Merge remote-tracking branch 'gpio/for-next'
[deliverable/linux.git] / kernel / rcu / update.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
31 *
32 */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/moduleparam.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
52
53 #define CREATE_TRACE_POINTS
54
55 #include "rcu.h"
56
57 #ifdef MODULE_PARAM_PREFIX
58 #undef MODULE_PARAM_PREFIX
59 #endif
60 #define MODULE_PARAM_PREFIX "rcupdate."
61
62 #ifndef CONFIG_TINY_RCU
63 module_param(rcu_expedited, int, 0);
64 module_param(rcu_normal, int, 0);
65 static int rcu_normal_after_boot;
66 module_param(rcu_normal_after_boot, int, 0);
67 #endif /* #ifndef CONFIG_TINY_RCU */
68
69 #ifdef CONFIG_DEBUG_LOCK_ALLOC
70 /**
71 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
72 *
73 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
74 * RCU-sched read-side critical section. In absence of
75 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
76 * critical section unless it can prove otherwise. Note that disabling
77 * of preemption (including disabling irqs) counts as an RCU-sched
78 * read-side critical section. This is useful for debug checks in functions
79 * that required that they be called within an RCU-sched read-side
80 * critical section.
81 *
82 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
83 * and while lockdep is disabled.
84 *
85 * Note that if the CPU is in the idle loop from an RCU point of
86 * view (ie: that we are in the section between rcu_idle_enter() and
87 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
88 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
89 * that are in such a section, considering these as in extended quiescent
90 * state, so such a CPU is effectively never in an RCU read-side critical
91 * section regardless of what RCU primitives it invokes. This state of
92 * affairs is required --- we need to keep an RCU-free window in idle
93 * where the CPU may possibly enter into low power mode. This way we can
94 * notice an extended quiescent state to other CPUs that started a grace
95 * period. Otherwise we would delay any grace period as long as we run in
96 * the idle task.
97 *
98 * Similarly, we avoid claiming an SRCU read lock held if the current
99 * CPU is offline.
100 */
101 int rcu_read_lock_sched_held(void)
102 {
103 int lockdep_opinion = 0;
104
105 if (!debug_lockdep_rcu_enabled())
106 return 1;
107 if (!rcu_is_watching())
108 return 0;
109 if (!rcu_lockdep_current_cpu_online())
110 return 0;
111 if (debug_locks)
112 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
113 return lockdep_opinion || !preemptible();
114 }
115 EXPORT_SYMBOL(rcu_read_lock_sched_held);
116 #endif
117
118 #ifndef CONFIG_TINY_RCU
119
120 /*
121 * Should expedited grace-period primitives always fall back to their
122 * non-expedited counterparts? Intended for use within RCU. Note
123 * that if the user specifies both rcu_expedited and rcu_normal, then
124 * rcu_normal wins.
125 */
126 bool rcu_gp_is_normal(void)
127 {
128 return READ_ONCE(rcu_normal);
129 }
130 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
131
132 static atomic_t rcu_expedited_nesting =
133 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
134
135 /*
136 * Should normal grace-period primitives be expedited? Intended for
137 * use within RCU. Note that this function takes the rcu_expedited
138 * sysfs/boot variable into account as well as the rcu_expedite_gp()
139 * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
140 * returns false is a -really- bad idea.
141 */
142 bool rcu_gp_is_expedited(void)
143 {
144 return rcu_expedited || atomic_read(&rcu_expedited_nesting);
145 }
146 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
147
148 /**
149 * rcu_expedite_gp - Expedite future RCU grace periods
150 *
151 * After a call to this function, future calls to synchronize_rcu() and
152 * friends act as the corresponding synchronize_rcu_expedited() function
153 * had instead been called.
154 */
155 void rcu_expedite_gp(void)
156 {
157 atomic_inc(&rcu_expedited_nesting);
158 }
159 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
160
161 /**
162 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
163 *
164 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
165 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
166 * and if the rcu_expedited sysfs/boot parameter is not set, then all
167 * subsequent calls to synchronize_rcu() and friends will return to
168 * their normal non-expedited behavior.
169 */
170 void rcu_unexpedite_gp(void)
171 {
172 atomic_dec(&rcu_expedited_nesting);
173 }
174 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
175
176 /*
177 * Inform RCU of the end of the in-kernel boot sequence.
