rcu: fix classic RCU locking cleanup lockdep problem
[deliverable/linux.git] / kernel / rcuclassic.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * Documentation/RCU
31 *
32 */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/rcupdate.h>
39 #include <linux/interrupt.h>
40 #include <linux/sched.h>
41 #include <asm/atomic.h>
42 #include <linux/bitops.h>
43 #include <linux/module.h>
44 #include <linux/completion.h>
45 #include <linux/moduleparam.h>
46 #include <linux/percpu.h>
47 #include <linux/notifier.h>
48 #include <linux/cpu.h>
49 #include <linux/mutex.h>
50 #include <linux/time.h>
51
52 #ifdef CONFIG_DEBUG_LOCK_ALLOC
53 static struct lock_class_key rcu_lock_key;
54 struct lockdep_map rcu_lock_map =
55 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
56 EXPORT_SYMBOL_GPL(rcu_lock_map);
57 #endif
58
59
60 /* Definition for rcupdate control block. */
61 static struct rcu_ctrlblk rcu_ctrlblk = {
62 .cur = -300,
63 .completed = -300,
64 .pending = -300,
65 .lock = __SPIN_LOCK_UNLOCKED(&rcu_ctrlblk.lock),
66 .cpumask = CPU_MASK_NONE,
67 };
68 static struct rcu_ctrlblk rcu_bh_ctrlblk = {
69 .cur = -300,
70 .completed = -300,
71 .pending = -300,
72 .lock = __SPIN_LOCK_UNLOCKED(&rcu_bh_ctrlblk.lock),
73 .cpumask = CPU_MASK_NONE,
74 };
75
76 DEFINE_PER_CPU(struct rcu_data, rcu_data) = { 0L };
77 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data) = { 0L };
78
79 static int blimit = 10;
80 static int qhimark = 10000;
81 static int qlowmark = 100;
82
83 #ifdef CONFIG_SMP
84 static void force_quiescent_state(struct rcu_data *rdp,
85 struct rcu_ctrlblk *rcp)
86 {
87 int cpu;
88 cpumask_t cpumask;
89 set_need_resched();
90 spin_lock(&rcp->lock);
91 if (unlikely(!rcp->signaled)) {
92 rcp->signaled = 1;
93 /*
94 * Don't send IPI to itself. With irqs disabled,
95 * rdp->cpu is the current cpu.
96 *
97 * cpu_online_map is updated by the _cpu_down()
98 * using __stop_machine(). Since we're in irqs disabled
99 * section, __stop_machine() is not exectuting, hence
100 * the cpu_online_map is stable.
101 *
102 * However, a cpu might have been offlined _just_ before
103 * we disabled irqs while entering here.
104 * And rcu subsystem might not yet have handled the CPU_DEAD
105 * notification, leading to the offlined cpu's bit
106 * being set in the rcp->cpumask.
107 *
108 * Hence cpumask = (rcp->cpumask & cpu_online_map) to prevent
109 * sending smp_reschedule() to an offlined CPU.
110 */
111 cpus_and(cpumask, rcp->cpumask, cpu_online_map);
112 cpu_clear(rdp->cpu, cpumask);
113 for_each_cpu_mask_nr(cpu, cpumask)
114 smp_send_reschedule(cpu);
115 }
116 spin_unlock(&rcp->lock);
117 }
118 #else
119 static inline void force_quiescent_state(struct rcu_data *rdp,
120 struct rcu_ctrlblk *rcp)
121 {
122 set_need_resched();
123 }
124 #endif
125
126 static void __call_rcu(struct rcu_head *head, struct rcu_ctrlblk *rcp,
127 struct rcu_data *rdp)
128 {
129 long batch;
130
131 head->next = NULL;
132 smp_mb(); /* Read of rcu->cur must happen after any change by caller. */
133
134 /*
135 * Determine the batch number of this callback.
136 *
137 * Using ACCESS_ONCE to avoid the following error when gcc eliminates
138 * local variable "batch" and emits codes like this:
139 * 1) rdp->batch = rcp->cur + 1 # gets old value
140 * ......
141 * 2)rcu_batch_after(rcp->cur + 1, rdp->batch) # gets new value
142 * then [*nxttail[0], *nxttail[1]) may contain callbacks
143 * that batch# = rdp->batch, see the comment of struct rcu_data.
