429d4949f0eb19d780beb45004ae2c39c2eb06c7
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53
54 #include "rcutree.h"
55
56 /* Data structures. */
57
58 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
59
60 #define RCU_STATE_INITIALIZER(structname) { \
61 .level = { &structname.node[0] }, \
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
66 NUM_RCU_LVL_3, \
67 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_GP_IDLE, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
77 }
78
79 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81
82 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84
85 static struct rcu_state *rcu_state;
86
87 int rcu_scheduler_active __read_mostly;
88 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
89
90 #ifdef CONFIG_RCU_BOOST
91
92 /*
93 * Control variables for per-CPU and per-rcu_node kthreads. These
94 * handle all flavors of RCU.
95 */
96 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
97 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
98 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
99 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
100 DEFINE_PER_CPU(char, rcu_cpu_has_work);
101 static char rcu_kthreads_spawnable;
102
103 #endif /* #ifdef CONFIG_RCU_BOOST */
104
105 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
106 static void invoke_rcu_core(void);
107 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
108
109 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
110
111 /*
112 * Track the rcutorture test sequence number and the update version
113 * number within a given test. The rcutorture_testseq is incremented
114 * on every rcutorture module load and unload, so has an odd value
115 * when a test is running. The rcutorture_vernum is set to zero
116 * when rcutorture starts and is incremented on each rcutorture update.
117 * These variables enable correlating rcutorture output with the
118 * RCU tracing information.
119 */
120 unsigned long rcutorture_testseq;
121 unsigned long rcutorture_vernum;
122
123 /*
124 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
125 * permit this function to be invoked without holding the root rcu_node
126 * structure's ->lock, but of course results can be subject to change.
127 */
128 static int rcu_gp_in_progress(struct rcu_state *rsp)
129 {
130 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
131 }
132
133 /*
134 * Note a quiescent state. Because we do not need to know
135 * how many quiescent states passed, just if there was at least
136 * one since the start of the grace period, this just sets a flag.
137 */
138 void rcu_sched_qs(int cpu)
139 {
140 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
141
142 rdp->passed_quiesc_completed = rdp->gpnum - 1;
143 barrier();
144 rdp->passed_quiesc = 1;
145 }
146
147 void rcu_bh_qs(int cpu)
148 {
149 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
150
151 rdp->passed_quiesc_completed = rdp->gpnum - 1;
152 barrier();
153 rdp->passed_quiesc = 1;
154 }
155
156 /*
157 * Note a context switch. This is a quiescent state for RCU-sched,
158 * and requires special handling for preemptible RCU.
159 */
160 void rcu_note_context_switch(int cpu)
161 {
162 rcu_sched_qs(cpu);
163 rcu_preempt_note_context_switch(cpu);
164 }
165 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
166
167 #ifdef CONFIG_NO_HZ
168 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
169 .dynticks_nesting = 1,
170 .dynticks = ATOMIC_INIT(1),
171 };
172 #endif /* #ifdef CONFIG_NO_HZ */
173
174 static int blimit = 10; /* Maximum callbacks per softirq. */
175 static int qhimark = 10000; /* If this many pending, ignore blimit. */
176 static int qlowmark = 100; /* Once only this many pending, use blimit. */
177
178 module_param(blimit, int, 0);
179 module_param(qhimark, int, 0);
180 module_param(qlowmark, int, 0);
181
182 int rcu_cpu_stall_suppress __read_mostly;
183 module_param(rcu_cpu_stall_suppress, int, 0644);
184
185 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
186 static int rcu_pending(int cpu);
187
188 /*
189 * Return the number of RCU-sched batches processed thus far for debug & stats.
190 */
191 long rcu_batches_completed_sched(void)
192 {
193 return rcu_sched_state.completed;
194 }
195 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
196
197 /*
198 * Return the number of RCU BH batches processed thus far for debug & stats.
199 */
200 long rcu_batches_completed_bh(void)
201 {
202 return rcu_bh_state.completed;
203 }
204 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
205
206 /*
207 * Force a quiescent state for RCU BH.