178 */
179 void rcu_end_inkernel_boot(void)
180 {
181 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
182 rcu_unexpedite_gp();
183 if (rcu_normal_after_boot)
184 WRITE_ONCE(rcu_normal, 1);
185 }
186
187 #endif /* #ifndef CONFIG_TINY_RCU */
188
189 #ifdef CONFIG_PREEMPT_RCU
190
191 /*
192 * Preemptible RCU implementation for rcu_read_lock().
193 * Just increment ->rcu_read_lock_nesting, shared state will be updated
194 * if we block.
195 */
196 void __rcu_read_lock(void)
197 {
198 current->rcu_read_lock_nesting++;
199 barrier(); /* critical section after entry code. */
200 }
201 EXPORT_SYMBOL_GPL(__rcu_read_lock);
202
203 /*
204 * Preemptible RCU implementation for rcu_read_unlock().
205 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
206 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
207 * invoke rcu_read_unlock_special() to clean up after a context switch
208 * in an RCU read-side critical section and other special cases.
209 */
210 void __rcu_read_unlock(void)
211 {
212 struct task_struct *t = current;
213
214 if (t->rcu_read_lock_nesting != 1) {
215 --t->rcu_read_lock_nesting;
216 } else {
217 barrier(); /* critical section before exit code. */
218 t->rcu_read_lock_nesting = INT_MIN;
219 barrier(); /* assign before ->rcu_read_unlock_special load */
220 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
221 rcu_read_unlock_special(t);
222 barrier(); /* ->rcu_read_unlock_special load before assign */
223 t->rcu_read_lock_nesting = 0;
224 }
225 #ifdef CONFIG_PROVE_LOCKING
226 {
227 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
228
229 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
230 }
231 #endif /* #ifdef CONFIG_PROVE_LOCKING */
232 }
233 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
234
235 #endif /* #ifdef CONFIG_PREEMPT_RCU */
236
237 #ifdef CONFIG_DEBUG_LOCK_ALLOC
238 static struct lock_class_key rcu_lock_key;
239 struct lockdep_map rcu_lock_map =
240 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
241 EXPORT_SYMBOL_GPL(rcu_lock_map);
242
243 static struct lock_class_key rcu_bh_lock_key;
244 struct lockdep_map rcu_bh_lock_map =
245 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
246 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
247
248 static struct lock_class_key rcu_sched_lock_key;
249 struct lockdep_map rcu_sched_lock_map =
250 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
251 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
252
253 static struct lock_class_key rcu_callback_key;
254 struct lockdep_map rcu_callback_map =
255 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
256 EXPORT_SYMBOL_GPL(rcu_callback_map);
257
258 int notrace debug_lockdep_rcu_enabled(void)
259 {
260 return rcu_scheduler_active && debug_locks &&
261 current->lockdep_recursion == 0;
262 }
263 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
264
265 /**
266 * rcu_read_lock_held() - might we be in RCU read-side critical section?
267 *
268 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
269 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
270 * this assumes we are in an RCU read-side critical section unless it can
271 * prove otherwise. This is useful for debug checks in functions that
272 * require that they be called within an RCU read-side critical section.
273 *
274 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
275 * and while lockdep is disabled.
276 *
277 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
278 * occur in the same context, for example, it is illegal to invoke
279 * rcu_read_unlock() in process context if the matching rcu_read_lock()
280 * was invoked from within an irq handler.
281 *
282 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
283 * offline from an RCU perspective, so check for those as well.
284 */
285 int rcu_read_lock_held(void)
286 {
287 if (!debug_lockdep_rcu_enabled())
288 return 1;
289 if (!rcu_is_watching())
290 return 0;
291 if (!rcu_lockdep_current_cpu_online())
292 return 0;
293 return lock_is_held(&rcu_lock_map);
294 }
295 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
296
297 /**
298 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
299 *
300 * Check for bottom half being disabled, which covers both the
301 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
302 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
303 * will show the situation. This is useful for debug checks in functions
304 * that require that they be called within an RCU read-side critical
305 * section.
306 *
307 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
308 *
309 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
310 * offline from an RCU perspective, so check for those as well.
311 */
312 int rcu_read_lock_bh_held(void)
313 {
314 if (!debug_lockdep_rcu_enabled())
315 return 1;
316 if (!rcu_is_watching())
317 return 0;
318 if (!rcu_lockdep_current_cpu_online())
319 return 0;
320 return in_softirq() || irqs_disabled();
321 }
322 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
323
324 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
325
326 /**
327 * wakeme_after_rcu() - Callback function to awaken a task after grace period
328 * @head: Pointer to rcu_head member within rcu_synchronize structure
329 *
330 * Awaken the corresponding task now that a grace period has elapsed.