144 */
145 batch = ACCESS_ONCE(rcp->cur) + 1;
146
147 if (rdp->nxtlist && rcu_batch_after(batch, rdp->batch)) {
148 /* process callbacks */
149 rdp->nxttail[0] = rdp->nxttail[1];
150 rdp->nxttail[1] = rdp->nxttail[2];
151 if (rcu_batch_after(batch - 1, rdp->batch))
152 rdp->nxttail[0] = rdp->nxttail[2];
153 }
154
155 rdp->batch = batch;
156 *rdp->nxttail[2] = head;
157 rdp->nxttail[2] = &head->next;
158
159 if (unlikely(++rdp->qlen > qhimark)) {
160 rdp->blimit = INT_MAX;
161 force_quiescent_state(rdp, &rcu_ctrlblk);
162 }
163 }
164
165 /**
166 * call_rcu - Queue an RCU callback for invocation after a grace period.
167 * @head: structure to be used for queueing the RCU updates.
168 * @func: actual update function to be invoked after the grace period
169 *
170 * The update function will be invoked some time after a full grace
171 * period elapses, in other words after all currently executing RCU
172 * read-side critical sections have completed. RCU read-side critical
173 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
174 * and may be nested.
175 */
176 void call_rcu(struct rcu_head *head,
177 void (*func)(struct rcu_head *rcu))
178 {
179 unsigned long flags;
180
181 head->func = func;
182 local_irq_save(flags);
183 __call_rcu(head, &rcu_ctrlblk, &__get_cpu_var(rcu_data));
184 local_irq_restore(flags);
185 }
186 EXPORT_SYMBOL_GPL(call_rcu);
187
188 /**
189 * call_rcu_bh - Queue an RCU for invocation after a quicker grace period.
190 * @head: structure to be used for queueing the RCU updates.
191 * @func: actual update function to be invoked after the grace period
192 *
193 * The update function will be invoked some time after a full grace
194 * period elapses, in other words after all currently executing RCU
195 * read-side critical sections have completed. call_rcu_bh() assumes
196 * that the read-side critical sections end on completion of a softirq
197 * handler. This means that read-side critical sections in process
198 * context must not be interrupted by softirqs. This interface is to be
199 * used when most of the read-side critical sections are in softirq context.
200 * RCU read-side critical sections are delimited by rcu_read_lock() and
201 * rcu_read_unlock(), * if in interrupt context or rcu_read_lock_bh()
202 * and rcu_read_unlock_bh(), if in process context. These may be nested.
203 */
204 void call_rcu_bh(struct rcu_head *head,
205 void (*func)(struct rcu_head *rcu))
206 {
207 unsigned long flags;
208
209 head->func = func;
210 local_irq_save(flags);
211 __call_rcu(head, &rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data));
212 local_irq_restore(flags);
213 }
214 EXPORT_SYMBOL_GPL(call_rcu_bh);
215
216 /*
217 * Return the number of RCU batches processed thus far. Useful
218 * for debug and statistics.
219 */
220 long rcu_batches_completed(void)
221 {
222 return rcu_ctrlblk.completed;
223 }
224 EXPORT_SYMBOL_GPL(rcu_batches_completed);
225
226 /*
227 * Return the number of RCU batches processed thus far. Useful
228 * for debug and statistics.
229 */
230 long rcu_batches_completed_bh(void)
231 {
232 return rcu_bh_ctrlblk.completed;
233 }
234 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
235
236 /* Raises the softirq for processing rcu_callbacks. */
237 static inline void raise_rcu_softirq(void)
238 {
239 raise_softirq(RCU_SOFTIRQ);
240 }
241
242 /*
243 * Invoke the completed RCU callbacks. They are expected to be in
244 * a per-cpu list.
245 */
246 static void rcu_do_batch(struct rcu_data *rdp)
247 {
248 struct rcu_head *next, *list;
249 int count = 0;
250
251 list = rdp->donelist;
252 while (list) {
253 next = list->next;
254 prefetch(next);
255 list->func(list);
256 list = next;
257 if (++count >= rdp->blimit)
258 break;
259 }
260 rdp->donelist = list;
261
262 local_irq_disable();
263 rdp->qlen -= count;
264 local_irq_enable();
265 if (rdp->blimit == INT_MAX && rdp->qlen <= qlowmark)
266 rdp->blimit = blimit;
267
268 if (!rdp->donelist)
269 rdp->donetail = &rdp->donelist;
270 else
271 raise_rcu_softirq();
272 }
273
274 /*
275 * Grace period handling:
276 * The grace period handling consists out of two steps:
277 * - A new grace period is started.
