rcu: Convert ACCESS_ONCE() to READ_ONCE() and WRITE_ONCE()
[deliverable/linux.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #endif /* #ifdef CONFIG_RCU_BOOST */
47
48 #ifdef CONFIG_RCU_NOCB_CPU
49 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
50 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
51 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
52 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
53
54 /*
55 * Check the RCU kernel configuration parameters and print informative
56 * messages about anything out of the ordinary. If you like #ifdef, you
57 * will love this function.
58 */
59 static void __init rcu_bootup_announce_oddness(void)
60 {
61 if (IS_ENABLED(CONFIG_RCU_TRACE))
62 pr_info("\tRCU debugfs-based tracing is enabled.\n");
63 if ((IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) ||
64 (!IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32))
65 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
66 CONFIG_RCU_FANOUT);
67 if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT))
68 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
69 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
70 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
71 if (IS_ENABLED(CONFIG_PROVE_RCU))
72 pr_info("\tRCU lockdep checking is enabled.\n");
73 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
74 pr_info("\tRCU torture testing starts during boot.\n");
75 if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO))
76 pr_info("\tAdditional per-CPU info printed with stalls.\n");
77 if (NUM_RCU_LVL_4 != 0)
78 pr_info("\tFour-level hierarchy is enabled.\n");
79 if (CONFIG_RCU_FANOUT_LEAF != 16)
80 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
81 CONFIG_RCU_FANOUT_LEAF);
82 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
83 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
84 if (nr_cpu_ids != NR_CPUS)
85 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
86 if (IS_ENABLED(CONFIG_RCU_BOOST))
87 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
88 }
89
90 #ifdef CONFIG_PREEMPT_RCU
91
92 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
93 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
94
95 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
96 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
97 bool wake);
98
99 /*
100 * Tell them what RCU they are running.
101 */
102 static void __init rcu_bootup_announce(void)
103 {
104 pr_info("Preemptible hierarchical RCU implementation.\n");
105 rcu_bootup_announce_oddness();
106 }
107
108 /*
109 * Record a preemptible-RCU quiescent state for the specified CPU. Note
110 * that this just means that the task currently running on the CPU is
111 * not in a quiescent state. There might be any number of tasks blocked
112 * while in an RCU read-side critical section.
113 *
114 * As with the other rcu_*_qs() functions, callers to this function
115 * must disable preemption.
116 */
117 static void rcu_preempt_qs(void)
118 {
119 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
120 trace_rcu_grace_period(TPS("rcu_preempt"),
121 __this_cpu_read(rcu_preempt_data.gpnum),
122 TPS("cpuqs"));
123 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
124 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
125 current->rcu_read_unlock_special.b.need_qs = false;
126 }
127 }
128
129 /*
130 * We have entered the scheduler, and the current task might soon be
131 * context-switched away from. If this task is in an RCU read-side
132 * critical section, we will no longer be able to rely on the CPU to
133 * record that fact, so we enqueue the task on the blkd_tasks list.
134 * The task will dequeue itself when it exits the outermost enclosing
135 * RCU read-side critical section. Therefore, the current grace period
136 * cannot be permitted to complete until the blkd_tasks list entries
137 * predating the current grace period drain, in other words, until
138 * rnp->gp_tasks becomes NULL.
139 *
140 * Caller must disable preemption.
141 */
142 static void rcu_preempt_note_context_switch(void)
143 {
144 struct task_struct *t = current;
145 unsigned long flags;
146 struct rcu_data *rdp;
147 struct rcu_node *rnp;
148
149 if (t->rcu_read_lock_nesting > 0 &&
150 !t->rcu_read_unlock_special.b.blocked) {
151
152 /* Possibly blocking in an RCU read-side critical section. */
153 rdp = this_cpu_ptr(rcu_preempt_state.rda);
154 rnp = rdp->mynode;
155 raw_spin_lock_irqsave(&rnp->lock, flags);
156 smp_mb__after_unlock_lock();
157 t->rcu_read_unlock_special.b.blocked = true;
158 t->rcu_blocked_node = rnp;
159
160 /*
161 * If this CPU has already checked in, then this task
162 * will hold up the next grace period rather than the
163 * current grace period. Queue the task accordingly.
164 * If the task is queued for the current grace period
165 * (i.e., this CPU has not yet passed through a quiescent
166 * state for the current grace period), then as long
167 * as that task remains queued, the current grace period
168 * cannot end. Note that there is some uncertainty as
169 * to exactly when the current grace period started.
170 * We take a conservative approach, which can result
171 * in unnecessarily waiting on tasks that started very
172 * slightly after the current grace period began. C'est
173 * la vie!!!
174 *
175 * But first, note that the current CPU must still be
176 * on line!
177 */
178 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
179 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
180 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
181 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
182 rnp->gp_tasks = &t->rcu_node_entry;
183 #ifdef CONFIG_RCU_BOOST
184 if (rnp->boost_tasks != NULL)
185 rnp->boost_tasks = rnp->gp_tasks;
186 #endif /* #ifdef CONFIG_RCU_BOOST */
187 } else {
188 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
189 if (rnp->qsmask & rdp->grpmask)
190 rnp->gp_tasks = &t->rcu_node_entry;
191 }
192 trace_rcu_preempt_task(rdp->rsp->name,
193 t->pid,
194 (rnp->qsmask & rdp->grpmask)
195 ? rnp->gpnum
196 : rnp->gpnum + 1);
197 raw_spin_unlock_irqrestore(&rnp->lock, flags);
198 } else if (t->rcu_read_lock_nesting < 0 &&
199 t->rcu_read_unlock_special.s) {
200
201 /*
202 * Complete exit from RCU read-side critical section on
203 * behalf of preempted instance of __rcu_read_unlock().
204 */
205 rcu_read_unlock_special(t);
206 }
207
208 /*
209 * Either we were not in an RCU read-side critical section to
210 * begin with, or we have now recorded that critical section
211 * globally. Either way, we can now note a quiescent state
212 * for this CPU. Again, if we were in an RCU read-side critical
213 * section, and if that critical section was blocking the current
214 * grace period, then the fact that the task has been enqueued
215 * means that we continue to block the current grace period.
216 */
217 rcu_preempt_qs();
218 }
219
220 /*
221 * Check for preempted RCU readers blocking the current grace period
222 * for the specified rcu_node structure. If the caller needs a reliable
223 * answer, it must hold the rcu_node's ->lock.
224 */
225 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
226 {
227 return rnp->gp_tasks != NULL;
228 }
229
230 /*
231 * Advance a ->blkd_tasks-list pointer to the next entry, instead
232 * returning NULL if at the end of the list.
233 */
234 static struct list_head *rcu_next_node_entry(struct task_struct *t,
235 struct rcu_node *rnp)
236 {
237 struct list_head *np;
238
239 np = t->rcu_node_entry.next;
240 if (np == &rnp->blkd_tasks)
241 np = NULL;
242 return np;
243 }
244
245 /*
246 * Return true if the specified rcu_node structure has tasks that were
247 * preempted within an RCU read-side critical section.
248 */
249 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
250 {
251 return !list_empty(&rnp->blkd_tasks);
252 }
253
254 /*
255 * Handle special cases during rcu_read_unlock(), such as needing to
256 * notify RCU core processing or task having blocked during the RCU
257 * read-side critical section.
258 */
259 void rcu_read_unlock_special(struct task_struct *t)
260 {
261 bool empty_exp;
262 bool empty_norm;
263 bool empty_exp_now;
264 unsigned long flags;
265 struct list_head *np;
266 #ifdef CONFIG_RCU_BOOST
267 bool drop_boost_mutex = false;
268 #endif /* #ifdef CONFIG_RCU_BOOST */
269 struct rcu_node *rnp;
270 union rcu_special special;
271
272 /* NMI handlers cannot block and cannot safely manipulate state. */
273 if (in_nmi())
274 return;
275
276 local_irq_save(flags);
277
278 /*
279 * If RCU core is waiting for this CPU to exit critical section,
280 * let it know that we have done so. Because irqs are disabled,
281 * t->rcu_read_unlock_special cannot change.
282 */
283 special = t->rcu_read_unlock_special;
284 if (special.b.need_qs) {
285 rcu_preempt_qs();
286 t->rcu_read_unlock_special.b.need_qs = false;
287 if (!t->rcu_read_unlock_special.s) {
288 local_irq_restore(flags);
289 return;
290 }
291 }
292
293 /* Hardware IRQ handlers cannot block, complain if they get here. */
294 if (in_irq() || in_serving_softirq()) {
295 lockdep_rcu_suspicious(__FILE__, __LINE__,
296 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
297 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
298 t->rcu_read_unlock_special.s,
299 t->rcu_read_unlock_special.b.blocked,
300 t->rcu_read_unlock_special.b.need_qs);
301 local_irq_restore(flags);
302 return;
303 }
304
305 /* Clean up if blocked during RCU read-side critical section. */
306 if (special.b.blocked) {
307 t->rcu_read_unlock_special.b.blocked = false;
308
309 /*
310 * Remove this task from the list it blocked on. The
311 * task can migrate while we acquire the lock, but at
312 * most one time. So at most two passes through loop.
313 */
314 for (;;) {
315 rnp = t->rcu_blocked_node;
316 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
317 smp_mb__after_unlock_lock();
318 if (rnp == t->rcu_blocked_node)
319 break;
320 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
321 }
322 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
323 empty_exp = !rcu_preempted_readers_exp(rnp);
324 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
325 np = rcu_next_node_entry(t, rnp);
326 list_del_init(&t->rcu_node_entry);
327 t->rcu_blocked_node = NULL;
328 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
329 rnp->gpnum, t->pid);
330 if (&t->rcu_node_entry == rnp->gp_tasks)
331 rnp->gp_tasks = np;
332 if (&t->rcu_node_entry == rnp->exp_tasks)
333 rnp->exp_tasks = np;
334 #ifdef CONFIG_RCU_BOOST
335 if (&t->rcu_node_entry == rnp->boost_tasks)
336 rnp->boost_tasks = np;
337 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
338 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
339 #endif /* #ifdef CONFIG_RCU_BOOST */
340
341 /*
342 * If this was the last task on the current list, and if
343 * we aren't waiting on any CPUs, report the quiescent state.
344 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
345 * so we must take a snapshot of the expedited state.
346 */
347 empty_exp_now = !rcu_preempted_readers_exp(rnp);
348 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
349 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
350 rnp->gpnum,
351 0, rnp->qsmask,
352 rnp->level,
353 rnp->grplo,
354 rnp->grphi,
355 !!rnp->gp_tasks);
356 rcu_report_unblock_qs_rnp(&rcu_preempt_state,
357 rnp, flags);
358 } else {
359 raw_spin_unlock_irqrestore(&rnp->lock, flags);
360 }
361
362 #ifdef CONFIG_RCU_BOOST
363 /* Unboost if we were boosted. */
364 if (drop_boost_mutex)
365 rt_mutex_unlock(&rnp->boost_mtx);
366 #endif /* #ifdef CONFIG_RCU_BOOST */
367
368 /*
369 * If this was the last task on the expedited lists,
370 * then we need to report up the rcu_node hierarchy.
371 */
372 if (!empty_exp && empty_exp_now)
373 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
374 } else {
375 local_irq_restore(flags);
376 }
377 }
378
379 /*
380 * Dump detailed information for all tasks blocking the current RCU
381 * grace period on the specified rcu_node structure.