331 */
332 void wakeme_after_rcu(struct rcu_head *head)
333 {
334 struct rcu_synchronize *rcu;
335
336 rcu = container_of(head, struct rcu_synchronize, head);
337 complete(&rcu->completion);
338 }
339 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
340
341 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
342 struct rcu_synchronize *rs_array)
343 {
344 int i;
345
346 /* Initialize and register callbacks for each flavor specified. */
347 for (i = 0; i < n; i++) {
348 if (checktiny &&
349 (crcu_array[i] == call_rcu ||
350 crcu_array[i] == call_rcu_bh)) {
351 might_sleep();
352 continue;
353 }
354 init_rcu_head_on_stack(&rs_array[i].head);
355 init_completion(&rs_array[i].completion);
356 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
357 }
358
359 /* Wait for all callbacks to be invoked. */
360 for (i = 0; i < n; i++) {
361 if (checktiny &&
362 (crcu_array[i] == call_rcu ||
363 crcu_array[i] == call_rcu_bh))
364 continue;
365 wait_for_completion(&rs_array[i].completion);
366 destroy_rcu_head_on_stack(&rs_array[i].head);
367 }
368 }
369 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
370
371 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
372 void init_rcu_head(struct rcu_head *head)
373 {
374 debug_object_init(head, &rcuhead_debug_descr);
375 }
376
377 void destroy_rcu_head(struct rcu_head *head)
378 {
379 debug_object_free(head, &rcuhead_debug_descr);
380 }
381
382 static bool rcuhead_is_static_object(void *addr)
383 {
384 return true;
385 }
386
387 /**
388 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
389 * @head: pointer to rcu_head structure to be initialized
390 *
391 * This function informs debugobjects of a new rcu_head structure that
392 * has been allocated as an auto variable on the stack. This function
393 * is not required for rcu_head structures that are statically defined or
394 * that are dynamically allocated on the heap. This function has no
395 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
396 */
397 void init_rcu_head_on_stack(struct rcu_head *head)
398 {
399 debug_object_init_on_stack(head, &rcuhead_debug_descr);
400 }
401 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
402
403 /**
404 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
405 * @head: pointer to rcu_head structure to be initialized
406 *
407 * This function informs debugobjects that an on-stack rcu_head structure
408 * is about to go out of scope. As with init_rcu_head_on_stack(), this
409 * function is not required for rcu_head structures that are statically
410 * defined or that are dynamically allocated on the heap. Also as with
411 * init_rcu_head_on_stack(), this function has no effect for
412 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
413 */
414 void destroy_rcu_head_on_stack(struct rcu_head *head)
415 {
416 debug_object_free(head, &rcuhead_debug_descr);
417 }
418 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
419
420 struct debug_obj_descr rcuhead_debug_descr = {
421 .name = "rcu_head",
422 .is_static_object = rcuhead_is_static_object,
423 };
424 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
425 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
426
427 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
428 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
429 unsigned long secs,
430 unsigned long c_old, unsigned long c)
431 {
432 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
433 }
434 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
435 #else
436 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
437 do { } while (0)
438 #endif
439
440 #ifdef CONFIG_RCU_STALL_COMMON
441
442 #ifdef CONFIG_PROVE_RCU
443 #define RCU_STALL_DELAY_DELTA (5 * HZ)
444 #else
445 #define RCU_STALL_DELAY_DELTA 0
446 #endif
447
448 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
449 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
450
451 module_param(rcu_cpu_stall_suppress, int, 0644);
452 module_param(rcu_cpu_stall_timeout, int, 0644);
453
454 int rcu_jiffies_till_stall_check(void)
455 {
456 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
457
458 /*
459 * Limit check must be consistent with the Kconfig limits
460 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
461 */
462 if (till_stall_check < 3) {
463 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
464 till_stall_check = 3;
465 } else if (till_stall_check > 300) {
466 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
467 till_stall_check = 300;
468 }
469 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
470 }
471
472 void rcu_sysrq_start(void)
473 {
474 if (!rcu_cpu_stall_suppress)
475 rcu_cpu_stall_suppress = 2;
476 }
477
478 void rcu_sysrq_end(void)
479 {
480 if (rcu_cpu_stall_suppress == 2)
481 rcu_cpu_stall_suppress = 0;
482 }
483
484 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
485 {
486 rcu_cpu_stall_suppress = 1;
487 return NOTIFY_DONE;
488 }
489
490 static struct notifier_block rcu_panic_block = {
491 .notifier_call = rcu_panic,
492 };
493
494 static int __init check_cpu_stall_init(void)
495 {
496 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
497 return 0;
498 }
499 early_initcall(check_cpu_stall_init);
500
501 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
502
503 #ifdef CONFIG_TASKS_RCU
504
505 /*
506 * Simple variant of RCU whose quiescent states are voluntary context switch,
507 * user-space execution, and idle. As such, grace periods can take one good
508 * long time. There are no read-side primitives similar to rcu_read_lock()
509 * and rcu_read_unlock() because this implementation is intended to get
510 * the system into a safe state for some of the manipulations involved in
511 * tracing and the like. Finally, this implementation does not support
512 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
513 * per-CPU callback lists will be needed.
