arm64: dts: uniphier: change cpu-release-address
[deliverable/linux.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #else /* #ifdef CONFIG_RCU_BOOST */
47
48 /*
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code. Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
53 */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
64 /*
65 * Check the RCU kernel configuration parameters and print informative
66 * messages about anything out of the ordinary.
67 */
68 static void __init rcu_bootup_announce_oddness(void)
69 {
70 if (IS_ENABLED(CONFIG_RCU_TRACE))
71 pr_info("\tRCU debugfs-based tracing is enabled.\n");
72 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
73 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
74 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
75 RCU_FANOUT);
76 if (rcu_fanout_exact)
77 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
78 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
79 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
80 if (IS_ENABLED(CONFIG_PROVE_RCU))
81 pr_info("\tRCU lockdep checking is enabled.\n");
82 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
83 pr_info("\tRCU torture testing starts during boot.\n");
84 if (RCU_NUM_LVLS >= 4)
85 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 if (RCU_FANOUT_LEAF != 16)
87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 RCU_FANOUT_LEAF);
89 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
91 if (nr_cpu_ids != NR_CPUS)
92 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
93 if (IS_ENABLED(CONFIG_RCU_BOOST))
94 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
95 }
96
97 #ifdef CONFIG_PREEMPT_RCU
98
99 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
100 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
101 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
102
103 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
104 bool wake);
105
106 /*
107 * Tell them what RCU they are running.
108 */
109 static void __init rcu_bootup_announce(void)
110 {
111 pr_info("Preemptible hierarchical RCU implementation.\n");
112 rcu_bootup_announce_oddness();
113 }
114
115 /* Flags for rcu_preempt_ctxt_queue() decision table. */
116 #define RCU_GP_TASKS 0x8
117 #define RCU_EXP_TASKS 0x4
118 #define RCU_GP_BLKD 0x2
119 #define RCU_EXP_BLKD 0x1
120
121 /*
122 * Queues a task preempted within an RCU-preempt read-side critical
123 * section into the appropriate location within the ->blkd_tasks list,
124 * depending on the states of any ongoing normal and expedited grace
125 * periods. The ->gp_tasks pointer indicates which element the normal
126 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
127 * indicates which element the expedited grace period is waiting on (again,
128 * NULL if none). If a grace period is waiting on a given element in the
129 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
130 * adding a task to the tail of the list blocks any grace period that is
131 * already waiting on one of the elements. In contrast, adding a task
132 * to the head of the list won't block any grace period that is already
133 * waiting on one of the elements.
134 *
135 * This queuing is imprecise, and can sometimes make an ongoing grace
136 * period wait for a task that is not strictly speaking blocking it.
137 * Given the choice, we needlessly block a normal grace period rather than
138 * blocking an expedited grace period.
139 *
140 * Note that an endless sequence of expedited grace periods still cannot
141 * indefinitely postpone a normal grace period. Eventually, all of the
142 * fixed number of preempted tasks blocking the normal grace period that are
143 * not also blocking the expedited grace period will resume and complete
144 * their RCU read-side critical sections. At that point, the ->gp_tasks
145 * pointer will equal the ->exp_tasks pointer, at which point the end of
146 * the corresponding expedited grace period will also be the end of the
147 * normal grace period.
148 */
149 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
150 __releases(rnp->lock) /* But leaves rrupts disabled. */
151 {
152 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
153 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
154 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
155 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
156 struct task_struct *t = current;
157
158 /*
159 * Decide where to queue the newly blocked task. In theory,
160 * this could be an if-statement. In practice, when I tried
161 * that, it was quite messy.
162 */
163 switch (blkd_state) {
164 case 0:
165 case RCU_EXP_TASKS:
166 case RCU_EXP_TASKS + RCU_GP_BLKD:
167 case RCU_GP_TASKS:
168 case RCU_GP_TASKS + RCU_EXP_TASKS:
169
170 /*
171 * Blocking neither GP, or first task blocking the normal
172 * GP but not blocking the already-waiting expedited GP.
173 * Queue at the head of the list to avoid unnecessarily
174 * blocking the already-waiting GPs.
175 */
176 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
177 break;
178
179 case RCU_EXP_BLKD:
180 case RCU_GP_BLKD:
181 case RCU_GP_BLKD + RCU_EXP_BLKD:
182 case RCU_GP_TASKS + RCU_EXP_BLKD:
183 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
184 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185
186 /*
187 * First task arriving that blocks either GP, or first task
188 * arriving that blocks the expedited GP (with the normal
189 * GP already waiting), or a task arriving that blocks
190 * both GPs with both GPs already waiting. Queue at the
191 * tail of the list to avoid any GP waiting on any of the
192 * already queued tasks that are not blocking it.
193 */
194 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
195 break;
196
197 case RCU_EXP_TASKS + RCU_EXP_BLKD:
198 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
199 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
200
201 /*
202 * Second or subsequent task blocking the expedited GP.
203 * The task either does not block the normal GP, or is the
204 * first task blocking the normal GP. Queue just after
205 * the first task blocking the expedited GP.
206 */
207 list_add(&t->rcu_node_entry, rnp->exp_tasks);
208 break;
209
210 case RCU_GP_TASKS + RCU_GP_BLKD:
211 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
212
213 /*
214 * Second or subsequent task blocking the normal GP.
215 * The task does not block the expedited GP. Queue just
216 * after the first task blocking the normal GP.
217 */
218 list_add(&t->rcu_node_entry, rnp->gp_tasks);
219 break;
220
221 default:
222
223 /* Yet another exercise in excessive paranoia. */
224 WARN_ON_ONCE(1);
225 break;
226 }
227
228 /*
229 * We have now queued the task. If it was the first one to
230 * block either grace period, update the ->gp_tasks and/or
231 * ->exp_tasks pointers, respectively, to reference the newly
232 * blocked tasks.
233 */
234 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
235 rnp->gp_tasks = &t->rcu_node_entry;
236 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
237 rnp->exp_tasks = &t->rcu_node_entry;
238 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
239
240 /*
241 * Report the quiescent state for the expedited GP. This expedited
242 * GP should not be able to end until we report, so there should be
243 * no need to check for a subsequent expedited GP. (Though we are
244 * still in a quiescent state in any case.)
245 */
246 if (blkd_state & RCU_EXP_BLKD &&
247 t->rcu_read_unlock_special.b.exp_need_qs) {
248 t->rcu_read_unlock_special.b.exp_need_qs = false;
249 rcu_report_exp_rdp(rdp->rsp, rdp, true);
250 } else {
251 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
252 }
253 }
254
255 /*
256 * Record a preemptible-RCU quiescent state for the specified CPU. Note
257 * that this just means that the task currently running on the CPU is
258 * not in a quiescent state. There might be any number of tasks blocked
259 * while in an RCU read-side critical section.
260 *
261 * As with the other rcu_*_qs() functions, callers to this function
262 * must disable preemption.
263 */
264 static void rcu_preempt_qs(void)
265 {
266 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
267 trace_rcu_grace_period(TPS("rcu_preempt"),
268 __this_cpu_read(rcu_data_p->gpnum),
269 TPS("cpuqs"));
270 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
271 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
272 current->rcu_read_unlock_special.b.need_qs = false;
273 }
274 }
275
276 /*
277 * We have entered the scheduler, and the current task might soon be
278 * context-switched away from. If this task is in an RCU read-side
279 * critical section, we will no longer be able to rely on the CPU to
280 * record that fact, so we enqueue the task on the blkd_tasks list.
281 * The task will dequeue itself when it exits the outermost enclosing
282 * RCU read-side critical section. Therefore, the current grace period
283 * cannot be permitted to complete until the blkd_tasks list entries
284 * predating the current grace period drain, in other words, until
285 * rnp->gp_tasks becomes NULL.
286 *
287 * Caller must disable interrupts.
288 */
289 static void rcu_preempt_note_context_switch(void)
290 {
291 struct task_struct *t = current;
292 struct rcu_data *rdp;
293 struct rcu_node *rnp;
294
295 if (t->rcu_read_lock_nesting > 0 &&
296 !t->rcu_read_unlock_special.b.blocked) {
297
298 /* Possibly blocking in an RCU read-side critical section. */
299 rdp = this_cpu_ptr(rcu_state_p->rda);
300 rnp = rdp->mynode;
301 raw_spin_lock_rcu_node(rnp);
302 t->rcu_read_unlock_special.b.blocked = true;
303 t->rcu_blocked_node = rnp;
304
305 /*
306 * Verify the CPU's sanity, trace the preemption, and
307 * then queue the task as required based on the states
308 * of any ongoing and expedited grace periods.
309 */
310 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312 trace_rcu_preempt_task(rdp->rsp->name,
313 t->pid,
314 (rnp->qsmask & rdp->grpmask)
315 ? rnp->gpnum
316 : rnp->gpnum + 1);
317 rcu_preempt_ctxt_queue(rnp, rdp);
318 } else if (t->rcu_read_lock_nesting < 0 &&
319 t->rcu_read_unlock_special.s) {
320
321 /*
322 * Complete exit from RCU read-side critical section on
323 * behalf of preempted instance of __rcu_read_unlock().
324 */
325 rcu_read_unlock_special(t);
326 }
327
328 /*
329 * Either we were not in an RCU read-side critical section to
330 * begin with, or we have now recorded that critical section
331 * globally. Either way, we can now note a quiescent state
332 * for this CPU. Again, if we were in an RCU read-side critical
333 * section, and if that critical section was blocking the current
334 * grace period, then the fact that the task has been enqueued
335 * means that we continue to block the current grace period.
336 */
337 rcu_preempt_qs();
338 }
339
340 /*
341 * Check for preempted RCU readers blocking the current grace period
342 * for the specified rcu_node structure. If the caller needs a reliable
343 * answer, it must hold the rcu_node's ->lock.
344 */
345 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
346 {
347 return rnp->gp_tasks != NULL;
348 }
349
350 /*
351 * Advance a ->blkd_tasks-list pointer to the next entry, instead
352 * returning NULL if at the end of the list.
353 */
354 static struct list_head *rcu_next_node_entry(struct task_struct *t,
355 struct rcu_node *rnp)
356 {
357 struct list_head *np;
358
359 np = t->rcu_node_entry.next;
360 if (np == &rnp->blkd_tasks)
361 np = NULL;
362 return np;
363 }
364
365 /*
366 * Return true if the specified rcu_node structure has tasks that were
367 * preempted within an RCU read-side critical section.
368 */
369 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
370 {
371 return !list_empty(&rnp->blkd_tasks);
372 }
373
374 /*
375 * Handle special cases during rcu_read_unlock(), such as needing to
376 * notify RCU core processing or task having blocked during the RCU
377 * read-side critical section.
378 */
379 void rcu_read_unlock_special(struct task_struct *t)
380 {
381 bool empty_exp;
382 bool empty_norm;
383 bool empty_exp_now;
384 unsigned long flags;
385 struct list_head *np;
386 bool drop_boost_mutex = false;
387 struct rcu_data *rdp;
388 struct rcu_node *rnp;
389 union rcu_special special;
390
391 /* NMI handlers cannot block and cannot safely manipulate state. */
392 if (in_nmi())
393 return;
394
395 local_irq_save(flags);
396
397 /*
398 * If RCU core is waiting for this CPU to exit its critical section,
399 * report the fact that it has exited. Because irqs are disabled,
400 * t->rcu_read_unlock_special cannot change.
