only be posted from within a trace event
1606 * designed to be called from idle or from within RCU_NONIDLE().
1607 */
1608 static void rcu_idle_count_callbacks_posted(void)
1609 {
1610 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1611 }
1612
1613 /*
1614 * Data for flushing lazy RCU callbacks at OOM time.
1615 */
1616 static atomic_t oom_callback_count;
1617 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1618
1619 /*
1620 * RCU OOM callback -- decrement the outstanding count and deliver the
1621 * wake-up if we are the last one.
1622 */
1623 static void rcu_oom_callback(struct rcu_head *rhp)
1624 {
1625 if (atomic_dec_and_test(&oom_callback_count))
1626 wake_up(&oom_callback_wq);
1627 }
1628
1629 /*
1630 * Post an rcu_oom_notify callback on the current CPU if it has at
1631 * least one lazy callback. This will unnecessarily post callbacks
1632 * to CPUs that already have a non-lazy callback at the end of their
1633 * callback list, but this is an infrequent operation, so accept some
1634 * extra overhead to keep things simple.
1635 */
1636 static void rcu_oom_notify_cpu(void *unused)
1637 {
1638 struct rcu_state *rsp;
1639 struct rcu_data *rdp;
1640
1641 for_each_rcu_flavor(rsp) {
1642 rdp = raw_cpu_ptr(rsp->rda);
1643 if (rdp->qlen_lazy != 0) {
1644 atomic_inc(&oom_callback_count);
1645 rsp->call(&rdp->oom_head, rcu_oom_callback);
1646 }
1647 }
1648 }
1649
1650 /*
1651 * If low on memory, ensure that each CPU has a non-lazy callback.
1652 * This will wake up CPUs that have only lazy callbacks, in turn
1653 * ensuring that they free up the corresponding memory in a timely manner.
1654 * Because an uncertain amount of memory will be freed in some uncertain
1655 * timeframe, we do not claim to have freed anything.
1656 */
1657 static int rcu_oom_notify(struct notifier_block *self,
1658 unsigned long notused, void *nfreed)
1659 {
1660 int cpu;
1661
1662 /* Wait for callbacks from earlier instance to complete. */
1663 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1664 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1665
1666 /*
1667 * Prevent premature wakeup: ensure that all increments happen
1668 * before there is a chance of the counter reaching zero.
1669 */
1670 atomic_set(&oom_callback_count, 1);
1671
1672 get_online_cpus();
1673 for_each_online_cpu(cpu) {
1674 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1675 cond_resched_rcu_qs();
1676 }
1677 put_online_cpus();
1678
1679 /* Unconditionally decrement: no need to wake ourselves up. */
1680 atomic_dec(&oom_callback_count);
1681
1682 return NOTIFY_OK;
1683 }
1684
1685 static struct notifier_block rcu_oom_nb = {
1686 .notifier_call = rcu_oom_notify
1687 };
1688
1689 static int __init rcu_register_oom_notifier(void)
1690 {
1691 register_oom_notifier(&rcu_oom_nb);
1692 return 0;
1693 }
1694 early_initcall(rcu_register_oom_notifier);
1695
1696 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1697
1698 #ifdef CONFIG_RCU_CPU_STALL_INFO
1699
1700 #ifdef CONFIG_RCU_FAST_NO_HZ
1701
1702 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1703 {
1704 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1705 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1706
1707 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1708 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1709 ulong2long(nlpd),
1710 rdtp->all_lazy ? 'L' : '.',
1711 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1712 }
1713
1714 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1715
1716 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1717 {
1718 *cp = '\0';
1719 }
1720
1721 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1722
1723 /* Initiate the stall-info list. */
1724 static void print_cpu_stall_info_begin(void)
1725 {
1726 pr_cont("\n");
1727 }
1728
1729 /*
1730 * Print out diagnostic information for the specified stalled CPU.
1731 *
1732 * If the specified CPU is aware of the current RCU grace period
1733 * (flavor specified by rsp), then print the number of scheduling
1734 * clock interrupts the CPU has taken during the time that it has
1735 * been aware. Otherwise, print the number of RCU grace periods
1736 * that this CPU is ignorant of, for example, "1" if the CPU was
1737 * aware of the previous grace period.
1738 *
1739 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1740 */
1741 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1742 {
1743 char fast_no_hz[72];
1744 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1745 struct rcu_dynticks *rdtp = rdp->dynticks;
1746 char *ticks_title;
1747 unsigned long ticks_value;
1748
1749 if (rsp->gpnum == rdp->gpnum) {
1750 ticks_title = "ticks this GP";
1751 ticks_value = rdp->ticks_this_gp;
1752 } else {
1753 ticks_title = "GPs behind";
1754 ticks_value = rsp->gpnum - rdp->gpnum;
1755 }
1756 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1757 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1758 cpu, ticks_value, ticks_title,
1759 atomic_read(&rdtp->dynticks) & 0xfff,
1760 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1761 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1762 ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1763 fast_no_hz);
1764 }
1765
1766 /* Terminate the stall-info list. */
1767 static void print_cpu_stall_info_end(void)
1768 {
1769 pr_err("\t");
1770 }
1771
1772 /* Zero ->ticks_this_gp for all flavors of RCU. */
1773 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1774 {
1775 rdp->ticks_this_gp = 0;
1776 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1777 }
1778
1779 /* Increment ->ticks_this_gp for all flavors of RCU. */
1780 static void increment_cpu_stall_ticks(void)
1781 {
1782 struct rcu_state *rsp;
1783
1784 for_each_rcu_flavor(rsp)
1785 raw_cpu_inc(rsp->rda->ticks_this_gp);
1786 }
1787
1788 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1789
1790 static void print_cpu_stall_info_begin(void)
1791 {
1792 pr_cont(" {");
1793 }
1794
1795 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1796 {
1797 pr_cont(" %d", cpu);
1798 }
1799
1800 static void print_cpu_stall_info_end(void)
1801 {
1802 pr_cont("} ");
1803 }
1804
1805 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1806 {
1807 }
1808
1809 static void increment_cpu_stall_ticks(void)
1810 {
1811 }
1812
1813 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1814
1815 #ifdef CONFIG_RCU_NOCB_CPU
1816
1817 /*
1818 * Offload callback processing from the boot-time-specified set of CPUs
1819 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1820 * kthread created that pulls the callbacks from the corresponding CPU,
1821 * waits for a grace period to elapse, and invokes the callbacks.