382 */
383 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
384 {
385 unsigned long flags;
386 struct task_struct *t;
387
388 raw_spin_lock_irqsave(&rnp->lock, flags);
389 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
390 raw_spin_unlock_irqrestore(&rnp->lock, flags);
391 return;
392 }
393 t = list_entry(rnp->gp_tasks,
394 struct task_struct, rcu_node_entry);
395 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
396 sched_show_task(t);
397 raw_spin_unlock_irqrestore(&rnp->lock, flags);
398 }
399
400 /*
401 * Dump detailed information for all tasks blocking the current RCU
402 * grace period.
403 */
404 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
405 {
406 struct rcu_node *rnp = rcu_get_root(rsp);
407
408 rcu_print_detail_task_stall_rnp(rnp);
409 rcu_for_each_leaf_node(rsp, rnp)
410 rcu_print_detail_task_stall_rnp(rnp);
411 }
412
413 #ifdef CONFIG_RCU_CPU_STALL_INFO
414
415 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
416 {
417 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
418 rnp->level, rnp->grplo, rnp->grphi);
419 }
420
421 static void rcu_print_task_stall_end(void)
422 {
423 pr_cont("\n");
424 }
425
426 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
427
428 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
429 {
430 }
431
432 static void rcu_print_task_stall_end(void)
433 {
434 }
435
436 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
437
438 /*
439 * Scan the current list of tasks blocked within RCU read-side critical
440 * sections, printing out the tid of each.
441 */
442 static int rcu_print_task_stall(struct rcu_node *rnp)
443 {
444 struct task_struct *t;
445 int ndetected = 0;
446
447 if (!rcu_preempt_blocked_readers_cgp(rnp))
448 return 0;
449 rcu_print_task_stall_begin(rnp);
450 t = list_entry(rnp->gp_tasks,
451 struct task_struct, rcu_node_entry);
452 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
453 pr_cont(" P%d", t->pid);
454 ndetected++;
455 }
456 rcu_print_task_stall_end();
457 return ndetected;
458 }
459
460 /*
461 * Check that the list of blocked tasks for the newly completed grace
462 * period is in fact empty. It is a serious bug to complete a grace
463 * period that still has RCU readers blocked! This function must be
464 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
465 * must be held by the caller.
466 *
467 * Also, if there are blocked tasks on the list, they automatically
468 * block the newly created grace period, so set up ->gp_tasks accordingly.
469 */
470 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
471 {
472 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
473 if (rcu_preempt_has_tasks(rnp))
474 rnp->gp_tasks = rnp->blkd_tasks.next;
475 WARN_ON_ONCE(rnp->qsmask);
476 }
477
478 /*
479 * Check for a quiescent state from the current CPU. When a task blocks,
480 * the task is recorded in the corresponding CPU's rcu_node structure,
481 * which is checked elsewhere.
482 *
483 * Caller must disable hard irqs.
484 */
485 static void rcu_preempt_check_callbacks(void)
486 {
487 struct task_struct *t = current;
488
489 if (t->rcu_read_lock_nesting == 0) {
490 rcu_preempt_qs();
491 return;
492 }
493 if (t->rcu_read_lock_nesting > 0 &&
494 __this_cpu_read(rcu_preempt_data.qs_pending) &&
495 !__this_cpu_read(rcu_preempt_data.passed_quiesce))
496 t->rcu_read_unlock_special.b.need_qs = true;
497 }
498
499 #ifdef CONFIG_RCU_BOOST
500
501 static void rcu_preempt_do_callbacks(void)
502 {
503 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
504 }
505
506 #endif /* #ifdef CONFIG_RCU_BOOST */
507
508 /*
509 * Queue a preemptible-RCU callback for invocation after a grace period.
510 */
511 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
512 {
513 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
514 }
515 EXPORT_SYMBOL_GPL(call_rcu);
516
517 /**
518 * synchronize_rcu - wait until a grace period has elapsed.
519 *
520 * Control will return to the caller some time after a full grace
521 * period has elapsed, in other words after all currently executing RCU
522 * read-side critical sections have completed. Note, however, that
523 * upon return from synchronize_rcu(), the caller might well be executing
524 * concurrently with new RCU read-side critical sections that began while
525 * synchronize_rcu() was waiting. RCU read-side critical sections are
526 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
527 *
528 * See the description of synchronize_sched() for more detailed information
529 * on memory ordering guarantees.
530 */
531 void synchronize_rcu(void)
532 {
533 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
534 !lock_is_held(&rcu_lock_map) &&
535 !lock_is_held(&rcu_sched_lock_map),
536 "Illegal synchronize_rcu() in RCU read-side critical section");
537 if (!rcu_scheduler_active)
538 return;
539 if (rcu_gp_is_expedited())
540 synchronize_rcu_expedited();
541 else
542 wait_rcu_gp(call_rcu);
543 }
544 EXPORT_SYMBOL_GPL(synchronize_rcu);
545
546 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
547 static unsigned long sync_rcu_preempt_exp_count;
548 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
549
550 /*
551 * Return non-zero if there are any tasks in RCU read-side critical
552 * sections blocking the current preemptible-RCU expedited grace period.
553 * If there is no preemptible-RCU expedited grace period currently in
554 * progress, returns zero unconditionally.
555 */
556 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
557 {
558 return rnp->exp_tasks != NULL;
559 }
560
561 /*
562 * return non-zero if there is no RCU expedited grace period in progress
563 * for the specified rcu_node structure, in other words, if all CPUs and
564 * tasks covered by the specified rcu_node structure have done their bit
565 * for the current expedited grace period. Works only for preemptible
566 * RCU -- other RCU implementation use other means.
567 *
568 * Caller must hold sync_rcu_preempt_exp_mutex.
569 */
570 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
571 {
572 return !rcu_preempted_readers_exp(rnp) &&
573 READ_ONCE(rnp->expmask) == 0;
574 }
575
576 /*
577 * Report the exit from RCU read-side critical section for the last task
578 * that queued itself during or before the current expedited preemptible-RCU
579 * grace period. This event is reported either to the rcu_node structure on
580 * which the task was queued or to one of that rcu_node structure's ancestors,
581 * recursively up the tree. (Calm down, calm down, we do the recursion
582 * iteratively!)
583 *
584 * Caller must hold sync_rcu_preempt_exp_mutex.
585 */
586 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
587 bool wake)
588 {
589 unsigned long flags;
590 unsigned long mask;
591
592 raw_spin_lock_irqsave(&rnp->lock, flags);
593 smp_mb__after_unlock_lock();
594 for (;;) {
595 if (!sync_rcu_preempt_exp_done(rnp)) {
596 raw_spin_unlock_irqrestore(&rnp->lock, flags);
597 break;
598 }
599 if (rnp->parent == NULL) {
600 raw_spin_unlock_irqrestore(&rnp->lock, flags);
601 if (wake) {
602 smp_mb(); /* EGP done before wake_up(). */
603 wake_up(&sync_rcu_preempt_exp_wq);
604 }
605 break;
606 }
607 mask = rnp->grpmask;
608 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
609 rnp = rnp->parent;
610 raw_spin_lock(&rnp->lock); /* irqs already disabled */
611 smp_mb__after_unlock_lock();
612 rnp->expmask &= ~mask;
613 }
614 }
615
616 /*
617 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
618 * grace period for the specified rcu_node structure, phase 1. If there
619 * are such tasks, set the ->expmask bits up the rcu_node tree and also
620 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
621 * that work is needed here.
622 *
623 * Caller must hold sync_rcu_preempt_exp_mutex.
624 */
625 static void
626 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
627 {
628 unsigned long flags;
629 unsigned long mask;
630 struct rcu_node *rnp_up;
631
632 raw_spin_lock_irqsave(&rnp->lock, flags);
633 smp_mb__after_unlock_lock();
634 WARN_ON_ONCE(rnp->expmask);
635 WARN_ON_ONCE(rnp->exp_tasks);
636 if (!rcu_preempt_has_tasks(rnp)) {
637 /* No blocked tasks, nothing to do. */
638 raw_spin_unlock_irqrestore(&rnp->lock, flags);
639 return;
640 }
641 /* Call for Phase 2 and propagate ->expmask bits up the tree. */
642 rnp->expmask = 1;
643 rnp_up = rnp;
644 while (rnp_up->parent) {
645 mask = rnp_up->grpmask;
646 rnp_up = rnp_up->parent;
647 if (rnp_up->expmask & mask)
648 break;
649 raw_spin_lock(&rnp_up->lock); /* irqs already off */
650 smp_mb__after_unlock_lock();
651 rnp_up->expmask |= mask;
652 raw_spin_unlock(&rnp_up->lock); /* irqs still off */
653 }
654 raw_spin_unlock_irqrestore(&rnp->lock, flags);
655 }
656
657 /*
658 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
659 * grace period for the specified rcu_node structure, phase 2. If the
660 * leaf rcu_node structure has its ->expmask field set, check for tasks.
661 * If there are some, clear ->expmask and set ->exp_tasks accordingly,
662 * then initiate RCU priority boosting. Otherwise, clear ->expmask and
663 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
664 * enabling rcu_read_unlock_special() to do the bit-clearing.
665 *
666 * Caller must hold sync_rcu_preempt_exp_mutex.
667 */
668 static void
669 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
670 {
671 unsigned long flags;
672
673 raw_spin_lock_irqsave(&rnp->lock, flags);
674 smp_mb__after_unlock_lock();
675 if (!rnp->expmask) {
676 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
677 raw_spin_unlock_irqrestore(&rnp->lock, flags);
678 return;
679 }
680
681 /* Phase 1 is over. */
682 rnp->expmask = 0;
683
684 /*
685 * If there are still blocked tasks, set up ->exp_tasks so that
686 * rcu_read_unlock_special() will wake us and then boost them.
687 */
688 if (rcu_preempt_has_tasks(rnp)) {
689 rnp->exp_tasks = rnp->blkd_tasks.next;
690 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
691 return;
692 }
693
694 /* No longer any blocked tasks, so undo bit setting. */
695 raw_spin_unlock_irqrestore(&rnp->lock, flags);
696 rcu_report_exp_rnp(rsp, rnp, false);
697 }
698
699 /**
700 * synchronize_rcu_expedited - Brute-force RCU grace period
701 *
702 * Wait for an RCU-preempt grace period, but expedite it. The basic
703 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
704 * the ->blkd_tasks lists and wait for this list to drain. This consumes
705 * significant time on all CPUs and is unfriendly to real-time workloads,
706 * so is thus not recommended for any sort of common-case code.
707 * In fact, if you are using synchronize_rcu_expedited() in a loop,
708 * please restructure your code to batch your updates, and then Use a
709 * single synchronize_rcu() instead.
710 */
711 void synchronize_rcu_expedited(void)
712 {
713 struct rcu_node *rnp;
714 struct rcu_state *rsp = &rcu_preempt_state;
715 unsigned long snap;
716 int trycount = 0;
717
718 smp_mb(); /* Caller's modifications seen first by other CPUs. */
719 snap = READ_ONCE(sync_rcu_preempt_exp_count) + 1;
720 smp_mb(); /* Above access cannot bleed into critical section. */
721
722 /*
723 * Block CPU-hotplug operations. This means that any CPU-hotplug
724 * operation that finds an rcu_node structure with tasks in the
725 * process of being boosted will know that all tasks blocking
726 * this expedited grace period will already be in the process of
727 * being boosted. This simplifies the process of moving tasks
728 * from leaf to root rcu_node structures.
729 */
730 if (!try_get_online_cpus()) {
731 /* CPU-hotplug operation in flight, fall back to normal GP. */
732 wait_rcu_gp(call_rcu);
733 return;
734 }
735
736 /*
737 * Acquire lock, falling back to synchronize_rcu() if too many
738 * lock-acquisition failures. Of course, if someone does the
739 * expedited grace period for us, just leave.
