rcutorture: Fix error return code in rcu_perf_init()
[deliverable/linux.git] / kernel / rcu / update.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
31 *
32 */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/module.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
52
53 #define CREATE_TRACE_POINTS
54
55 #include "rcu.h"
56
57 MODULE_ALIAS("rcupdate");
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "rcupdate."
62
63 #ifndef CONFIG_TINY_RCU
64 module_param(rcu_expedited, int, 0);
65 module_param(rcu_normal, int, 0);
66 static int rcu_normal_after_boot;
67 module_param(rcu_normal_after_boot, int, 0);
68 #endif /* #ifndef CONFIG_TINY_RCU */
69
70 #ifdef CONFIG_DEBUG_LOCK_ALLOC
71 /**
72 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
73 *
74 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
75 * RCU-sched read-side critical section. In absence of
76 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
77 * critical section unless it can prove otherwise. Note that disabling
78 * of preemption (including disabling irqs) counts as an RCU-sched
79 * read-side critical section. This is useful for debug checks in functions
80 * that required that they be called within an RCU-sched read-side
81 * critical section.
82 *
83 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
84 * and while lockdep is disabled.
85 *
86 * Note that if the CPU is in the idle loop from an RCU point of
87 * view (ie: that we are in the section between rcu_idle_enter() and
88 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
89 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
90 * that are in such a section, considering these as in extended quiescent
91 * state, so such a CPU is effectively never in an RCU read-side critical
92 * section regardless of what RCU primitives it invokes. This state of
93 * affairs is required --- we need to keep an RCU-free window in idle
94 * where the CPU may possibly enter into low power mode. This way we can
95 * notice an extended quiescent state to other CPUs that started a grace
96 * period. Otherwise we would delay any grace period as long as we run in
97 * the idle task.
98 *
99 * Similarly, we avoid claiming an SRCU read lock held if the current
100 * CPU is offline.
101 */
102 int rcu_read_lock_sched_held(void)
103 {
104 int lockdep_opinion = 0;
105
106 if (!debug_lockdep_rcu_enabled())
107 return 1;
108 if (!rcu_is_watching())
109 return 0;
110 if (!rcu_lockdep_current_cpu_online())
111 return 0;
112 if (debug_locks)
113 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
114 return lockdep_opinion || !preemptible();
115 }
116 EXPORT_SYMBOL(rcu_read_lock_sched_held);
117 #endif
118
119 #ifndef CONFIG_TINY_RCU
120
121 /*
122 * Should expedited grace-period primitives always fall back to their
123 * non-expedited counterparts? Intended for use within RCU. Note
124 * that if the user specifies both rcu_expedited and rcu_normal, then
125 * rcu_normal wins.
126 */
127 bool rcu_gp_is_normal(void)
128 {
129 return READ_ONCE(rcu_normal);
130 }
131 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
132
133 static atomic_t rcu_expedited_nesting =
134 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
135
136 /*
137 * Should normal grace-period primitives be expedited? Intended for
138 * use within RCU. Note that this function takes the rcu_expedited
139 * sysfs/boot variable into account as well as the rcu_expedite_gp()
140 * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
141 * returns false is a -really- bad idea.
142 */
143 bool rcu_gp_is_expedited(void)
144 {
145 return rcu_expedited || atomic_read(&rcu_expedited_nesting);
146 }
147 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
148
149 /**
150 * rcu_expedite_gp - Expedite future RCU grace periods
151 *
152 * After a call to this function, future calls to synchronize_rcu() and
153 * friends act as the corresponding synchronize_rcu_expedited() function
154 * had instead been called.
155 */
156 void rcu_expedite_gp(void)
157 {
158 atomic_inc(&rcu_expedited_nesting);
159 }
160 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
161
162 /**
163 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
164 *
165 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
166 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
167 * and if the rcu_expedited sysfs/boot parameter is not set, then all
168 * subsequent calls to synchronize_rcu() and friends will return to
169 * their normal non-expedited behavior.
170 */
171 void rcu_unexpedite_gp(void)
172 {
173 atomic_dec(&rcu_expedited_nesting);
174 }
175 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
176
177 /*
178 * Inform RCU of the end of the in-kernel boot sequence.