1822 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1823 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1824 * has been specified, in which case each kthread actively polls its
1825 * CPU. (Which isn't so great for energy efficiency, but which does
1826 * reduce RCU's overhead on that CPU.)
1827 *
1828 * This is intended to be used in conjunction with Frederic Weisbecker's
1829 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1830 * running CPU-bound user-mode computations.
1831 *
1832 * Offloading of callback processing could also in theory be used as
1833 * an energy-efficiency measure because CPUs with no RCU callbacks
1834 * queued are more aggressive about entering dyntick-idle mode.
1835 */
1836
1837
1838 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1839 static int __init rcu_nocb_setup(char *str)
1840 {
1841 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1842 have_rcu_nocb_mask = true;
1843 cpulist_parse(str, rcu_nocb_mask);
1844 return 1;
1845 }
1846 __setup("rcu_nocbs=", rcu_nocb_setup);
1847
1848 static int __init parse_rcu_nocb_poll(char *arg)
1849 {
1850 rcu_nocb_poll = 1;
1851 return 0;
1852 }
1853 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1854
1855 /*
1856 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1857 * grace period.
1858 */
1859 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1860 {
1861 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1862 }
1863
1864 /*
1865 * Set the root rcu_node structure's ->need_future_gp field
1866 * based on the sum of those of all rcu_node structures. This does
1867 * double-count the root rcu_node structure's requests, but this
1868 * is necessary to handle the possibility of a rcu_nocb_kthread()
1869 * having awakened during the time that the rcu_node structures
1870 * were being updated for the end of the previous grace period.
1871 */
1872 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1873 {
1874 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1875 }
1876
1877 static void rcu_init_one_nocb(struct rcu_node *rnp)
1878 {
1879 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1880 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1881 }
1882
1883 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1884 /* Is the specified CPU a no-CBs CPU? */
1885 bool rcu_is_nocb_cpu(int cpu)
1886 {
1887 if (have_rcu_nocb_mask)
1888 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1889 return false;
1890 }
1891 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1892
1893 /*
1894 * Kick the leader kthread for this NOCB group.
1895 */
1896 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1897 {
1898 struct rcu_data *rdp_leader = rdp->nocb_leader;
1899
1900 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
1901 return;
1902 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1903 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1904 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
1905 wake_up(&rdp_leader->nocb_wq);
1906 }
1907 }
1908
1909 /*
1910 * Does the specified CPU need an RCU callback for the specified flavor
1911 * of rcu_barrier()?
1912 */
1913 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1914 {
1915 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1916 unsigned long ret;
1917 #ifdef CONFIG_PROVE_RCU
1918 struct rcu_head *rhp;
1919 #endif /* #ifdef CONFIG_PROVE_RCU */
1920
1921 /*
1922 * Check count of all no-CBs callbacks awaiting invocation.
1923 * There needs to be a barrier before this function is called,
1924 * but associated with a prior determination that no more
1925 * callbacks would be posted. In the worst case, the first
1926 * barrier in _rcu_barrier() suffices (but the caller cannot
1927 * necessarily rely on this, not a substitute for the caller
1928 * getting the concurrency design right!). There must also be
1929 * a barrier between the following load an posting of a callback
1930 * (if a callback is in fact needed). This is associated with an
1931 * atomic_inc() in the caller.
1932 */
1933 ret = atomic_long_read(&rdp->nocb_q_count);
1934
1935 #ifdef CONFIG_PROVE_RCU
1936 rhp = ACCESS_ONCE(rdp->nocb_head);
1937 if (!rhp)
1938 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
1939 if (!rhp)
1940 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
1941
1942 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1943 if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
1944 /* RCU callback enqueued before CPU first came online??? */
1945 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1946 cpu, rhp->func);
1947 WARN_ON_ONCE(1);
1948 }
1949 #endif /* #ifdef CONFIG_PROVE_RCU */
1950
1951 return !!ret;
1952 }
1953
1954 /*
1955 * Enqueue the specified string of rcu_head structures onto the specified
1956 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1957 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1958 * counts are supplied by rhcount and rhcount_lazy.
1959 *
1960 * If warranted, also wake up the kthread servicing this CPUs queues.