401 */
402 special = t->rcu_read_unlock_special;
403 if (special.b.need_qs) {
404 rcu_preempt_qs();
405 t->rcu_read_unlock_special.b.need_qs = false;
406 if (!t->rcu_read_unlock_special.s) {
407 local_irq_restore(flags);
408 return;
409 }
410 }
411
412 /*
413 * Respond to a request for an expedited grace period, but only if
414 * we were not preempted, meaning that we were running on the same
415 * CPU throughout. If we were preempted, the exp_need_qs flag
416 * would have been cleared at the time of the first preemption,
417 * and the quiescent state would be reported when we were dequeued.
418 */
419 if (special.b.exp_need_qs) {
420 WARN_ON_ONCE(special.b.blocked);
421 t->rcu_read_unlock_special.b.exp_need_qs = false;
422 rdp = this_cpu_ptr(rcu_state_p->rda);
423 rcu_report_exp_rdp(rcu_state_p, rdp, true);
424 if (!t->rcu_read_unlock_special.s) {
425 local_irq_restore(flags);
426 return;
427 }
428 }
429
430 /* Hardware IRQ handlers cannot block, complain if they get here. */
431 if (in_irq() || in_serving_softirq()) {
432 lockdep_rcu_suspicious(__FILE__, __LINE__,
433 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
434 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
435 t->rcu_read_unlock_special.s,
436 t->rcu_read_unlock_special.b.blocked,
437 t->rcu_read_unlock_special.b.exp_need_qs,
438 t->rcu_read_unlock_special.b.need_qs);
439 local_irq_restore(flags);
440 return;
441 }
442
443 /* Clean up if blocked during RCU read-side critical section. */
444 if (special.b.blocked) {
445 t->rcu_read_unlock_special.b.blocked = false;
446
447 /*
448 * Remove this task from the list it blocked on. The task
449 * now remains queued on the rcu_node corresponding to the
450 * CPU it first blocked on, so there is no longer any need
451 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
452 */
453 rnp = t->rcu_blocked_node;
454 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
455 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
456 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
457 empty_exp = sync_rcu_preempt_exp_done(rnp);
458 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
459 np = rcu_next_node_entry(t, rnp);
460 list_del_init(&t->rcu_node_entry);
461 t->rcu_blocked_node = NULL;
462 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
463 rnp->gpnum, t->pid);
464 if (&t->rcu_node_entry == rnp->gp_tasks)
465 rnp->gp_tasks = np;
466 if (&t->rcu_node_entry == rnp->exp_tasks)
467 rnp->exp_tasks = np;
468 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
469 if (&t->rcu_node_entry == rnp->boost_tasks)
470 rnp->boost_tasks = np;
471 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
472 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
473 }
474
475 /*
476 * If this was the last task on the current list, and if
477 * we aren't waiting on any CPUs, report the quiescent state.
478 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
479 * so we must take a snapshot of the expedited state.
480 */
481 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
482 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
483 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
484 rnp->gpnum,
485 0, rnp->qsmask,
486 rnp->level,
487 rnp->grplo,
488 rnp->grphi,
489 !!rnp->gp_tasks);
490 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
491 } else {
492 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
493 }
494
495 /* Unboost if we were boosted. */
496 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
497 rt_mutex_unlock(&rnp->boost_mtx);
498
499 /*
500 * If this was the last task on the expedited lists,
501 * then we need to report up the rcu_node hierarchy.
502 */
503 if (!empty_exp && empty_exp_now)
504 rcu_report_exp_rnp(rcu_state_p, rnp, true);
505 } else {
506 local_irq_restore(flags);
507 }
508 }
509
510 /*
511 * Dump detailed information for all tasks blocking the current RCU
512 * grace period on the specified rcu_node structure.
513 */
514 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
515 {
516 unsigned long flags;
517 struct task_struct *t;
518
519 raw_spin_lock_irqsave_rcu_node(rnp, flags);
520 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
521 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
522 return;
523 }
524 t = list_entry(rnp->gp_tasks->prev,
525 struct task_struct, rcu_node_entry);
526 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
527 sched_show_task(t);
528 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529 }
530
531 /*
532 * Dump detailed information for all tasks blocking the current RCU
533 * grace period.
534 */
535 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
536 {
537 struct rcu_node *rnp = rcu_get_root(rsp);
538
539 rcu_print_detail_task_stall_rnp(rnp);
540 rcu_for_each_leaf_node(rsp, rnp)
541 rcu_print_detail_task_stall_rnp(rnp);
542 }
543
544 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
545 {
546 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
547 rnp->level, rnp->grplo, rnp->grphi);
548 }
549
550 static void rcu_print_task_stall_end(void)
551 {
552 pr_cont("\n");
553 }
554
555 /*
556 * Scan the current list of tasks blocked within RCU read-side critical
557 * sections, printing out the tid of each.
558 */
559 static int rcu_print_task_stall(struct rcu_node *rnp)
560 {
561 struct task_struct *t;
562 int ndetected = 0;
563
564 if (!rcu_preempt_blocked_readers_cgp(rnp))
565 return 0;
566 rcu_print_task_stall_begin(rnp);
567 t = list_entry(rnp->gp_tasks->prev,
568 struct task_struct, rcu_node_entry);
569 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
570 pr_cont(" P%d", t->pid);
571 ndetected++;
572 }
573 rcu_print_task_stall_end();
574 return ndetected;
575 }
576
577 /*
578 * Scan the current list of tasks blocked within RCU read-side critical
579 * sections, printing out the tid of each that is blocking the current
580 * expedited grace period.
581 */
582 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
583 {
584 struct task_struct *t;
585 int ndetected = 0;
586
587 if (!rnp->exp_tasks)
588 return 0;
589 t = list_entry(rnp->exp_tasks->prev,
590 struct task_struct, rcu_node_entry);
591 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
592 pr_cont(" P%d", t->pid);
593 ndetected++;
594 }
595 return ndetected;
596 }
597
598 /*
599 * Check that the list of blocked tasks for the newly completed grace
600 * period is in fact empty. It is a serious bug to complete a grace
601 * period that still has RCU readers blocked! This function must be
602 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
603 * must be held by the caller.
604 *
605 * Also, if there are blocked tasks on the list, they automatically
606 * block the newly created grace period, so set up ->gp_tasks accordingly.
607 */
608 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
609 {
610 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
611 if (rcu_preempt_has_tasks(rnp))
612 rnp->gp_tasks = rnp->blkd_tasks.next;
613 WARN_ON_ONCE(rnp->qsmask);
614 }
615
616 /*
617 * Check for a quiescent state from the current CPU. When a task blocks,
618 * the task is recorded in the corresponding CPU's rcu_node structure,
619 * which is checked elsewhere.
620 *
621 * Caller must disable hard irqs.
622 */
623 static void rcu_preempt_check_callbacks(void)
624 {
625 struct task_struct *t = current;
626
627 if (t->rcu_read_lock_nesting == 0) {
628 rcu_preempt_qs();
629 return;
630 }
631 if (t->rcu_read_lock_nesting > 0 &&
632 __this_cpu_read(rcu_data_p->core_needs_qs) &&
633 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
634 t->rcu_read_unlock_special.b.need_qs = true;
635 }
636
637 #ifdef CONFIG_RCU_BOOST
638
639 static void rcu_preempt_do_callbacks(void)
640 {
641 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
642 }
643
644 #endif /* #ifdef CONFIG_RCU_BOOST */
645
646 /*
647 * Queue a preemptible-RCU callback for invocation after a grace period.
648 */
649 void call_rcu(struct rcu_head *head, rcu_callback_t func)
650 {
651 __call_rcu(head, func, rcu_state_p, -1, 0);
652 }
653 EXPORT_SYMBOL_GPL(call_rcu);
654
655 /**
656 * synchronize_rcu - wait until a grace period has elapsed.
657 *
658 * Control will return to the caller some time after a full grace
659 * period has elapsed, in other words after all currently executing RCU
660 * read-side critical sections have completed. Note, however, that
661 * upon return from synchronize_rcu(), the caller might well be executing
662 * concurrently with new RCU read-side critical sections that began while
663 * synchronize_rcu() was waiting. RCU read-side critical sections are
664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
665 *
666 * See the description of synchronize_sched() for more detailed information
667 * on memory ordering guarantees.
668 */
669 void synchronize_rcu(void)
670 {
671 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
672 lock_is_held(&rcu_lock_map) ||
673 lock_is_held(&rcu_sched_lock_map),
674 "Illegal synchronize_rcu() in RCU read-side critical section");
675 if (!rcu_scheduler_active)
676 return;
677 if (rcu_gp_is_expedited())
678 synchronize_rcu_expedited();
679 else
680 wait_rcu_gp(call_rcu);
681 }
682 EXPORT_SYMBOL_GPL(synchronize_rcu);
683
684 /*
685 * Remote handler for smp_call_function_single(). If there is an
686 * RCU read-side critical section in effect, request that the
687 * next rcu_read_unlock() record the quiescent state up the
688 * ->expmask fields in the rcu_node tree. Otherwise, immediately
689 * report the quiescent state.
690 */
691 static void sync_rcu_exp_handler(void *info)
692 {
693 struct rcu_data *rdp;
694 struct rcu_state *rsp = info;
695 struct task_struct *t = current;
696
697 /*
698 * Within an RCU read-side critical section, request that the next
699 * rcu_read_unlock() report. Unless this RCU read-side critical
700 * section has already blocked, in which case it is already set
701 * up for the expedited grace period to wait on it.
702 */
703 if (t->rcu_read_lock_nesting > 0 &&
704 !t->rcu_read_unlock_special.b.blocked) {
705 t->rcu_read_unlock_special.b.exp_need_qs = true;
706 return;
707 }
708
709 /*
710 * We are either exiting an RCU read-side critical section (negative
711 * values of t->rcu_read_lock_nesting) or are not in one at all
712 * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU
713 * read-side critical section that blocked before this expedited
714 * grace period started. Either way, we can immediately report
715 * the quiescent state.
716 */
717 rdp = this_cpu_ptr(rsp->rda);
718 rcu_report_exp_rdp(rsp, rdp, true);
719 }
720
721 /**
722 * synchronize_rcu_expedited - Brute-force RCU grace period
723 *
724 * Wait for an RCU-preempt grace period, but expedite it. The basic
725 * idea is to IPI all non-idle non-nohz online CPUs. The IPI handler
726 * checks whether the CPU is in an RCU-preempt critical section, and
727 * if so, it sets a flag that causes the outermost rcu_read_unlock()
728 * to report the quiescent state. On the other hand, if the CPU is
729 * not in an RCU read-side critical section, the IPI handler reports
730 * the quiescent state immediately.
731 *
732 * Although this is a greate improvement over previous expedited
733 * implementations, it is still unfriendly to real-time workloads, so is
734 * thus not recommended for any sort of common-case code. In fact, if
735 * you are using synchronize_rcu_expedited() in a loop, please restructure
736 * your code to batch your updates, and then Use a single synchronize_rcu()
737 * instead.