740 */
741 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
742 if (ULONG_CMP_LT(snap,
743 READ_ONCE(sync_rcu_preempt_exp_count))) {
744 put_online_cpus();
745 goto mb_ret; /* Others did our work for us. */
746 }
747 if (trycount++ < 10) {
748 udelay(trycount * num_online_cpus());
749 } else {
750 put_online_cpus();
751 wait_rcu_gp(call_rcu);
752 return;
753 }
754 }
755 if (ULONG_CMP_LT(snap, READ_ONCE(sync_rcu_preempt_exp_count))) {
756 put_online_cpus();
757 goto unlock_mb_ret; /* Others did our work for us. */
758 }
759
760 /* force all RCU readers onto ->blkd_tasks lists. */
761 synchronize_sched_expedited();
762
763 /*
764 * Snapshot current state of ->blkd_tasks lists into ->expmask.
765 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
766 * to start clearing them. Doing this in one phase leads to
767 * strange races between setting and clearing bits, so just say "no"!
768 */
769 rcu_for_each_leaf_node(rsp, rnp)
770 sync_rcu_preempt_exp_init1(rsp, rnp);
771 rcu_for_each_leaf_node(rsp, rnp)
772 sync_rcu_preempt_exp_init2(rsp, rnp);
773
774 put_online_cpus();
775
776 /* Wait for snapshotted ->blkd_tasks lists to drain. */
777 rnp = rcu_get_root(rsp);
778 wait_event(sync_rcu_preempt_exp_wq,
779 sync_rcu_preempt_exp_done(rnp));
780
781 /* Clean up and exit. */
782 smp_mb(); /* ensure expedited GP seen before counter increment. */
783 WRITE_ONCE(sync_rcu_preempt_exp_count, sync_rcu_preempt_exp_count + 1);
784 unlock_mb_ret:
785 mutex_unlock(&sync_rcu_preempt_exp_mutex);
786 mb_ret:
787 smp_mb(); /* ensure subsequent action seen after grace period. */
788 }
789 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
790
791 /**
792 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
793 *
794 * Note that this primitive does not necessarily wait for an RCU grace period
795 * to complete. For example, if there are no RCU callbacks queued anywhere
796 * in the system, then rcu_barrier() is within its rights to return
797 * immediately, without waiting for anything, much less an RCU grace period.
798 */
799 void rcu_barrier(void)
800 {
801 _rcu_barrier(&rcu_preempt_state);
802 }
803 EXPORT_SYMBOL_GPL(rcu_barrier);
804
805 /*
806 * Initialize preemptible RCU's state structures.
807 */
808 static void __init __rcu_init_preempt(void)
809 {
810 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
811 }
812
813 /*
814 * Check for a task exiting while in a preemptible-RCU read-side
815 * critical section, clean up if so. No need to issue warnings,
816 * as debug_check_no_locks_held() already does this if lockdep
817 * is enabled.
818 */
819 void exit_rcu(void)
820 {
821 struct task_struct *t = current;
822
823 if (likely(list_empty(&current->rcu_node_entry)))
824 return;
825 t->rcu_read_lock_nesting = 1;
826 barrier();
827 t->rcu_read_unlock_special.b.blocked = true;
828 __rcu_read_unlock();
829 }
830
831 #else /* #ifdef CONFIG_PREEMPT_RCU */
832
833 static struct rcu_state *rcu_state_p = &rcu_sched_state;
834
835 /*
836 * Tell them what RCU they are running.
837 */
838 static void __init rcu_bootup_announce(void)
839 {
840 pr_info("Hierarchical RCU implementation.\n");
841 rcu_bootup_announce_oddness();
842 }
843
844 /*
845 * Because preemptible RCU does not exist, we never have to check for
846 * CPUs being in quiescent states.
847 */
848 static void rcu_preempt_note_context_switch(void)
849 {
850 }
851
852 /*
853 * Because preemptible RCU does not exist, there are never any preempted
854 * RCU readers.
855 */
856 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
857 {
858 return 0;
859 }
860
861 /*
862 * Because there is no preemptible RCU, there can be no readers blocked.
863 */
864 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
865 {
866 return false;
867 }
868
869 /*
870 * Because preemptible RCU does not exist, we never have to check for
871 * tasks blocked within RCU read-side critical sections.
872 */
873 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
874 {
875 }
876
877 /*
878 * Because preemptible RCU does not exist, we never have to check for
879 * tasks blocked within RCU read-side critical sections.
880 */
881 static int rcu_print_task_stall(struct rcu_node *rnp)
882 {
883 return 0;
884 }
885
886 /*
887 * Because there is no preemptible RCU, there can be no readers blocked,
888 * so there is no need to check for blocked tasks. So check only for
889 * bogus qsmask values.
890 */
891 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
892 {
893 WARN_ON_ONCE(rnp->qsmask);
894 }
895
896 /*
897 * Because preemptible RCU does not exist, it never has any callbacks
898 * to check.
899 */
900 static void rcu_preempt_check_callbacks(void)
901 {
902 }
903
904 /*
905 * Wait for an rcu-preempt grace period, but make it happen quickly.
906 * But because preemptible RCU does not exist, map to rcu-sched.
907 */
908 void synchronize_rcu_expedited(void)
909 {
910 synchronize_sched_expedited();
911 }
912 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
913
914 /*
915 * Because preemptible RCU does not exist, rcu_barrier() is just
916 * another name for rcu_barrier_sched().
917 */
918 void rcu_barrier(void)
919 {
920 rcu_barrier_sched();
921 }
922 EXPORT_SYMBOL_GPL(rcu_barrier);
923
924 /*
925 * Because preemptible RCU does not exist, it need not be initialized.
926 */
927 static void __init __rcu_init_preempt(void)
928 {
929 }
930
931 /*
932 * Because preemptible RCU does not exist, tasks cannot possibly exit
933 * while in preemptible RCU read-side critical sections.
934 */
935 void exit_rcu(void)
936 {
937 }
938
939 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
940
941 #ifdef CONFIG_RCU_BOOST
942
943 #include "../locking/rtmutex_common.h"
944
945 #ifdef CONFIG_RCU_TRACE
946
947 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
948 {
949 if (!rcu_preempt_has_tasks(rnp))
950 rnp->n_balk_blkd_tasks++;
951 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
952 rnp->n_balk_exp_gp_tasks++;
953 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
954 rnp->n_balk_boost_tasks++;
955 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
956 rnp->n_balk_notblocked++;
957 else if (rnp->gp_tasks != NULL &&
958 ULONG_CMP_LT(jiffies, rnp->boost_time))
959 rnp->n_balk_notyet++;
960 else
961 rnp->n_balk_nos++;
962 }
963
964 #else /* #ifdef CONFIG_RCU_TRACE */
965
966 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
967 {
968 }
969
970 #endif /* #else #ifdef CONFIG_RCU_TRACE */
971
972 static void rcu_wake_cond(struct task_struct *t, int status)
973 {
974 /*
975 * If the thread is yielding, only wake it when this
976 * is invoked from idle
977 */
978 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
979 wake_up_process(t);
980 }
981
982 /*
983 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
984 * or ->boost_tasks, advancing the pointer to the next task in the
985 * ->blkd_tasks list.
986 *
987 * Note that irqs must be enabled: boosting the task can block.
988 * Returns 1 if there are more tasks needing to be boosted.
989 */
990 static int rcu_boost(struct rcu_node *rnp)
991 {
992 unsigned long flags;
993 struct task_struct *t;
994 struct list_head *tb;
995
996 if (READ_ONCE(rnp->exp_tasks) == NULL &&
997 READ_ONCE(rnp->boost_tasks) == NULL)
998 return 0; /* Nothing left to boost. */
999
1000 raw_spin_lock_irqsave(&rnp->lock, flags);
1001 smp_mb__after_unlock_lock();
1002
1003 /*
1004 * Recheck under the lock: all tasks in need of boosting
1005 * might exit their RCU read-side critical sections on their own.
1006 */
1007 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1008 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1009 return 0;
1010 }
1011
1012 /*
1013 * Preferentially boost tasks blocking expedited grace periods.
1014 * This cannot starve the normal grace periods because a second
1015 * expedited grace period must boost all blocked tasks, including
1016 * those blocking the pre-existing normal grace period.
1017 */
1018 if (rnp->exp_tasks != NULL) {
1019 tb = rnp->exp_tasks;
1020 rnp->n_exp_boosts++;
1021 } else {
1022 tb = rnp->boost_tasks;
1023 rnp->n_normal_boosts++;
1024 }
1025 rnp->n_tasks_boosted++;
1026
1027 /*
1028 * We boost task t by manufacturing an rt_mutex that appears to
1029 * be held by task t. We leave a pointer to that rt_mutex where
1030 * task t can find it, and task t will release the mutex when it
1031 * exits its outermost RCU read-side critical section. Then
1032 * simply acquiring this artificial rt_mutex will boost task
1033 * t's priority. (Thanks to tglx for suggesting this approach!)
1034 *
1035 * Note that task t must acquire rnp->lock to remove itself from
1036 * the ->blkd_tasks list, which it will do from exit() if from
1037 * nowhere else. We therefore are guaranteed that task t will
1038 * stay around at least until we drop rnp->lock. Note that
1039 * rnp->lock also resolves races between our priority boosting
1040 * and task t's exiting its outermost RCU read-side critical
1041 * section.
1042 */
1043 t = container_of(tb, struct task_struct, rcu_node_entry);
1044 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1045 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1046 /* Lock only for side effect: boosts task t's priority. */
1047 rt_mutex_lock(&rnp->boost_mtx);
1048 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1049
1050 return READ_ONCE(rnp->exp_tasks) != NULL ||
1051 READ_ONCE(rnp->boost_tasks) != NULL;
1052 }
1053
1054 /*
1055 * Priority-boosting kthread. One per leaf rcu_node and one for the
1056 * root rcu_node.
1057 */
1058 static int rcu_boost_kthread(void *arg)
1059 {
1060 struct rcu_node *rnp = (struct rcu_node *)arg;
1061 int spincnt = 0;
1062 int more2boost;
1063
1064 trace_rcu_utilization(TPS("Start boost kthread@init"));
1065 for (;;) {
1066 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1067 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1068 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1069 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1070 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1071 more2boost = rcu_boost(rnp);
1072 if (more2boost)
1073 spincnt++;
1074 else
1075 spincnt = 0;
1076 if (spincnt > 10) {
1077 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1078 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1079 schedule_timeout_interruptible(2);
1080 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1081 spincnt = 0;
1082 }
1083 }
1084 /* NOTREACHED */
1085 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1086 return 0;
1087 }
1088
1089 /*
1090 * Check to see if it is time to start boosting RCU readers that are
1091 * blocking the current grace period, and, if so, tell the per-rcu_node
1092 * kthread to start boosting them. If there is an expedited grace
1093 * period in progress, it is always time to boost.
1094 *
1095 * The caller must hold rnp->lock, which this function releases.
1096 * The ->boost_kthread_task is immortal, so we don't need to worry
1097 * about it going away.
1098 */
1099 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1100 __releases(rnp->lock)
1101 {
1102 struct task_struct *t;
1103
1104 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1105 rnp->n_balk_exp_gp_tasks++;
1106 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1107 return;
1108 }
1109 if (rnp->exp_tasks != NULL ||
1110 (rnp->gp_tasks != NULL &&
1111 rnp->boost_tasks == NULL &&
1112 rnp->qsmask == 0 &&
1113 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1114 if (rnp->exp_tasks == NULL)
1115 rnp->boost_tasks = rnp->gp_tasks;
1116 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1117 t = rnp->boost_kthread_task;
1118 if (t)
1119 rcu_wake_cond(t, rnp->boost_kthread_status);
1120 } else {
1121 rcu_initiate_boost_trace(rnp);
1122 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1123 }
1124 }
1125
1126 /*
1127 * Wake up the per-CPU kthread to invoke RCU callbacks.