208 */
209 void rcu_bh_force_quiescent_state(void)
210 {
211 force_quiescent_state(&rcu_bh_state, 0);
212 }
213 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
214
215 /*
216 * Record the number of times rcutorture tests have been initiated and
217 * terminated. This information allows the debugfs tracing stats to be
218 * correlated to the rcutorture messages, even when the rcutorture module
219 * is being repeatedly loaded and unloaded. In other words, we cannot
220 * store this state in rcutorture itself.
221 */
222 void rcutorture_record_test_transition(void)
223 {
224 rcutorture_testseq++;
225 rcutorture_vernum = 0;
226 }
227 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
228
229 /*
230 * Record the number of writer passes through the current rcutorture test.
231 * This is also used to correlate debugfs tracing stats with the rcutorture
232 * messages.
233 */
234 void rcutorture_record_progress(unsigned long vernum)
235 {
236 rcutorture_vernum++;
237 }
238 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
239
240 /*
241 * Force a quiescent state for RCU-sched.
242 */
243 void rcu_sched_force_quiescent_state(void)
244 {
245 force_quiescent_state(&rcu_sched_state, 0);
246 }
247 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
248
249 /*
250 * Does the CPU have callbacks ready to be invoked?
251 */
252 static int
253 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
254 {
255 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
256 }
257
258 /*
259 * Does the current CPU require a yet-as-unscheduled grace period?
260 */
261 static int
262 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
263 {
264 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
265 }
266
267 /*
268 * Return the root node of the specified rcu_state structure.
269 */
270 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
271 {
272 return &rsp->node[0];
273 }
274
275 #ifdef CONFIG_SMP
276
277 /*
278 * If the specified CPU is offline, tell the caller that it is in
279 * a quiescent state. Otherwise, whack it with a reschedule IPI.
280 * Grace periods can end up waiting on an offline CPU when that
281 * CPU is in the process of coming online -- it will be added to the
282 * rcu_node bitmasks before it actually makes it online. The same thing
283 * can happen while a CPU is in the process of coming online. Because this
284 * race is quite rare, we check for it after detecting that the grace
285 * period has been delayed rather than checking each and every CPU
286 * each and every time we start a new grace period.
287 */
288 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
289 {
290 /*
291 * If the CPU is offline, it is in a quiescent state. We can
292 * trust its state not to change because interrupts are disabled.
293 */
294 if (cpu_is_offline(rdp->cpu)) {
295 rdp->offline_fqs++;
296 return 1;
297 }
298
299 /* If preemptible RCU, no point in sending reschedule IPI. */
300 if (rdp->preemptible)
301 return 0;
302
303 /* The CPU is online, so send it a reschedule IPI. */
304 if (rdp->cpu != smp_processor_id())
305 smp_send_reschedule(rdp->cpu);
306 else
307 set_need_resched();
308 rdp->resched_ipi++;
309 return 0;
310 }
311
312 #endif /* #ifdef CONFIG_SMP */
313
314 #ifdef CONFIG_NO_HZ
315
316 /**
317 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
318 *
319 * Enter nohz mode, in other words, -leave- the mode in which RCU
320 * read-side critical sections can occur. (Though RCU read-side
321 * critical sections can occur in irq handlers in nohz mode, a possibility
322 * handled by rcu_irq_enter() and rcu_irq_exit()).
323 */
324 void rcu_enter_nohz(void)
325 {
326 unsigned long flags;
327 struct rcu_dynticks *rdtp;
328
329 local_irq_save(flags);
330 rdtp = &__get_cpu_var(rcu_dynticks);
331 if (--rdtp->dynticks_nesting) {
332 local_irq_restore(flags);
333 return;
334 }
335 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
336 smp_mb__before_atomic_inc(); /* See above. */
337 atomic_inc(&rdtp->dynticks);
338 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
339 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
340 local_irq_restore(flags);
341
342 /* If the interrupt queued a callback, get out of dyntick mode. */
343 if (in_irq() &&
344 (__get_cpu_var(rcu_sched_data).nxtlist ||
345 __get_cpu_var(rcu_bh_data).nxtlist ||
346 rcu_preempt_needs_cpu(smp_processor_id())))
347 set_need_resched();
348 }
349
350 /*
351 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
352 *
353 * Exit nohz mode, in other words, -enter- the mode in which RCU
354 * read-side critical sections normally occur.