738 */
739 void synchronize_rcu_expedited(void)
740 {
741 struct rcu_state *rsp = rcu_state_p;
742 unsigned long s;
743
744 /* If expedited grace periods are prohibited, fall back to normal. */
745 if (rcu_gp_is_normal()) {
746 wait_rcu_gp(call_rcu);
747 return;
748 }
749
750 s = rcu_exp_gp_seq_snap(rsp);
751 if (exp_funnel_lock(rsp, s))
752 return; /* Someone else did our work for us. */
753
754 /* Initialize the rcu_node tree in preparation for the wait. */
755 sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
756
757 /* Wait for ->blkd_tasks lists to drain, then wake everyone up. */
758 rcu_exp_wait_wake(rsp, s);
759 }
760 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
761
762 /**
763 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
764 *
765 * Note that this primitive does not necessarily wait for an RCU grace period
766 * to complete. For example, if there are no RCU callbacks queued anywhere
767 * in the system, then rcu_barrier() is within its rights to return
768 * immediately, without waiting for anything, much less an RCU grace period.
769 */
770 void rcu_barrier(void)
771 {
772 _rcu_barrier(rcu_state_p);
773 }
774 EXPORT_SYMBOL_GPL(rcu_barrier);
775
776 /*
777 * Initialize preemptible RCU's state structures.
778 */
779 static void __init __rcu_init_preempt(void)
780 {
781 rcu_init_one(rcu_state_p);
782 }
783
784 /*
785 * Check for a task exiting while in a preemptible-RCU read-side
786 * critical section, clean up if so. No need to issue warnings,
787 * as debug_check_no_locks_held() already does this if lockdep
788 * is enabled.
789 */
790 void exit_rcu(void)
791 {
792 struct task_struct *t = current;
793
794 if (likely(list_empty(&current->rcu_node_entry)))
795 return;
796 t->rcu_read_lock_nesting = 1;
797 barrier();
798 t->rcu_read_unlock_special.b.blocked = true;
799 __rcu_read_unlock();
800 }
801
802 #else /* #ifdef CONFIG_PREEMPT_RCU */
803
804 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
805
806 /*
807 * Tell them what RCU they are running.
808 */
809 static void __init rcu_bootup_announce(void)
810 {
811 pr_info("Hierarchical RCU implementation.\n");
812 rcu_bootup_announce_oddness();
813 }
814
815 /*
816 * Because preemptible RCU does not exist, we never have to check for
817 * CPUs being in quiescent states.
818 */
819 static void rcu_preempt_note_context_switch(void)
820 {
821 }
822
823 /*
824 * Because preemptible RCU does not exist, there are never any preempted
825 * RCU readers.
826 */
827 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
828 {
829 return 0;
830 }
831
832 /*
833 * Because there is no preemptible RCU, there can be no readers blocked.
834 */
835 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
836 {
837 return false;
838 }
839
840 /*
841 * Because preemptible RCU does not exist, we never have to check for
842 * tasks blocked within RCU read-side critical sections.
843 */
844 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
845 {
846 }
847
848 /*
849 * Because preemptible RCU does not exist, we never have to check for
850 * tasks blocked within RCU read-side critical sections.
851 */
852 static int rcu_print_task_stall(struct rcu_node *rnp)
853 {
854 return 0;
855 }
856
857 /*
858 * Because preemptible RCU does not exist, we never have to check for
859 * tasks blocked within RCU read-side critical sections that are
860 * blocking the current expedited grace period.
861 */
862 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
863 {
864 return 0;
865 }
866
867 /*
868 * Because there is no preemptible RCU, there can be no readers blocked,
869 * so there is no need to check for blocked tasks. So check only for
870 * bogus qsmask values.
871 */
872 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
873 {
874 WARN_ON_ONCE(rnp->qsmask);
875 }
876
877 /*
878 * Because preemptible RCU does not exist, it never has any callbacks
879 * to check.
880 */
881 static void rcu_preempt_check_callbacks(void)
882 {
883 }
884
885 /*
886 * Wait for an rcu-preempt grace period, but make it happen quickly.
887 * But because preemptible RCU does not exist, map to rcu-sched.
888 */
889 void synchronize_rcu_expedited(void)
890 {
891 synchronize_sched_expedited();
892 }
893 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
894
895 /*
896 * Because preemptible RCU does not exist, rcu_barrier() is just
897 * another name for rcu_barrier_sched().
898 */
899 void rcu_barrier(void)
900 {
901 rcu_barrier_sched();
902 }
903 EXPORT_SYMBOL_GPL(rcu_barrier);
904
905 /*
906 * Because preemptible RCU does not exist, it need not be initialized.
907 */
908 static void __init __rcu_init_preempt(void)
909 {
910 }
911
912 /*
913 * Because preemptible RCU does not exist, tasks cannot possibly exit
914 * while in preemptible RCU read-side critical sections.
915 */
916 void exit_rcu(void)
917 {
918 }
919
920 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
921
922 #ifdef CONFIG_RCU_BOOST
923
924 #include "../locking/rtmutex_common.h"
925
926 #ifdef CONFIG_RCU_TRACE
927
928 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
929 {
930 if (!rcu_preempt_has_tasks(rnp))
931 rnp->n_balk_blkd_tasks++;
932 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
933 rnp->n_balk_exp_gp_tasks++;
934 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
935 rnp->n_balk_boost_tasks++;
936 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
937 rnp->n_balk_notblocked++;
938 else if (rnp->gp_tasks != NULL &&
939 ULONG_CMP_LT(jiffies, rnp->boost_time))
940 rnp->n_balk_notyet++;
941 else
942 rnp->n_balk_nos++;
943 }
944
945 #else /* #ifdef CONFIG_RCU_TRACE */
946
947 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
948 {
949 }
950
951 #endif /* #else #ifdef CONFIG_RCU_TRACE */
952
953 static void rcu_wake_cond(struct task_struct *t, int status)
954 {
955 /*
956 * If the thread is yielding, only wake it when this
957 * is invoked from idle
958 */
959 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
960 wake_up_process(t);
961 }
962
963 /*
964 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
965 * or ->boost_tasks, advancing the pointer to the next task in the
966 * ->blkd_tasks list.
967 *
968 * Note that irqs must be enabled: boosting the task can block.
969 * Returns 1 if there are more tasks needing to be boosted.
970 */
971 static int rcu_boost(struct rcu_node *rnp)
972 {
973 unsigned long flags;
974 struct task_struct *t;
975 struct list_head *tb;
976
977 if (READ_ONCE(rnp->exp_tasks) == NULL &&
978 READ_ONCE(rnp->boost_tasks) == NULL)
979 return 0; /* Nothing left to boost. */
980
981 raw_spin_lock_irqsave_rcu_node(rnp, flags);
982
983 /*
984 * Recheck under the lock: all tasks in need of boosting
985 * might exit their RCU read-side critical sections on their own.
986 */
987 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
988 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
989 return 0;
990 }
991
992 /*
993 * Preferentially boost tasks blocking expedited grace periods.
994 * This cannot starve the normal grace periods because a second
995 * expedited grace period must boost all blocked tasks, including
996 * those blocking the pre-existing normal grace period.
997 */
998 if (rnp->exp_tasks != NULL) {
999 tb = rnp->exp_tasks;
1000 rnp->n_exp_boosts++;
1001 } else {
1002 tb = rnp->boost_tasks;
1003 rnp->n_normal_boosts++;
1004 }
1005 rnp->n_tasks_boosted++;
1006
1007 /*
1008 * We boost task t by manufacturing an rt_mutex that appears to
1009 * be held by task t. We leave a pointer to that rt_mutex where
1010 * task t can find it, and task t will release the mutex when it
1011 * exits its outermost RCU read-side critical section. Then
1012 * simply acquiring this artificial rt_mutex will boost task
1013 * t's priority. (Thanks to tglx for suggesting this approach!)
1014 *
1015 * Note that task t must acquire rnp->lock to remove itself from
1016 * the ->blkd_tasks list, which it will do from exit() if from
1017 * nowhere else. We therefore are guaranteed that task t will
1018 * stay around at least until we drop rnp->lock. Note that
1019 * rnp->lock also resolves races between our priority boosting
1020 * and task t's exiting its outermost RCU read-side critical
1021 * section.
1022 */
1023 t = container_of(tb, struct task_struct, rcu_node_entry);
1024 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1025 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1026 /* Lock only for side effect: boosts task t's priority. */
1027 rt_mutex_lock(&rnp->boost_mtx);
1028 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1029
1030 return READ_ONCE(rnp->exp_tasks) != NULL ||
1031 READ_ONCE(rnp->boost_tasks) != NULL;
1032 }
1033
1034 /*
1035 * Priority-boosting kthread, one per leaf rcu_node.
1036 */
1037 static int rcu_boost_kthread(void *arg)
1038 {
1039 struct rcu_node *rnp = (struct rcu_node *)arg;
1040 int spincnt = 0;
1041 int more2boost;
1042
1043 trace_rcu_utilization(TPS("Start boost kthread@init"));
1044 for (;;) {
1045 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1046 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1047 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1048 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1049 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1050 more2boost = rcu_boost(rnp);
1051 if (more2boost)
1052 spincnt++;
1053 else
1054 spincnt = 0;
1055 if (spincnt > 10) {
1056 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1057 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1058 schedule_timeout_interruptible(2);
1059 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1060 spincnt = 0;
1061 }
1062 }
1063 /* NOTREACHED */
1064 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1065 return 0;
1066 }
1067
1068 /*
1069 * Check to see if it is time to start boosting RCU readers that are
1070 * blocking the current grace period, and, if so, tell the per-rcu_node
1071 * kthread to start boosting them. If there is an expedited grace
1072 * period in progress, it is always time to boost.
1073 *
1074 * The caller must hold rnp->lock, which this function releases.
1075 * The ->boost_kthread_task is immortal, so we don't need to worry
1076 * about it going away.
1077 */
1078 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1079 __releases(rnp->lock)
1080 {
1081 struct task_struct *t;
1082
1083 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1084 rnp->n_balk_exp_gp_tasks++;
1085 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1086 return;
1087 }
1088 if (rnp->exp_tasks != NULL ||
1089 (rnp->gp_tasks != NULL &&
1090 rnp->boost_tasks == NULL &&
1091 rnp->qsmask == 0 &&
1092 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1093 if (rnp->exp_tasks == NULL)
1094 rnp->boost_tasks = rnp->gp_tasks;
1095 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1096 t = rnp->boost_kthread_task;
1097 if (t)
1098 rcu_wake_cond(t, rnp->boost_kthread_status);
1099 } else {
1100 rcu_initiate_boost_trace(rnp);
1101 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1102 }
1103 }
1104
1105 /*
1106 * Wake up the per-CPU kthread to invoke RCU callbacks.
1107 */
1108 static void invoke_rcu_callbacks_kthread(void)
1109 {
1110 unsigned long flags;
1111
1112 local_irq_save(flags);
1113 __this_cpu_write(rcu_cpu_has_work, 1);
1114 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1115 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1116 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1117 __this_cpu_read(rcu_cpu_kthread_status));
1118 }
1119 local_irq_restore(flags);
1120 }
1121
1122 /*
1123 * Is the current CPU running the RCU-callbacks kthread?
1124 * Caller must have preemption disabled.
1125 */
1126 static bool rcu_is_callbacks_kthread(void)
1127 {
1128 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1129 }
1130
1131 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1132
1133 /*
1134 * Do priority-boost accounting for the start of a new grace period.