514 */
515
516 /* Global list of callbacks and associated lock. */
517 static struct rcu_head *rcu_tasks_cbs_head;
518 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
519 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
520 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
521
522 /* Track exiting tasks in order to allow them to be waited for. */
523 DEFINE_SRCU(tasks_rcu_exit_srcu);
524
525 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
526 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
527 module_param(rcu_task_stall_timeout, int, 0644);
528
529 static void rcu_spawn_tasks_kthread(void);
530 static struct task_struct *rcu_tasks_kthread_ptr;
531
532 /*
533 * Post an RCU-tasks callback. First call must be from process context
534 * after the scheduler if fully operational.
535 */
536 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
537 {
538 unsigned long flags;
539 bool needwake;
540 bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
541
542 rhp->next = NULL;
543 rhp->func = func;
544 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
545 needwake = !rcu_tasks_cbs_head;
546 *rcu_tasks_cbs_tail = rhp;
547 rcu_tasks_cbs_tail = &rhp->next;
548 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
549 /* We can't create the thread unless interrupts are enabled. */
550 if ((needwake && havetask) ||
551 (!havetask && !irqs_disabled_flags(flags))) {
552 rcu_spawn_tasks_kthread();
553 wake_up(&rcu_tasks_cbs_wq);
554 }
555 }
556 EXPORT_SYMBOL_GPL(call_rcu_tasks);
557
558 /**
559 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
560 *
561 * Control will return to the caller some time after a full rcu-tasks
562 * grace period has elapsed, in other words after all currently
563 * executing rcu-tasks read-side critical sections have elapsed. These
564 * read-side critical sections are delimited by calls to schedule(),
565 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
566 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
567 *
568 * This is a very specialized primitive, intended only for a few uses in
569 * tracing and other situations requiring manipulation of function
570 * preambles and profiling hooks. The synchronize_rcu_tasks() function
571 * is not (yet) intended for heavy use from multiple CPUs.
572 *
573 * Note that this guarantee implies further memory-ordering guarantees.
574 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
575 * each CPU is guaranteed to have executed a full memory barrier since the
576 * end of its last RCU-tasks read-side critical section whose beginning
577 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
578 * having an RCU-tasks read-side critical section that extends beyond
579 * the return from synchronize_rcu_tasks() is guaranteed to have executed
580 * a full memory barrier after the beginning of synchronize_rcu_tasks()
581 * and before the beginning of that RCU-tasks read-side critical section.
582 * Note that these guarantees include CPUs that are offline, idle, or
583 * executing in user mode, as well as CPUs that are executing in the kernel.
584 *
585 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
586 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
587 * to have executed a full memory barrier during the execution of
588 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
589 * (but again only if the system has more than one CPU).
590 */
591 void synchronize_rcu_tasks(void)
592 {
593 /* Complain if the scheduler has not started. */
594 RCU_LOCKDEP_WARN(!rcu_scheduler_active,
595 "synchronize_rcu_tasks called too soon");
596
597 /* Wait for the grace period. */
598 wait_rcu_gp(call_rcu_tasks);
599 }
600 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
601
602 /**
603 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
604 *
605 * Although the current implementation is guaranteed to wait, it is not
606 * obligated to, for example, if there are no pending callbacks.