179 */
180 void rcu_end_inkernel_boot(void)
181 {
182 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
183 rcu_unexpedite_gp();
184 if (rcu_normal_after_boot)
185 WRITE_ONCE(rcu_normal, 1);
186 }
187
188 #endif /* #ifndef CONFIG_TINY_RCU */
189
190 #ifdef CONFIG_PREEMPT_RCU
191
192 /*
193 * Preemptible RCU implementation for rcu_read_lock().
194 * Just increment ->rcu_read_lock_nesting, shared state will be updated
195 * if we block.
196 */
197 void __rcu_read_lock(void)
198 {
199 current->rcu_read_lock_nesting++;
200 barrier(); /* critical section after entry code. */
201 }
202 EXPORT_SYMBOL_GPL(__rcu_read_lock);
203
204 /*
205 * Preemptible RCU implementation for rcu_read_unlock().
206 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
207 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
208 * invoke rcu_read_unlock_special() to clean up after a context switch
209 * in an RCU read-side critical section and other special cases.
210 */
211 void __rcu_read_unlock(void)
212 {
213 struct task_struct *t = current;
214
215 if (t->rcu_read_lock_nesting != 1) {
216 --t->rcu_read_lock_nesting;
217 } else {
218 barrier(); /* critical section before exit code. */
219 t->rcu_read_lock_nesting = INT_MIN;
220 barrier(); /* assign before ->rcu_read_unlock_special load */
221 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
222 rcu_read_unlock_special(t);
223 barrier(); /* ->rcu_read_unlock_special load before assign */
224 t->rcu_read_lock_nesting = 0;
225 }
226 #ifdef CONFIG_PROVE_LOCKING
227 {
228 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
229
230 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
231 }
232 #endif /* #ifdef CONFIG_PROVE_LOCKING */
233 }
234 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
235
236 #endif /* #ifdef CONFIG_PREEMPT_RCU */
237
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239 static struct lock_class_key rcu_lock_key;
240 struct lockdep_map rcu_lock_map =
241 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
242 EXPORT_SYMBOL_GPL(rcu_lock_map);
243
244 static struct lock_class_key rcu_bh_lock_key;
245 struct lockdep_map rcu_bh_lock_map =
246 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
247 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
248
249 static struct lock_class_key rcu_sched_lock_key;
250 struct lockdep_map rcu_sched_lock_map =
251 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
252 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
253
254 static struct lock_class_key rcu_callback_key;
255 struct lockdep_map rcu_callback_map =
256 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
257 EXPORT_SYMBOL_GPL(rcu_callback_map);
258
259 int notrace debug_lockdep_rcu_enabled(void)
260 {
261 return rcu_scheduler_active && debug_locks &&
262 current->lockdep_recursion == 0;
263 }
264 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
265
266 /**
267 * rcu_read_lock_held() - might we be in RCU read-side critical section?
268 *
269 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
270 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
271 * this assumes we are in an RCU read-side critical section unless it can
272 * prove otherwise. This is useful for debug checks in functions that
273 * require that they be called within an RCU read-side critical section.
274 *
275 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
276 * and while lockdep is disabled.
277 *
278 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
279 * occur in the same context, for example, it is illegal to invoke
280 * rcu_read_unlock() in process context if the matching rcu_read_lock()
281 * was invoked from within an irq handler.
282 *
283 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
284 * offline from an RCU perspective, so check for those as well.
285 */
286 int rcu_read_lock_held(void)
287 {
288 if (!debug_lockdep_rcu_enabled())
289 return 1;
290 if (!rcu_is_watching())
291 return 0;
292 if (!rcu_lockdep_current_cpu_online())
293 return 0;
294 return lock_is_held(&rcu_lock_map);
295 }
296 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
297
298 /**
299 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
300 *
301 * Check for bottom half being disabled, which covers both the
302 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
303 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
304 * will show the situation. This is useful for debug checks in functions
305 * that require that they be called within an RCU read-side critical
306 * section.
307 *
308 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
309 *
310 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
311 * offline from an RCU perspective, so check for those as well.
312 */
313 int rcu_read_lock_bh_held(void)
314 {
315 if (!debug_lockdep_rcu_enabled())
316 return 1;
317 if (!rcu_is_watching())
318 return 0;
319 if (!rcu_lockdep_current_cpu_online())
320 return 0;
321 return in_softirq() || irqs_disabled();
322 }
323 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
324
325 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
326
327 /**
328 * wakeme_after_rcu() - Callback function to awaken a task after grace period
329 * @head: Pointer to rcu_head member within rcu_synchronize structure
330 *
331 * Awaken the corresponding task now that a grace period has elapsed.