1128 */
1129 static void invoke_rcu_callbacks_kthread(void)
1130 {
1131 unsigned long flags;
1132
1133 local_irq_save(flags);
1134 __this_cpu_write(rcu_cpu_has_work, 1);
1135 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1136 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1137 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1138 __this_cpu_read(rcu_cpu_kthread_status));
1139 }
1140 local_irq_restore(flags);
1141 }
1142
1143 /*
1144 * Is the current CPU running the RCU-callbacks kthread?
1145 * Caller must have preemption disabled.
1146 */
1147 static bool rcu_is_callbacks_kthread(void)
1148 {
1149 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1150 }
1151
1152 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1153
1154 /*
1155 * Do priority-boost accounting for the start of a new grace period.
1156 */
1157 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1158 {
1159 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1160 }
1161
1162 /*
1163 * Create an RCU-boost kthread for the specified node if one does not
1164 * already exist. We only create this kthread for preemptible RCU.
1165 * Returns zero if all is well, a negated errno otherwise.
1166 */
1167 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1168 struct rcu_node *rnp)
1169 {
1170 int rnp_index = rnp - &rsp->node[0];
1171 unsigned long flags;
1172 struct sched_param sp;
1173 struct task_struct *t;
1174
1175 if (&rcu_preempt_state != rsp)
1176 return 0;
1177
1178 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1179 return 0;
1180
1181 rsp->boost = 1;
1182 if (rnp->boost_kthread_task != NULL)
1183 return 0;
1184 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1185 "rcub/%d", rnp_index);
1186 if (IS_ERR(t))
1187 return PTR_ERR(t);
1188 raw_spin_lock_irqsave(&rnp->lock, flags);
1189 smp_mb__after_unlock_lock();
1190 rnp->boost_kthread_task = t;
1191 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1192 sp.sched_priority = kthread_prio;
1193 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1194 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1195 return 0;
1196 }
1197
1198 static void rcu_kthread_do_work(void)
1199 {
1200 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1201 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1202 rcu_preempt_do_callbacks();
1203 }
1204
1205 static void rcu_cpu_kthread_setup(unsigned int cpu)
1206 {
1207 struct sched_param sp;
1208
1209 sp.sched_priority = kthread_prio;
1210 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1211 }
1212
1213 static void rcu_cpu_kthread_park(unsigned int cpu)
1214 {
1215 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1216 }
1217
1218 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1219 {
1220 return __this_cpu_read(rcu_cpu_has_work);
1221 }
1222
1223 /*
1224 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1225 * RCU softirq used in flavors and configurations of RCU that do not
1226 * support RCU priority boosting.
1227 */
1228 static void rcu_cpu_kthread(unsigned int cpu)
1229 {
1230 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1231 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1232 int spincnt;
1233
1234 for (spincnt = 0; spincnt < 10; spincnt++) {
1235 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1236 local_bh_disable();
1237 *statusp = RCU_KTHREAD_RUNNING;
1238 this_cpu_inc(rcu_cpu_kthread_loops);
1239 local_irq_disable();
1240 work = *workp;
1241 *workp = 0;
1242 local_irq_enable();
1243 if (work)
1244 rcu_kthread_do_work();
1245 local_bh_enable();
1246 if (*workp == 0) {
1247 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1248 *statusp = RCU_KTHREAD_WAITING;
1249 return;
1250 }
1251 }
1252 *statusp = RCU_KTHREAD_YIELDING;
1253 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1254 schedule_timeout_interruptible(2);
1255 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1256 *statusp = RCU_KTHREAD_WAITING;
1257 }
1258
1259 /*
1260 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1261 * served by the rcu_node in question. The CPU hotplug lock is still
1262 * held, so the value of rnp->qsmaskinit will be stable.
1263 *
1264 * We don't include outgoingcpu in the affinity set, use -1 if there is
1265 * no outgoing CPU. If there are no CPUs left in the affinity set,
1266 * this function allows the kthread to execute on any CPU.
1267 */
1268 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1269 {
1270 struct task_struct *t = rnp->boost_kthread_task;
1271 unsigned long mask = rcu_rnp_online_cpus(rnp);
1272 cpumask_var_t cm;
1273 int cpu;
1274
1275 if (!t)
1276 return;
1277 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1278 return;
1279 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1280 if ((mask & 0x1) && cpu != outgoingcpu)
1281 cpumask_set_cpu(cpu, cm);
1282 if (cpumask_weight(cm) == 0)
1283 cpumask_setall(cm);
1284 set_cpus_allowed_ptr(t, cm);
1285 free_cpumask_var(cm);
1286 }
1287
1288 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1289 .store = &rcu_cpu_kthread_task,
1290 .thread_should_run = rcu_cpu_kthread_should_run,
1291 .thread_fn = rcu_cpu_kthread,
1292 .thread_comm = "rcuc/%u",
1293 .setup = rcu_cpu_kthread_setup,
1294 .park = rcu_cpu_kthread_park,
1295 };
1296
1297 /*
1298 * Spawn boost kthreads -- called as soon as the scheduler is running.
1299 */
1300 static void __init rcu_spawn_boost_kthreads(void)
1301 {
1302 struct rcu_node *rnp;
1303 int cpu;
1304
1305 for_each_possible_cpu(cpu)
1306 per_cpu(rcu_cpu_has_work, cpu) = 0;
1307 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1308 rcu_for_each_leaf_node(rcu_state_p, rnp)
1309 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1310 }
1311
1312 static void rcu_prepare_kthreads(int cpu)
1313 {
1314 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1315 struct rcu_node *rnp = rdp->mynode;
1316
1317 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1318 if (rcu_scheduler_fully_active)
1319 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1320 }
1321
1322 #else /* #ifdef CONFIG_RCU_BOOST */
1323
1324 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1325 __releases(rnp->lock)
1326 {
1327 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1328 }
1329
1330 static void invoke_rcu_callbacks_kthread(void)
1331 {
1332 WARN_ON_ONCE(1);
1333 }
1334
1335 static bool rcu_is_callbacks_kthread(void)
1336 {
1337 return false;
1338 }
1339
1340 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1341 {
1342 }
1343
1344 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1345 {
1346 }
1347
1348 static void __init rcu_spawn_boost_kthreads(void)
1349 {
1350 }
1351
1352 static void rcu_prepare_kthreads(int cpu)
1353 {
1354 }
1355
1356 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1357
1358 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1359
1360 /*
1361 * Check to see if any future RCU-related work will need to be done
1362 * by the current CPU, even if none need be done immediately, returning
1363 * 1 if so. This function is part of the RCU implementation; it is -not-
1364 * an exported member of the RCU API.
1365 *
1366 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1367 * any flavor of RCU.
1368 */
1369 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1370 int rcu_needs_cpu(unsigned long *delta_jiffies)
1371 {
1372 *delta_jiffies = ULONG_MAX;
1373 return rcu_cpu_has_callbacks(NULL);
1374 }
1375 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1376
1377 /*
1378 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1379 * after it.
1380 */
1381 static void rcu_cleanup_after_idle(void)
1382 {
1383 }
1384
1385 /*
1386 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1387 * is nothing.
1388 */
1389 static void rcu_prepare_for_idle(void)
1390 {
1391 }
1392
1393 /*
1394 * Don't bother keeping a running count of the number of RCU callbacks
1395 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1396 */
1397 static void rcu_idle_count_callbacks_posted(void)
1398 {
1399 }
1400
1401 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1402
1403 /*
1404 * This code is invoked when a CPU goes idle, at which point we want
1405 * to have the CPU do everything required for RCU so that it can enter
1406 * the energy-efficient dyntick-idle mode. This is handled by a
1407 * state machine implemented by rcu_prepare_for_idle() below.
1408 *
1409 * The following three proprocessor symbols control this state machine:
1410 *
1411 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1412 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1413 * is sized to be roughly one RCU grace period. Those energy-efficiency
1414 * benchmarkers who might otherwise be tempted to set this to a large
1415 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1416 * system. And if you are -that- concerned about energy efficiency,
1417 * just power the system down and be done with it!
1418 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1419 * permitted to sleep in dyntick-idle mode with only lazy RCU
1420 * callbacks pending. Setting this too high can OOM your system.
1421 *
1422 * The values below work well in practice. If future workloads require
1423 * adjustment, they can be converted into kernel config parameters, though
1424 * making the state machine smarter might be a better option.
1425 */
1426 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1427 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1428
1429 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1430 module_param(rcu_idle_gp_delay, int, 0644);
1431 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1432 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1433
1434 extern int tick_nohz_active;
1435
1436 /*
1437 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1438 * only if it has been awhile since the last time we did so. Afterwards,
1439 * if there are any callbacks ready for immediate invocation, return true.
1440 */
1441 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1442 {
1443 bool cbs_ready = false;
1444 struct rcu_data *rdp;
1445 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1446 struct rcu_node *rnp;
1447 struct rcu_state *rsp;
1448
1449 /* Exit early if we advanced recently. */
1450 if (jiffies == rdtp->last_advance_all)
1451 return false;
1452 rdtp->last_advance_all = jiffies;
1453
1454 for_each_rcu_flavor(rsp) {
1455 rdp = this_cpu_ptr(rsp->rda);
1456 rnp = rdp->mynode;
1457
1458 /*
1459 * Don't bother checking unless a grace period has
1460 * completed since we last checked and there are
1461 * callbacks not yet ready to invoke.
1462 */
1463 if ((rdp->completed != rnp->completed ||
1464 unlikely(READ_ONCE(rdp->gpwrap))) &&
1465 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1466 note_gp_changes(rsp, rdp);
1467
1468 if (cpu_has_callbacks_ready_to_invoke(rdp))
1469 cbs_ready = true;
1470 }
1471 return cbs_ready;
1472 }
1473
1474 /*
1475 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1476 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1477 * caller to set the timeout based on whether or not there are non-lazy
1478 * callbacks.
1479 *
1480 * The caller must have disabled interrupts.
1481 */
1482 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1483 int rcu_needs_cpu(unsigned long *dj)
1484 {
1485 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1486
1487 /* Snapshot to detect later posting of non-lazy callback. */
1488 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1489
1490 /* If no callbacks, RCU doesn't need the CPU. */
1491 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1492 *dj = ULONG_MAX;
1493 return 0;
1494 }
1495
1496 /* Attempt to advance callbacks. */
1497 if (rcu_try_advance_all_cbs()) {
1498 /* Some ready to invoke, so initiate later invocation. */
1499 invoke_rcu_core();
1500 return 1;
1501 }
1502 rdtp->last_accelerate = jiffies;
1503
1504 /* Request timer delay depending on laziness, and round. */
1505 if (!rdtp->all_lazy) {
1506 *dj = round_up(rcu_idle_gp_delay + jiffies,
1507 rcu_idle_gp_delay) - jiffies;
1508 } else {
1509 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1510 }
1511 return 0;
1512 }
1513 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1514
1515 /*
1516 * Prepare a CPU for idle from an RCU perspective. The first major task
1517 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1518 * The second major task is to check to see if a non-lazy callback has
1519 * arrived at a CPU that previously had only lazy callbacks. The third
1520 * major task is to accelerate (that is, assign grace-period numbers to)
1521 * any recently arrived callbacks.
1522 *
1523 * The caller must have disabled interrupts.