607 */
608 void rcu_barrier_tasks(void)
609 {
610 /* There is only one callback queue, so this is easy. ;-) */
611 synchronize_rcu_tasks();
612 }
613 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
614
615 /* See if tasks are still holding out, complain if so. */
616 static void check_holdout_task(struct task_struct *t,
617 bool needreport, bool *firstreport)
618 {
619 int cpu;
620
621 if (!READ_ONCE(t->rcu_tasks_holdout) ||
622 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
623 !READ_ONCE(t->on_rq) ||
624 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
625 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
626 WRITE_ONCE(t->rcu_tasks_holdout, false);
627 list_del_init(&t->rcu_tasks_holdout_list);
628 put_task_struct(t);
629 return;
630 }
631 if (!needreport)
632 return;
633 if (*firstreport) {
634 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
635 *firstreport = false;
636 }
637 cpu = task_cpu(t);
638 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
639 t, ".I"[is_idle_task(t)],
640 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
641 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
642 t->rcu_tasks_idle_cpu, cpu);
643 sched_show_task(t);
644 }
645
646 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
647 static int __noreturn rcu_tasks_kthread(void *arg)
648 {
649 unsigned long flags;
650 struct task_struct *g, *t;
651 unsigned long lastreport;
652 struct rcu_head *list;
653 struct rcu_head *next;
654 LIST_HEAD(rcu_tasks_holdouts);
655
656 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
657 housekeeping_affine(current);
658
659 /*
660 * Each pass through the following loop makes one check for
661 * newly arrived callbacks, and, if there are some, waits for
662 * one RCU-tasks grace period and then invokes the callbacks.
663 * This loop is terminated by the system going down. ;-)
664 */
665 for (;;) {
666
667 /* Pick up any new callbacks. */
668 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
669 list = rcu_tasks_cbs_head;
670 rcu_tasks_cbs_head = NULL;
671 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
672 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
673
674 /* If there were none, wait a bit and start over. */
675 if (!list) {
676 wait_event_interruptible(rcu_tasks_cbs_wq,
677 rcu_tasks_cbs_head);
678 if (!rcu_tasks_cbs_head) {
679 WARN_ON(signal_pending(current));
680 schedule_timeout_interruptible(HZ/10);
681 }
682 continue;
683 }
684
685 /*
686 * Wait for all pre-existing t->on_rq and t->nvcsw
687 * transitions to complete. Invoking synchronize_sched()
688 * suffices because all these transitions occur with
689 * interrupts disabled. Without this synchronize_sched(),
690 * a read-side critical section that started before the
691 * grace period might be incorrectly seen as having started
692 * after the grace period.
693 *
694 * This synchronize_sched() also dispenses with the
695 * need for a memory barrier on the first store to
696 * ->rcu_tasks_holdout, as it forces the store to happen
697 * after the beginning of the grace period.
698 */
699 synchronize_sched();
700
701 /*
702 * There were callbacks, so we need to wait for an
703 * RCU-tasks grace period. Start off by scanning
704 * the task list for tasks that are not already
705 * voluntarily blocked. Mark these tasks and make
706 * a list of them in rcu_tasks_holdouts.
707 */
708 rcu_read_lock();
709 for_each_process_thread(g, t) {
710 if (t != current && READ_ONCE(t->on_rq) &&
711 !is_idle_task(t)) {
712 get_task_struct(t);
713 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
714 WRITE_ONCE(t->rcu_tasks_holdout, true);
715 list_add(&t->rcu_tasks_holdout_list,
716 &rcu_tasks_holdouts);
717 }
718 }
719 rcu_read_unlock();
720
721 /*
722 * Wait for tasks that are in the process of exiting.
723 * This does only part of the job, ensuring that all
724 * tasks that were previously exiting reach the point
725 * where they have disabled preemption, allowing the
726 * later synchronize_sched() to finish the job.
727 */
728 synchronize_srcu(&tasks_rcu_exit_srcu);
729
730 /*
731 * Each pass through the following loop scans the list
732 * of holdout tasks, removing any that are no longer
733 * holdouts. When the list is empty, we are done.
734 */
735 lastreport = jiffies;
736 while (!list_empty(&rcu_tasks_holdouts)) {
737 bool firstreport;
738 bool needreport;
739 int rtst;
740 struct task_struct *t1;
741
742 schedule_timeout_interruptible(HZ);
743 rtst = READ_ONCE(rcu_task_stall_timeout);
744 needreport = rtst > 0 &&
745 time_after(jiffies, lastreport + rtst);
746 if (needreport)
747 lastreport = jiffies;
748 firstreport = true;
749 WARN_ON(signal_pending(current));
750 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
751 rcu_tasks_holdout_list) {
752 check_holdout_task(t, needreport, &firstreport);
753 cond_resched();
754 }
755 }
756
757 /*
758 * Because ->on_rq and ->nvcsw are not guaranteed
759 * to have a full memory barriers prior to them in the
760 * schedule() path, memory reordering on other CPUs could
761 * cause their RCU-tasks read-side critical sections to
762 * extend past the end of the grace period. However,
763 * because these ->nvcsw updates are carried out with
764 * interrupts disabled, we can use synchronize_sched()
765 * to force the needed ordering on all such CPUs.