1135 */
1136 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1137 {
1138 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1139 }
1140
1141 /*
1142 * Create an RCU-boost kthread for the specified node if one does not
1143 * already exist. We only create this kthread for preemptible RCU.
1144 * Returns zero if all is well, a negated errno otherwise.
1145 */
1146 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1147 struct rcu_node *rnp)
1148 {
1149 int rnp_index = rnp - &rsp->node[0];
1150 unsigned long flags;
1151 struct sched_param sp;
1152 struct task_struct *t;
1153
1154 if (rcu_state_p != rsp)
1155 return 0;
1156
1157 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1158 return 0;
1159
1160 rsp->boost = 1;
1161 if (rnp->boost_kthread_task != NULL)
1162 return 0;
1163 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1164 "rcub/%d", rnp_index);
1165 if (IS_ERR(t))
1166 return PTR_ERR(t);
1167 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1168 rnp->boost_kthread_task = t;
1169 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1170 sp.sched_priority = kthread_prio;
1171 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1172 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1173 return 0;
1174 }
1175
1176 static void rcu_kthread_do_work(void)
1177 {
1178 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1179 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1180 rcu_preempt_do_callbacks();
1181 }
1182
1183 static void rcu_cpu_kthread_setup(unsigned int cpu)
1184 {
1185 struct sched_param sp;
1186
1187 sp.sched_priority = kthread_prio;
1188 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1189 }
1190
1191 static void rcu_cpu_kthread_park(unsigned int cpu)
1192 {
1193 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1194 }
1195
1196 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1197 {
1198 return __this_cpu_read(rcu_cpu_has_work);
1199 }
1200
1201 /*
1202 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1203 * RCU softirq used in flavors and configurations of RCU that do not
1204 * support RCU priority boosting.
1205 */
1206 static void rcu_cpu_kthread(unsigned int cpu)
1207 {
1208 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1209 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1210 int spincnt;
1211
1212 for (spincnt = 0; spincnt < 10; spincnt++) {
1213 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1214 local_bh_disable();
1215 *statusp = RCU_KTHREAD_RUNNING;
1216 this_cpu_inc(rcu_cpu_kthread_loops);
1217 local_irq_disable();
1218 work = *workp;
1219 *workp = 0;
1220 local_irq_enable();
1221 if (work)
1222 rcu_kthread_do_work();
1223 local_bh_enable();
1224 if (*workp == 0) {
1225 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1226 *statusp = RCU_KTHREAD_WAITING;
1227 return;
1228 }
1229 }
1230 *statusp = RCU_KTHREAD_YIELDING;
1231 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1232 schedule_timeout_interruptible(2);
1233 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1234 *statusp = RCU_KTHREAD_WAITING;
1235 }
1236
1237 /*
1238 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1239 * served by the rcu_node in question. The CPU hotplug lock is still
1240 * held, so the value of rnp->qsmaskinit will be stable.
1241 *
1242 * We don't include outgoingcpu in the affinity set, use -1 if there is
1243 * no outgoing CPU. If there are no CPUs left in the affinity set,
1244 * this function allows the kthread to execute on any CPU.
1245 */
1246 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1247 {
1248 struct task_struct *t = rnp->boost_kthread_task;
1249 unsigned long mask = rcu_rnp_online_cpus(rnp);
1250 cpumask_var_t cm;
1251 int cpu;
1252
1253 if (!t)
1254 return;
1255 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1256 return;
1257 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1258 if ((mask & 0x1) && cpu != outgoingcpu)
1259 cpumask_set_cpu(cpu, cm);
1260 if (cpumask_weight(cm) == 0)
1261 cpumask_setall(cm);
1262 set_cpus_allowed_ptr(t, cm);
1263 free_cpumask_var(cm);
1264 }
1265
1266 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1267 .store = &rcu_cpu_kthread_task,
1268 .thread_should_run = rcu_cpu_kthread_should_run,
1269 .thread_fn = rcu_cpu_kthread,
1270 .thread_comm = "rcuc/%u",
1271 .setup = rcu_cpu_kthread_setup,
1272 .park = rcu_cpu_kthread_park,
1273 };
1274
1275 /*
1276 * Spawn boost kthreads -- called as soon as the scheduler is running.
1277 */
1278 static void __init rcu_spawn_boost_kthreads(void)
1279 {
1280 struct rcu_node *rnp;
1281 int cpu;
1282
1283 for_each_possible_cpu(cpu)
1284 per_cpu(rcu_cpu_has_work, cpu) = 0;
1285 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1286 rcu_for_each_leaf_node(rcu_state_p, rnp)
1287 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1288 }
1289
1290 static void rcu_prepare_kthreads(int cpu)
1291 {
1292 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1293 struct rcu_node *rnp = rdp->mynode;
1294
1295 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1296 if (rcu_scheduler_fully_active)
1297 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1298 }
1299
1300 #else /* #ifdef CONFIG_RCU_BOOST */
1301
1302 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1303 __releases(rnp->lock)
1304 {
1305 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1306 }
1307
1308 static void invoke_rcu_callbacks_kthread(void)
1309 {
1310 WARN_ON_ONCE(1);
1311 }
1312
1313 static bool rcu_is_callbacks_kthread(void)
1314 {
1315 return false;
1316 }
1317
1318 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1319 {
1320 }
1321
1322 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1323 {
1324 }
1325
1326 static void __init rcu_spawn_boost_kthreads(void)
1327 {
1328 }
1329
1330 static void rcu_prepare_kthreads(int cpu)
1331 {
1332 }
1333
1334 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1335
1336 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1337
1338 /*
1339 * Check to see if any future RCU-related work will need to be done
1340 * by the current CPU, even if none need be done immediately, returning
1341 * 1 if so. This function is part of the RCU implementation; it is -not-
1342 * an exported member of the RCU API.
1343 *
1344 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1345 * any flavor of RCU.
1346 */
1347 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1348 {
1349 *nextevt = KTIME_MAX;
1350 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1351 ? 0 : rcu_cpu_has_callbacks(NULL);
1352 }
1353
1354 /*
1355 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1356 * after it.
1357 */
1358 static void rcu_cleanup_after_idle(void)
1359 {
1360 }
1361
1362 /*
1363 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1364 * is nothing.
1365 */
1366 static void rcu_prepare_for_idle(void)
1367 {
1368 }
1369
1370 /*
1371 * Don't bother keeping a running count of the number of RCU callbacks
1372 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1373 */
1374 static void rcu_idle_count_callbacks_posted(void)
1375 {
1376 }
1377
1378 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1379
1380 /*
1381 * This code is invoked when a CPU goes idle, at which point we want
1382 * to have the CPU do everything required for RCU so that it can enter
1383 * the energy-efficient dyntick-idle mode. This is handled by a
1384 * state machine implemented by rcu_prepare_for_idle() below.
1385 *
1386 * The following three proprocessor symbols control this state machine:
1387 *
1388 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1389 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1390 * is sized to be roughly one RCU grace period. Those energy-efficiency
1391 * benchmarkers who might otherwise be tempted to set this to a large
1392 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1393 * system. And if you are -that- concerned about energy efficiency,
1394 * just power the system down and be done with it!
1395 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1396 * permitted to sleep in dyntick-idle mode with only lazy RCU
1397 * callbacks pending. Setting this too high can OOM your system.
1398 *
1399 * The values below work well in practice. If future workloads require
1400 * adjustment, they can be converted into kernel config parameters, though
1401 * making the state machine smarter might be a better option.
1402 */
1403 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1404 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1405
1406 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1407 module_param(rcu_idle_gp_delay, int, 0644);
1408 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1409 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1410
1411 /*
1412 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1413 * only if it has been awhile since the last time we did so. Afterwards,
1414 * if there are any callbacks ready for immediate invocation, return true.
1415 */
1416 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1417 {
1418 bool cbs_ready = false;
1419 struct rcu_data *rdp;
1420 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1421 struct rcu_node *rnp;
1422 struct rcu_state *rsp;
1423
1424 /* Exit early if we advanced recently. */
1425 if (jiffies == rdtp->last_advance_all)
1426 return false;
1427 rdtp->last_advance_all = jiffies;
1428
1429 for_each_rcu_flavor(rsp) {
1430 rdp = this_cpu_ptr(rsp->rda);
1431 rnp = rdp->mynode;
1432
1433 /*
1434 * Don't bother checking unless a grace period has
1435 * completed since we last checked and there are
1436 * callbacks not yet ready to invoke.
1437 */
1438 if ((rdp->completed != rnp->completed ||
1439 unlikely(READ_ONCE(rdp->gpwrap))) &&
1440 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1441 note_gp_changes(rsp, rdp);
1442
1443 if (cpu_has_callbacks_ready_to_invoke(rdp))
1444 cbs_ready = true;
1445 }
1446 return cbs_ready;
1447 }
1448
1449 /*
1450 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1451 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1452 * caller to set the timeout based on whether or not there are non-lazy
1453 * callbacks.
1454 *
1455 * The caller must have disabled interrupts.
1456 */
1457 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1458 {
1459 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1460 unsigned long dj;
1461
1462 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1463 *nextevt = KTIME_MAX;
1464 return 0;
1465 }
1466
1467 /* Snapshot to detect later posting of non-lazy callback. */
1468 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1469
1470 /* If no callbacks, RCU doesn't need the CPU. */
1471 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1472 *nextevt = KTIME_MAX;
1473 return 0;
1474 }
1475
1476 /* Attempt to advance callbacks. */
1477 if (rcu_try_advance_all_cbs()) {
1478 /* Some ready to invoke, so initiate later invocation. */
1479 invoke_rcu_core();
1480 return 1;
1481 }
1482 rdtp->last_accelerate = jiffies;
1483
1484 /* Request timer delay depending on laziness, and round. */
1485 if (!rdtp->all_lazy) {
1486 dj = round_up(rcu_idle_gp_delay + jiffies,
1487 rcu_idle_gp_delay) - jiffies;
1488 } else {
1489 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1490 }
1491 *nextevt = basemono + dj * TICK_NSEC;
1492 return 0;
1493 }
1494
1495 /*
1496 * Prepare a CPU for idle from an RCU perspective. The first major task
1497 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1498 * The second major task is to check to see if a non-lazy callback has
1499 * arrived at a CPU that previously had only lazy callbacks. The third
1500 * major task is to accelerate (that is, assign grace-period numbers to)
1501 * any recently arrived callbacks.
1502 *
1503 * The caller must have disabled interrupts.
1504 */
1505 static void rcu_prepare_for_idle(void)
1506 {
1507 bool needwake;
1508 struct rcu_data *rdp;
1509 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1510 struct rcu_node *rnp;
1511 struct rcu_state *rsp;
1512 int tne;
1513
1514 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1515 rcu_is_nocb_cpu(smp_processor_id()))
1516 return;
1517
1518 /* Handle nohz enablement switches conservatively. */
1519 tne = READ_ONCE(tick_nohz_active);
1520 if (tne != rdtp->tick_nohz_enabled_snap) {
1521 if (rcu_cpu_has_callbacks(NULL))
1522 invoke_rcu_core(); /* force nohz to see update. */
1523 rdtp->tick_nohz_enabled_snap = tne;
1524 return;
1525 }
1526 if (!tne)
1527 return;
1528
1529 /*
1530 * If a non-lazy callback arrived at a CPU having only lazy
1531 * callbacks, invoke RCU core for the side-effect of recalculating
1532 * idle duration on re-entry to idle.