1524 */
1525 static void rcu_prepare_for_idle(void)
1526 {
1527 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1528 bool needwake;
1529 struct rcu_data *rdp;
1530 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1531 struct rcu_node *rnp;
1532 struct rcu_state *rsp;
1533 int tne;
1534
1535 /* Handle nohz enablement switches conservatively. */
1536 tne = READ_ONCE(tick_nohz_active);
1537 if (tne != rdtp->tick_nohz_enabled_snap) {
1538 if (rcu_cpu_has_callbacks(NULL))
1539 invoke_rcu_core(); /* force nohz to see update. */
1540 rdtp->tick_nohz_enabled_snap = tne;
1541 return;
1542 }
1543 if (!tne)
1544 return;
1545
1546 /* If this is a no-CBs CPU, no callbacks, just return. */
1547 if (rcu_is_nocb_cpu(smp_processor_id()))
1548 return;
1549
1550 /*
1551 * If a non-lazy callback arrived at a CPU having only lazy
1552 * callbacks, invoke RCU core for the side-effect of recalculating
1553 * idle duration on re-entry to idle.
1554 */
1555 if (rdtp->all_lazy &&
1556 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1557 rdtp->all_lazy = false;
1558 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1559 invoke_rcu_core();
1560 return;
1561 }
1562
1563 /*
1564 * If we have not yet accelerated this jiffy, accelerate all
1565 * callbacks on this CPU.
1566 */
1567 if (rdtp->last_accelerate == jiffies)
1568 return;
1569 rdtp->last_accelerate = jiffies;
1570 for_each_rcu_flavor(rsp) {
1571 rdp = this_cpu_ptr(rsp->rda);
1572 if (!*rdp->nxttail[RCU_DONE_TAIL])
1573 continue;
1574 rnp = rdp->mynode;
1575 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1576 smp_mb__after_unlock_lock();
1577 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1578 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1579 if (needwake)
1580 rcu_gp_kthread_wake(rsp);
1581 }
1582 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1583 }
1584
1585 /*
1586 * Clean up for exit from idle. Attempt to advance callbacks based on
1587 * any grace periods that elapsed while the CPU was idle, and if any
1588 * callbacks are now ready to invoke, initiate invocation.
1589 */
1590 static void rcu_cleanup_after_idle(void)
1591 {
1592 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1593 if (rcu_is_nocb_cpu(smp_processor_id()))
1594 return;
1595 if (rcu_try_advance_all_cbs())
1596 invoke_rcu_core();
1597 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1598 }
1599
1600 /*
1601 * Keep a running count of the number of non-lazy callbacks posted
1602 * on this CPU. This running counter (which is never decremented) allows
1603 * rcu_prepare_for_idle() to detect when something out of the idle loop
1604 * posts a callback, even if an equal number of callbacks are invoked.
1605 * Of course, callbacks should only be posted from within a trace event
1606 * designed to be called from idle or from within RCU_NONIDLE().
1607 */
1608 static void rcu_idle_count_callbacks_posted(void)
1609 {
1610 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1611 }
1612
1613 /*
1614 * Data for flushing lazy RCU callbacks at OOM time.
1615 */
1616 static atomic_t oom_callback_count;
1617 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1618
1619 /*
1620 * RCU OOM callback -- decrement the outstanding count and deliver the
1621 * wake-up if we are the last one.
1622 */
1623 static void rcu_oom_callback(struct rcu_head *rhp)
1624 {
1625 if (atomic_dec_and_test(&oom_callback_count))
1626 wake_up(&oom_callback_wq);
1627 }
1628
1629 /*
1630 * Post an rcu_oom_notify callback on the current CPU if it has at
1631 * least one lazy callback. This will unnecessarily post callbacks
1632 * to CPUs that already have a non-lazy callback at the end of their
1633 * callback list, but this is an infrequent operation, so accept some
1634 * extra overhead to keep things simple.
1635 */
1636 static void rcu_oom_notify_cpu(void *unused)
1637 {
1638 struct rcu_state *rsp;
1639 struct rcu_data *rdp;
1640
1641 for_each_rcu_flavor(rsp) {
1642 rdp = raw_cpu_ptr(rsp->rda);
1643 if (rdp->qlen_lazy != 0) {
1644 atomic_inc(&oom_callback_count);
1645 rsp->call(&rdp->oom_head, rcu_oom_callback);
1646 }
1647 }
1648 }
1649
1650 /*
1651 * If low on memory, ensure that each CPU has a non-lazy callback.
1652 * This will wake up CPUs that have only lazy callbacks, in turn
1653 * ensuring that they free up the corresponding memory in a timely manner.
1654 * Because an uncertain amount of memory will be freed in some uncertain
1655 * timeframe, we do not claim to have freed anything.
1656 */
1657 static int rcu_oom_notify(struct notifier_block *self,
1658 unsigned long notused, void *nfreed)
1659 {
1660 int cpu;
1661
1662 /* Wait for callbacks from earlier instance to complete. */
1663 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1664 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1665
1666 /*
1667 * Prevent premature wakeup: ensure that all increments happen
1668 * before there is a chance of the counter reaching zero.
1669 */
1670 atomic_set(&oom_callback_count, 1);
1671
1672 get_online_cpus();
1673 for_each_online_cpu(cpu) {
1674 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1675 cond_resched_rcu_qs();
1676 }
1677 put_online_cpus();
1678
1679 /* Unconditionally decrement: no need to wake ourselves up. */
1680 atomic_dec(&oom_callback_count);
1681
1682 return NOTIFY_OK;
1683 }
1684
1685 static struct notifier_block rcu_oom_nb = {
1686 .notifier_call = rcu_oom_notify
1687 };
1688
1689 static int __init rcu_register_oom_notifier(void)
1690 {
1691 register_oom_notifier(&rcu_oom_nb);
1692 return 0;
1693 }
1694 early_initcall(rcu_register_oom_notifier);
1695
1696 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1697
1698 #ifdef CONFIG_RCU_CPU_STALL_INFO
1699
1700 #ifdef CONFIG_RCU_FAST_NO_HZ
1701
1702 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1703 {
1704 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1705 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1706
1707 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1708 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1709 ulong2long(nlpd),
1710 rdtp->all_lazy ? 'L' : '.',
1711 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1712 }
1713
1714 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1715
1716 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1717 {
1718 *cp = '\0';
1719 }
1720
1721 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1722
1723 /* Initiate the stall-info list. */
1724 static void print_cpu_stall_info_begin(void)
1725 {
1726 pr_cont("\n");
1727 }
1728
1729 /*
1730 * Print out diagnostic information for the specified stalled CPU.
1731 *
1732 * If the specified CPU is aware of the current RCU grace period
1733 * (flavor specified by rsp), then print the number of scheduling
1734 * clock interrupts the CPU has taken during the time that it has
1735 * been aware. Otherwise, print the number of RCU grace periods
1736 * that this CPU is ignorant of, for example, "1" if the CPU was
1737 * aware of the previous grace period.
1738 *
1739 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1740 */
1741 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1742 {
1743 char fast_no_hz[72];
1744 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1745 struct rcu_dynticks *rdtp = rdp->dynticks;
1746 char *ticks_title;
1747 unsigned long ticks_value;
1748
1749 if (rsp->gpnum == rdp->gpnum) {
1750 ticks_title = "ticks this GP";
1751 ticks_value = rdp->ticks_this_gp;
1752 } else {
1753 ticks_title = "GPs behind";
1754 ticks_value = rsp->gpnum - rdp->gpnum;
1755 }
1756 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1757 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1758 cpu, ticks_value, ticks_title,
1759 atomic_read(&rdtp->dynticks) & 0xfff,
1760 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1761 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1762 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1763 fast_no_hz);
1764 }
1765
1766 /* Terminate the stall-info list. */
1767 static void print_cpu_stall_info_end(void)
1768 {
1769 pr_err("\t");
1770 }
1771
1772 /* Zero ->ticks_this_gp for all flavors of RCU. */
1773 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1774 {
1775 rdp->ticks_this_gp = 0;
1776 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1777 }
1778
1779 /* Increment ->ticks_this_gp for all flavors of RCU. */
1780 static void increment_cpu_stall_ticks(void)
1781 {
1782 struct rcu_state *rsp;
1783
1784 for_each_rcu_flavor(rsp)
1785 raw_cpu_inc(rsp->rda->ticks_this_gp);
1786 }
1787
1788 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1789
1790 static void print_cpu_stall_info_begin(void)
1791 {
1792 pr_cont(" {");
1793 }
1794
1795 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1796 {
1797 pr_cont(" %d", cpu);
1798 }
1799
1800 static void print_cpu_stall_info_end(void)
1801 {
1802 pr_cont("} ");
1803 }
1804
1805 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1806 {
1807 }
1808
1809 static void increment_cpu_stall_ticks(void)
1810 {
1811 }
1812
1813 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1814
1815 #ifdef CONFIG_RCU_NOCB_CPU
1816
1817 /*
1818 * Offload callback processing from the boot-time-specified set of CPUs
1819 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1820 * kthread created that pulls the callbacks from the corresponding CPU,
1821 * waits for a grace period to elapse, and invokes the callbacks.
1822 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1823 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1824 * has been specified, in which case each kthread actively polls its
1825 * CPU. (Which isn't so great for energy efficiency, but which does
1826 * reduce RCU's overhead on that CPU.)
1827 *
1828 * This is intended to be used in conjunction with Frederic Weisbecker's
1829 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1830 * running CPU-bound user-mode computations.
1831 *
1832 * Offloading of callback processing could also in theory be used as
1833 * an energy-efficiency measure because CPUs with no RCU callbacks
1834 * queued are more aggressive about entering dyntick-idle mode.
1835 */
1836
1837
1838 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1839 static int __init rcu_nocb_setup(char *str)
1840 {
1841 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1842 have_rcu_nocb_mask = true;
1843 cpulist_parse(str, rcu_nocb_mask);
1844 return 1;
1845 }
1846 __setup("rcu_nocbs=", rcu_nocb_setup);
1847
1848 static int __init parse_rcu_nocb_poll(char *arg)
1849 {
1850 rcu_nocb_poll = 1;
1851 return 0;
1852 }
1853 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1854
1855 /*
1856 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1857 * grace period.
1858 */
1859 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1860 {
1861 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1862 }
1863
1864 /*
1865 * Set the root rcu_node structure's ->need_future_gp field
1866 * based on the sum of those of all rcu_node structures. This does
1867 * double-count the root rcu_node structure's requests, but this
1868 * is necessary to handle the possibility of a rcu_nocb_kthread()
1869 * having awakened during the time that the rcu_node structures
1870 * were being updated for the end of the previous grace period.
1871 */
1872 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1873 {
1874 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1875 }
1876
1877 static void rcu_init_one_nocb(struct rcu_node *rnp)
1878 {
1879 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1880 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1881 }
1882
1883 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1884 /* Is the specified CPU a no-CBs CPU? */
1885 bool rcu_is_nocb_cpu(int cpu)
1886 {
1887 if (have_rcu_nocb_mask)
1888 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1889 return false;
1890 }
1891 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1892
1893 /*
1894 * Kick the leader kthread for this NOCB group.
1895 */
1896 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1897 {
1898 struct rcu_data *rdp_leader = rdp->nocb_leader;
1899
1900 if (!READ_ONCE(rdp_leader->nocb_kthread))
1901 return;
1902 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1903 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1904 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1905 wake_up(&rdp_leader->nocb_wq);
1906 }
1907 }
1908
1909 /*
1910 * Does the specified CPU need an RCU callback for the specified flavor
1911 * of rcu_barrier()?
