Merge branches 'bigrtm.2012.07.04a', 'doctorture.2012.07.02a', 'fixes.2012.07.06a...
[deliverable/linux.git] / kernel / rcutiny_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright (c) 2010 Linaro
21 *
22 * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
23 */
24
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/debugfs.h>
28 #include <linux/seq_file.h>
29
30 /* Global control variables for rcupdate callback mechanism. */
31 struct rcu_ctrlblk {
32 struct rcu_head *rcucblist; /* List of pending callbacks (CBs). */
33 struct rcu_head **donetail; /* ->next pointer of last "done" CB. */
34 struct rcu_head **curtail; /* ->next pointer of last CB. */
35 RCU_TRACE(long qlen); /* Number of pending CBs. */
36 RCU_TRACE(char *name); /* Name of RCU type. */
37 };
38
39 /* Definition for rcupdate control block. */
40 static struct rcu_ctrlblk rcu_sched_ctrlblk = {
41 .donetail = &rcu_sched_ctrlblk.rcucblist,
42 .curtail = &rcu_sched_ctrlblk.rcucblist,
43 RCU_TRACE(.name = "rcu_sched")
44 };
45
46 static struct rcu_ctrlblk rcu_bh_ctrlblk = {
47 .donetail = &rcu_bh_ctrlblk.rcucblist,
48 .curtail = &rcu_bh_ctrlblk.rcucblist,
49 RCU_TRACE(.name = "rcu_bh")
50 };
51
52 #ifdef CONFIG_DEBUG_LOCK_ALLOC
53 int rcu_scheduler_active __read_mostly;
54 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
55 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
56
57 #ifdef CONFIG_TINY_PREEMPT_RCU
58
59 #include <linux/delay.h>
60
61 /* Global control variables for preemptible RCU. */
62 struct rcu_preempt_ctrlblk {
63 struct rcu_ctrlblk rcb; /* curtail: ->next ptr of last CB for GP. */
64 struct rcu_head **nexttail;
65 /* Tasks blocked in a preemptible RCU */
66 /* read-side critical section while an */
67 /* preemptible-RCU grace period is in */
68 /* progress must wait for a later grace */
69 /* period. This pointer points to the */
70 /* ->next pointer of the last task that */
71 /* must wait for a later grace period, or */
72 /* to &->rcb.rcucblist if there is no */
73 /* such task. */
74 struct list_head blkd_tasks;
75 /* Tasks blocked in RCU read-side critical */
76 /* section. Tasks are placed at the head */
77 /* of this list and age towards the tail. */
78 struct list_head *gp_tasks;
79 /* Pointer to the first task blocking the */
80 /* current grace period, or NULL if there */
81 /* is no such task. */
82 struct list_head *exp_tasks;
83 /* Pointer to first task blocking the */
84 /* current expedited grace period, or NULL */
85 /* if there is no such task. If there */
86 /* is no current expedited grace period, */
87 /* then there cannot be any such task. */
88 #ifdef CONFIG_RCU_BOOST
89 struct list_head *boost_tasks;
90 /* Pointer to first task that needs to be */
91 /* priority-boosted, or NULL if no priority */
92 /* boosting is needed. If there is no */
93 /* current or expedited grace period, there */
94 /* can be no such task. */
95 #endif /* #ifdef CONFIG_RCU_BOOST */
96 u8 gpnum; /* Current grace period. */
97 u8 gpcpu; /* Last grace period blocked by the CPU. */
98 u8 completed; /* Last grace period completed. */
99 /* If all three are equal, RCU is idle. */
100 #ifdef CONFIG_RCU_BOOST
101 unsigned long boost_time; /* When to start boosting (jiffies) */
102 #endif /* #ifdef CONFIG_RCU_BOOST */
103 #ifdef CONFIG_RCU_TRACE
104 unsigned long n_grace_periods;
105 #ifdef CONFIG_RCU_BOOST
106 unsigned long n_tasks_boosted;
107 /* Total number of tasks boosted. */
108 unsigned long n_exp_boosts;
109 /* Number of tasks boosted for expedited GP. */
110 unsigned long n_normal_boosts;
111 /* Number of tasks boosted for normal GP. */
112 unsigned long n_balk_blkd_tasks;
113 /* Refused to boost: no blocked tasks. */
114 unsigned long n_balk_exp_gp_tasks;
115 /* Refused to boost: nothing blocking GP. */
116 unsigned long n_balk_boost_tasks;
117 /* Refused to boost: already boosting. */
118 unsigned long n_balk_notyet;
119 /* Refused to boost: not yet time. */
120 unsigned long n_balk_nos;
121 /* Refused to boost: not sure why, though. */
122 /* This can happen due to race conditions. */
123 #endif /* #ifdef CONFIG_RCU_BOOST */
124 #endif /* #ifdef CONFIG_RCU_TRACE */
125 };
126
127 static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
128 .rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
129 .rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
130 .nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
131 .blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
132 RCU_TRACE(.rcb.name = "rcu_preempt")
133 };
134
135 static int rcu_preempted_readers_exp(void);
136 static void rcu_report_exp_done(void);
137
138 /*
139 * Return true if the CPU has not yet responded to the current grace period.