1533 */
1534 if (rdtp->all_lazy &&
1535 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1536 rdtp->all_lazy = false;
1537 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1538 invoke_rcu_core();
1539 return;
1540 }
1541
1542 /*
1543 * If we have not yet accelerated this jiffy, accelerate all
1544 * callbacks on this CPU.
1545 */
1546 if (rdtp->last_accelerate == jiffies)
1547 return;
1548 rdtp->last_accelerate = jiffies;
1549 for_each_rcu_flavor(rsp) {
1550 rdp = this_cpu_ptr(rsp->rda);
1551 if (!*rdp->nxttail[RCU_DONE_TAIL])
1552 continue;
1553 rnp = rdp->mynode;
1554 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1555 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1556 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1557 if (needwake)
1558 rcu_gp_kthread_wake(rsp);
1559 }
1560 }
1561
1562 /*
1563 * Clean up for exit from idle. Attempt to advance callbacks based on
1564 * any grace periods that elapsed while the CPU was idle, and if any
1565 * callbacks are now ready to invoke, initiate invocation.
1566 */
1567 static void rcu_cleanup_after_idle(void)
1568 {
1569 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1570 rcu_is_nocb_cpu(smp_processor_id()))
1571 return;
1572 if (rcu_try_advance_all_cbs())
1573 invoke_rcu_core();
1574 }
1575
1576 /*
1577 * Keep a running count of the number of non-lazy callbacks posted
1578 * on this CPU. This running counter (which is never decremented) allows
1579 * rcu_prepare_for_idle() to detect when something out of the idle loop
1580 * posts a callback, even if an equal number of callbacks are invoked.
1581 * Of course, callbacks should only be posted from within a trace event
1582 * designed to be called from idle or from within RCU_NONIDLE().
1583 */
1584 static void rcu_idle_count_callbacks_posted(void)
1585 {
1586 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1587 }
1588
1589 /*
1590 * Data for flushing lazy RCU callbacks at OOM time.
1591 */
1592 static atomic_t oom_callback_count;
1593 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1594
1595 /*
1596 * RCU OOM callback -- decrement the outstanding count and deliver the
1597 * wake-up if we are the last one.
1598 */
1599 static void rcu_oom_callback(struct rcu_head *rhp)
1600 {
1601 if (atomic_dec_and_test(&oom_callback_count))
1602 wake_up(&oom_callback_wq);
1603 }
1604
1605 /*
1606 * Post an rcu_oom_notify callback on the current CPU if it has at
1607 * least one lazy callback. This will unnecessarily post callbacks
1608 * to CPUs that already have a non-lazy callback at the end of their
1609 * callback list, but this is an infrequent operation, so accept some
1610 * extra overhead to keep things simple.
1611 */
1612 static void rcu_oom_notify_cpu(void *unused)
1613 {
1614 struct rcu_state *rsp;
1615 struct rcu_data *rdp;
1616
1617 for_each_rcu_flavor(rsp) {
1618 rdp = raw_cpu_ptr(rsp->rda);
1619 if (rdp->qlen_lazy != 0) {
1620 atomic_inc(&oom_callback_count);
1621 rsp->call(&rdp->oom_head, rcu_oom_callback);
1622 }
1623 }
1624 }
1625
1626 /*
1627 * If low on memory, ensure that each CPU has a non-lazy callback.
1628 * This will wake up CPUs that have only lazy callbacks, in turn
1629 * ensuring that they free up the corresponding memory in a timely manner.
1630 * Because an uncertain amount of memory will be freed in some uncertain
1631 * timeframe, we do not claim to have freed anything.
1632 */
1633 static int rcu_oom_notify(struct notifier_block *self,
1634 unsigned long notused, void *nfreed)
1635 {
1636 int cpu;
1637
1638 /* Wait for callbacks from earlier instance to complete. */
1639 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1640 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1641
1642 /*
1643 * Prevent premature wakeup: ensure that all increments happen
1644 * before there is a chance of the counter reaching zero.
1645 */
1646 atomic_set(&oom_callback_count, 1);
1647
1648 for_each_online_cpu(cpu) {
1649 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1650 cond_resched_rcu_qs();
1651 }
1652
1653 /* Unconditionally decrement: no need to wake ourselves up. */
1654 atomic_dec(&oom_callback_count);
1655
1656 return NOTIFY_OK;
1657 }
1658
1659 static struct notifier_block rcu_oom_nb = {
1660 .notifier_call = rcu_oom_notify
1661 };
1662
1663 static int __init rcu_register_oom_notifier(void)
1664 {
1665 register_oom_notifier(&rcu_oom_nb);
1666 return 0;
1667 }
1668 early_initcall(rcu_register_oom_notifier);
1669
1670 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1671
1672 #ifdef CONFIG_RCU_FAST_NO_HZ
1673
1674 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1675 {
1676 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1677 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1678
1679 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1680 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1681 ulong2long(nlpd),
1682 rdtp->all_lazy ? 'L' : '.',
1683 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1684 }
1685
1686 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1687
1688 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1689 {
1690 *cp = '\0';
1691 }
1692
1693 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1694
1695 /* Initiate the stall-info list. */
1696 static void print_cpu_stall_info_begin(void)
1697 {
1698 pr_cont("\n");
1699 }
1700
1701 /*
1702 * Print out diagnostic information for the specified stalled CPU.
1703 *
1704 * If the specified CPU is aware of the current RCU grace period
1705 * (flavor specified by rsp), then print the number of scheduling
1706 * clock interrupts the CPU has taken during the time that it has
1707 * been aware. Otherwise, print the number of RCU grace periods
1708 * that this CPU is ignorant of, for example, "1" if the CPU was
1709 * aware of the previous grace period.
1710 *
1711 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1712 */
1713 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1714 {
1715 char fast_no_hz[72];
1716 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1717 struct rcu_dynticks *rdtp = rdp->dynticks;
1718 char *ticks_title;
1719 unsigned long ticks_value;
1720
1721 if (rsp->gpnum == rdp->gpnum) {
1722 ticks_title = "ticks this GP";
1723 ticks_value = rdp->ticks_this_gp;
1724 } else {
1725 ticks_title = "GPs behind";
1726 ticks_value = rsp->gpnum - rdp->gpnum;
1727 }
1728 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1729 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1730 cpu,
1731 "O."[!!cpu_online(cpu)],
1732 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1733 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1734 ticks_value, ticks_title,
1735 atomic_read(&rdtp->dynticks) & 0xfff,
1736 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1737 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1738 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1739 fast_no_hz);
1740 }
1741
1742 /* Terminate the stall-info list. */
1743 static void print_cpu_stall_info_end(void)
1744 {
1745 pr_err("\t");
1746 }
1747
1748 /* Zero ->ticks_this_gp for all flavors of RCU. */
1749 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1750 {
1751 rdp->ticks_this_gp = 0;
1752 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1753 }
1754
1755 /* Increment ->ticks_this_gp for all flavors of RCU. */
1756 static void increment_cpu_stall_ticks(void)
1757 {
1758 struct rcu_state *rsp;
1759
1760 for_each_rcu_flavor(rsp)
1761 raw_cpu_inc(rsp->rda->ticks_this_gp);
1762 }
1763
1764 #ifdef CONFIG_RCU_NOCB_CPU
1765
1766 /*
1767 * Offload callback processing from the boot-time-specified set of CPUs
1768 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1769 * kthread created that pulls the callbacks from the corresponding CPU,
1770 * waits for a grace period to elapse, and invokes the callbacks.
1771 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1772 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1773 * has been specified, in which case each kthread actively polls its
1774 * CPU. (Which isn't so great for energy efficiency, but which does
1775 * reduce RCU's overhead on that CPU.)
1776 *
1777 * This is intended to be used in conjunction with Frederic Weisbecker's
1778 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1779 * running CPU-bound user-mode computations.
1780 *
1781 * Offloading of callback processing could also in theory be used as
1782 * an energy-efficiency measure because CPUs with no RCU callbacks
1783 * queued are more aggressive about entering dyntick-idle mode.
1784 */
1785
1786
1787 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1788 static int __init rcu_nocb_setup(char *str)
1789 {
1790 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1791 have_rcu_nocb_mask = true;
1792 cpulist_parse(str, rcu_nocb_mask);
1793 return 1;
1794 }
1795 __setup("rcu_nocbs=", rcu_nocb_setup);
1796
1797 static int __init parse_rcu_nocb_poll(char *arg)
1798 {
1799 rcu_nocb_poll = 1;
1800 return 0;
1801 }
1802 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1803
1804 /*
1805 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1806 * grace period.
1807 */
1808 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1809 {
1810 swake_up_all(sq);
1811 }
1812
1813 /*
1814 * Set the root rcu_node structure's ->need_future_gp field
1815 * based on the sum of those of all rcu_node structures. This does
1816 * double-count the root rcu_node structure's requests, but this
1817 * is necessary to handle the possibility of a rcu_nocb_kthread()
1818 * having awakened during the time that the rcu_node structures
1819 * were being updated for the end of the previous grace period.
1820 */
1821 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1822 {
1823 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1824 }
1825
1826 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1827 {
1828 return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1829 }
1830
1831 static void rcu_init_one_nocb(struct rcu_node *rnp)
1832 {
1833 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1834 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1835 }
1836
1837 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1838 /* Is the specified CPU a no-CBs CPU? */
1839 bool rcu_is_nocb_cpu(int cpu)
1840 {
1841 if (have_rcu_nocb_mask)
1842 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1843 return false;
1844 }
1845 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1846
1847 /*
1848 * Kick the leader kthread for this NOCB group.
1849 */
1850 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1851 {
1852 struct rcu_data *rdp_leader = rdp->nocb_leader;
1853
1854 if (!READ_ONCE(rdp_leader->nocb_kthread))
1855 return;
1856 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1857 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1858 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1859 swake_up(&rdp_leader->nocb_wq);
1860 }
1861 }
1862
1863 /*
1864 * Does the specified CPU need an RCU callback for the specified flavor
1865 * of rcu_barrier()?
1866 */
1867 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1868 {
1869 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1870 unsigned long ret;
1871 #ifdef CONFIG_PROVE_RCU
1872 struct rcu_head *rhp;
1873 #endif /* #ifdef CONFIG_PROVE_RCU */
1874
1875 /*
1876 * Check count of all no-CBs callbacks awaiting invocation.
1877 * There needs to be a barrier before this function is called,
1878 * but associated with a prior determination that no more
1879 * callbacks would be posted. In the worst case, the first
1880 * barrier in _rcu_barrier() suffices (but the caller cannot
1881 * necessarily rely on this, not a substitute for the caller
1882 * getting the concurrency design right!). There must also be
1883 * a barrier between the following load an posting of a callback
1884 * (if a callback is in fact needed). This is associated with an
1885 * atomic_inc() in the caller.