766 *
767 * This synchronize_sched() also confines all
768 * ->rcu_tasks_holdout accesses to be within the grace
769 * period, avoiding the need for memory barriers for
770 * ->rcu_tasks_holdout accesses.
771 *
772 * In addition, this synchronize_sched() waits for exiting
773 * tasks to complete their final preempt_disable() region
774 * of execution, cleaning up after the synchronize_srcu()
775 * above.
776 */
777 synchronize_sched();
778
779 /* Invoke the callbacks. */
780 while (list) {
781 next = list->next;
782 local_bh_disable();
783 list->func(list);
784 local_bh_enable();
785 list = next;
786 cond_resched();
787 }
788 schedule_timeout_uninterruptible(HZ/10);
789 }
790 }
791
792 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
793 static void rcu_spawn_tasks_kthread(void)
794 {
795 static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
796 struct task_struct *t;
797
798 if (READ_ONCE(rcu_tasks_kthread_ptr)) {
799 smp_mb(); /* Ensure caller sees full kthread. */
800 return;
801 }
802 mutex_lock(&rcu_tasks_kthread_mutex);
803 if (rcu_tasks_kthread_ptr) {
804 mutex_unlock(&rcu_tasks_kthread_mutex);
805 return;
806 }
807 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
808 BUG_ON(IS_ERR(t));
809 smp_mb(); /* Ensure others see full kthread. */
810 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
811 mutex_unlock(&rcu_tasks_kthread_mutex);
812 }
813
814 #endif /* #ifdef CONFIG_TASKS_RCU */
815
816 #ifdef CONFIG_PROVE_RCU
817
818 /*
819 * Early boot self test parameters, one for each flavor
820 */
821 static bool rcu_self_test;
822 static bool rcu_self_test_bh;
823 static bool rcu_self_test_sched;
824
825 module_param(rcu_self_test, bool, 0444);
826 module_param(rcu_self_test_bh, bool, 0444);
827 module_param(rcu_self_test_sched, bool, 0444);
828
829 static int rcu_self_test_counter;
830
831 static void test_callback(struct rcu_head *r)
832 {
833 rcu_self_test_counter++;
834 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
835 }
836
837 static void early_boot_test_call_rcu(void)
838 {
839 static struct rcu_head head;
840
841 call_rcu(&head, test_callback);
842 }
843
844 static void early_boot_test_call_rcu_bh(void)
845 {
846 static struct rcu_head head;
847
848 call_rcu_bh(&head, test_callback);
849 }
850
851 static void early_boot_test_call_rcu_sched(void)
852 {
853 static struct rcu_head head;
854
855 call_rcu_sched(&head, test_callback);
856 }
857
858 void rcu_early_boot_tests(void)
859 {
860 pr_info("Running RCU self tests\n");
861
862 if (rcu_self_test)
863 early_boot_test_call_rcu();
864 if (rcu_self_test_bh)
865 early_boot_test_call_rcu_bh();
866 if (rcu_self_test_sched)
867 early_boot_test_call_rcu_sched();
868 }
869
870 static int rcu_verify_early_boot_tests(void)
871 {
872 int ret = 0;
873 int early_boot_test_counter = 0;
874
875 if (rcu_self_test) {
876 early_boot_test_counter++;
877 rcu_barrier();
878 }
879 if (rcu_self_test_bh) {
880 early_boot_test_counter++;
881 rcu_barrier_bh();
882 }
883 if (rcu_self_test_sched) {
884 early_boot_test_counter++;
885 rcu_barrier_sched();
886 }
887
888 if (rcu_self_test_counter != early_boot_test_counter) {
889 WARN_ON(1);
890 ret = -1;
891 }
892
893 return ret;
894 }
895 late_initcall(rcu_verify_early_boot_tests);
896 #else
897 void rcu_early_boot_tests(void) {}
898 #endif /* CONFIG_PROVE_RCU */
This page took 0.049264 seconds and 5 git commands to generate.