1961 */
1962 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1963 struct rcu_head *rhp,
1964 struct rcu_head **rhtp,
1965 int rhcount, int rhcount_lazy,
1966 unsigned long flags)
1967 {
1968 int len;
1969 struct rcu_head **old_rhpp;
1970 struct task_struct *t;
1971
1972 /* Enqueue the callback on the nocb list and update counts. */
1973 atomic_long_add(rhcount, &rdp->nocb_q_count);
1974 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1975 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1976 ACCESS_ONCE(*old_rhpp) = rhp;
1977 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1978 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1979
1980 /* If we are not being polled and there is a kthread, awaken it ... */
1981 t = ACCESS_ONCE(rdp->nocb_kthread);
1982 if (rcu_nocb_poll || !t) {
1983 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1984 TPS("WakeNotPoll"));
1985 return;
1986 }
1987 len = atomic_long_read(&rdp->nocb_q_count);
1988 if (old_rhpp == &rdp->nocb_head) {
1989 if (!irqs_disabled_flags(flags)) {
1990 /* ... if queue was empty ... */
1991 wake_nocb_leader(rdp, false);
1992 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1993 TPS("WakeEmpty"));
1994 } else {
1995 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1996 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1997 TPS("WakeEmptyIsDeferred"));
1998 }
1999 rdp->qlen_last_fqs_check = 0;
2000 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2001 /* ... or if many callbacks queued. */
2002 if (!irqs_disabled_flags(flags)) {
2003 wake_nocb_leader(rdp, true);
2004 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2005 TPS("WakeOvf"));
2006 } else {
2007 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2008 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2009 TPS("WakeOvfIsDeferred"));
2010 }
2011 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2012 } else {
2013 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2014 }
2015 return;
2016 }
2017
2018 /*
2019 * This is a helper for __call_rcu(), which invokes this when the normal
2020 * callback queue is inoperable. If this is not a no-CBs CPU, this
2021 * function returns failure back to __call_rcu(), which can complain
2022 * appropriately.
2023 *
2024 * Otherwise, this function queues the callback where the corresponding
2025 * "rcuo" kthread can find it.
2026 */
2027 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2028 bool lazy, unsigned long flags)
2029 {
2030
2031 if (!rcu_is_nocb_cpu(rdp->cpu))
2032 return false;
2033 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2034 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2035 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2036 (unsigned long)rhp->func,
2037 -atomic_long_read(&rdp->nocb_q_count_lazy),
2038 -atomic_long_read(&rdp->nocb_q_count));
2039 else
2040 trace_rcu_callback(rdp->rsp->name, rhp,
2041 -atomic_long_read(&rdp->nocb_q_count_lazy),
2042 -atomic_long_read(&rdp->nocb_q_count));
2043
2044 /*
2045 * If called from an extended quiescent state with interrupts
2046 * disabled, invoke the RCU core in order to allow the idle-entry
2047 * deferred-wakeup check to function.
2048 */
2049 if (irqs_disabled_flags(flags) &&
2050 !rcu_is_watching() &&
2051 cpu_online(smp_processor_id()))
2052 invoke_rcu_core();
2053
2054 return true;
2055 }
2056
2057 /*
2058 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2059 * not a no-CBs CPU.
2060 */
2061 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2062 struct rcu_data *rdp,
2063 unsigned long flags)
2064 {
2065 long ql = rsp->qlen;
2066 long qll = rsp->qlen_lazy;
2067
2068 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2069 if (!rcu_is_nocb_cpu(smp_processor_id()))
2070 return false;
2071 rsp->qlen = 0;
2072 rsp->qlen_lazy = 0;
2073
2074 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2075 if (rsp->orphan_donelist != NULL) {
2076 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2077 rsp->orphan_donetail, ql, qll, flags);
2078 ql = qll = 0;
2079 rsp->orphan_donelist = NULL;
2080 rsp->orphan_donetail = &rsp->orphan_donelist;
2081 }
2082 if (rsp->orphan_nxtlist != NULL) {
2083 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2084 rsp->orphan_nxttail, ql, qll, flags);
2085 ql = qll = 0;
2086 rsp->orphan_nxtlist = NULL;
2087 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2088 }
2089 return true;
2090 }
2091
2092 /*
2093 * If necessary, kick off a new grace period, and either way wait
2094 * for a subsequent grace period to complete.
2095 */
2096 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2097 {
2098 unsigned long c;
2099 bool d;
2100 unsigned long flags;
2101 bool needwake;
2102 struct rcu_node *rnp = rdp->mynode;
2103
2104 raw_spin_lock_irqsave(&rnp->lock, flags);
2105 smp_mb__after_unlock_lock();
2106 needwake = rcu_start_future_gp(rnp, rdp, &c);
2107 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2108 if (needwake)
2109 rcu_gp_kthread_wake(rdp->rsp);
2110
2111 /*
2112 * Wait for the grace period. Do so interruptibly to avoid messing
2113 * up the load average.
2114 */
2115 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2116 for (;;) {
2117 wait_event_interruptible(
2118 rnp->nocb_gp_wq[c & 0x1],
2119 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2120 if (likely(d))
2121 break;
2122 WARN_ON(signal_pending(current));
2123 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2124 }
2125 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2126 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2127 }
2128
2129 /*
2130 * Leaders come here to wait for additional callbacks to show up.
2131 * This function does not return until callbacks appear.
2132 */
2133 static void nocb_leader_wait(struct rcu_data *my_rdp)
2134 {
2135 bool firsttime = true;
2136 bool gotcbs;
2137 struct rcu_data *rdp;
2138 struct rcu_head **tail;
2139
2140 wait_again:
2141
2142 /* Wait for callbacks to appear. */
2143 if (!rcu_nocb_poll) {
2144 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2145 wait_event_interruptible(my_rdp->nocb_wq,
2146 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2147 /* Memory barrier handled by smp_mb() calls below and repoll. */
2148 } else if (firsttime) {
2149 firsttime = false; /* Don't drown trace log with "Poll"! */
2150 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2151 }
2152
2153 /*
2154 * Each pass through the following loop checks a follower for CBs.