1886 */
1887 ret = atomic_long_read(&rdp->nocb_q_count);
1888
1889 #ifdef CONFIG_PROVE_RCU
1890 rhp = READ_ONCE(rdp->nocb_head);
1891 if (!rhp)
1892 rhp = READ_ONCE(rdp->nocb_gp_head);
1893 if (!rhp)
1894 rhp = READ_ONCE(rdp->nocb_follower_head);
1895
1896 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1897 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1898 rcu_scheduler_fully_active) {
1899 /* RCU callback enqueued before CPU first came online??? */
1900 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1901 cpu, rhp->func);
1902 WARN_ON_ONCE(1);
1903 }
1904 #endif /* #ifdef CONFIG_PROVE_RCU */
1905
1906 return !!ret;
1907 }
1908
1909 /*
1910 * Enqueue the specified string of rcu_head structures onto the specified
1911 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1912 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1913 * counts are supplied by rhcount and rhcount_lazy.
1914 *
1915 * If warranted, also wake up the kthread servicing this CPUs queues.
1916 */
1917 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1918 struct rcu_head *rhp,
1919 struct rcu_head **rhtp,
1920 int rhcount, int rhcount_lazy,
1921 unsigned long flags)
1922 {
1923 int len;
1924 struct rcu_head **old_rhpp;
1925 struct task_struct *t;
1926
1927 /* Enqueue the callback on the nocb list and update counts. */
1928 atomic_long_add(rhcount, &rdp->nocb_q_count);
1929 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1930 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1931 WRITE_ONCE(*old_rhpp, rhp);
1932 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1933 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1934
1935 /* If we are not being polled and there is a kthread, awaken it ... */
1936 t = READ_ONCE(rdp->nocb_kthread);
1937 if (rcu_nocb_poll || !t) {
1938 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1939 TPS("WakeNotPoll"));
1940 return;
1941 }
1942 len = atomic_long_read(&rdp->nocb_q_count);
1943 if (old_rhpp == &rdp->nocb_head) {
1944 if (!irqs_disabled_flags(flags)) {
1945 /* ... if queue was empty ... */
1946 wake_nocb_leader(rdp, false);
1947 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1948 TPS("WakeEmpty"));
1949 } else {
1950 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1951 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1952 TPS("WakeEmptyIsDeferred"));
1953 }
1954 rdp->qlen_last_fqs_check = 0;
1955 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1956 /* ... or if many callbacks queued. */
1957 if (!irqs_disabled_flags(flags)) {
1958 wake_nocb_leader(rdp, true);
1959 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1960 TPS("WakeOvf"));
1961 } else {
1962 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1963 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1964 TPS("WakeOvfIsDeferred"));
1965 }
1966 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1967 } else {
1968 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1969 }
1970 return;
1971 }
1972
1973 /*
1974 * This is a helper for __call_rcu(), which invokes this when the normal
1975 * callback queue is inoperable. If this is not a no-CBs CPU, this
1976 * function returns failure back to __call_rcu(), which can complain
1977 * appropriately.
1978 *
1979 * Otherwise, this function queues the callback where the corresponding
1980 * "rcuo" kthread can find it.
1981 */
1982 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1983 bool lazy, unsigned long flags)
1984 {
1985
1986 if (!rcu_is_nocb_cpu(rdp->cpu))
1987 return false;
1988 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1989 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1990 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1991 (unsigned long)rhp->func,
1992 -atomic_long_read(&rdp->nocb_q_count_lazy),
1993 -atomic_long_read(&rdp->nocb_q_count));
1994 else
1995 trace_rcu_callback(rdp->rsp->name, rhp,
1996 -atomic_long_read(&rdp->nocb_q_count_lazy),
1997 -atomic_long_read(&rdp->nocb_q_count));
1998
1999 /*
2000 * If called from an extended quiescent state with interrupts
2001 * disabled, invoke the RCU core in order to allow the idle-entry
2002 * deferred-wakeup check to function.
2003 */
2004 if (irqs_disabled_flags(flags) &&
2005 !rcu_is_watching() &&
2006 cpu_online(smp_processor_id()))
2007 invoke_rcu_core();
2008
2009 return true;
2010 }
2011
2012 /*
2013 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2014 * not a no-CBs CPU.
2015 */
2016 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2017 struct rcu_data *rdp,
2018 unsigned long flags)
2019 {
2020 long ql = rsp->qlen;
2021 long qll = rsp->qlen_lazy;
2022
2023 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2024 if (!rcu_is_nocb_cpu(smp_processor_id()))
2025 return false;
2026 rsp->qlen = 0;
2027 rsp->qlen_lazy = 0;
2028
2029 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2030 if (rsp->orphan_donelist != NULL) {
2031 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2032 rsp->orphan_donetail, ql, qll, flags);
2033 ql = qll = 0;
2034 rsp->orphan_donelist = NULL;
2035 rsp->orphan_donetail = &rsp->orphan_donelist;
2036 }
2037 if (rsp->orphan_nxtlist != NULL) {
2038 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2039 rsp->orphan_nxttail, ql, qll, flags);
2040 ql = qll = 0;
2041 rsp->orphan_nxtlist = NULL;
2042 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2043 }
2044 return true;
2045 }
2046
2047 /*
2048 * If necessary, kick off a new grace period, and either way wait
2049 * for a subsequent grace period to complete.
2050 */
2051 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2052 {
2053 unsigned long c;
2054 bool d;
2055 unsigned long flags;
2056 bool needwake;
2057 struct rcu_node *rnp = rdp->mynode;
2058
2059 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2060 needwake = rcu_start_future_gp(rnp, rdp, &c);
2061 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2062 if (needwake)
2063 rcu_gp_kthread_wake(rdp->rsp);
2064
2065 /*
2066 * Wait for the grace period. Do so interruptibly to avoid messing
2067 * up the load average.
2068 */
2069 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2070 for (;;) {
2071 swait_event_interruptible(
2072 rnp->nocb_gp_wq[c & 0x1],
2073 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2074 if (likely(d))
2075 break;
2076 WARN_ON(signal_pending(current));
2077 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2078 }
2079 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2080 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2081 }
2082
2083 /*
2084 * Leaders come here to wait for additional callbacks to show up.
2085 * This function does not return until callbacks appear.
2086 */
2087 static void nocb_leader_wait(struct rcu_data *my_rdp)
2088 {
2089 bool firsttime = true;
2090 bool gotcbs;
2091 struct rcu_data *rdp;
2092 struct rcu_head **tail;
2093
2094 wait_again:
2095
2096 /* Wait for callbacks to appear. */
2097 if (!rcu_nocb_poll) {
2098 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2099 swait_event_interruptible(my_rdp->nocb_wq,
2100 !READ_ONCE(my_rdp->nocb_leader_sleep));
2101 /* Memory barrier handled by smp_mb() calls below and repoll. */
2102 } else if (firsttime) {
2103 firsttime = false; /* Don't drown trace log with "Poll"! */
2104 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2105 }
2106
2107 /*
2108 * Each pass through the following loop checks a follower for CBs.
2109 * We are our own first follower. Any CBs found are moved to
2110 * nocb_gp_head, where they await a grace period.
2111 */
2112 gotcbs = false;
2113 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2114 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2115 if (!rdp->nocb_gp_head)
2116 continue; /* No CBs here, try next follower. */
2117
2118 /* Move callbacks to wait-for-GP list, which is empty. */
2119 WRITE_ONCE(rdp->nocb_head, NULL);
2120 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2121 gotcbs = true;
2122 }
2123
2124 /*
2125 * If there were no callbacks, sleep a bit, rescan after a
2126 * memory barrier, and go retry.
2127 */
2128 if (unlikely(!gotcbs)) {
2129 if (!rcu_nocb_poll)
2130 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2131 "WokeEmpty");
2132 WARN_ON(signal_pending(current));
2133 schedule_timeout_interruptible(1);
2134
2135 /* Rescan in case we were a victim of memory ordering. */
2136 my_rdp->nocb_leader_sleep = true;
2137 smp_mb(); /* Ensure _sleep true before scan. */
2138 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2139 if (READ_ONCE(rdp->nocb_head)) {
2140 /* Found CB, so short-circuit next wait. */
2141 my_rdp->nocb_leader_sleep = false;
2142 break;
2143 }
2144 goto wait_again;
2145 }
2146
2147 /* Wait for one grace period. */
2148 rcu_nocb_wait_gp(my_rdp);
2149
2150 /*
2151 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2152 * We set it now, but recheck for new callbacks while
2153 * traversing our follower list.
2154 */
2155 my_rdp->nocb_leader_sleep = true;
2156 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2157
2158 /* Each pass through the following loop wakes a follower, if needed. */
2159 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2160 if (READ_ONCE(rdp->nocb_head))
2161 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2162 if (!rdp->nocb_gp_head)
2163 continue; /* No CBs, so no need to wake follower. */
2164
2165 /* Append callbacks to follower's "done" list. */
2166 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2167 *tail = rdp->nocb_gp_head;
2168 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2169 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2170 /*
2171 * List was empty, wake up the follower.
2172 * Memory barriers supplied by atomic_long_add().
2173 */
2174 swake_up(&rdp->nocb_wq);
2175 }
2176 }
2177
2178 /* If we (the leader) don't have CBs, go wait some more. */
2179 if (!my_rdp->nocb_follower_head)
2180 goto wait_again;
2181 }
2182
2183 /*
2184 * Followers come here to wait for additional callbacks to show up.
2185 * This function does not return until callbacks appear.
2186 */
2187 static void nocb_follower_wait(struct rcu_data *rdp)
2188 {
2189 bool firsttime = true;
2190
2191 for (;;) {
2192 if (!rcu_nocb_poll) {
2193 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2194 "FollowerSleep");
2195 swait_event_interruptible(rdp->nocb_wq,
2196 READ_ONCE(rdp->nocb_follower_head));
2197 } else if (firsttime) {
2198 /* Don't drown trace log with "Poll"! */
2199 firsttime = false;
2200 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2201 }
2202 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2203 /* ^^^ Ensure CB invocation follows _head test. */
2204 return;
2205 }
2206 if (!rcu_nocb_poll)
2207 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2208 "WokeEmpty");
2209 WARN_ON(signal_pending(current));
2210 schedule_timeout_interruptible(1);
2211 }
2212 }
2213
2214 /*
2215 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2216 * callbacks queued by the corresponding no-CBs CPU, however, there is
2217 * an optional leader-follower relationship so that the grace-period
2218 * kthreads don't have to do quite so many wakeups.