140 */
141 static int rcu_cpu_blocking_cur_gp(void)
142 {
143 return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
144 }
145
146 /*
147 * Check for a running RCU reader. Because there is only one CPU,
148 * there can be but one running RCU reader at a time. ;-)
149 *
150 * Returns zero if there are no running readers. Returns a positive
151 * number if there is at least one reader within its RCU read-side
152 * critical section. Returns a negative number if an outermost reader
153 * is in the midst of exiting from its RCU read-side critical section
154 *
155 * Returns zero if there are no running readers. Returns a positive
156 * number if there is at least one reader within its RCU read-side
157 * critical section. Returns a negative number if an outermost reader
158 * is in the midst of exiting from its RCU read-side critical section.
159 */
160 static int rcu_preempt_running_reader(void)
161 {
162 return current->rcu_read_lock_nesting;
163 }
164
165 /*
166 * Check for preempted RCU readers blocking any grace period.
167 * If the caller needs a reliable answer, it must disable hard irqs.
168 */
169 static int rcu_preempt_blocked_readers_any(void)
170 {
171 return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
172 }
173
174 /*
175 * Check for preempted RCU readers blocking the current grace period.
176 * If the caller needs a reliable answer, it must disable hard irqs.
177 */
178 static int rcu_preempt_blocked_readers_cgp(void)
179 {
180 return rcu_preempt_ctrlblk.gp_tasks != NULL;
181 }
182
183 /*
184 * Return true if another preemptible-RCU grace period is needed.
185 */
186 static int rcu_preempt_needs_another_gp(void)
187 {
188 return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
189 }
190
191 /*
192 * Return true if a preemptible-RCU grace period is in progress.
193 * The caller must disable hardirqs.
194 */
195 static int rcu_preempt_gp_in_progress(void)
196 {
197 return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
198 }
199
200 /*
201 * Advance a ->blkd_tasks-list pointer to the next entry, instead
202 * returning NULL if at the end of the list.
203 */
204 static struct list_head *rcu_next_node_entry(struct task_struct *t)
205 {
206 struct list_head *np;
207
208 np = t->rcu_node_entry.next;
209 if (np == &rcu_preempt_ctrlblk.blkd_tasks)
210 np = NULL;
211 return np;
212 }
213
214 #ifdef CONFIG_RCU_TRACE
215
216 #ifdef CONFIG_RCU_BOOST
217 static void rcu_initiate_boost_trace(void);
218 #endif /* #ifdef CONFIG_RCU_BOOST */
219
220 /*
221 * Dump additional statistice for TINY_PREEMPT_RCU.
222 */
223 static void show_tiny_preempt_stats(struct seq_file *m)
224 {
225 seq_printf(m, "rcu_preempt: qlen=%ld gp=%lu g%u/p%u/c%u tasks=%c%c%c\n",
226 rcu_preempt_ctrlblk.rcb.qlen,
227 rcu_preempt_ctrlblk.n_grace_periods,
228 rcu_preempt_ctrlblk.gpnum,
229 rcu_preempt_ctrlblk.gpcpu,
230 rcu_preempt_ctrlblk.completed,
231 "T."[list_empty(&rcu_preempt_ctrlblk.blkd_tasks)],
232 "N."[!rcu_preempt_ctrlblk.gp_tasks],
233 "E."[!rcu_preempt_ctrlblk.exp_tasks]);
234 #ifdef CONFIG_RCU_BOOST
235 seq_printf(m, "%sttb=%c ntb=%lu neb=%lu nnb=%lu j=%04x bt=%04x\n",
236 " ",
237 "B."[!rcu_preempt_ctrlblk.boost_tasks],
238 rcu_preempt_ctrlblk.n_tasks_boosted,
239 rcu_preempt_ctrlblk.n_exp_boosts,
240 rcu_preempt_ctrlblk.n_normal_boosts,
241 (int)(jiffies & 0xffff),
242 (int)(rcu_preempt_ctrlblk.boost_time & 0xffff));
243 seq_printf(m, "%s: nt=%lu egt=%lu bt=%lu ny=%lu nos=%lu\n",
244 " balk",
245 rcu_preempt_ctrlblk.n_balk_blkd_tasks,
246 rcu_preempt_ctrlblk.n_balk_exp_gp_tasks,
247 rcu_preempt_ctrlblk.n_balk_boost_tasks,
248 rcu_preempt_ctrlblk.n_balk_notyet,
249 rcu_preempt_ctrlblk.n_balk_nos);
250 #endif /* #ifdef CONFIG_RCU_BOOST */
251 }
252
253 #endif /* #ifdef CONFIG_RCU_TRACE */
254
255 #ifdef CONFIG_RCU_BOOST
256
257 #include "rtmutex_common.h"
258
259 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
260
261 /* Controls for rcu_kthread() kthread. */
262 static struct task_struct *rcu_kthread_task;
263 static DECLARE_WAIT_QUEUE_HEAD(rcu_kthread_wq);
264 static unsigned long have_rcu_kthread_work;
265
266 /*
267 * Carry out RCU priority boosting on the task indicated by ->boost_tasks,
268 * and advance ->boost_tasks to the next task in the ->blkd_tasks list.