2155 * We are our own first follower. Any CBs found are moved to
2156 * nocb_gp_head, where they await a grace period.
2157 */
2158 gotcbs = false;
2159 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2160 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2161 if (!rdp->nocb_gp_head)
2162 continue; /* No CBs here, try next follower. */
2163
2164 /* Move callbacks to wait-for-GP list, which is empty. */
2165 ACCESS_ONCE(rdp->nocb_head) = NULL;
2166 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2167 gotcbs = true;
2168 }
2169
2170 /*
2171 * If there were no callbacks, sleep a bit, rescan after a
2172 * memory barrier, and go retry.
2173 */
2174 if (unlikely(!gotcbs)) {
2175 if (!rcu_nocb_poll)
2176 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2177 "WokeEmpty");
2178 WARN_ON(signal_pending(current));
2179 schedule_timeout_interruptible(1);
2180
2181 /* Rescan in case we were a victim of memory ordering. */
2182 my_rdp->nocb_leader_sleep = true;
2183 smp_mb(); /* Ensure _sleep true before scan. */
2184 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2185 if (ACCESS_ONCE(rdp->nocb_head)) {
2186 /* Found CB, so short-circuit next wait. */
2187 my_rdp->nocb_leader_sleep = false;
2188 break;
2189 }
2190 goto wait_again;
2191 }
2192
2193 /* Wait for one grace period. */
2194 rcu_nocb_wait_gp(my_rdp);
2195
2196 /*
2197 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2198 * We set it now, but recheck for new callbacks while
2199 * traversing our follower list.
2200 */
2201 my_rdp->nocb_leader_sleep = true;
2202 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2203
2204 /* Each pass through the following loop wakes a follower, if needed. */
2205 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2206 if (ACCESS_ONCE(rdp->nocb_head))
2207 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2208 if (!rdp->nocb_gp_head)
2209 continue; /* No CBs, so no need to wake follower. */
2210
2211 /* Append callbacks to follower's "done" list. */
2212 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2213 *tail = rdp->nocb_gp_head;
2214 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2215 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2216 /*
2217 * List was empty, wake up the follower.
2218 * Memory barriers supplied by atomic_long_add().
2219 */
2220 wake_up(&rdp->nocb_wq);
2221 }
2222 }
2223
2224 /* If we (the leader) don't have CBs, go wait some more. */
2225 if (!my_rdp->nocb_follower_head)
2226 goto wait_again;
2227 }
2228
2229 /*
2230 * Followers come here to wait for additional callbacks to show up.
2231 * This function does not return until callbacks appear.
2232 */
2233 static void nocb_follower_wait(struct rcu_data *rdp)
2234 {
2235 bool firsttime = true;
2236
2237 for (;;) {
2238 if (!rcu_nocb_poll) {
2239 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2240 "FollowerSleep");
2241 wait_event_interruptible(rdp->nocb_wq,
2242 ACCESS_ONCE(rdp->nocb_follower_head));
2243 } else if (firsttime) {
2244 /* Don't drown trace log with "Poll"! */
2245 firsttime = false;
2246 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2247 }
2248 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2249 /* ^^^ Ensure CB invocation follows _head test. */
2250 return;
2251 }
2252 if (!rcu_nocb_poll)
2253 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2254 "WokeEmpty");
2255 WARN_ON(signal_pending(current));
2256 schedule_timeout_interruptible(1);
2257 }
2258 }
2259
2260 /*
2261 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2262 * callbacks queued by the corresponding no-CBs CPU, however, there is
2263 * an optional leader-follower relationship so that the grace-period
2264 * kthreads don't have to do quite so many wakeups.
2265 */
2266 static int rcu_nocb_kthread(void *arg)
2267 {
2268 int c, cl;
2269 struct rcu_head *list;
2270 struct rcu_head *next;
2271 struct rcu_head **tail;
2272 struct rcu_data *rdp = arg;
2273
2274 /* Each pass through this loop invokes one batch of callbacks */
2275 for (;;) {
2276 /* Wait for callbacks. */
2277 if (rdp->nocb_leader == rdp)
2278 nocb_leader_wait(rdp);
2279 else
2280 nocb_follower_wait(rdp);
2281
2282 /* Pull the ready-to-invoke callbacks onto local list. */
2283 list = ACCESS_ONCE(rdp->nocb_follower_head);
2284 BUG_ON(!list);
2285 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2286 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2287 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2288
2289 /* Each pass through the following loop invokes a callback. */
2290 trace_rcu_batch_start(rdp->rsp->name,
2291 atomic_long_read(&rdp->nocb_q_count_lazy),
2292 atomic_long_read(&rdp->nocb_q_count), -1);
2293 c = cl = 0;
2294 while (list) {
2295 next = list->next;
2296 /* Wait for enqueuing to complete, if needed. */
2297 while (next == NULL && &list->next != tail) {
2298 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2299 TPS("WaitQueue"));
2300 schedule_timeout_interruptible(1);
2301 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2302 TPS("WokeQueue"));
2303 next = list->next;
2304 }
2305 debug_rcu_head_unqueue(list);
2306 local_bh_disable();
2307 if (__rcu_reclaim(rdp->rsp->name, list))
2308 cl++;
2309 c++;
2310 local_bh_enable();
2311 list = next;
2312 }
2313 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2314 smp_mb__before_atomic(); /* _add after CB invocation. */
2315 atomic_long_add(-c, &rdp->nocb_q_count);
2316 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2317 rdp->n_nocbs_invoked += c;
2318 }
2319 return 0;
2320 }
2321
2322 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2323 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2324 {
2325 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2326 }
2327
2328 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2329 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2330 {
2331 int ndw;
2332