278 * This is done by rcu_start_batch. The start is not broadcasted to
279 * all cpus, they must pick this up by comparing rcp->cur with
280 * rdp->quiescbatch. All cpus are recorded in the
281 * rcu_ctrlblk.cpumask bitmap.
282 * - All cpus must go through a quiescent state.
283 * Since the start of the grace period is not broadcasted, at least two
284 * calls to rcu_check_quiescent_state are required:
285 * The first call just notices that a new grace period is running. The
286 * following calls check if there was a quiescent state since the beginning
287 * of the grace period. If so, it updates rcu_ctrlblk.cpumask. If
288 * the bitmap is empty, then the grace period is completed.
289 * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace
290 * period (if necessary).
291 */
292
293 #ifdef CONFIG_DEBUG_RCU_STALL
294
295 static inline void record_gp_check_time(struct rcu_ctrlblk *rcp)
296 {
297 rcp->gp_check = get_seconds() + 3;
298 }
299
300 static void print_other_cpu_stall(struct rcu_ctrlblk *rcp)
301 {
302 int cpu;
303 long delta;
304
305 /* Only let one CPU complain about others per time interval. */
306
307 spin_lock(&rcp->lock);
308 delta = get_seconds() - rcp->gp_check;
309 if (delta < 2L || cpus_empty(rcp->cpumask)) {
310 spin_unlock(&rcp->lock);
311 return;
312 }
313 rcp->gp_check = get_seconds() + 30;
314 spin_unlock(&rcp->lock);
315
316 /* OK, time to rat on our buddy... */
317
318 printk(KERN_ERR "RCU detected CPU stalls:");
319 for_each_cpu_mask(cpu, rcp->cpumask)
320 printk(" %d", cpu);
321 printk(" (detected by %d, t=%lu/%lu)\n",
322 smp_processor_id(), get_seconds(), rcp->gp_check);
323 }
324
325 static void print_cpu_stall(struct rcu_ctrlblk *rcp)
326 {
327 printk(KERN_ERR "RCU detected CPU %d stall (t=%lu/%lu)\n",
328 smp_processor_id(), get_seconds(), rcp->gp_check);
329 dump_stack();
330 spin_lock(&rcp->lock);
331 if ((long)(get_seconds() - rcp->gp_check) >= 0L)
332 rcp->gp_check = get_seconds() + 30;
333 spin_unlock(&rcp->lock);
334 }
335
336 static void check_cpu_stall(struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
337 {
338 long delta;
339
340 delta = get_seconds() - rcp->gp_check;
341 if (cpu_isset(smp_processor_id(), rcp->cpumask) && delta >= 0L) {
342
343 /* We haven't checked in, so go dump stack. */
344
345 print_cpu_stall(rcp);
346
347 } else {
348 if (!cpus_empty(rcp->cpumask) && delta >= 2L) {
349 /* They had two seconds to dump stack, so complain. */
350 print_other_cpu_stall(rcp);
351 }
352 }
353 }
354
355 #else /* #ifdef CONFIG_DEBUG_RCU_STALL */
356
357 static inline void record_gp_check_time(struct rcu_ctrlblk *rcp)
358 {
359 }
360
361 static inline void
362 check_cpu_stall(struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
363 {
364 }
365
366 #endif /* #else #ifdef CONFIG_DEBUG_RCU_STALL */
367
368 /*
369 * Register a new batch of callbacks, and start it up if there is currently no
370 * active batch and the batch to be registered has not already occurred.
371 * Caller must hold rcu_ctrlblk.lock.
372 */
373 static void rcu_start_batch(struct rcu_ctrlblk *rcp)
374 {
375 if (rcp->cur != rcp->pending &&
376 rcp->completed == rcp->cur) {
377 rcp->cur++;
378 record_gp_check_time(rcp);
379
380 /*
381 * Accessing nohz_cpu_mask before incrementing rcp->cur needs a
382 * Barrier Otherwise it can cause tickless idle CPUs to be
383 * included in rcp->cpumask, which will extend graceperiods
384 * unnecessarily.