269 */
270 static int rcu_boost(void)
271 {
272 unsigned long flags;
273 struct rt_mutex mtx;
274 struct task_struct *t;
275 struct list_head *tb;
276
277 if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
278 rcu_preempt_ctrlblk.exp_tasks == NULL)
279 return 0; /* Nothing to boost. */
280
281 raw_local_irq_save(flags);
282
283 /*
284 * Recheck with irqs disabled: all tasks in need of boosting
285 * might exit their RCU read-side critical sections on their own
286 * if we are preempted just before disabling irqs.
287 */
288 if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
289 rcu_preempt_ctrlblk.exp_tasks == NULL) {
290 raw_local_irq_restore(flags);
291 return 0;
292 }
293
294 /*
295 * Preferentially boost tasks blocking expedited grace periods.
296 * This cannot starve the normal grace periods because a second
297 * expedited grace period must boost all blocked tasks, including
298 * those blocking the pre-existing normal grace period.
299 */
300 if (rcu_preempt_ctrlblk.exp_tasks != NULL) {
301 tb = rcu_preempt_ctrlblk.exp_tasks;
302 RCU_TRACE(rcu_preempt_ctrlblk.n_exp_boosts++);
303 } else {
304 tb = rcu_preempt_ctrlblk.boost_tasks;
305 RCU_TRACE(rcu_preempt_ctrlblk.n_normal_boosts++);
306 }
307 RCU_TRACE(rcu_preempt_ctrlblk.n_tasks_boosted++);
308
309 /*
310 * We boost task t by manufacturing an rt_mutex that appears to
311 * be held by task t. We leave a pointer to that rt_mutex where
312 * task t can find it, and task t will release the mutex when it
313 * exits its outermost RCU read-side critical section. Then
314 * simply acquiring this artificial rt_mutex will boost task
315 * t's priority. (Thanks to tglx for suggesting this approach!)
316 */
317 t = container_of(tb, struct task_struct, rcu_node_entry);
318 rt_mutex_init_proxy_locked(&mtx, t);
319 t->rcu_boost_mutex = &mtx;
320 raw_local_irq_restore(flags);
321 rt_mutex_lock(&mtx);
322 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
323
324 return ACCESS_ONCE(rcu_preempt_ctrlblk.boost_tasks) != NULL ||
325 ACCESS_ONCE(rcu_preempt_ctrlblk.exp_tasks) != NULL;
326 }
327
328 /*
329 * Check to see if it is now time to start boosting RCU readers blocking
330 * the current grace period, and, if so, tell the rcu_kthread_task to
331 * start boosting them. If there is an expedited boost in progress,
332 * we wait for it to complete.
333 *
334 * If there are no blocked readers blocking the current grace period,
335 * return 0 to let the caller know, otherwise return 1. Note that this
336 * return value is independent of whether or not boosting was done.
337 */
338 static int rcu_initiate_boost(void)
339 {
340 if (!rcu_preempt_blocked_readers_cgp() &&
341 rcu_preempt_ctrlblk.exp_tasks == NULL) {
342 RCU_TRACE(rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++);
343 return 0;
344 }
345 if (rcu_preempt_ctrlblk.exp_tasks != NULL ||
346 (rcu_preempt_ctrlblk.gp_tasks != NULL &&
347 rcu_preempt_ctrlblk.boost_tasks == NULL &&
348 ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))) {
349 if (rcu_preempt_ctrlblk.exp_tasks == NULL)
350 rcu_preempt_ctrlblk.boost_tasks =
351 rcu_preempt_ctrlblk.gp_tasks;
352 invoke_rcu_callbacks();
353 } else
354 RCU_TRACE(rcu_initiate_boost_trace());
355 return 1;
356 }
357
358 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
359
360 /*
361 * Do priority-boost accounting for the start of a new grace period.