332 */
333 void wakeme_after_rcu(struct rcu_head *head)
334 {
335 struct rcu_synchronize *rcu;
336
337 rcu = container_of(head, struct rcu_synchronize, head);
338 complete(&rcu->completion);
339 }
340 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
341
342 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
343 struct rcu_synchronize *rs_array)
344 {
345 int i;
346
347 /* Initialize and register callbacks for each flavor specified. */
348 for (i = 0; i < n; i++) {
349 if (checktiny &&
350 (crcu_array[i] == call_rcu ||
351 crcu_array[i] == call_rcu_bh)) {
352 might_sleep();
353 continue;
354 }
355 init_rcu_head_on_stack(&rs_array[i].head);
356 init_completion(&rs_array[i].completion);
357 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
358 }
359
360 /* Wait for all callbacks to be invoked. */
361 for (i = 0; i < n; i++) {
362 if (checktiny &&
363 (crcu_array[i] == call_rcu ||
364 crcu_array[i] == call_rcu_bh))
365 continue;
366 wait_for_completion(&rs_array[i].completion);
367 destroy_rcu_head_on_stack(&rs_array[i].head);
368 }
369 }
370 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
371
372 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
373 void init_rcu_head(struct rcu_head *head)
374 {
375 debug_object_init(head, &rcuhead_debug_descr);
376 }
377
378 void destroy_rcu_head(struct rcu_head *head)
379 {
380 debug_object_free(head, &rcuhead_debug_descr);
381 }
382
383 static bool rcuhead_is_static_object(void *addr)
384 {
385 return true;
386 }
387
388 /**
389 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
390 * @head: pointer to rcu_head structure to be initialized
391 *
392 * This function informs debugobjects of a new rcu_head structure that
393 * has been allocated as an auto variable on the stack. This function
394 * is not required for rcu_head structures that are statically defined or
395 * that are dynamically allocated on the heap. This function has no
396 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
397 */
398 void init_rcu_head_on_stack(struct rcu_head *head)
399 {
400 debug_object_init_on_stack(head, &rcuhead_debug_descr);
401 }
402 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
403
404 /**
405 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
406 * @head: pointer to rcu_head structure to be initialized
407 *
408 * This function informs debugobjects that an on-stack rcu_head structure
409 * is about to go out of scope. As with init_rcu_head_on_stack(), this
410 * function is not required for rcu_head structures that are statically
411 * defined or that are dynamically allocated on the heap. Also as with
412 * init_rcu_head_on_stack(), this function has no effect for
413 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
414 */
415 void destroy_rcu_head_on_stack(struct rcu_head *head)
416 {
417 debug_object_free(head, &rcuhead_debug_descr);
418 }
419 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
420
421 struct debug_obj_descr rcuhead_debug_descr = {
422 .name = "rcu_head",
423 .is_static_object = rcuhead_is_static_object,
424 };
425 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
426 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
427
428 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
429 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
430 unsigned long secs,
431 unsigned long c_old, unsigned long c)
432 {
433 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
434 }
435 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
436 #else
437 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
438 do { } while (0)
439 #endif
440
441 #ifdef CONFIG_RCU_STALL_COMMON
442
443 #ifdef CONFIG_PROVE_RCU
444 #define RCU_STALL_DELAY_DELTA (5 * HZ)
445 #else
446 #define RCU_STALL_DELAY_DELTA 0
447 #endif
448
449 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
450 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
451
452 module_param(rcu_cpu_stall_suppress, int, 0644);
453 module_param(rcu_cpu_stall_timeout, int, 0644);
454
455 int rcu_jiffies_till_stall_check(void)
456 {
457 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
458
459 /*
460 * Limit check must be consistent with the Kconfig limits
461 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
462 */
463 if (till_stall_check < 3) {
464 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
465 till_stall_check = 3;
466 } else if (till_stall_check > 300) {
467 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
468 till_stall_check = 300;
469 }
470 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
471 }
472
473 void rcu_sysrq_start(void)
474 {
475 if (!rcu_cpu_stall_suppress)
476 rcu_cpu_stall_suppress = 2;
477 }
478
479 void rcu_sysrq_end(void)
480 {
481 if (rcu_cpu_stall_suppress == 2)
482 rcu_cpu_stall_suppress = 0;
483 }
484
485 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
486 {
487 rcu_cpu_stall_suppress = 1;
488 return NOTIFY_DONE;
489 }
490
491 static struct notifier_block rcu_panic_block = {
492 .notifier_call = rcu_panic,
493 };
494
495 static int __init check_cpu_stall_init(void)
496 {
497 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
498 return 0;
499 }
500 early_initcall(check_cpu_stall_init);
501
502 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
503
504 #ifdef CONFIG_TASKS_RCU
505
506 /*
507 * Simple variant of RCU whose quiescent states are voluntary context switch,
508 * user-space execution, and idle. As such, grace periods can take one good
509 * long time. There are no read-side primitives similar to rcu_read_lock()
510 * and rcu_read_unlock() because this implementation is intended to get
511 * the system into a safe state for some of the manipulations involved in
512 * tracing and the like. Finally, this implementation does not support
513 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
514 * per-CPU callback lists will be needed.