1912 */
1913 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1914 {
1915 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1916 unsigned long ret;
1917 #ifdef CONFIG_PROVE_RCU
1918 struct rcu_head *rhp;
1919 #endif /* #ifdef CONFIG_PROVE_RCU */
1920
1921 /*
1922 * Check count of all no-CBs callbacks awaiting invocation.
1923 * There needs to be a barrier before this function is called,
1924 * but associated with a prior determination that no more
1925 * callbacks would be posted. In the worst case, the first
1926 * barrier in _rcu_barrier() suffices (but the caller cannot
1927 * necessarily rely on this, not a substitute for the caller
1928 * getting the concurrency design right!). There must also be
1929 * a barrier between the following load an posting of a callback
1930 * (if a callback is in fact needed). This is associated with an
1931 * atomic_inc() in the caller.
1932 */
1933 ret = atomic_long_read(&rdp->nocb_q_count);
1934
1935 #ifdef CONFIG_PROVE_RCU
1936 rhp = READ_ONCE(rdp->nocb_head);
1937 if (!rhp)
1938 rhp = READ_ONCE(rdp->nocb_gp_head);
1939 if (!rhp)
1940 rhp = READ_ONCE(rdp->nocb_follower_head);
1941
1942 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1943 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1944 rcu_scheduler_fully_active) {
1945 /* RCU callback enqueued before CPU first came online??? */
1946 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1947 cpu, rhp->func);
1948 WARN_ON_ONCE(1);
1949 }
1950 #endif /* #ifdef CONFIG_PROVE_RCU */
1951
1952 return !!ret;
1953 }
1954
1955 /*
1956 * Enqueue the specified string of rcu_head structures onto the specified
1957 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1958 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1959 * counts are supplied by rhcount and rhcount_lazy.
1960 *
1961 * If warranted, also wake up the kthread servicing this CPUs queues.
1962 */
1963 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1964 struct rcu_head *rhp,
1965 struct rcu_head **rhtp,
1966 int rhcount, int rhcount_lazy,
1967 unsigned long flags)
1968 {
1969 int len;
1970 struct rcu_head **old_rhpp;
1971 struct task_struct *t;
1972
1973 /* Enqueue the callback on the nocb list and update counts. */
1974 atomic_long_add(rhcount, &rdp->nocb_q_count);
1975 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1976 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1977 WRITE_ONCE(*old_rhpp, rhp);
1978 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1979 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1980
1981 /* If we are not being polled and there is a kthread, awaken it ... */
1982 t = READ_ONCE(rdp->nocb_kthread);
1983 if (rcu_nocb_poll || !t) {
1984 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1985 TPS("WakeNotPoll"));
1986 return;
1987 }
1988 len = atomic_long_read(&rdp->nocb_q_count);
1989 if (old_rhpp == &rdp->nocb_head) {
1990 if (!irqs_disabled_flags(flags)) {
1991 /* ... if queue was empty ... */
1992 wake_nocb_leader(rdp, false);
1993 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1994 TPS("WakeEmpty"));
1995 } else {
1996 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1997 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1998 TPS("WakeEmptyIsDeferred"));
1999 }
2000 rdp->qlen_last_fqs_check = 0;
2001 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2002 /* ... or if many callbacks queued. */
2003 if (!irqs_disabled_flags(flags)) {
2004 wake_nocb_leader(rdp, true);
2005 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2006 TPS("WakeOvf"));
2007 } else {
2008 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2009 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2010 TPS("WakeOvfIsDeferred"));
2011 }
2012 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2013 } else {
2014 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2015 }
2016 return;
2017 }
2018
2019 /*
2020 * This is a helper for __call_rcu(), which invokes this when the normal
2021 * callback queue is inoperable. If this is not a no-CBs CPU, this
2022 * function returns failure back to __call_rcu(), which can complain
2023 * appropriately.
2024 *
2025 * Otherwise, this function queues the callback where the corresponding
2026 * "rcuo" kthread can find it.
2027 */
2028 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2029 bool lazy, unsigned long flags)
2030 {
2031
2032 if (!rcu_is_nocb_cpu(rdp->cpu))
2033 return false;
2034 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2035 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2036 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2037 (unsigned long)rhp->func,
2038 -atomic_long_read(&rdp->nocb_q_count_lazy),
2039 -atomic_long_read(&rdp->nocb_q_count));
2040 else
2041 trace_rcu_callback(rdp->rsp->name, rhp,
2042 -atomic_long_read(&rdp->nocb_q_count_lazy),
2043 -atomic_long_read(&rdp->nocb_q_count));
2044
2045 /*
2046 * If called from an extended quiescent state with interrupts
2047 * disabled, invoke the RCU core in order to allow the idle-entry
2048 * deferred-wakeup check to function.
2049 */
2050 if (irqs_disabled_flags(flags) &&
2051 !rcu_is_watching() &&
2052 cpu_online(smp_processor_id()))
2053 invoke_rcu_core();
2054
2055 return true;
2056 }
2057
2058 /*
2059 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2060 * not a no-CBs CPU.
2061 */
2062 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2063 struct rcu_data *rdp,
2064 unsigned long flags)
2065 {
2066 long ql = rsp->qlen;
2067 long qll = rsp->qlen_lazy;
2068
2069 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2070 if (!rcu_is_nocb_cpu(smp_processor_id()))
2071 return false;
2072 rsp->qlen = 0;
2073 rsp->qlen_lazy = 0;
2074
2075 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2076 if (rsp->orphan_donelist != NULL) {
2077 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2078 rsp->orphan_donetail, ql, qll, flags);
2079 ql = qll = 0;
2080 rsp->orphan_donelist = NULL;
2081 rsp->orphan_donetail = &rsp->orphan_donelist;
2082 }
2083 if (rsp->orphan_nxtlist != NULL) {
2084 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2085 rsp->orphan_nxttail, ql, qll, flags);
2086 ql = qll = 0;
2087 rsp->orphan_nxtlist = NULL;
2088 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2089 }
2090 return true;
2091 }
2092
2093 /*
2094 * If necessary, kick off a new grace period, and either way wait
2095 * for a subsequent grace period to complete.
2096 */
2097 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2098 {
2099 unsigned long c;
2100 bool d;
2101 unsigned long flags;
2102 bool needwake;
2103 struct rcu_node *rnp = rdp->mynode;
2104
2105 raw_spin_lock_irqsave(&rnp->lock, flags);
2106 smp_mb__after_unlock_lock();
2107 needwake = rcu_start_future_gp(rnp, rdp, &c);
2108 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2109 if (needwake)
2110 rcu_gp_kthread_wake(rdp->rsp);
2111
2112 /*
2113 * Wait for the grace period. Do so interruptibly to avoid messing
2114 * up the load average.
2115 */
2116 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2117 for (;;) {
2118 wait_event_interruptible(
2119 rnp->nocb_gp_wq[c & 0x1],
2120 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2121 if (likely(d))
2122 break;
2123 WARN_ON(signal_pending(current));
2124 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2125 }
2126 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2127 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2128 }
2129
2130 /*
2131 * Leaders come here to wait for additional callbacks to show up.
2132 * This function does not return until callbacks appear.
2133 */
2134 static void nocb_leader_wait(struct rcu_data *my_rdp)
2135 {
2136 bool firsttime = true;
2137 bool gotcbs;
2138 struct rcu_data *rdp;
2139 struct rcu_head **tail;
2140
2141 wait_again:
2142
2143 /* Wait for callbacks to appear. */
2144 if (!rcu_nocb_poll) {
2145 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2146 wait_event_interruptible(my_rdp->nocb_wq,
2147 !READ_ONCE(my_rdp->nocb_leader_sleep));
2148 /* Memory barrier handled by smp_mb() calls below and repoll. */
2149 } else if (firsttime) {
2150 firsttime = false; /* Don't drown trace log with "Poll"! */
2151 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2152 }
2153
2154 /*
2155 * Each pass through the following loop checks a follower for CBs.
2156 * We are our own first follower. Any CBs found are moved to
2157 * nocb_gp_head, where they await a grace period.
2158 */
2159 gotcbs = false;
2160 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2161 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2162 if (!rdp->nocb_gp_head)
2163 continue; /* No CBs here, try next follower. */
2164
2165 /* Move callbacks to wait-for-GP list, which is empty. */
2166 WRITE_ONCE(rdp->nocb_head, NULL);
2167 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2168 gotcbs = true;
2169 }
2170
2171 /*
2172 * If there were no callbacks, sleep a bit, rescan after a
2173 * memory barrier, and go retry.
2174 */
2175 if (unlikely(!gotcbs)) {
2176 if (!rcu_nocb_poll)
2177 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2178 "WokeEmpty");
2179 WARN_ON(signal_pending(current));
2180 schedule_timeout_interruptible(1);
2181
2182 /* Rescan in case we were a victim of memory ordering. */
2183 my_rdp->nocb_leader_sleep = true;
2184 smp_mb(); /* Ensure _sleep true before scan. */
2185 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2186 if (READ_ONCE(rdp->nocb_head)) {
2187 /* Found CB, so short-circuit next wait. */
2188 my_rdp->nocb_leader_sleep = false;
2189 break;
2190 }
2191 goto wait_again;
2192 }
2193
2194 /* Wait for one grace period. */
2195 rcu_nocb_wait_gp(my_rdp);
2196
2197 /*
2198 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2199 * We set it now, but recheck for new callbacks while
2200 * traversing our follower list.
2201 */
2202 my_rdp->nocb_leader_sleep = true;
2203 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2204
2205 /* Each pass through the following loop wakes a follower, if needed. */
2206 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2207 if (READ_ONCE(rdp->nocb_head))
2208 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2209 if (!rdp->nocb_gp_head)
2210 continue; /* No CBs, so no need to wake follower. */
2211
2212 /* Append callbacks to follower's "done" list. */
2213 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2214 *tail = rdp->nocb_gp_head;
2215 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2216 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2217 /*
2218 * List was empty, wake up the follower.
2219 * Memory barriers supplied by atomic_long_add().
2220 */
2221 wake_up(&rdp->nocb_wq);
2222 }
2223 }
2224
2225 /* If we (the leader) don't have CBs, go wait some more. */
2226 if (!my_rdp->nocb_follower_head)
2227 goto wait_again;
2228 }
2229
2230 /*
2231 * Followers come here to wait for additional callbacks to show up.
2232 * This function does not return until callbacks appear.
2233 */
2234 static void nocb_follower_wait(struct rcu_data *rdp)
2235 {
2236 bool firsttime = true;
2237
2238 for (;;) {
2239 if (!rcu_nocb_poll) {
2240 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2241 "FollowerSleep");
2242 wait_event_interruptible(rdp->nocb_wq,
2243 READ_ONCE(rdp->nocb_follower_head));
2244 } else if (firsttime) {
2245 /* Don't drown trace log with "Poll"! */
2246 firsttime = false;
2247 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2248 }
2249 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2250 /* ^^^ Ensure CB invocation follows _head test. */
2251 return;
2252 }
2253 if (!rcu_nocb_poll)
2254 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2255 "WokeEmpty");
2256 WARN_ON(signal_pending(current));
2257 schedule_timeout_interruptible(1);
2258 }
2259 }
2260
2261 /*
2262 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2263 * callbacks queued by the corresponding no-CBs CPU, however, there is
2264 * an optional leader-follower relationship so that the grace-period
2265 * kthreads don't have to do quite so many wakeups.