362 */
363 static void rcu_preempt_boost_start_gp(void)
364 {
365 rcu_preempt_ctrlblk.boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
366 }
367
368 #else /* #ifdef CONFIG_RCU_BOOST */
369
370 /*
371 * If there is no RCU priority boosting, we don't initiate boosting,
372 * but we do indicate whether there are blocked readers blocking the
373 * current grace period.
374 */
375 static int rcu_initiate_boost(void)
376 {
377 return rcu_preempt_blocked_readers_cgp();
378 }
379
380 /*
381 * If there is no RCU priority boosting, nothing to do at grace-period start.
382 */
383 static void rcu_preempt_boost_start_gp(void)
384 {
385 }
386
387 #endif /* else #ifdef CONFIG_RCU_BOOST */
388
389 /*
390 * Record a preemptible-RCU quiescent state for the specified CPU. Note
391 * that this just means that the task currently running on the CPU is
392 * in a quiescent state. There might be any number of tasks blocked
393 * while in an RCU read-side critical section.
394 *
395 * Unlike the other rcu_*_qs() functions, callers to this function
396 * must disable irqs in order to protect the assignment to
397 * ->rcu_read_unlock_special.
398 *
399 * Because this is a single-CPU implementation, the only way a grace
400 * period can end is if the CPU is in a quiescent state. The reason is
401 * that a blocked preemptible-RCU reader can exit its critical section
402 * only if the CPU is running it at the time. Therefore, when the
403 * last task blocking the current grace period exits its RCU read-side
404 * critical section, neither the CPU nor blocked tasks will be stopping
405 * the current grace period. (In contrast, SMP implementations
406 * might have CPUs running in RCU read-side critical sections that
407 * block later grace periods -- but this is not possible given only
408 * one CPU.)
409 */
410 static void rcu_preempt_cpu_qs(void)
411 {
412 /* Record both CPU and task as having responded to current GP. */
413 rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
414 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
415
416 /* If there is no GP then there is nothing more to do. */
417 if (!rcu_preempt_gp_in_progress())
418 return;
419 /*
420 * Check up on boosting. If there are readers blocking the
421 * current grace period, leave.
422 */
423 if (rcu_initiate_boost())
424 return;
425
426 /* Advance callbacks. */
427 rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
428 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
429 rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
430
431 /* If there are no blocked readers, next GP is done instantly. */
432 if (!rcu_preempt_blocked_readers_any())
433 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
434
435 /* If there are done callbacks, cause them to be invoked. */
436 if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
437 invoke_rcu_callbacks();
438 }
439
440 /*
441 * Start a new RCU grace period if warranted. Hard irqs must be disabled.
442 */
443 static void rcu_preempt_start_gp(void)
444 {
445 if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
446
447 /* Official start of GP. */
448 rcu_preempt_ctrlblk.gpnum++;
449 RCU_TRACE(rcu_preempt_ctrlblk.n_grace_periods++);
450
451 /* Any blocked RCU readers block new GP. */
452 if (rcu_preempt_blocked_readers_any())
453 rcu_preempt_ctrlblk.gp_tasks =
454 rcu_preempt_ctrlblk.blkd_tasks.next;
455
456 /* Set up for RCU priority boosting. */
457 rcu_preempt_boost_start_gp();
458
459 /* If there is no running reader, CPU is done with GP. */
460 if (!rcu_preempt_running_reader())
461 rcu_preempt_cpu_qs();
462 }
463 }
464
465 /*
466 * We have entered the scheduler, and the current task might soon be
467 * context-switched away from. If this task is in an RCU read-side
468 * critical section, we will no longer be able to rely on the CPU to
469 * record that fact, so we enqueue the task on the blkd_tasks list.
470 * If the task started after the current grace period began, as recorded
471 * by ->gpcpu, we enqueue at the beginning of the list. Otherwise
472 * before the element referenced by ->gp_tasks (or at the tail if
473 * ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
474 * The task will dequeue itself when it exits the outermost enclosing
475 * RCU read-side critical section. Therefore, the current grace period
476 * cannot be permitted to complete until the ->gp_tasks pointer becomes
477 * NULL.
478 *
479 * Caller must disable preemption.
480 */
481 void rcu_preempt_note_context_switch(void)
482 {
483 struct task_struct *t = current;
484 unsigned long flags;
485
486 local_irq_save(flags); /* must exclude scheduler_tick(). */
487 if (rcu_preempt_running_reader() > 0 &&
488 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
489
490 /* Possibly blocking in an RCU read-side critical section. */
491 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
492
493 /*
494 * If this CPU has already checked in, then this task
495 * will hold up the next grace period rather than the
496 * current grace period. Queue the task accordingly.