2333 if (!rcu_nocb_need_deferred_wakeup(rdp))
2334 return;
2335 ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2336 ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2337 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2338 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2339 }
2340
2341 void __init rcu_init_nohz(void)
2342 {
2343 int cpu;
2344 bool need_rcu_nocb_mask = true;
2345 struct rcu_state *rsp;
2346
2347 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2348 need_rcu_nocb_mask = false;
2349 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2350
2351 #if defined(CONFIG_NO_HZ_FULL)
2352 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2353 need_rcu_nocb_mask = true;
2354 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2355
2356 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2357 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2358 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2359 return;
2360 }
2361 have_rcu_nocb_mask = true;
2362 }
2363 if (!have_rcu_nocb_mask)
2364 return;
2365
2366 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2367 pr_info("\tOffload RCU callbacks from CPU 0\n");
2368 cpumask_set_cpu(0, rcu_nocb_mask);
2369 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2370 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2371 pr_info("\tOffload RCU callbacks from all CPUs\n");
2372 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2373 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2374 #if defined(CONFIG_NO_HZ_FULL)
2375 if (tick_nohz_full_running)
2376 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2377 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2378
2379 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2380 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2381 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2382 rcu_nocb_mask);
2383 }
2384 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2385 cpumask_pr_args(rcu_nocb_mask));
2386 if (rcu_nocb_poll)
2387 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2388
2389 for_each_rcu_flavor(rsp) {
2390 for_each_cpu(cpu, rcu_nocb_mask) {
2391 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2392
2393 /*
2394 * If there are early callbacks, they will need
2395 * to be moved to the nocb lists.
2396 */
2397 WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2398 &rdp->nxtlist &&
2399 rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2400 init_nocb_callback_list(rdp);
2401 }
2402 rcu_organize_nocb_kthreads(rsp);
2403 }
2404 }
2405
2406 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2407 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2408 {
2409 rdp->nocb_tail = &rdp->nocb_head;
2410 init_waitqueue_head(&rdp->nocb_wq);
2411 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2412 }
2413
2414 /*
2415 * If the specified CPU is a no-CBs CPU that does not already have its
2416 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2417 * brought online out of order, this can require re-organizing the
2418 * leader-follower relationships.
2419 */
2420 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2421 {
2422 struct rcu_data *rdp;
2423 struct rcu_data *rdp_last;
2424 struct rcu_data *rdp_old_leader;
2425 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2426 struct task_struct *t;
2427
2428 /*
2429 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2430 * then nothing to do.
2431 */
2432 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2433 return;
2434
2435 /* If we didn't spawn the leader first, reorganize! */
2436 rdp_old_leader = rdp_spawn->nocb_leader;
2437 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2438 rdp_last = NULL;
2439 rdp = rdp_old_leader;
2440 do {
2441 rdp->nocb_leader = rdp_spawn;
2442 if (rdp_last && rdp != rdp_spawn)
2443 rdp_last->nocb_next_follower = rdp;
2444 if (rdp == rdp_spawn) {
2445 rdp = rdp->nocb_next_follower;
2446 } else {
2447 rdp_last = rdp;
2448 rdp = rdp->nocb_next_follower;
2449 rdp_last->nocb_next_follower = NULL;
2450 }
2451 } while (rdp);
2452 rdp_spawn->nocb_next_follower = rdp_old_leader;
2453 }
2454
2455 /* Spawn the kthread for this CPU and RCU flavor. */
2456 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2457 "rcuo%c/%d", rsp->abbr, cpu);
2458 BUG_ON(IS_ERR(t));
2459 ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2460 }
2461
2462 /*
2463 * If the specified CPU is a no-CBs CPU that does not already have its
2464 * rcuo kthreads, spawn them.
2465 */
2466 static void rcu_spawn_all_nocb_kthreads(int cpu)
2467 {
2468 struct rcu_state *rsp;
2469
2470 if (rcu_scheduler_fully_active)
2471 for_each_rcu_flavor(rsp)
2472 rcu_spawn_one_nocb_kthread(rsp, cpu);
2473 }
2474
2475 /*
2476 * Once the scheduler is running, spawn rcuo kthreads for all online
2477 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2478 * non-boot CPUs come online -- if this changes, we will need to add
2479 * some mutual exclusion.
2480 */
2481 static void __init rcu_spawn_nocb_kthreads(void)
2482 {
2483 int cpu;
2484
2485 for_each_online_cpu(cpu)
2486 rcu_spawn_all_nocb_kthreads(cpu);
2487 }
2488
2489 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2490 static int rcu_nocb_leader_stride = -1;
2491 module_param(rcu_nocb_leader_stride, int, 0444);
2492
2493 /*
2494 * Initialize leader-follower relationships for all no-CBs CPU.
2495 */
2496 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2497 {
2498 int cpu;
2499 int ls = rcu_nocb_leader_stride;
2500 int nl = 0; /* Next leader. */
2501 struct rcu_data *rdp;
2502 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2503 struct rcu_data *rdp_prev = NULL;
2504
2505 if (!have_rcu_nocb_mask)
2506 return;
2507 if (ls == -1) {
2508 ls = int_sqrt(nr_cpu_ids);
2509 rcu_nocb_leader_stride = ls;
2510 }
2511
2512 /*
2513 * Each pass through this loop sets up one rcu_data structure and
2514 * spawns one rcu_nocb_kthread().