355 */
356 void rcu_exit_nohz(void)
357 {
358 unsigned long flags;
359 struct rcu_dynticks *rdtp;
360
361 local_irq_save(flags);
362 rdtp = &__get_cpu_var(rcu_dynticks);
363 if (rdtp->dynticks_nesting++) {
364 local_irq_restore(flags);
365 return;
366 }
367 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
368 atomic_inc(&rdtp->dynticks);
369 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
370 smp_mb__after_atomic_inc(); /* See above. */
371 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
372 local_irq_restore(flags);
373 }
374
375 /**
376 * rcu_nmi_enter - inform RCU of entry to NMI context
377 *
378 * If the CPU was idle with dynamic ticks active, and there is no
379 * irq handler running, this updates rdtp->dynticks_nmi to let the
380 * RCU grace-period handling know that the CPU is active.
381 */
382 void rcu_nmi_enter(void)
383 {
384 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
385
386 if (rdtp->dynticks_nmi_nesting == 0 &&
387 (atomic_read(&rdtp->dynticks) & 0x1))
388 return;
389 rdtp->dynticks_nmi_nesting++;
390 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
391 atomic_inc(&rdtp->dynticks);
392 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
393 smp_mb__after_atomic_inc(); /* See above. */
394 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
395 }
396
397 /**
398 * rcu_nmi_exit - inform RCU of exit from NMI context
399 *
400 * If the CPU was idle with dynamic ticks active, and there is no
401 * irq handler running, this updates rdtp->dynticks_nmi to let the
402 * RCU grace-period handling know that the CPU is no longer active.
403 */
404 void rcu_nmi_exit(void)
405 {
406 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
407
408 if (rdtp->dynticks_nmi_nesting == 0 ||
409 --rdtp->dynticks_nmi_nesting != 0)
410 return;
411 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
412 smp_mb__before_atomic_inc(); /* See above. */
413 atomic_inc(&rdtp->dynticks);
414 smp_mb__after_atomic_inc(); /* Force delay to next write. */
415 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
416 }
417
418 /**
419 * rcu_irq_enter - inform RCU of entry to hard irq context
420 *
421 * If the CPU was idle with dynamic ticks active, this updates the
422 * rdtp->dynticks to let the RCU handling know that the CPU is active.
423 */
424 void rcu_irq_enter(void)
425 {
426 rcu_exit_nohz();
427 }
428
429 /**
430 * rcu_irq_exit - inform RCU of exit from hard irq context
431 *
432 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
433 * to put let the RCU handling be aware that the CPU is going back to idle
434 * with no ticks.
435 */
436 void rcu_irq_exit(void)
437 {
438 rcu_enter_nohz();
439 }
440
441 #ifdef CONFIG_SMP
442
443 /*
444 * Snapshot the specified CPU's dynticks counter so that we can later
445 * credit them with an implicit quiescent state. Return 1 if this CPU
446 * is in dynticks idle mode, which is an extended quiescent state.
447 */
448 static int dyntick_save_progress_counter(struct rcu_data *rdp)
449 {
450 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
451 return 0;
452 }
453
454 /*
455 * Return true if the specified CPU has passed through a quiescent
456 * state by virtue of being in or having passed through an dynticks
457 * idle state since the last call to dyntick_save_progress_counter()
458 * for this same CPU.
459 */
460 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
461 {
462 unsigned long curr;
463 unsigned long snap;
464
465 curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
466 snap = (unsigned long)rdp->dynticks_snap;
467
468 /*
469 * If the CPU passed through or entered a dynticks idle phase with
470 * no active irq/NMI handlers, then we can safely pretend that the CPU
471 * already acknowledged the request to pass through a quiescent
472 * state. Either way, that CPU cannot possibly be in an RCU
473 * read-side critical section that started before the beginning
474 * of the current RCU grace period.