497 * If the task is queued for the current grace period
498 * (i.e., this CPU has not yet passed through a quiescent
499 * state for the current grace period), then as long
500 * as that task remains queued, the current grace period
501 * cannot end.
502 */
503 list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
504 if (rcu_cpu_blocking_cur_gp())
505 rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
506 } else if (rcu_preempt_running_reader() < 0 &&
507 t->rcu_read_unlock_special) {
508 /*
509 * Complete exit from RCU read-side critical section on
510 * behalf of preempted instance of __rcu_read_unlock().
511 */
512 rcu_read_unlock_special(t);
513 }
514
515 /*
516 * Either we were not in an RCU read-side critical section to
517 * begin with, or we have now recorded that critical section
518 * globally. Either way, we can now note a quiescent state
519 * for this CPU. Again, if we were in an RCU read-side critical
520 * section, and if that critical section was blocking the current
521 * grace period, then the fact that the task has been enqueued
522 * means that current grace period continues to be blocked.
523 */
524 rcu_preempt_cpu_qs();
525 local_irq_restore(flags);
526 }
527
528 /*
529 * Handle special cases during rcu_read_unlock(), such as needing to
530 * notify RCU core processing or task having blocked during the RCU
531 * read-side critical section.
532 */
533 void rcu_read_unlock_special(struct task_struct *t)
534 {
535 int empty;
536 int empty_exp;
537 unsigned long flags;
538 struct list_head *np;
539 #ifdef CONFIG_RCU_BOOST
540 struct rt_mutex *rbmp = NULL;
541 #endif /* #ifdef CONFIG_RCU_BOOST */
542 int special;
543
544 /*
545 * NMI handlers cannot block and cannot safely manipulate state.
546 * They therefore cannot possibly be special, so just leave.
547 */
548 if (in_nmi())
549 return;
550
551 local_irq_save(flags);
552
553 /*
554 * If RCU core is waiting for this CPU to exit critical section,
555 * let it know that we have done so.
556 */
557 special = t->rcu_read_unlock_special;
558 if (special & RCU_READ_UNLOCK_NEED_QS)
559 rcu_preempt_cpu_qs();
560
561 /* Hardware IRQ handlers cannot block. */
562 if (in_irq() || in_serving_softirq()) {
563 local_irq_restore(flags);
564 return;
565 }
566
567 /* Clean up if blocked during RCU read-side critical section. */
568 if (special & RCU_READ_UNLOCK_BLOCKED) {
569 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
570
571 /*
572 * Remove this task from the ->blkd_tasks list and adjust
573 * any pointers that might have been referencing it.
574 */
575 empty = !rcu_preempt_blocked_readers_cgp();
576 empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
577 np = rcu_next_node_entry(t);
578 list_del_init(&t->rcu_node_entry);
579 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
580 rcu_preempt_ctrlblk.gp_tasks = np;
581 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
582 rcu_preempt_ctrlblk.exp_tasks = np;
583 #ifdef CONFIG_RCU_BOOST
584 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.boost_tasks)
585 rcu_preempt_ctrlblk.boost_tasks = np;
586 #endif /* #ifdef CONFIG_RCU_BOOST */
587
588 /*
589 * If this was the last task on the current list, and if
590 * we aren't waiting on the CPU, report the quiescent state
591 * and start a new grace period if needed.
592 */
593 if (!empty && !rcu_preempt_blocked_readers_cgp()) {
594 rcu_preempt_cpu_qs();
595 rcu_preempt_start_gp();
596 }
597
598 /*
599 * If this was the last task on the expedited lists,
600 * then we need wake up the waiting task.
601 */
602 if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
603 rcu_report_exp_done();
604 }
605 #ifdef CONFIG_RCU_BOOST
606 /* Unboost self if was boosted. */
607 if (t->rcu_boost_mutex != NULL) {
608 rbmp = t->rcu_boost_mutex;
609 t->rcu_boost_mutex = NULL;
610 rt_mutex_unlock(rbmp);
611 }
612 #endif /* #ifdef CONFIG_RCU_BOOST */
613 local_irq_restore(flags);
614 }
615
616 /*
617 * Check for a quiescent state from the current CPU. When a task blocks,
618 * the task is recorded in the rcu_preempt_ctrlblk structure, which is
619 * checked elsewhere. This is called from the scheduling-clock interrupt.
620 *
621 * Caller must disable hard irqs.