2515 */
2516 for_each_cpu(cpu, rcu_nocb_mask) {
2517 rdp = per_cpu_ptr(rsp->rda, cpu);
2518 if (rdp->cpu >= nl) {
2519 /* New leader, set up for followers & next leader. */
2520 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2521 rdp->nocb_leader = rdp;
2522 rdp_leader = rdp;
2523 } else {
2524 /* Another follower, link to previous leader. */
2525 rdp->nocb_leader = rdp_leader;
2526 rdp_prev->nocb_next_follower = rdp;
2527 }
2528 rdp_prev = rdp;
2529 }
2530 }
2531
2532 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2533 static bool init_nocb_callback_list(struct rcu_data *rdp)
2534 {
2535 if (!rcu_is_nocb_cpu(rdp->cpu))
2536 return false;
2537
2538 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2539 return true;
2540 }
2541
2542 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2543
2544 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2545 {
2546 WARN_ON_ONCE(1); /* Should be dead code. */
2547 return false;
2548 }
2549
2550 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2551 {
2552 }
2553
2554 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2555 {
2556 }
2557
2558 static void rcu_init_one_nocb(struct rcu_node *rnp)
2559 {
2560 }
2561
2562 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2563 bool lazy, unsigned long flags)
2564 {
2565 return false;
2566 }
2567
2568 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2569 struct rcu_data *rdp,
2570 unsigned long flags)
2571 {
2572 return false;
2573 }
2574
2575 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2576 {
2577 }
2578
2579 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2580 {
2581 return false;
2582 }
2583
2584 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2585 {
2586 }
2587
2588 static void rcu_spawn_all_nocb_kthreads(int cpu)
2589 {
2590 }
2591
2592 static void __init rcu_spawn_nocb_kthreads(void)
2593 {
2594 }
2595
2596 static bool init_nocb_callback_list(struct rcu_data *rdp)
2597 {
2598 return false;
2599 }
2600
2601 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2602
2603 /*
2604 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2605 * arbitrarily long period of time with the scheduling-clock tick turned
2606 * off. RCU will be paying attention to this CPU because it is in the
2607 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2608 * machine because the scheduling-clock tick has been disabled. Therefore,
2609 * if an adaptive-ticks CPU is failing to respond to the current grace
2610 * period and has not be idle from an RCU perspective, kick it.
2611 */
2612 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2613 {
2614 #ifdef CONFIG_NO_HZ_FULL
2615 if (tick_nohz_full_cpu(cpu))
2616 smp_send_reschedule(cpu);
2617 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2618 }
2619
2620
2621 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2622
2623 static int full_sysidle_state; /* Current system-idle state. */
2624 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2625 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2626 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2627 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2628 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2629
2630 /*
2631 * Invoked to note exit from irq or task transition to idle. Note that
2632 * usermode execution does -not- count as idle here! After all, we want
2633 * to detect full-system idle states, not RCU quiescent states and grace
2634 * periods. The caller must have disabled interrupts.
2635 */
2636 static void rcu_sysidle_enter(int irq)
2637 {
2638 unsigned long j;
2639 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2640
2641 /* If there are no nohz_full= CPUs, no need to track this. */
2642 if (!tick_nohz_full_enabled())
2643 return;
2644
2645 /* Adjust nesting, check for fully idle. */
2646 if (irq) {
2647 rdtp->dynticks_idle_nesting--;
2648 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2649 if (rdtp->dynticks_idle_nesting != 0)
2650 return; /* Still not fully idle. */
2651 } else {
2652 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2653 DYNTICK_TASK_NEST_VALUE) {
2654 rdtp->dynticks_idle_nesting = 0;
2655 } else {
2656 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2657 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2658 return; /* Still not fully idle. */
2659 }
2660 }
2661
2662 /* Record start of fully idle period. */
2663 j = jiffies;
2664 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2665 smp_mb__before_atomic();
2666 atomic_inc(&rdtp->dynticks_idle);
2667 smp_mb__after_atomic();
2668 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2669 }
2670
2671 /*
2672 * Unconditionally force exit from full system-idle state. This is
2673 * invoked when a normal CPU exits idle, but must be called separately
2674 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2675 * is that the timekeeping CPU is permitted to take scheduling-clock
2676 * interrupts while the system is in system-idle state, and of course
2677 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2678 * interrupt from any other type of interrupt.
2679 */
2680 void rcu_sysidle_force_exit(void)
2681 {
2682 int oldstate = ACCESS_ONCE(full_sysidle_state);
2683 int newoldstate;
2684
2685 /*
2686 * Each pass through the following loop attempts to exit full
2687 * system-idle state. If contention proves to be a problem,
2688 * a trylock-based contention tree could be used here.
2689 */
2690 while (oldstate > RCU_SYSIDLE_SHORT) {
2691 newoldstate = cmpxchg(&full_sysidle_state,
2692 oldstate, RCU_SYSIDLE_NOT);
2693 if (oldstate == newoldstate &&
2694 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2695 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2696 return; /* We cleared it, done! */
2697 }
2698 oldstate = newoldstate;
2699 }
2700 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2701 }
2702
2703 /*
2704 * Invoked to note entry to irq or task transition from idle. Note that
2705 * usermode execution does -not- count as idle here! The caller must
2706 * have disabled interrupts.