2219 */
2220 static int rcu_nocb_kthread(void *arg)
2221 {
2222 int c, cl;
2223 struct rcu_head *list;
2224 struct rcu_head *next;
2225 struct rcu_head **tail;
2226 struct rcu_data *rdp = arg;
2227
2228 /* Each pass through this loop invokes one batch of callbacks */
2229 for (;;) {
2230 /* Wait for callbacks. */
2231 if (rdp->nocb_leader == rdp)
2232 nocb_leader_wait(rdp);
2233 else
2234 nocb_follower_wait(rdp);
2235
2236 /* Pull the ready-to-invoke callbacks onto local list. */
2237 list = READ_ONCE(rdp->nocb_follower_head);
2238 BUG_ON(!list);
2239 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2240 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2241 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2242
2243 /* Each pass through the following loop invokes a callback. */
2244 trace_rcu_batch_start(rdp->rsp->name,
2245 atomic_long_read(&rdp->nocb_q_count_lazy),
2246 atomic_long_read(&rdp->nocb_q_count), -1);
2247 c = cl = 0;
2248 while (list) {
2249 next = list->next;
2250 /* Wait for enqueuing to complete, if needed. */
2251 while (next == NULL && &list->next != tail) {
2252 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2253 TPS("WaitQueue"));
2254 schedule_timeout_interruptible(1);
2255 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2256 TPS("WokeQueue"));
2257 next = list->next;
2258 }
2259 debug_rcu_head_unqueue(list);
2260 local_bh_disable();
2261 if (__rcu_reclaim(rdp->rsp->name, list))
2262 cl++;
2263 c++;
2264 local_bh_enable();
2265 list = next;
2266 }
2267 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2268 smp_mb__before_atomic(); /* _add after CB invocation. */
2269 atomic_long_add(-c, &rdp->nocb_q_count);
2270 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2271 rdp->n_nocbs_invoked += c;
2272 }
2273 return 0;
2274 }
2275
2276 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2277 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2278 {
2279 return READ_ONCE(rdp->nocb_defer_wakeup);
2280 }
2281
2282 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2283 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2284 {
2285 int ndw;
2286
2287 if (!rcu_nocb_need_deferred_wakeup(rdp))
2288 return;
2289 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2290 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2291 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2292 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2293 }
2294
2295 void __init rcu_init_nohz(void)
2296 {
2297 int cpu;
2298 bool need_rcu_nocb_mask = true;
2299 struct rcu_state *rsp;
2300
2301 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2302 need_rcu_nocb_mask = false;
2303 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2304
2305 #if defined(CONFIG_NO_HZ_FULL)
2306 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2307 need_rcu_nocb_mask = true;
2308 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2309
2310 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2311 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2312 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2313 return;
2314 }
2315 have_rcu_nocb_mask = true;
2316 }
2317 if (!have_rcu_nocb_mask)
2318 return;
2319
2320 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2321 pr_info("\tOffload RCU callbacks from CPU 0\n");
2322 cpumask_set_cpu(0, rcu_nocb_mask);
2323 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2324 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2325 pr_info("\tOffload RCU callbacks from all CPUs\n");
2326 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2327 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2328 #if defined(CONFIG_NO_HZ_FULL)
2329 if (tick_nohz_full_running)
2330 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2331 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2332
2333 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2334 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2335 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2336 rcu_nocb_mask);
2337 }
2338 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2339 cpumask_pr_args(rcu_nocb_mask));
2340 if (rcu_nocb_poll)
2341 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2342
2343 for_each_rcu_flavor(rsp) {
2344 for_each_cpu(cpu, rcu_nocb_mask)
2345 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2346 rcu_organize_nocb_kthreads(rsp);
2347 }
2348 }
2349
2350 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2351 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2352 {
2353 rdp->nocb_tail = &rdp->nocb_head;
2354 init_swait_queue_head(&rdp->nocb_wq);
2355 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2356 }
2357
2358 /*
2359 * If the specified CPU is a no-CBs CPU that does not already have its
2360 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2361 * brought online out of order, this can require re-organizing the
2362 * leader-follower relationships.
2363 */
2364 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2365 {
2366 struct rcu_data *rdp;
2367 struct rcu_data *rdp_last;
2368 struct rcu_data *rdp_old_leader;
2369 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2370 struct task_struct *t;
2371
2372 /*
2373 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2374 * then nothing to do.
2375 */
2376 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2377 return;
2378
2379 /* If we didn't spawn the leader first, reorganize! */
2380 rdp_old_leader = rdp_spawn->nocb_leader;
2381 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2382 rdp_last = NULL;
2383 rdp = rdp_old_leader;
2384 do {
2385 rdp->nocb_leader = rdp_spawn;
2386 if (rdp_last && rdp != rdp_spawn)
2387 rdp_last->nocb_next_follower = rdp;
2388 if (rdp == rdp_spawn) {
2389 rdp = rdp->nocb_next_follower;
2390 } else {
2391 rdp_last = rdp;
2392 rdp = rdp->nocb_next_follower;
2393 rdp_last->nocb_next_follower = NULL;
2394 }
2395 } while (rdp);
2396 rdp_spawn->nocb_next_follower = rdp_old_leader;
2397 }
2398
2399 /* Spawn the kthread for this CPU and RCU flavor. */
2400 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2401 "rcuo%c/%d", rsp->abbr, cpu);
2402 BUG_ON(IS_ERR(t));
2403 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2404 }
2405
2406 /*
2407 * If the specified CPU is a no-CBs CPU that does not already have its
2408 * rcuo kthreads, spawn them.
2409 */
2410 static void rcu_spawn_all_nocb_kthreads(int cpu)
2411 {
2412 struct rcu_state *rsp;
2413
2414 if (rcu_scheduler_fully_active)
2415 for_each_rcu_flavor(rsp)
2416 rcu_spawn_one_nocb_kthread(rsp, cpu);
2417 }
2418
2419 /*
2420 * Once the scheduler is running, spawn rcuo kthreads for all online
2421 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2422 * non-boot CPUs come online -- if this changes, we will need to add
2423 * some mutual exclusion.
2424 */
2425 static void __init rcu_spawn_nocb_kthreads(void)
2426 {
2427 int cpu;
2428
2429 for_each_online_cpu(cpu)
2430 rcu_spawn_all_nocb_kthreads(cpu);
2431 }
2432
2433 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2434 static int rcu_nocb_leader_stride = -1;
2435 module_param(rcu_nocb_leader_stride, int, 0444);
2436
2437 /*
2438 * Initialize leader-follower relationships for all no-CBs CPU.
2439 */
2440 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2441 {
2442 int cpu;
2443 int ls = rcu_nocb_leader_stride;
2444 int nl = 0; /* Next leader. */
2445 struct rcu_data *rdp;
2446 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2447 struct rcu_data *rdp_prev = NULL;
2448
2449 if (!have_rcu_nocb_mask)
2450 return;
2451 if (ls == -1) {
2452 ls = int_sqrt(nr_cpu_ids);
2453 rcu_nocb_leader_stride = ls;
2454 }
2455
2456 /*
2457 * Each pass through this loop sets up one rcu_data structure and
2458 * spawns one rcu_nocb_kthread().
2459 */
2460 for_each_cpu(cpu, rcu_nocb_mask) {
2461 rdp = per_cpu_ptr(rsp->rda, cpu);
2462 if (rdp->cpu >= nl) {
2463 /* New leader, set up for followers & next leader. */
2464 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2465 rdp->nocb_leader = rdp;
2466 rdp_leader = rdp;
2467 } else {
2468 /* Another follower, link to previous leader. */
2469 rdp->nocb_leader = rdp_leader;
2470 rdp_prev->nocb_next_follower = rdp;
2471 }
2472 rdp_prev = rdp;
2473 }
2474 }
2475
2476 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2477 static bool init_nocb_callback_list(struct rcu_data *rdp)
2478 {
2479 if (!rcu_is_nocb_cpu(rdp->cpu))
2480 return false;
2481
2482 /* If there are early-boot callbacks, move them to nocb lists. */
2483 if (rdp->nxtlist) {
2484 rdp->nocb_head = rdp->nxtlist;
2485 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2486 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2487 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2488 rdp->nxtlist = NULL;
2489 rdp->qlen = 0;
2490 rdp->qlen_lazy = 0;
2491 }
2492 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2493 return true;
2494 }
2495
2496 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2497
2498 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2499 {
2500 WARN_ON_ONCE(1); /* Should be dead code. */
2501 return false;
2502 }
2503
2504 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2505 {
2506 }
2507
2508 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2509 {
2510 }
2511
2512 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2513 {
2514 return NULL;
2515 }
2516
2517 static void rcu_init_one_nocb(struct rcu_node *rnp)
2518 {
2519 }
2520
2521 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2522 bool lazy, unsigned long flags)
2523 {
2524 return false;
2525 }
2526
2527 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2528 struct rcu_data *rdp,
2529 unsigned long flags)
2530 {
2531 return false;
2532 }
2533
2534 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2535 {
2536 }
2537
2538 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2539 {
2540 return false;
2541 }
2542
2543 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2544 {
2545 }
2546
2547 static void rcu_spawn_all_nocb_kthreads(int cpu)
2548 {
2549 }
2550
2551 static void __init rcu_spawn_nocb_kthreads(void)
2552 {
2553 }
2554
2555 static bool init_nocb_callback_list(struct rcu_data *rdp)
2556 {
2557 return false;
2558 }
2559
2560 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2561
2562 /*
2563 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2564 * arbitrarily long period of time with the scheduling-clock tick turned
2565 * off. RCU will be paying attention to this CPU because it is in the
2566 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2567 * machine because the scheduling-clock tick has been disabled. Therefore,
2568 * if an adaptive-ticks CPU is failing to respond to the current grace
2569 * period and has not be idle from an RCU perspective, kick it.
2570 */
2571 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2572 {
2573 #ifdef CONFIG_NO_HZ_FULL
2574 if (tick_nohz_full_cpu(cpu))
2575 smp_send_reschedule(cpu);
2576 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2577 }
2578
2579
2580 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2581
2582 static int full_sysidle_state; /* Current system-idle state. */
2583 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2584 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2585 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2586 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2587 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2588
2589 /*
2590 * Invoked to note exit from irq or task transition to idle. Note that
2591 * usermode execution does -not- count as idle here! After all, we want
2592 * to detect full-system idle states, not RCU quiescent states and grace
2593 * periods. The caller must have disabled interrupts.
2594 */
2595 static void rcu_sysidle_enter(int irq)
2596 {
2597 unsigned long j;
2598 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2599
2600 /* If there are no nohz_full= CPUs, no need to track this. */
2601 if (!tick_nohz_full_enabled())
2602 return;
2603
2604 /* Adjust nesting, check for fully idle. */
2605 if (irq) {
2606 rdtp->dynticks_idle_nesting--;
2607 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2608 if (rdtp->dynticks_idle_nesting != 0)
2609 return; /* Still not fully idle. */
2610 } else {
2611 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2612 DYNTICK_TASK_NEST_VALUE) {
2613 rdtp->dynticks_idle_nesting = 0;
2614 } else {
2615 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2616 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2617 return; /* Still not fully idle. */
2618 }
2619 }
2620
2621 /* Record start of fully idle period. */
2622 j = jiffies;
2623 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2624 smp_mb__before_atomic();
2625 atomic_inc(&rdtp->dynticks_idle);
2626 smp_mb__after_atomic();
2627 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2628 }
2629
2630 /*
2631 * Unconditionally force exit from full system-idle state. This is
2632 * invoked when a normal CPU exits idle, but must be called separately
2633 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2634 * is that the timekeeping CPU is permitted to take scheduling-clock
2635 * interrupts while the system is in system-idle state, and of course
2636 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2637 * interrupt from any other type of interrupt.
2638 */
2639 void rcu_sysidle_force_exit(void)
2640 {
2641 int oldstate = READ_ONCE(full_sysidle_state);
2642 int newoldstate;
2643
2644 /*
2645 * Each pass through the following loop attempts to exit full
2646 * system-idle state. If contention proves to be a problem,
2647 * a trylock-based contention tree could be used here.