622 */
623 static void rcu_preempt_check_callbacks(void)
624 {
625 struct task_struct *t = current;
626
627 if (rcu_preempt_gp_in_progress() &&
628 (!rcu_preempt_running_reader() ||
629 !rcu_cpu_blocking_cur_gp()))
630 rcu_preempt_cpu_qs();
631 if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
632 rcu_preempt_ctrlblk.rcb.donetail)
633 invoke_rcu_callbacks();
634 if (rcu_preempt_gp_in_progress() &&
635 rcu_cpu_blocking_cur_gp() &&
636 rcu_preempt_running_reader() > 0)
637 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
638 }
639
640 /*
641 * TINY_PREEMPT_RCU has an extra callback-list tail pointer to
642 * update, so this is invoked from rcu_process_callbacks() to
643 * handle that case. Of course, it is invoked for all flavors of
644 * RCU, but RCU callbacks can appear only on one of the lists, and
645 * neither ->nexttail nor ->donetail can possibly be NULL, so there
646 * is no need for an explicit check.
647 */
648 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
649 {
650 if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
651 rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
652 }
653
654 /*
655 * Process callbacks for preemptible RCU.
656 */
657 static void rcu_preempt_process_callbacks(void)
658 {
659 __rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
660 }
661
662 /*
663 * Queue a preemptible -RCU callback for invocation after a grace period.
664 */
665 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
666 {
667 unsigned long flags;
668
669 debug_rcu_head_queue(head);
670 head->func = func;
671 head->next = NULL;
672
673 local_irq_save(flags);
674 *rcu_preempt_ctrlblk.nexttail = head;
675 rcu_preempt_ctrlblk.nexttail = &head->next;
676 RCU_TRACE(rcu_preempt_ctrlblk.rcb.qlen++);
677 rcu_preempt_start_gp(); /* checks to see if GP needed. */
678 local_irq_restore(flags);
679 }
680 EXPORT_SYMBOL_GPL(call_rcu);
681
682 /*
683 * synchronize_rcu - wait until a grace period has elapsed.
684 *
685 * Control will return to the caller some time after a full grace
686 * period has elapsed, in other words after all currently executing RCU
687 * read-side critical sections have completed. RCU read-side critical
688 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
689 * and may be nested.
690 */
691 void synchronize_rcu(void)
692 {
693 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
694 !lock_is_held(&rcu_lock_map) &&
695 !lock_is_held(&rcu_sched_lock_map),
696 "Illegal synchronize_rcu() in RCU read-side critical section");
697
698 #ifdef CONFIG_DEBUG_LOCK_ALLOC
699 if (!rcu_scheduler_active)
700 return;
701 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
702
703 WARN_ON_ONCE(rcu_preempt_running_reader());
704 if (!rcu_preempt_blocked_readers_any())
705 return;
706
707 /* Once we get past the fastpath checks, same code as rcu_barrier(). */
708 rcu_barrier();
709 }
710 EXPORT_SYMBOL_GPL(synchronize_rcu);
711
712 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
713 static unsigned long sync_rcu_preempt_exp_count;
714 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
715
716 /*
717 * Return non-zero if there are any tasks in RCU read-side critical
718 * sections blocking the current preemptible-RCU expedited grace period.
719 * If there is no preemptible-RCU expedited grace period currently in
720 * progress, returns zero unconditionally.
721 */
722 static int rcu_preempted_readers_exp(void)
723 {
724 return rcu_preempt_ctrlblk.exp_tasks != NULL;
725 }
726
727 /*
728 * Report the exit from RCU read-side critical section for the last task
729 * that queued itself during or before the current expedited preemptible-RCU
730 * grace period.
731 */
732 static void rcu_report_exp_done(void)
733 {
734 wake_up(&sync_rcu_preempt_exp_wq);
735 }
736
737 /*
738 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
739 * is to rely in the fact that there is but one CPU, and that it is
740 * illegal for a task to invoke synchronize_rcu_expedited() while in a
741 * preemptible-RCU read-side critical section. Therefore, any such
742 * critical sections must correspond to blocked tasks, which must therefore
743 * be on the ->blkd_tasks list. So just record the current head of the
744 * list in the ->exp_tasks pointer, and wait for all tasks including and
745 * after the task pointed to by ->exp_tasks to drain.
746 */
747 void synchronize_rcu_expedited(void)
748 {
749 unsigned long flags;
750 struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
751 unsigned long snap;
752
753 barrier(); /* ensure prior action seen before grace period. */
754
755 WARN_ON_ONCE(rcu_preempt_running_reader());
756
757 /*
758 * Acquire lock so that there is only one preemptible RCU grace
759 * period in flight. Of course, if someone does the expedited
760 * grace period for us while we are acquiring the lock, just leave.
761 */
762 snap = sync_rcu_preempt_exp_count + 1;
763 mutex_lock(&sync_rcu_preempt_exp_mutex);
764 if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
765 goto unlock_mb_ret; /* Others did our work for us. */
766
767 local_irq_save(flags);
768
769 /*
770 * All RCU readers have to already be on blkd_tasks because
771 * we cannot legally be executing in an RCU read-side critical
772 * section.