2266 */
2267 static int rcu_nocb_kthread(void *arg)
2268 {
2269 int c, cl;
2270 struct rcu_head *list;
2271 struct rcu_head *next;
2272 struct rcu_head **tail;
2273 struct rcu_data *rdp = arg;
2274
2275 /* Each pass through this loop invokes one batch of callbacks */
2276 for (;;) {
2277 /* Wait for callbacks. */
2278 if (rdp->nocb_leader == rdp)
2279 nocb_leader_wait(rdp);
2280 else
2281 nocb_follower_wait(rdp);
2282
2283 /* Pull the ready-to-invoke callbacks onto local list. */
2284 list = READ_ONCE(rdp->nocb_follower_head);
2285 BUG_ON(!list);
2286 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2287 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2288 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2289
2290 /* Each pass through the following loop invokes a callback. */
2291 trace_rcu_batch_start(rdp->rsp->name,
2292 atomic_long_read(&rdp->nocb_q_count_lazy),
2293 atomic_long_read(&rdp->nocb_q_count), -1);
2294 c = cl = 0;
2295 while (list) {
2296 next = list->next;
2297 /* Wait for enqueuing to complete, if needed. */
2298 while (next == NULL && &list->next != tail) {
2299 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2300 TPS("WaitQueue"));
2301 schedule_timeout_interruptible(1);
2302 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2303 TPS("WokeQueue"));
2304 next = list->next;
2305 }
2306 debug_rcu_head_unqueue(list);
2307 local_bh_disable();
2308 if (__rcu_reclaim(rdp->rsp->name, list))
2309 cl++;
2310 c++;
2311 local_bh_enable();
2312 list = next;
2313 }
2314 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2315 smp_mb__before_atomic(); /* _add after CB invocation. */
2316 atomic_long_add(-c, &rdp->nocb_q_count);
2317 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2318 rdp->n_nocbs_invoked += c;
2319 }
2320 return 0;
2321 }
2322
2323 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2324 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2325 {
2326 return READ_ONCE(rdp->nocb_defer_wakeup);
2327 }
2328
2329 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2330 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2331 {
2332 int ndw;
2333
2334 if (!rcu_nocb_need_deferred_wakeup(rdp))
2335 return;
2336 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2337 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2338 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2339 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2340 }
2341
2342 void __init rcu_init_nohz(void)
2343 {
2344 int cpu;
2345 bool need_rcu_nocb_mask = true;
2346 struct rcu_state *rsp;
2347
2348 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2349 need_rcu_nocb_mask = false;
2350 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2351
2352 #if defined(CONFIG_NO_HZ_FULL)
2353 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2354 need_rcu_nocb_mask = true;
2355 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2356
2357 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2358 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2359 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2360 return;
2361 }
2362 have_rcu_nocb_mask = true;
2363 }
2364 if (!have_rcu_nocb_mask)
2365 return;
2366
2367 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2368 pr_info("\tOffload RCU callbacks from CPU 0\n");
2369 cpumask_set_cpu(0, rcu_nocb_mask);
2370 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2371 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2372 pr_info("\tOffload RCU callbacks from all CPUs\n");
2373 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2374 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2375 #if defined(CONFIG_NO_HZ_FULL)
2376 if (tick_nohz_full_running)
2377 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2378 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2379
2380 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2381 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2382 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2383 rcu_nocb_mask);
2384 }
2385 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2386 cpumask_pr_args(rcu_nocb_mask));
2387 if (rcu_nocb_poll)
2388 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2389
2390 for_each_rcu_flavor(rsp) {
2391 for_each_cpu(cpu, rcu_nocb_mask)
2392 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2393 rcu_organize_nocb_kthreads(rsp);
2394 }
2395 }
2396
2397 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2398 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2399 {
2400 rdp->nocb_tail = &rdp->nocb_head;
2401 init_waitqueue_head(&rdp->nocb_wq);
2402 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2403 }
2404
2405 /*
2406 * If the specified CPU is a no-CBs CPU that does not already have its
2407 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2408 * brought online out of order, this can require re-organizing the
2409 * leader-follower relationships.
2410 */
2411 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2412 {
2413 struct rcu_data *rdp;
2414 struct rcu_data *rdp_last;
2415 struct rcu_data *rdp_old_leader;
2416 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2417 struct task_struct *t;
2418
2419 /*
2420 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2421 * then nothing to do.
2422 */
2423 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2424 return;
2425
2426 /* If we didn't spawn the leader first, reorganize! */
2427 rdp_old_leader = rdp_spawn->nocb_leader;
2428 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2429 rdp_last = NULL;
2430 rdp = rdp_old_leader;
2431 do {
2432 rdp->nocb_leader = rdp_spawn;
2433 if (rdp_last && rdp != rdp_spawn)
2434 rdp_last->nocb_next_follower = rdp;
2435 if (rdp == rdp_spawn) {
2436 rdp = rdp->nocb_next_follower;
2437 } else {
2438 rdp_last = rdp;
2439 rdp = rdp->nocb_next_follower;
2440 rdp_last->nocb_next_follower = NULL;
2441 }
2442 } while (rdp);
2443 rdp_spawn->nocb_next_follower = rdp_old_leader;
2444 }
2445
2446 /* Spawn the kthread for this CPU and RCU flavor. */
2447 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2448 "rcuo%c/%d", rsp->abbr, cpu);
2449 BUG_ON(IS_ERR(t));
2450 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2451 }
2452
2453 /*
2454 * If the specified CPU is a no-CBs CPU that does not already have its
2455 * rcuo kthreads, spawn them.
2456 */
2457 static void rcu_spawn_all_nocb_kthreads(int cpu)
2458 {
2459 struct rcu_state *rsp;
2460
2461 if (rcu_scheduler_fully_active)
2462 for_each_rcu_flavor(rsp)
2463 rcu_spawn_one_nocb_kthread(rsp, cpu);
2464 }
2465
2466 /*
2467 * Once the scheduler is running, spawn rcuo kthreads for all online
2468 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2469 * non-boot CPUs come online -- if this changes, we will need to add
2470 * some mutual exclusion.
2471 */
2472 static void __init rcu_spawn_nocb_kthreads(void)
2473 {
2474 int cpu;
2475
2476 for_each_online_cpu(cpu)
2477 rcu_spawn_all_nocb_kthreads(cpu);
2478 }
2479
2480 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2481 static int rcu_nocb_leader_stride = -1;
2482 module_param(rcu_nocb_leader_stride, int, 0444);
2483
2484 /*
2485 * Initialize leader-follower relationships for all no-CBs CPU.
2486 */
2487 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2488 {
2489 int cpu;
2490 int ls = rcu_nocb_leader_stride;
2491 int nl = 0; /* Next leader. */
2492 struct rcu_data *rdp;
2493 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2494 struct rcu_data *rdp_prev = NULL;
2495
2496 if (!have_rcu_nocb_mask)
2497 return;
2498 if (ls == -1) {
2499 ls = int_sqrt(nr_cpu_ids);
2500 rcu_nocb_leader_stride = ls;
2501 }
2502
2503 /*
2504 * Each pass through this loop sets up one rcu_data structure and
2505 * spawns one rcu_nocb_kthread().
2506 */
2507 for_each_cpu(cpu, rcu_nocb_mask) {
2508 rdp = per_cpu_ptr(rsp->rda, cpu);
2509 if (rdp->cpu >= nl) {
2510 /* New leader, set up for followers & next leader. */
2511 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2512 rdp->nocb_leader = rdp;
2513 rdp_leader = rdp;
2514 } else {
2515 /* Another follower, link to previous leader. */
2516 rdp->nocb_leader = rdp_leader;
2517 rdp_prev->nocb_next_follower = rdp;
2518 }
2519 rdp_prev = rdp;
2520 }
2521 }
2522
2523 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2524 static bool init_nocb_callback_list(struct rcu_data *rdp)
2525 {
2526 if (!rcu_is_nocb_cpu(rdp->cpu))
2527 return false;
2528
2529 /* If there are early-boot callbacks, move them to nocb lists. */
2530 if (rdp->nxtlist) {
2531 rdp->nocb_head = rdp->nxtlist;
2532 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2533 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2534 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2535 rdp->nxtlist = NULL;
2536 rdp->qlen = 0;
2537 rdp->qlen_lazy = 0;
2538 }
2539 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2540 return true;
2541 }
2542
2543 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2544
2545 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2546 {
2547 WARN_ON_ONCE(1); /* Should be dead code. */
2548 return false;
2549 }
2550
2551 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2552 {
2553 }
2554
2555 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2556 {
2557 }
2558
2559 static void rcu_init_one_nocb(struct rcu_node *rnp)
2560 {
2561 }
2562
2563 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2564 bool lazy, unsigned long flags)
2565 {
2566 return false;
2567 }
2568
2569 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2570 struct rcu_data *rdp,
2571 unsigned long flags)
2572 {
2573 return false;
2574 }
2575
2576 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2577 {
2578 }
2579
2580 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2581 {
2582 return false;
2583 }
2584
2585 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2586 {
2587 }
2588
2589 static void rcu_spawn_all_nocb_kthreads(int cpu)
2590 {
2591 }
2592
2593 static void __init rcu_spawn_nocb_kthreads(void)
2594 {
2595 }
2596
2597 static bool init_nocb_callback_list(struct rcu_data *rdp)
2598 {
2599 return false;
2600 }
2601
2602 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2603
2604 /*
2605 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2606 * arbitrarily long period of time with the scheduling-clock tick turned
2607 * off. RCU will be paying attention to this CPU because it is in the
2608 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2609 * machine because the scheduling-clock tick has been disabled. Therefore,
2610 * if an adaptive-ticks CPU is failing to respond to the current grace
2611 * period and has not be idle from an RCU perspective, kick it.
2612 */
2613 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2614 {
2615 #ifdef CONFIG_NO_HZ_FULL
2616 if (tick_nohz_full_cpu(cpu))
2617 smp_send_reschedule(cpu);
2618 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2619 }
2620
2621
2622 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2623
2624 static int full_sysidle_state; /* Current system-idle state. */
2625 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2626 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2627 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2628 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2629 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2630
2631 /*
2632 * Invoked to note exit from irq or task transition to idle. Note that
2633 * usermode execution does -not- count as idle here! After all, we want
2634 * to detect full-system idle states, not RCU quiescent states and grace
2635 * periods. The caller must have disabled interrupts.
2636 */
2637 static void rcu_sysidle_enter(int irq)
2638 {
2639 unsigned long j;
2640 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2641
2642 /* If there are no nohz_full= CPUs, no need to track this. */
2643 if (!tick_nohz_full_enabled())
2644 return;
2645
2646 /* Adjust nesting, check for fully idle. */
2647 if (irq) {
2648 rdtp->dynticks_idle_nesting--;
2649 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2650 if (rdtp->dynticks_idle_nesting != 0)
2651 return; /* Still not fully idle. */
2652 } else {
2653 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2654 DYNTICK_TASK_NEST_VALUE) {
2655 rdtp->dynticks_idle_nesting = 0;
2656 } else {
2657 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2658 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2659 return; /* Still not fully idle. */
2660 }
2661 }
2662
2663 /* Record start of fully idle period. */
2664 j = jiffies;
2665 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2666 smp_mb__before_atomic();
2667 atomic_inc(&rdtp->dynticks_idle);
2668 smp_mb__after_atomic();
2669 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2670 }
2671
2672 /*
2673 * Unconditionally force exit from full system-idle state. This is
2674 * invoked when a normal CPU exits idle, but must be called separately
2675 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2676 * is that the timekeeping CPU is permitted to take scheduling-clock
2677 * interrupts while the system is in system-idle state, and of course
2678 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2679 * interrupt from any other type of interrupt.
2680 */
2681 void rcu_sysidle_force_exit(void)
2682 {
2683 int oldstate = READ_ONCE(full_sysidle_state);
2684 int newoldstate;
2685
2686 /*
2687 * Each pass through the following loop attempts to exit full
2688 * system-idle state. If contention proves to be a problem,
2689 * a trylock-based contention tree could be used here.