2707 */
2708 static void rcu_sysidle_exit(int irq)
2709 {
2710 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2711
2712 /* If there are no nohz_full= CPUs, no need to track this. */
2713 if (!tick_nohz_full_enabled())
2714 return;
2715
2716 /* Adjust nesting, check for already non-idle. */
2717 if (irq) {
2718 rdtp->dynticks_idle_nesting++;
2719 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2720 if (rdtp->dynticks_idle_nesting != 1)
2721 return; /* Already non-idle. */
2722 } else {
2723 /*
2724 * Allow for irq misnesting. Yes, it really is possible
2725 * to enter an irq handler then never leave it, and maybe
2726 * also vice versa. Handle both possibilities.
2727 */
2728 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2729 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2730 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2731 return; /* Already non-idle. */
2732 } else {
2733 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2734 }
2735 }
2736
2737 /* Record end of idle period. */
2738 smp_mb__before_atomic();
2739 atomic_inc(&rdtp->dynticks_idle);
2740 smp_mb__after_atomic();
2741 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2742
2743 /*
2744 * If we are the timekeeping CPU, we are permitted to be non-idle
2745 * during a system-idle state. This must be the case, because
2746 * the timekeeping CPU has to take scheduling-clock interrupts
2747 * during the time that the system is transitioning to full
2748 * system-idle state. This means that the timekeeping CPU must
2749 * invoke rcu_sysidle_force_exit() directly if it does anything
2750 * more than take a scheduling-clock interrupt.
2751 */
2752 if (smp_processor_id() == tick_do_timer_cpu)
2753 return;
2754
2755 /* Update system-idle state: We are clearly no longer fully idle! */
2756 rcu_sysidle_force_exit();
2757 }
2758
2759 /*
2760 * Check to see if the current CPU is idle. Note that usermode execution
2761 * does not count as idle. The caller must have disabled interrupts.
2762 */
2763 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2764 unsigned long *maxj)
2765 {
2766 int cur;
2767 unsigned long j;
2768 struct rcu_dynticks *rdtp = rdp->dynticks;
2769
2770 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2771 if (!tick_nohz_full_enabled())
2772 return;
2773
2774 /*
2775 * If some other CPU has already reported non-idle, if this is
2776 * not the flavor of RCU that tracks sysidle state, or if this
2777 * is an offline or the timekeeping CPU, nothing to do.
2778 */
2779 if (!*isidle || rdp->rsp != rcu_state_p ||
2780 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2781 return;
2782 if (rcu_gp_in_progress(rdp->rsp))
2783 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2784
2785 /* Pick up current idle and NMI-nesting counter and check. */
2786 cur = atomic_read(&rdtp->dynticks_idle);
2787 if (cur & 0x1) {
2788 *isidle = false; /* We are not idle! */
2789 return;
2790 }
2791 smp_mb(); /* Read counters before timestamps. */
2792
2793 /* Pick up timestamps. */
2794 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2795 /* If this CPU entered idle more recently, update maxj timestamp. */
2796 if (ULONG_CMP_LT(*maxj, j))
2797 *maxj = j;
2798 }
2799
2800 /*
2801 * Is this the flavor of RCU that is handling full-system idle?
2802 */
2803 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2804 {
2805 return rsp == rcu_state_p;
2806 }
2807
2808 /*
2809 * Return a delay in jiffies based on the number of CPUs, rcu_node
2810 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2811 * systems more time to transition to full-idle state in order to
2812 * avoid the cache thrashing that otherwise occur on the state variable.
2813 * Really small systems (less than a couple of tens of CPUs) should
2814 * instead use a single global atomically incremented counter, and later
2815 * versions of this will automatically reconfigure themselves accordingly.
2816 */
2817 static unsigned long rcu_sysidle_delay(void)
2818 {
2819 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2820 return 0;
2821 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2822 }
2823
2824 /*
2825 * Advance the full-system-idle state. This is invoked when all of
2826 * the non-timekeeping CPUs are idle.
2827 */
2828 static void rcu_sysidle(unsigned long j)
2829 {
2830 /* Check the current state. */
2831 switch (ACCESS_ONCE(full_sysidle_state)) {
2832 case RCU_SYSIDLE_NOT:
2833
2834 /* First time all are idle, so note a short idle period. */
2835 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2836 break;
2837
2838 case RCU_SYSIDLE_SHORT:
2839
2840 /*
2841 * Idle for a bit, time to advance to next state?
2842 * cmpxchg failure means race with non-idle, let them win.
2843 */
2844 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2845 (void)cmpxchg(&full_sysidle_state,
2846 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2847 break;
2848
2849 case RCU_SYSIDLE_LONG:
2850
2851 /*
2852 * Do an additional check pass before advancing to full.
2853 * cmpxchg failure means race with non-idle, let them win.
2854 */
2855 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2856 (void)cmpxchg(&full_sysidle_state,
2857 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2858 break;
2859
2860 default:
2861 break;
2862 }
2863 }
2864
2865 /*
2866 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2867 * back to the beginning.
2868 */
2869 static void rcu_sysidle_cancel(void)
2870 {
2871 smp_mb();
2872 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2873 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2874 }
2875
2876 /*
2877 * Update the sysidle state based on the results of a force-quiescent-state
2878 * scan of the CPUs' dyntick-idle state.
2879 */
2880 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2881 unsigned long maxj, bool gpkt)
2882 {
2883 if (rsp != rcu_state_p)
2884 return; /* Wrong flavor, ignore. */
2885 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2886 return; /* Running state machine from timekeeping CPU. */
2887 if (isidle)
2888 rcu_sysidle(maxj); /* More idle! */
2889 else
2890 rcu_sysidle_cancel(); /* Idle is over. */
2891 }
2892
2893 /*
2894 * Wrapper for rcu_sysidle_report() when called from the grace-period
2895 * kthread's context.