773 */
774
775 /* Snapshot current head of ->blkd_tasks list. */
776 rpcp->exp_tasks = rpcp->blkd_tasks.next;
777 if (rpcp->exp_tasks == &rpcp->blkd_tasks)
778 rpcp->exp_tasks = NULL;
779
780 /* Wait for tail of ->blkd_tasks list to drain. */
781 if (!rcu_preempted_readers_exp())
782 local_irq_restore(flags);
783 else {
784 rcu_initiate_boost();
785 local_irq_restore(flags);
786 wait_event(sync_rcu_preempt_exp_wq,
787 !rcu_preempted_readers_exp());
788 }
789
790 /* Clean up and exit. */
791 barrier(); /* ensure expedited GP seen before counter increment. */
792 sync_rcu_preempt_exp_count++;
793 unlock_mb_ret:
794 mutex_unlock(&sync_rcu_preempt_exp_mutex);
795 barrier(); /* ensure subsequent action seen after grace period. */
796 }
797 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
798
799 /*
800 * Does preemptible RCU need the CPU to stay out of dynticks mode?
801 */
802 int rcu_preempt_needs_cpu(void)
803 {
804 return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
805 }
806
807 #else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
808
809 #ifdef CONFIG_RCU_TRACE
810
811 /*
812 * Because preemptible RCU does not exist, it is not necessary to
813 * dump out its statistics.
814 */
815 static void show_tiny_preempt_stats(struct seq_file *m)
816 {
817 }
818
819 #endif /* #ifdef CONFIG_RCU_TRACE */
820
821 /*
822 * Because preemptible RCU does not exist, it never has any callbacks
823 * to check.
824 */
825 static void rcu_preempt_check_callbacks(void)
826 {
827 }
828
829 /*
830 * Because preemptible RCU does not exist, it never has any callbacks
831 * to remove.
832 */
833 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
834 {
835 }
836
837 /*
838 * Because preemptible RCU does not exist, it never has any callbacks
839 * to process.
840 */
841 static void rcu_preempt_process_callbacks(void)
842 {
843 }
844
845 #endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
846
847 #ifdef CONFIG_RCU_BOOST
848
849 /*
850 * Wake up rcu_kthread() to process callbacks now eligible for invocation
851 * or to boost readers.
852 */
853 static void invoke_rcu_callbacks(void)
854 {
855 have_rcu_kthread_work = 1;
856 if (rcu_kthread_task != NULL)
857 wake_up(&rcu_kthread_wq);
858 }
859
860 #ifdef CONFIG_RCU_TRACE
861
862 /*
863 * Is the current CPU running the RCU-callbacks kthread?
864 * Caller must have preemption disabled.
865 */
866 static bool rcu_is_callbacks_kthread(void)
867 {
868 return rcu_kthread_task == current;
869 }
870
871 #endif /* #ifdef CONFIG_RCU_TRACE */
872
873 /*
874 * This kthread invokes RCU callbacks whose grace periods have
875 * elapsed. It is awakened as needed, and takes the place of the
876 * RCU_SOFTIRQ that is used for this purpose when boosting is disabled.
877 * This is a kthread, but it is never stopped, at least not until
878 * the system goes down.
879 */
880 static int rcu_kthread(void *arg)
881 {
882 unsigned long work;
883 unsigned long morework;
884 unsigned long flags;
885
886 for (;;) {
887 wait_event_interruptible(rcu_kthread_wq,
888 have_rcu_kthread_work != 0);
889 morework = rcu_boost();
890 local_irq_save(flags);
891 work = have_rcu_kthread_work;
892 have_rcu_kthread_work = morework;
893 local_irq_restore(flags);
894 if (work)
895 rcu_process_callbacks(NULL);
896 schedule_timeout_interruptible(1); /* Leave CPU for others. */
897 }
898
899 return 0; /* Not reached, but needed to shut gcc up. */
900 }
901
902 /*
903 * Spawn the kthread that invokes RCU callbacks.
904 */
905 static int __init rcu_spawn_kthreads(void)
906 {
907 struct sched_param sp;
908
909 rcu_kthread_task = kthread_run(rcu_kthread, NULL, "rcu_kthread");
910 sp.sched_priority = RCU_BOOST_PRIO;
911 sched_setscheduler_nocheck(rcu_kthread_task, SCHED_FIFO, &sp);
912 return 0;
913 }
914 early_initcall(rcu_spawn_kthreads);
915
916 #else /* #ifdef CONFIG_RCU_BOOST */
917
918 /* Hold off callback invocation until early_initcall() time. */
919 static int rcu_scheduler_fully_active __read_mostly;
920
921 /*
922 * Start up softirq processing of callbacks.