2648 */
2649 while (oldstate > RCU_SYSIDLE_SHORT) {
2650 newoldstate = cmpxchg(&full_sysidle_state,
2651 oldstate, RCU_SYSIDLE_NOT);
2652 if (oldstate == newoldstate &&
2653 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2654 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2655 return; /* We cleared it, done! */
2656 }
2657 oldstate = newoldstate;
2658 }
2659 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2660 }
2661
2662 /*
2663 * Invoked to note entry to irq or task transition from idle. Note that
2664 * usermode execution does -not- count as idle here! The caller must
2665 * have disabled interrupts.
2666 */
2667 static void rcu_sysidle_exit(int irq)
2668 {
2669 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2670
2671 /* If there are no nohz_full= CPUs, no need to track this. */
2672 if (!tick_nohz_full_enabled())
2673 return;
2674
2675 /* Adjust nesting, check for already non-idle. */
2676 if (irq) {
2677 rdtp->dynticks_idle_nesting++;
2678 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2679 if (rdtp->dynticks_idle_nesting != 1)
2680 return; /* Already non-idle. */
2681 } else {
2682 /*
2683 * Allow for irq misnesting. Yes, it really is possible
2684 * to enter an irq handler then never leave it, and maybe
2685 * also vice versa. Handle both possibilities.
2686 */
2687 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2688 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2689 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2690 return; /* Already non-idle. */
2691 } else {
2692 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2693 }
2694 }
2695
2696 /* Record end of idle period. */
2697 smp_mb__before_atomic();
2698 atomic_inc(&rdtp->dynticks_idle);
2699 smp_mb__after_atomic();
2700 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2701
2702 /*
2703 * If we are the timekeeping CPU, we are permitted to be non-idle
2704 * during a system-idle state. This must be the case, because
2705 * the timekeeping CPU has to take scheduling-clock interrupts
2706 * during the time that the system is transitioning to full
2707 * system-idle state. This means that the timekeeping CPU must
2708 * invoke rcu_sysidle_force_exit() directly if it does anything
2709 * more than take a scheduling-clock interrupt.
2710 */
2711 if (smp_processor_id() == tick_do_timer_cpu)
2712 return;
2713
2714 /* Update system-idle state: We are clearly no longer fully idle! */
2715 rcu_sysidle_force_exit();
2716 }
2717
2718 /*
2719 * Check to see if the current CPU is idle. Note that usermode execution
2720 * does not count as idle. The caller must have disabled interrupts,
2721 * and must be running on tick_do_timer_cpu.
2722 */
2723 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2724 unsigned long *maxj)
2725 {
2726 int cur;
2727 unsigned long j;
2728 struct rcu_dynticks *rdtp = rdp->dynticks;
2729
2730 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2731 if (!tick_nohz_full_enabled())
2732 return;
2733
2734 /*
2735 * If some other CPU has already reported non-idle, if this is
2736 * not the flavor of RCU that tracks sysidle state, or if this
2737 * is an offline or the timekeeping CPU, nothing to do.
2738 */
2739 if (!*isidle || rdp->rsp != rcu_state_p ||
2740 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2741 return;
2742 /* Verify affinity of current kthread. */
2743 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2744
2745 /* Pick up current idle and NMI-nesting counter and check. */
2746 cur = atomic_read(&rdtp->dynticks_idle);
2747 if (cur & 0x1) {
2748 *isidle = false; /* We are not idle! */
2749 return;
2750 }
2751 smp_mb(); /* Read counters before timestamps. */
2752
2753 /* Pick up timestamps. */
2754 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2755 /* If this CPU entered idle more recently, update maxj timestamp. */
2756 if (ULONG_CMP_LT(*maxj, j))
2757 *maxj = j;
2758 }
2759
2760 /*
2761 * Is this the flavor of RCU that is handling full-system idle?
2762 */
2763 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2764 {
2765 return rsp == rcu_state_p;
2766 }
2767
2768 /*
2769 * Return a delay in jiffies based on the number of CPUs, rcu_node
2770 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2771 * systems more time to transition to full-idle state in order to
2772 * avoid the cache thrashing that otherwise occur on the state variable.
2773 * Really small systems (less than a couple of tens of CPUs) should
2774 * instead use a single global atomically incremented counter, and later
2775 * versions of this will automatically reconfigure themselves accordingly.
2776 */
2777 static unsigned long rcu_sysidle_delay(void)
2778 {
2779 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2780 return 0;
2781 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2782 }
2783
2784 /*
2785 * Advance the full-system-idle state. This is invoked when all of
2786 * the non-timekeeping CPUs are idle.
2787 */
2788 static void rcu_sysidle(unsigned long j)
2789 {
2790 /* Check the current state. */
2791 switch (READ_ONCE(full_sysidle_state)) {
2792 case RCU_SYSIDLE_NOT:
2793
2794 /* First time all are idle, so note a short idle period. */
2795 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2796 break;
2797
2798 case RCU_SYSIDLE_SHORT:
2799
2800 /*
2801 * Idle for a bit, time to advance to next state?
2802 * cmpxchg failure means race with non-idle, let them win.
2803 */
2804 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2805 (void)cmpxchg(&full_sysidle_state,
2806 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2807 break;
2808
2809 case RCU_SYSIDLE_LONG:
2810
2811 /*
2812 * Do an additional check pass before advancing to full.
2813 * cmpxchg failure means race with non-idle, let them win.
2814 */
2815 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2816 (void)cmpxchg(&full_sysidle_state,
2817 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2818 break;
2819
2820 default:
2821 break;
2822 }
2823 }
2824
2825 /*
2826 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2827 * back to the beginning.
2828 */
2829 static void rcu_sysidle_cancel(void)
2830 {
2831 smp_mb();
2832 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2833 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2834 }
2835
2836 /*
2837 * Update the sysidle state based on the results of a force-quiescent-state
2838 * scan of the CPUs' dyntick-idle state.
2839 */
2840 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2841 unsigned long maxj, bool gpkt)
2842 {
2843 if (rsp != rcu_state_p)
2844 return; /* Wrong flavor, ignore. */
2845 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2846 return; /* Running state machine from timekeeping CPU. */
2847 if (isidle)
2848 rcu_sysidle(maxj); /* More idle! */
2849 else
2850 rcu_sysidle_cancel(); /* Idle is over. */
2851 }
2852
2853 /*
2854 * Wrapper for rcu_sysidle_report() when called from the grace-period
2855 * kthread's context.
2856 */
2857 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2858 unsigned long maxj)
2859 {
2860 /* If there are no nohz_full= CPUs, no need to track this. */
2861 if (!tick_nohz_full_enabled())
2862 return;
2863
2864 rcu_sysidle_report(rsp, isidle, maxj, true);
2865 }
2866
2867 /* Callback and function for forcing an RCU grace period. */
2868 struct rcu_sysidle_head {
2869 struct rcu_head rh;
2870 int inuse;
2871 };
2872
2873 static void rcu_sysidle_cb(struct rcu_head *rhp)
2874 {
2875 struct rcu_sysidle_head *rshp;
2876
2877 /*
2878 * The following memory barrier is needed to replace the
2879 * memory barriers that would normally be in the memory
2880 * allocator.
2881 */
2882 smp_mb(); /* grace period precedes setting inuse. */
2883
2884 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2885 WRITE_ONCE(rshp->inuse, 0);
2886 }
2887
2888 /*
2889 * Check to see if the system is fully idle, other than the timekeeping CPU.
2890 * The caller must have disabled interrupts. This is not intended to be
2891 * called unless tick_nohz_full_enabled().
2892 */
2893 bool rcu_sys_is_idle(void)
2894 {
2895 static struct rcu_sysidle_head rsh;
2896 int rss = READ_ONCE(full_sysidle_state);
2897
2898 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2899 return false;
2900
2901 /* Handle small-system case by doing a full scan of CPUs. */
2902 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2903 int oldrss = rss - 1;
2904
2905 /*
2906 * One pass to advance to each state up to _FULL.
2907 * Give up if any pass fails to advance the state.
2908 */
2909 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2910 int cpu;
2911 bool isidle = true;
2912 unsigned long maxj = jiffies - ULONG_MAX / 4;
2913 struct rcu_data *rdp;
2914
2915 /* Scan all the CPUs looking for nonidle CPUs. */
2916 for_each_possible_cpu(cpu) {
2917 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2918 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2919 if (!isidle)
2920 break;
2921 }
2922 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2923 oldrss = rss;
2924 rss = READ_ONCE(full_sysidle_state);
2925 }
2926 }
2927
2928 /* If this is the first observation of an idle period, record it. */
2929 if (rss == RCU_SYSIDLE_FULL) {
2930 rss = cmpxchg(&full_sysidle_state,
2931 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2932 return rss == RCU_SYSIDLE_FULL;
2933 }
2934
2935 smp_mb(); /* ensure rss load happens before later caller actions. */
2936
2937 /* If already fully idle, tell the caller (in case of races). */
2938 if (rss == RCU_SYSIDLE_FULL_NOTED)
2939 return true;
2940
2941 /*
2942 * If we aren't there yet, and a grace period is not in flight,
2943 * initiate a grace period. Either way, tell the caller that
2944 * we are not there yet. We use an xchg() rather than an assignment
2945 * to make up for the memory barriers that would otherwise be
2946 * provided by the memory allocator.
2947 */
2948 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2949 !rcu_gp_in_progress(rcu_state_p) &&
2950 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2951 call_rcu(&rsh.rh, rcu_sysidle_cb);
2952 return false;
2953 }
2954
2955 /*
2956 * Initialize dynticks sysidle state for CPUs coming online.
2957 */
2958 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2959 {
2960 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2961 }
2962
2963 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2964
2965 static void rcu_sysidle_enter(int irq)
2966 {
2967 }
2968
2969 static void rcu_sysidle_exit(int irq)
2970 {
2971 }
2972
2973 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2974 unsigned long *maxj)
2975 {
2976 }
2977
2978 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2979 {
2980 return false;
2981 }
2982
2983 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2984 unsigned long maxj)
2985 {
2986 }
2987
2988 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2989 {
2990 }
2991
2992 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2993
2994 /*
2995 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2996 * grace-period kthread will do force_quiescent_state() processing?
2997 * The idea is to avoid waking up RCU core processing on such a
2998 * CPU unless the grace period has extended for too long.
2999 *
3000 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3001 * CONFIG_RCU_NOCB_CPU CPUs.
3002 */
3003 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3004 {
3005 #ifdef CONFIG_NO_HZ_FULL
3006 if (tick_nohz_full_cpu(smp_processor_id()) &&
3007 (!rcu_gp_in_progress(rsp) ||
3008 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3009 return true;
3010 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3011 return false;
3012 }
3013
3014 /*
3015 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3016 * timekeeping CPU.
3017 */
3018 static void rcu_bind_gp_kthread(void)
3019 {
3020 int __maybe_unused cpu;
3021
3022 if (!tick_nohz_full_enabled())
3023 return;
3024 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3025 cpu = tick_do_timer_cpu;
3026 if (cpu >= 0 && cpu < nr_cpu_ids)
3027 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3028 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3029 housekeeping_affine(current);
3030 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3031 }
3032
3033 /* Record the current task on dyntick-idle entry. */
3034 static void rcu_dynticks_task_enter(void)
3035 {
3036 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3037 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3038 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3039 }
3040
3041 /* Record no current task on dyntick-idle exit. */
3042 static void rcu_dynticks_task_exit(void)
3043 {
3044 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3045 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3046 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3047 }
This page took 0.098683 seconds and 5 git commands to generate.