385 */
386 smp_mb();
387 cpus_andnot(rcp->cpumask, cpu_online_map, nohz_cpu_mask);
388
389 rcp->signaled = 0;
390 }
391 }
392
393 /*
394 * cpu went through a quiescent state since the beginning of the grace period.
395 * Clear it from the cpu mask and complete the grace period if it was the last
396 * cpu. Start another grace period if someone has further entries pending
397 */
398 static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp)
399 {
400 cpu_clear(cpu, rcp->cpumask);
401 if (cpus_empty(rcp->cpumask)) {
402 /* batch completed ! */
403 rcp->completed = rcp->cur;
404 rcu_start_batch(rcp);
405 }
406 }
407
408 /*
409 * Check if the cpu has gone through a quiescent state (say context
410 * switch). If so and if it already hasn't done so in this RCU
411 * quiescent cycle, then indicate that it has done so.
412 */
413 static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
414 struct rcu_data *rdp)
415 {
416 if (rdp->quiescbatch != rcp->cur) {
417 /* start new grace period: */
418 rdp->qs_pending = 1;
419 rdp->passed_quiesc = 0;
420 rdp->quiescbatch = rcp->cur;
421 return;
422 }
423
424 /* Grace period already completed for this cpu?
425 * qs_pending is checked instead of the actual bitmap to avoid
426 * cacheline trashing.
427 */
428 if (!rdp->qs_pending)
429 return;
430
431 /*
432 * Was there a quiescent state since the beginning of the grace
433 * period? If no, then exit and wait for the next call.
434 */
435 if (!rdp->passed_quiesc)
436 return;
437 rdp->qs_pending = 0;
438
439 spin_lock(&rcp->lock);
440 /*
441 * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync
442 * during cpu startup. Ignore the quiescent state.
443 */
444 if (likely(rdp->quiescbatch == rcp->cur))
445 cpu_quiet(rdp->cpu, rcp);
446
447 spin_unlock(&rcp->lock);
448 }
449
450
451 #ifdef CONFIG_HOTPLUG_CPU
452
453 /* warning! helper for rcu_offline_cpu. do not use elsewhere without reviewing
454 * locking requirements, the list it's pulling from has to belong to a cpu
455 * which is dead and hence not processing interrupts.
456 */
457 static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list,
458 struct rcu_head **tail, long batch)
459 {
460 if (list) {
461 local_irq_disable();
462 this_rdp->batch = batch;
463 *this_rdp->nxttail[2] = list;
464 this_rdp->nxttail[2] = tail;
465 local_irq_enable();
466 }
467 }
468
469 static void __rcu_offline_cpu(struct rcu_data *this_rdp,
470 struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
471 {
472 /*
473 * if the cpu going offline owns the grace period
474 * we can block indefinitely waiting for it, so flush
475 * it here
476 */
477 spin_lock_bh(&rcp->lock);
478 if (rcp->cur != rcp->completed)
479 cpu_quiet(rdp->cpu, rcp);
480 rcu_move_batch(this_rdp, rdp->donelist, rdp->donetail, rcp->cur + 1);
481 rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail[2], rcp->cur + 1);
482 spin_unlock_bh(&rcp->lock);
483
484 local_irq_disable();
485 this_rdp->qlen += rdp->qlen;
486 local_irq_enable();
487 }
488
489 static void rcu_offline_cpu(int cpu)
490 {
491 struct rcu_data *this_rdp = &get_cpu_var(rcu_data);
492 struct rcu_data *this_bh_rdp = &get_cpu_var(rcu_bh_data);
493
494 __rcu_offline_cpu(this_rdp, &rcu_ctrlblk,
495 &per_cpu(rcu_data, cpu));
496 __rcu_offline_cpu(this_bh_rdp, &rcu_bh_ctrlblk,
497 &per_cpu(rcu_bh_data, cpu));
498 put_cpu_var(rcu_data);
499 put_cpu_var(rcu_bh_data);
500 }
501
502 #else
503
504 static void rcu_offline_cpu(int cpu)
505 {
506 }
507
508 #endif
509
510 /*
511 * This does the RCU processing work from softirq context.