515 */
516
517 /* Global list of callbacks and associated lock. */
518 static struct rcu_head *rcu_tasks_cbs_head;
519 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
520 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
521 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
522
523 /* Track exiting tasks in order to allow them to be waited for. */
524 DEFINE_SRCU(tasks_rcu_exit_srcu);
525
526 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
527 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
528 module_param(rcu_task_stall_timeout, int, 0644);
529
530 static void rcu_spawn_tasks_kthread(void);
531
532 /*
533 * Post an RCU-tasks callback. First call must be from process context
534 * after the scheduler if fully operational.
535 */
536 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
537 {
538 unsigned long flags;
539 bool needwake;
540
541 rhp->next = NULL;
542 rhp->func = func;
543 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
544 needwake = !rcu_tasks_cbs_head;
545 *rcu_tasks_cbs_tail = rhp;
546 rcu_tasks_cbs_tail = &rhp->next;
547 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
548 if (needwake) {
549 rcu_spawn_tasks_kthread();
550 wake_up(&rcu_tasks_cbs_wq);
551 }
552 }
553 EXPORT_SYMBOL_GPL(call_rcu_tasks);
554
555 /**
556 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
557 *
558 * Control will return to the caller some time after a full rcu-tasks
559 * grace period has elapsed, in other words after all currently
560 * executing rcu-tasks read-side critical sections have elapsed. These
561 * read-side critical sections are delimited by calls to schedule(),
562 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
563 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
564 *
565 * This is a very specialized primitive, intended only for a few uses in
566 * tracing and other situations requiring manipulation of function
567 * preambles and profiling hooks. The synchronize_rcu_tasks() function
568 * is not (yet) intended for heavy use from multiple CPUs.
569 *
570 * Note that this guarantee implies further memory-ordering guarantees.
571 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
572 * each CPU is guaranteed to have executed a full memory barrier since the
573 * end of its last RCU-tasks read-side critical section whose beginning
574 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
575 * having an RCU-tasks read-side critical section that extends beyond
576 * the return from synchronize_rcu_tasks() is guaranteed to have executed
577 * a full memory barrier after the beginning of synchronize_rcu_tasks()
578 * and before the beginning of that RCU-tasks read-side critical section.
579 * Note that these guarantees include CPUs that are offline, idle, or
580 * executing in user mode, as well as CPUs that are executing in the kernel.
581 *
582 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
583 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
584 * to have executed a full memory barrier during the execution of
585 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
586 * (but again only if the system has more than one CPU).
587 */
588 void synchronize_rcu_tasks(void)
589 {
590 /* Complain if the scheduler has not started. */
591 RCU_LOCKDEP_WARN(!rcu_scheduler_active,
592 "synchronize_rcu_tasks called too soon");
593
594 /* Wait for the grace period. */
595 wait_rcu_gp(call_rcu_tasks);
596 }
597 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
598
599 /**
600 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
601 *
602 * Although the current implementation is guaranteed to wait, it is not
603 * obligated to, for example, if there are no pending callbacks.