923 */
924 void invoke_rcu_callbacks(void)
925 {
926 if (rcu_scheduler_fully_active)
927 raise_softirq(RCU_SOFTIRQ);
928 }
929
930 #ifdef CONFIG_RCU_TRACE
931
932 /*
933 * There is no callback kthread, so this thread is never it.
934 */
935 static bool rcu_is_callbacks_kthread(void)
936 {
937 return false;
938 }
939
940 #endif /* #ifdef CONFIG_RCU_TRACE */
941
942 static int __init rcu_scheduler_really_started(void)
943 {
944 rcu_scheduler_fully_active = 1;
945 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
946 raise_softirq(RCU_SOFTIRQ); /* Invoke any callbacks from early boot. */
947 return 0;
948 }
949 early_initcall(rcu_scheduler_really_started);
950
951 #endif /* #else #ifdef CONFIG_RCU_BOOST */
952
953 #ifdef CONFIG_DEBUG_LOCK_ALLOC
954 #include <linux/kernel_stat.h>
955
956 /*
957 * During boot, we forgive RCU lockdep issues. After this function is
958 * invoked, we start taking RCU lockdep issues seriously.
959 */
960 void __init rcu_scheduler_starting(void)
961 {
962 WARN_ON(nr_context_switches() > 0);
963 rcu_scheduler_active = 1;
964 }
965
966 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
967
968 #ifdef CONFIG_RCU_TRACE
969
970 #ifdef CONFIG_RCU_BOOST
971
972 static void rcu_initiate_boost_trace(void)
973 {
974 if (list_empty(&rcu_preempt_ctrlblk.blkd_tasks))
975 rcu_preempt_ctrlblk.n_balk_blkd_tasks++;
976 else if (rcu_preempt_ctrlblk.gp_tasks == NULL &&
977 rcu_preempt_ctrlblk.exp_tasks == NULL)
978 rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++;
979 else if (rcu_preempt_ctrlblk.boost_tasks != NULL)
980 rcu_preempt_ctrlblk.n_balk_boost_tasks++;
981 else if (!ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))
982 rcu_preempt_ctrlblk.n_balk_notyet++;
983 else
984 rcu_preempt_ctrlblk.n_balk_nos++;
985 }
986
987 #endif /* #ifdef CONFIG_RCU_BOOST */
988
989 static void rcu_trace_sub_qlen(struct rcu_ctrlblk *rcp, int n)
990 {
991 unsigned long flags;
992
993 raw_local_irq_save(flags);
994 rcp->qlen -= n;
995 raw_local_irq_restore(flags);
996 }
997
998 /*
999 * Dump statistics for TINY_RCU, such as they are.
1000 */
1001 static int show_tiny_stats(struct seq_file *m, void *unused)
1002 {
1003 show_tiny_preempt_stats(m);
1004 seq_printf(m, "rcu_sched: qlen: %ld\n", rcu_sched_ctrlblk.qlen);
1005 seq_printf(m, "rcu_bh: qlen: %ld\n", rcu_bh_ctrlblk.qlen);
1006 return 0;
1007 }
1008
1009 static int show_tiny_stats_open(struct inode *inode, struct file *file)
1010 {
1011 return single_open(file, show_tiny_stats, NULL);
1012 }
1013
1014 static const struct file_operations show_tiny_stats_fops = {
1015 .owner = THIS_MODULE,
1016 .open = show_tiny_stats_open,
1017 .read = seq_read,
1018 .llseek = seq_lseek,
1019 .release = single_release,
1020 };
1021
1022 static struct dentry *rcudir;
1023
1024 static int __init rcutiny_trace_init(void)
1025 {
1026 struct dentry *retval;
1027
1028 rcudir = debugfs_create_dir("rcu", NULL);
1029 if (!rcudir)
1030 goto free_out;
1031 retval = debugfs_create_file("rcudata", 0444, rcudir,
1032 NULL, &show_tiny_stats_fops);
1033 if (!retval)
1034 goto free_out;
1035 return 0;
1036 free_out:
1037 debugfs_remove_recursive(rcudir);
1038 return 1;
1039 }
1040
1041 static void __exit rcutiny_trace_cleanup(void)
1042 {
1043 debugfs_remove_recursive(rcudir);
1044 }
1045
1046 module_init(rcutiny_trace_init);
1047 module_exit(rcutiny_trace_cleanup);
1048
1049 MODULE_AUTHOR("Paul E. McKenney");
1050 MODULE_DESCRIPTION("Read-Copy Update tracing for tiny implementation");
1051 MODULE_LICENSE("GPL");
1052
1053 #endif /* #ifdef CONFIG_RCU_TRACE */
This page took 0.05265 seconds and 5 git commands to generate.