512 */
513 static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp,
514 struct rcu_data *rdp)
515 {
516 long completed_snap;
517
518 if (rdp->nxtlist) {
519 local_irq_disable();
520 completed_snap = ACCESS_ONCE(rcp->completed);
521
522 /*
523 * move the other grace-period-completed entries to
524 * [rdp->nxtlist, *rdp->nxttail[0]) temporarily
525 */
526 if (!rcu_batch_before(completed_snap, rdp->batch))
527 rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2];
528 else if (!rcu_batch_before(completed_snap, rdp->batch - 1))
529 rdp->nxttail[0] = rdp->nxttail[1];
530
531 /*
532 * the grace period for entries in
533 * [rdp->nxtlist, *rdp->nxttail[0]) has completed and
534 * move these entries to donelist
535 */
536 if (rdp->nxttail[0] != &rdp->nxtlist) {
537 *rdp->donetail = rdp->nxtlist;
538 rdp->donetail = rdp->nxttail[0];
539 rdp->nxtlist = *rdp->nxttail[0];
540 *rdp->donetail = NULL;
541
542 if (rdp->nxttail[1] == rdp->nxttail[0])
543 rdp->nxttail[1] = &rdp->nxtlist;
544 if (rdp->nxttail[2] == rdp->nxttail[0])
545 rdp->nxttail[2] = &rdp->nxtlist;
546 rdp->nxttail[0] = &rdp->nxtlist;
547 }
548
549 local_irq_enable();
550
551 if (rcu_batch_after(rdp->batch, rcp->pending)) {
552 /* and start it/schedule start if it's a new batch */
553 spin_lock(&rcp->lock);
554 if (rcu_batch_after(rdp->batch, rcp->pending)) {
555 rcp->pending = rdp->batch;
556 rcu_start_batch(rcp);
557 }
558 spin_unlock(&rcp->lock);
559 }
560 }
561
562 rcu_check_quiescent_state(rcp, rdp);
563 if (rdp->donelist)
564 rcu_do_batch(rdp);
565 }
566
567 static void rcu_process_callbacks(struct softirq_action *unused)
568 {
569 /*
570 * Memory references from any prior RCU read-side critical sections
571 * executed by the interrupted code must be see before any RCU
572 * grace-period manupulations below.
573 */
574
575 smp_mb(); /* See above block comment. */
576
577 __rcu_process_callbacks(&rcu_ctrlblk, &__get_cpu_var(rcu_data));
578 __rcu_process_callbacks(&rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data));
579
580 /*
581 * Memory references from any later RCU read-side critical sections
582 * executed by the interrupted code must be see after any RCU
583 * grace-period manupulations above.
584 */
585
586 smp_mb(); /* See above block comment. */
587 }
588
589 static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
590 {
591 /* Check for CPU stalls, if enabled. */
592 check_cpu_stall(rcp, rdp);
593
594 if (rdp->nxtlist) {
595 long completed_snap = ACCESS_ONCE(rcp->completed);
596
597 /*
598 * This cpu has pending rcu entries and the grace period
599 * for them has completed.
600 */
601 if (!rcu_batch_before(completed_snap, rdp->batch))
602 return 1;
603 if (!rcu_batch_before(completed_snap, rdp->batch - 1) &&
604 rdp->nxttail[0] != rdp->nxttail[1])
605 return 1;
606 if (rdp->nxttail[0] != &rdp->nxtlist)
607 return 1;
608
609 /*
610 * This cpu has pending rcu entries and the new batch
611 * for then hasn't been started nor scheduled start
612 */
613 if (rcu_batch_after(rdp->batch, rcp->pending))
614 return 1;
615 }
616
617 /* This cpu has finished callbacks to invoke */
618 if (rdp->donelist)
619 return 1;
620
621 /* The rcu core waits for a quiescent state from the cpu */
622 if (rdp->quiescbatch != rcp->cur || rdp->qs_pending)
623 return 1;
624
625 /* nothing to do */
626 return 0;
627 }
628
629 /*
630 * Check to see if there is any immediate RCU-related work to be done
631 * by the current CPU, returning 1 if so. This function is part of the
632 * RCU implementation; it is -not- an exported member of the RCU API.
633 */
634 int rcu_pending(int cpu)
635 {
636 return __rcu_pending(&rcu_ctrlblk, &per_cpu(rcu_data, cpu)) ||
637 __rcu_pending(&rcu_bh_ctrlblk, &per_cpu(rcu_bh_data, cpu));
638 }
639
640 /*
641 * Check to see if any future RCU-related work will need to be done
642 * by the current CPU, even if none need be done immediately, returning
643 * 1 if so. This function is part of the RCU implementation; it is -not-
644 * an exported member of the RCU API.