604 */
605 void rcu_barrier_tasks(void)
606 {
607 /* There is only one callback queue, so this is easy. ;-) */
608 synchronize_rcu_tasks();
609 }
610 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
611
612 /* See if tasks are still holding out, complain if so. */
613 static void check_holdout_task(struct task_struct *t,
614 bool needreport, bool *firstreport)
615 {
616 int cpu;
617
618 if (!READ_ONCE(t->rcu_tasks_holdout) ||
619 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
620 !READ_ONCE(t->on_rq) ||
621 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
622 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
623 WRITE_ONCE(t->rcu_tasks_holdout, false);
624 list_del_init(&t->rcu_tasks_holdout_list);
625 put_task_struct(t);
626 return;
627 }
628 if (!needreport)
629 return;
630 if (*firstreport) {
631 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
632 *firstreport = false;
633 }
634 cpu = task_cpu(t);
635 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
636 t, ".I"[is_idle_task(t)],
637 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
638 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
639 t->rcu_tasks_idle_cpu, cpu);
640 sched_show_task(t);
641 }
642
643 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
644 static int __noreturn rcu_tasks_kthread(void *arg)
645 {
646 unsigned long flags;
647 struct task_struct *g, *t;
648 unsigned long lastreport;
649 struct rcu_head *list;
650 struct rcu_head *next;
651 LIST_HEAD(rcu_tasks_holdouts);
652
653 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
654 housekeeping_affine(current);
655
656 /*
657 * Each pass through the following loop makes one check for
658 * newly arrived callbacks, and, if there are some, waits for
659 * one RCU-tasks grace period and then invokes the callbacks.
660 * This loop is terminated by the system going down. ;-)
661 */
662 for (;;) {
663
664 /* Pick up any new callbacks. */
665 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
666 list = rcu_tasks_cbs_head;
667 rcu_tasks_cbs_head = NULL;
668 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
669 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
670
671 /* If there were none, wait a bit and start over. */
672 if (!list) {
673 wait_event_interruptible(rcu_tasks_cbs_wq,
674 rcu_tasks_cbs_head);
675 if (!rcu_tasks_cbs_head) {
676 WARN_ON(signal_pending(current));
677 schedule_timeout_interruptible(HZ/10);
678 }
679 continue;
680 }
681
682 /*
683 * Wait for all pre-existing t->on_rq and t->nvcsw
684 * transitions to complete. Invoking synchronize_sched()
685 * suffices because all these transitions occur with
686 * interrupts disabled. Without this synchronize_sched(),
687 * a read-side critical section that started before the
688 * grace period might be incorrectly seen as having started
689 * after the grace period.
690 *
691 * This synchronize_sched() also dispenses with the
692 * need for a memory barrier on the first store to
693 * ->rcu_tasks_holdout, as it forces the store to happen
694 * after the beginning of the grace period.
695 */
696 synchronize_sched();
697
698 /*
699 * There were callbacks, so we need to wait for an
700 * RCU-tasks grace period. Start off by scanning
701 * the task list for tasks that are not already
702 * voluntarily blocked. Mark these tasks and make
703 * a list of them in rcu_tasks_holdouts.
704 */
705 rcu_read_lock();
706 for_each_process_thread(g, t) {
707 if (t != current && READ_ONCE(t->on_rq) &&
708 !is_idle_task(t)) {
709 get_task_struct(t);
710 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
711 WRITE_ONCE(t->rcu_tasks_holdout, true);
712 list_add(&t->rcu_tasks_holdout_list,
713 &rcu_tasks_holdouts);
714 }
715 }
716 rcu_read_unlock();
717
718 /*
719 * Wait for tasks that are in the process of exiting.
720 * This does only part of the job, ensuring that all
721 * tasks that were previously exiting reach the point
722 * where they have disabled preemption, allowing the
723 * later synchronize_sched() to finish the job.
724 */
725 synchronize_srcu(&tasks_rcu_exit_srcu);
726
727 /*
728 * Each pass through the following loop scans the list
729 * of holdout tasks, removing any that are no longer
730 * holdouts. When the list is empty, we are done.
731 */
732 lastreport = jiffies;
733 while (!list_empty(&rcu_tasks_holdouts)) {
734 bool firstreport;
735 bool needreport;
736 int rtst;
737 struct task_struct *t1;
738
739 schedule_timeout_interruptible(HZ);
740 rtst = READ_ONCE(rcu_task_stall_timeout);
741 needreport = rtst > 0 &&
742 time_after(jiffies, lastreport + rtst);
743 if (needreport)
744 lastreport = jiffies;
745 firstreport = true;
746 WARN_ON(signal_pending(current));
747 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
748 rcu_tasks_holdout_list) {
749 check_holdout_task(t, needreport, &firstreport);
750 cond_resched();
751 }
752 }
753
754 /*
755 * Because ->on_rq and ->nvcsw are not guaranteed
756 * to have a full memory barriers prior to them in the
757 * schedule() path, memory reordering on other CPUs could
758 * cause their RCU-tasks read-side critical sections to
759 * extend past the end of the grace period. However,
760 * because these ->nvcsw updates are carried out with
761 * interrupts disabled, we can use synchronize_sched()
762 * to force the needed ordering on all such CPUs.