2896 */
2897 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2898 unsigned long maxj)
2899 {
2900 /* If there are no nohz_full= CPUs, no need to track this. */
2901 if (!tick_nohz_full_enabled())
2902 return;
2903
2904 rcu_sysidle_report(rsp, isidle, maxj, true);
2905 }
2906
2907 /* Callback and function for forcing an RCU grace period. */
2908 struct rcu_sysidle_head {
2909 struct rcu_head rh;
2910 int inuse;
2911 };
2912
2913 static void rcu_sysidle_cb(struct rcu_head *rhp)
2914 {
2915 struct rcu_sysidle_head *rshp;
2916
2917 /*
2918 * The following memory barrier is needed to replace the
2919 * memory barriers that would normally be in the memory
2920 * allocator.
2921 */
2922 smp_mb(); /* grace period precedes setting inuse. */
2923
2924 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2925 ACCESS_ONCE(rshp->inuse) = 0;
2926 }
2927
2928 /*
2929 * Check to see if the system is fully idle, other than the timekeeping CPU.
2930 * The caller must have disabled interrupts. This is not intended to be
2931 * called unless tick_nohz_full_enabled().
2932 */
2933 bool rcu_sys_is_idle(void)
2934 {
2935 static struct rcu_sysidle_head rsh;
2936 int rss = ACCESS_ONCE(full_sysidle_state);
2937
2938 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2939 return false;
2940
2941 /* Handle small-system case by doing a full scan of CPUs. */
2942 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2943 int oldrss = rss - 1;
2944
2945 /*
2946 * One pass to advance to each state up to _FULL.
2947 * Give up if any pass fails to advance the state.
2948 */
2949 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2950 int cpu;
2951 bool isidle = true;
2952 unsigned long maxj = jiffies - ULONG_MAX / 4;
2953 struct rcu_data *rdp;
2954
2955 /* Scan all the CPUs looking for nonidle CPUs. */
2956 for_each_possible_cpu(cpu) {
2957 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2958 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2959 if (!isidle)
2960 break;
2961 }
2962 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2963 oldrss = rss;
2964 rss = ACCESS_ONCE(full_sysidle_state);
2965 }
2966 }
2967
2968 /* If this is the first observation of an idle period, record it. */
2969 if (rss == RCU_SYSIDLE_FULL) {
2970 rss = cmpxchg(&full_sysidle_state,
2971 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2972 return rss == RCU_SYSIDLE_FULL;
2973 }
2974
2975 smp_mb(); /* ensure rss load happens before later caller actions. */
2976
2977 /* If already fully idle, tell the caller (in case of races). */
2978 if (rss == RCU_SYSIDLE_FULL_NOTED)
2979 return true;
2980
2981 /*
2982 * If we aren't there yet, and a grace period is not in flight,
2983 * initiate a grace period. Either way, tell the caller that
2984 * we are not there yet. We use an xchg() rather than an assignment
2985 * to make up for the memory barriers that would otherwise be
2986 * provided by the memory allocator.
2987 */
2988 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2989 !rcu_gp_in_progress(rcu_state_p) &&
2990 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2991 call_rcu(&rsh.rh, rcu_sysidle_cb);
2992 return false;
2993 }
2994
2995 /*
2996 * Initialize dynticks sysidle state for CPUs coming online.
2997 */
2998 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2999 {
3000 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3001 }
3002
3003 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3004
3005 static void rcu_sysidle_enter(int irq)
3006 {
3007 }
3008
3009 static void rcu_sysidle_exit(int irq)
3010 {
3011 }
3012
3013 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3014 unsigned long *maxj)
3015 {
3016 }
3017
3018 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3019 {
3020 return false;
3021 }
3022
3023 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3024 unsigned long maxj)
3025 {
3026 }
3027
3028 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3029 {
3030 }
3031
3032 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3033
3034 /*
3035 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3036 * grace-period kthread will do force_quiescent_state() processing?
3037 * The idea is to avoid waking up RCU core processing on such a
3038 * CPU unless the grace period has extended for too long.
3039 *
3040 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3041 * CONFIG_RCU_NOCB_CPU CPUs.
3042 */
3043 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3044 {
3045 #ifdef CONFIG_NO_HZ_FULL
3046 if (tick_nohz_full_cpu(smp_processor_id()) &&
3047 (!rcu_gp_in_progress(rsp) ||
3048 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3049 return 1;
3050 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3051 return 0;
3052 }
3053
3054 /*
3055 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3056 * timekeeping CPU.
3057 */
3058 static void rcu_bind_gp_kthread(void)
3059 {
3060 int __maybe_unused cpu;
3061
3062 if (!tick_nohz_full_enabled())
3063 return;
3064 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3065 cpu = tick_do_timer_cpu;
3066 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3067 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3068 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3069 if (!is_housekeeping_cpu(raw_smp_processor_id()))
3070 housekeeping_affine(current);
3071 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3072 }
3073
3074 /* Record the current task on dyntick-idle entry. */
3075 static void rcu_dynticks_task_enter(void)
3076 {
3077 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3078 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3079 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3080 }
3081
3082 /* Record no current task on dyntick-idle exit. */
3083 static void rcu_dynticks_task_exit(void)
3084 {
3085 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3086 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3087 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3088 }
This page took 0.094626 seconds and 5 git commands to generate.