2690 */
2691 while (oldstate > RCU_SYSIDLE_SHORT) {
2692 newoldstate = cmpxchg(&full_sysidle_state,
2693 oldstate, RCU_SYSIDLE_NOT);
2694 if (oldstate == newoldstate &&
2695 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2696 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2697 return; /* We cleared it, done! */
2698 }
2699 oldstate = newoldstate;
2700 }
2701 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2702 }
2703
2704 /*
2705 * Invoked to note entry to irq or task transition from idle. Note that
2706 * usermode execution does -not- count as idle here! The caller must
2707 * have disabled interrupts.
2708 */
2709 static void rcu_sysidle_exit(int irq)
2710 {
2711 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2712
2713 /* If there are no nohz_full= CPUs, no need to track this. */
2714 if (!tick_nohz_full_enabled())
2715 return;
2716
2717 /* Adjust nesting, check for already non-idle. */
2718 if (irq) {
2719 rdtp->dynticks_idle_nesting++;
2720 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2721 if (rdtp->dynticks_idle_nesting != 1)
2722 return; /* Already non-idle. */
2723 } else {
2724 /*
2725 * Allow for irq misnesting. Yes, it really is possible
2726 * to enter an irq handler then never leave it, and maybe
2727 * also vice versa. Handle both possibilities.
2728 */
2729 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2730 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2731 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2732 return; /* Already non-idle. */
2733 } else {
2734 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2735 }
2736 }
2737
2738 /* Record end of idle period. */
2739 smp_mb__before_atomic();
2740 atomic_inc(&rdtp->dynticks_idle);
2741 smp_mb__after_atomic();
2742 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2743
2744 /*
2745 * If we are the timekeeping CPU, we are permitted to be non-idle
2746 * during a system-idle state. This must be the case, because
2747 * the timekeeping CPU has to take scheduling-clock interrupts
2748 * during the time that the system is transitioning to full
2749 * system-idle state. This means that the timekeeping CPU must
2750 * invoke rcu_sysidle_force_exit() directly if it does anything
2751 * more than take a scheduling-clock interrupt.
2752 */
2753 if (smp_processor_id() == tick_do_timer_cpu)
2754 return;
2755
2756 /* Update system-idle state: We are clearly no longer fully idle! */
2757 rcu_sysidle_force_exit();
2758 }
2759
2760 /*
2761 * Check to see if the current CPU is idle. Note that usermode execution
2762 * does not count as idle. The caller must have disabled interrupts,
2763 * and must be running on tick_do_timer_cpu.
2764 */
2765 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2766 unsigned long *maxj)
2767 {
2768 int cur;
2769 unsigned long j;
2770 struct rcu_dynticks *rdtp = rdp->dynticks;
2771
2772 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2773 if (!tick_nohz_full_enabled())
2774 return;
2775
2776 /*
2777 * If some other CPU has already reported non-idle, if this is
2778 * not the flavor of RCU that tracks sysidle state, or if this
2779 * is an offline or the timekeeping CPU, nothing to do.
2780 */
2781 if (!*isidle || rdp->rsp != rcu_state_p ||
2782 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2783 return;
2784 /* Verify affinity of current kthread. */
2785 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2786
2787 /* Pick up current idle and NMI-nesting counter and check. */
2788 cur = atomic_read(&rdtp->dynticks_idle);
2789 if (cur & 0x1) {
2790 *isidle = false; /* We are not idle! */
2791 return;
2792 }
2793 smp_mb(); /* Read counters before timestamps. */
2794
2795 /* Pick up timestamps. */
2796 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2797 /* If this CPU entered idle more recently, update maxj timestamp. */
2798 if (ULONG_CMP_LT(*maxj, j))
2799 *maxj = j;
2800 }
2801
2802 /*
2803 * Is this the flavor of RCU that is handling full-system idle?
2804 */
2805 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2806 {
2807 return rsp == rcu_state_p;
2808 }
2809
2810 /*
2811 * Return a delay in jiffies based on the number of CPUs, rcu_node
2812 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2813 * systems more time to transition to full-idle state in order to
2814 * avoid the cache thrashing that otherwise occur on the state variable.
2815 * Really small systems (less than a couple of tens of CPUs) should
2816 * instead use a single global atomically incremented counter, and later
2817 * versions of this will automatically reconfigure themselves accordingly.
2818 */
2819 static unsigned long rcu_sysidle_delay(void)
2820 {
2821 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2822 return 0;
2823 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2824 }
2825
2826 /*
2827 * Advance the full-system-idle state. This is invoked when all of
2828 * the non-timekeeping CPUs are idle.
2829 */
2830 static void rcu_sysidle(unsigned long j)
2831 {
2832 /* Check the current state. */
2833 switch (READ_ONCE(full_sysidle_state)) {
2834 case RCU_SYSIDLE_NOT:
2835
2836 /* First time all are idle, so note a short idle period. */
2837 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2838 break;
2839
2840 case RCU_SYSIDLE_SHORT:
2841
2842 /*
2843 * Idle for a bit, time to advance to next state?
2844 * cmpxchg failure means race with non-idle, let them win.
2845 */
2846 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2847 (void)cmpxchg(&full_sysidle_state,
2848 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2849 break;
2850
2851 case RCU_SYSIDLE_LONG:
2852
2853 /*
2854 * Do an additional check pass before advancing to full.
2855 * cmpxchg failure means race with non-idle, let them win.
2856 */
2857 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2858 (void)cmpxchg(&full_sysidle_state,
2859 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2860 break;
2861
2862 default:
2863 break;
2864 }
2865 }
2866
2867 /*
2868 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2869 * back to the beginning.
2870 */
2871 static void rcu_sysidle_cancel(void)
2872 {
2873 smp_mb();
2874 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2875 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2876 }
2877
2878 /*
2879 * Update the sysidle state based on the results of a force-quiescent-state
2880 * scan of the CPUs' dyntick-idle state.
2881 */
2882 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2883 unsigned long maxj, bool gpkt)
2884 {
2885 if (rsp != rcu_state_p)
2886 return; /* Wrong flavor, ignore. */
2887 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2888 return; /* Running state machine from timekeeping CPU. */
2889 if (isidle)
2890 rcu_sysidle(maxj); /* More idle! */
2891 else
2892 rcu_sysidle_cancel(); /* Idle is over. */
2893 }
2894
2895 /*
2896 * Wrapper for rcu_sysidle_report() when called from the grace-period
2897 * kthread's context.
2898 */
2899 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2900 unsigned long maxj)
2901 {
2902 /* If there are no nohz_full= CPUs, no need to track this. */
2903 if (!tick_nohz_full_enabled())
2904 return;
2905
2906 rcu_sysidle_report(rsp, isidle, maxj, true);
2907 }
2908
2909 /* Callback and function for forcing an RCU grace period. */
2910 struct rcu_sysidle_head {
2911 struct rcu_head rh;
2912 int inuse;
2913 };
2914
2915 static void rcu_sysidle_cb(struct rcu_head *rhp)
2916 {
2917 struct rcu_sysidle_head *rshp;
2918
2919 /*
2920 * The following memory barrier is needed to replace the
2921 * memory barriers that would normally be in the memory
2922 * allocator.
2923 */
2924 smp_mb(); /* grace period precedes setting inuse. */
2925
2926 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2927 WRITE_ONCE(rshp->inuse, 0);
2928 }
2929
2930 /*
2931 * Check to see if the system is fully idle, other than the timekeeping CPU.
2932 * The caller must have disabled interrupts. This is not intended to be
2933 * called unless tick_nohz_full_enabled().
2934 */
2935 bool rcu_sys_is_idle(void)
2936 {
2937 static struct rcu_sysidle_head rsh;
2938 int rss = READ_ONCE(full_sysidle_state);
2939
2940 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2941 return false;
2942
2943 /* Handle small-system case by doing a full scan of CPUs. */
2944 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2945 int oldrss = rss - 1;
2946
2947 /*
2948 * One pass to advance to each state up to _FULL.
2949 * Give up if any pass fails to advance the state.
2950 */
2951 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2952 int cpu;
2953 bool isidle = true;
2954 unsigned long maxj = jiffies - ULONG_MAX / 4;
2955 struct rcu_data *rdp;
2956
2957 /* Scan all the CPUs looking for nonidle CPUs. */
2958 for_each_possible_cpu(cpu) {
2959 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2960 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2961 if (!isidle)
2962 break;
2963 }
2964 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2965 oldrss = rss;
2966 rss = READ_ONCE(full_sysidle_state);
2967 }
2968 }
2969
2970 /* If this is the first observation of an idle period, record it. */
2971 if (rss == RCU_SYSIDLE_FULL) {
2972 rss = cmpxchg(&full_sysidle_state,
2973 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2974 return rss == RCU_SYSIDLE_FULL;
2975 }
2976
2977 smp_mb(); /* ensure rss load happens before later caller actions. */
2978
2979 /* If already fully idle, tell the caller (in case of races). */
2980 if (rss == RCU_SYSIDLE_FULL_NOTED)
2981 return true;
2982
2983 /*
2984 * If we aren't there yet, and a grace period is not in flight,
2985 * initiate a grace period. Either way, tell the caller that
2986 * we are not there yet. We use an xchg() rather than an assignment
2987 * to make up for the memory barriers that would otherwise be
2988 * provided by the memory allocator.
2989 */
2990 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2991 !rcu_gp_in_progress(rcu_state_p) &&
2992 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2993 call_rcu(&rsh.rh, rcu_sysidle_cb);
2994 return false;
2995 }
2996
2997 /*
2998 * Initialize dynticks sysidle state for CPUs coming online.
2999 */
3000 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3001 {
3002 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3003 }
3004
3005 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3006
3007 static void rcu_sysidle_enter(int irq)
3008 {
3009 }
3010
3011 static void rcu_sysidle_exit(int irq)
3012 {
3013 }
3014
3015 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3016 unsigned long *maxj)
3017 {
3018 }
3019
3020 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3021 {
3022 return false;
3023 }
3024
3025 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3026 unsigned long maxj)
3027 {
3028 }
3029
3030 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3031 {
3032 }
3033
3034 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3035
3036 /*
3037 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3038 * grace-period kthread will do force_quiescent_state() processing?
3039 * The idea is to avoid waking up RCU core processing on such a
3040 * CPU unless the grace period has extended for too long.
3041 *
3042 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3043 * CONFIG_RCU_NOCB_CPU CPUs.
3044 */
3045 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3046 {
3047 #ifdef CONFIG_NO_HZ_FULL
3048 if (tick_nohz_full_cpu(smp_processor_id()) &&
3049 (!rcu_gp_in_progress(rsp) ||
3050 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3051 return 1;
3052 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3053 return 0;
3054 }
3055
3056 /*
3057 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3058 * timekeeping CPU.
3059 */
3060 static void rcu_bind_gp_kthread(void)
3061 {
3062 int __maybe_unused cpu;
3063
3064 if (!tick_nohz_full_enabled())
3065 return;
3066 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3067 cpu = tick_do_timer_cpu;
3068 if (cpu >= 0 && cpu < nr_cpu_ids)
3069 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3070 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3071 housekeeping_affine(current);
3072 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3073 }
3074
3075 /* Record the current task on dyntick-idle entry. */
3076 static void rcu_dynticks_task_enter(void)
3077 {
3078 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3079 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3080 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3081 }
3082
3083 /* Record no current task on dyntick-idle exit. */
3084 static void rcu_dynticks_task_exit(void)
3085 {
3086 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3087 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3088 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3089 }
This page took 0.089134 seconds and 6 git commands to generate.