763 *
764 * This synchronize_sched() also confines all
765 * ->rcu_tasks_holdout accesses to be within the grace
766 * period, avoiding the need for memory barriers for
767 * ->rcu_tasks_holdout accesses.
768 *
769 * In addition, this synchronize_sched() waits for exiting
770 * tasks to complete their final preempt_disable() region
771 * of execution, cleaning up after the synchronize_srcu()
772 * above.
773 */
774 synchronize_sched();
775
776 /* Invoke the callbacks. */
777 while (list) {
778 next = list->next;
779 local_bh_disable();
780 list->func(list);
781 local_bh_enable();
782 list = next;
783 cond_resched();
784 }
785 schedule_timeout_uninterruptible(HZ/10);
786 }
787 }
788
789 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
790 static void rcu_spawn_tasks_kthread(void)
791 {
792 static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
793 static struct task_struct *rcu_tasks_kthread_ptr;
794 struct task_struct *t;
795
796 if (READ_ONCE(rcu_tasks_kthread_ptr)) {
797 smp_mb(); /* Ensure caller sees full kthread. */
798 return;
799 }
800 mutex_lock(&rcu_tasks_kthread_mutex);
801 if (rcu_tasks_kthread_ptr) {
802 mutex_unlock(&rcu_tasks_kthread_mutex);
803 return;
804 }
805 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
806 BUG_ON(IS_ERR(t));
807 smp_mb(); /* Ensure others see full kthread. */
808 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
809 mutex_unlock(&rcu_tasks_kthread_mutex);
810 }
811
812 #endif /* #ifdef CONFIG_TASKS_RCU */
813
814 #ifdef CONFIG_PROVE_RCU
815
816 /*
817 * Early boot self test parameters, one for each flavor
818 */
819 static bool rcu_self_test;
820 static bool rcu_self_test_bh;
821 static bool rcu_self_test_sched;
822
823 module_param(rcu_self_test, bool, 0444);
824 module_param(rcu_self_test_bh, bool, 0444);
825 module_param(rcu_self_test_sched, bool, 0444);
826
827 static int rcu_self_test_counter;
828
829 static void test_callback(struct rcu_head *r)
830 {
831 rcu_self_test_counter++;
832 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
833 }
834
835 static void early_boot_test_call_rcu(void)
836 {
837 static struct rcu_head head;
838
839 call_rcu(&head, test_callback);
840 }
841
842 static void early_boot_test_call_rcu_bh(void)
843 {
844 static struct rcu_head head;
845
846 call_rcu_bh(&head, test_callback);
847 }
848
849 static void early_boot_test_call_rcu_sched(void)
850 {
851 static struct rcu_head head;
852
853 call_rcu_sched(&head, test_callback);
854 }
855
856 void rcu_early_boot_tests(void)
857 {
858 pr_info("Running RCU self tests\n");
859
860 if (rcu_self_test)
861 early_boot_test_call_rcu();
862 if (rcu_self_test_bh)
863 early_boot_test_call_rcu_bh();
864 if (rcu_self_test_sched)
865 early_boot_test_call_rcu_sched();
866 }
867
868 static int rcu_verify_early_boot_tests(void)
869 {
870 int ret = 0;
871 int early_boot_test_counter = 0;
872
873 if (rcu_self_test) {
874 early_boot_test_counter++;
875 rcu_barrier();
876 }
877 if (rcu_self_test_bh) {
878 early_boot_test_counter++;
879 rcu_barrier_bh();
880 }
881 if (rcu_self_test_sched) {
882 early_boot_test_counter++;
883 rcu_barrier_sched();
884 }
885
886 if (rcu_self_test_counter != early_boot_test_counter) {
887 WARN_ON(1);
888 ret = -1;
889 }
890
891 return ret;
892 }
893 late_initcall(rcu_verify_early_boot_tests);
894 #else
895 void rcu_early_boot_tests(void) {}
896 #endif /* CONFIG_PROVE_RCU */
This page took 0.051415 seconds and 5 git commands to generate.