645 */
646 int rcu_needs_cpu(int cpu)
647 {
648 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
649 struct rcu_data *rdp_bh = &per_cpu(rcu_bh_data, cpu);
650
651 return !!rdp->nxtlist || !!rdp_bh->nxtlist || rcu_pending(cpu);
652 }
653
654 /*
655 * Top-level function driving RCU grace-period detection, normally
656 * invoked from the scheduler-clock interrupt. This function simply
657 * increments counters that are read only from softirq by this same
658 * CPU, so there are no memory barriers required.
659 */
660 void rcu_check_callbacks(int cpu, int user)
661 {
662 if (user ||
663 (idle_cpu(cpu) && !in_softirq() &&
664 hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
665
666 /*
667 * Get here if this CPU took its interrupt from user
668 * mode or from the idle loop, and if this is not a
669 * nested interrupt. In this case, the CPU is in
670 * a quiescent state, so count it.
671 *
672 * Also do a memory barrier. This is needed to handle
673 * the case where writes from a preempt-disable section
674 * of code get reordered into schedule() by this CPU's
675 * write buffer. The memory barrier makes sure that
676 * the rcu_qsctr_inc() and rcu_bh_qsctr_inc() are see
677 * by other CPUs to happen after any such write.
678 */
679
680 smp_mb(); /* See above block comment. */
681 rcu_qsctr_inc(cpu);
682 rcu_bh_qsctr_inc(cpu);
683
684 } else if (!in_softirq()) {
685
686 /*
687 * Get here if this CPU did not take its interrupt from
688 * softirq, in other words, if it is not interrupting
689 * a rcu_bh read-side critical section. This is an _bh
690 * critical section, so count it. The memory barrier
691 * is needed for the same reason as is the above one.
692 */
693
694 smp_mb(); /* See above block comment. */
695 rcu_bh_qsctr_inc(cpu);
696 }
697 raise_rcu_softirq();
698 }
699
700 static void rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp,
701 struct rcu_data *rdp)
702 {
703 long flags;
704
705 spin_lock_irqsave(&rcp->lock, flags);
706 memset(rdp, 0, sizeof(*rdp));
707 rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2] = &rdp->nxtlist;
708 rdp->donetail = &rdp->donelist;
709 rdp->quiescbatch = rcp->completed;
710 rdp->qs_pending = 0;
711 rdp->cpu = cpu;
712 rdp->blimit = blimit;
713 spin_unlock_irqrestore(&rcp->lock, flags);
714 }
715
716 static void __cpuinit rcu_online_cpu(int cpu)
717 {
718 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
719 struct rcu_data *bh_rdp = &per_cpu(rcu_bh_data, cpu);
720
721 rcu_init_percpu_data(cpu, &rcu_ctrlblk, rdp);
722 rcu_init_percpu_data(cpu, &rcu_bh_ctrlblk, bh_rdp);
723 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
724 }
725
726 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
727 unsigned long action, void *hcpu)
728 {
729 long cpu = (long)hcpu;
730
731 switch (action) {
732 case CPU_UP_PREPARE:
733 case CPU_UP_PREPARE_FROZEN:
734 rcu_online_cpu(cpu);
735 break;
736 case CPU_DEAD:
737 case CPU_DEAD_FROZEN:
738 rcu_offline_cpu(cpu);
739 break;
740 default:
741 break;
742 }
743 return NOTIFY_OK;
744 }
745
746 static struct notifier_block __cpuinitdata rcu_nb = {
747 .notifier_call = rcu_cpu_notify,
748 };
749
750 /*
751 * Initializes rcu mechanism. Assumed to be called early.
752 * That is before local timer(SMP) or jiffie timer (uniproc) is setup.
753 * Note that rcu_qsctr and friends are implicitly
754 * initialized due to the choice of ``0'' for RCU_CTR_INVALID.
755 */
756 void __init __rcu_init(void)
757 {
758 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
759 (void *)(long)smp_processor_id());
760 /* Register notifier for non-boot CPUs */
761 register_cpu_notifier(&rcu_nb);
762 }
763
764 module_param(blimit, int, 0);
765 module_param(qhimark, int, 0);
766 module_param(qlowmark, int, 0);
This page took 0.087946 seconds and 6 git commands to generate.