475 */
476 if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
477 rdp->dynticks_fqs++;
478 return 1;
479 }
480
481 /* Go check for the CPU being offline. */
482 return rcu_implicit_offline_qs(rdp);
483 }
484
485 #endif /* #ifdef CONFIG_SMP */
486
487 #else /* #ifdef CONFIG_NO_HZ */
488
489 #ifdef CONFIG_SMP
490
491 static int dyntick_save_progress_counter(struct rcu_data *rdp)
492 {
493 return 0;
494 }
495
496 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
497 {
498 return rcu_implicit_offline_qs(rdp);
499 }
500
501 #endif /* #ifdef CONFIG_SMP */
502
503 #endif /* #else #ifdef CONFIG_NO_HZ */
504
505 int rcu_cpu_stall_suppress __read_mostly;
506
507 static void record_gp_stall_check_time(struct rcu_state *rsp)
508 {
509 rsp->gp_start = jiffies;
510 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
511 }
512
513 static void print_other_cpu_stall(struct rcu_state *rsp)
514 {
515 int cpu;
516 long delta;
517 unsigned long flags;
518 struct rcu_node *rnp = rcu_get_root(rsp);
519
520 /* Only let one CPU complain about others per time interval. */
521
522 raw_spin_lock_irqsave(&rnp->lock, flags);
523 delta = jiffies - rsp->jiffies_stall;
524 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
525 raw_spin_unlock_irqrestore(&rnp->lock, flags);
526 return;
527 }
528 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
529
530 /*
531 * Now rat on any tasks that got kicked up to the root rcu_node
532 * due to CPU offlining.
533 */
534 rcu_print_task_stall(rnp);
535 raw_spin_unlock_irqrestore(&rnp->lock, flags);
536
537 /*
538 * OK, time to rat on our buddy...
539 * See Documentation/RCU/stallwarn.txt for info on how to debug
540 * RCU CPU stall warnings.
541 */
542 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
543 rsp->name);
544 rcu_for_each_leaf_node(rsp, rnp) {
545 raw_spin_lock_irqsave(&rnp->lock, flags);
546 rcu_print_task_stall(rnp);
547 raw_spin_unlock_irqrestore(&rnp->lock, flags);
548 if (rnp->qsmask == 0)
549 continue;
550 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
551 if (rnp->qsmask & (1UL << cpu))
552 printk(" %d", rnp->grplo + cpu);
553 }
554 printk("} (detected by %d, t=%ld jiffies)\n",
555 smp_processor_id(), (long)(jiffies - rsp->gp_start));
556 trigger_all_cpu_backtrace();
557
558 /* If so configured, complain about tasks blocking the grace period. */
559
560 rcu_print_detail_task_stall(rsp);
561
562 force_quiescent_state(rsp, 0); /* Kick them all. */
563 }
564
565 static void print_cpu_stall(struct rcu_state *rsp)
566 {
567 unsigned long flags;
568 struct rcu_node *rnp = rcu_get_root(rsp);
569
570 /*
571 * OK, time to rat on ourselves...
572 * See Documentation/RCU/stallwarn.txt for info on how to debug
573 * RCU CPU stall warnings.
574 */
575 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
576 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
577 trigger_all_cpu_backtrace();
578
579 raw_spin_lock_irqsave(&rnp->lock, flags);
580 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
581 rsp->jiffies_stall =
582 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
583 raw_spin_unlock_irqrestore(&rnp->lock, flags);
584
585 set_need_resched(); /* kick ourselves to get things going. */
586 }
587
588 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
589 {
590 unsigned long j;
591 unsigned long js;
592 struct rcu_node *rnp;
593
594 if (rcu_cpu_stall_suppress)
595 return;
596 j = ACCESS_ONCE(jiffies);
597 js = ACCESS_ONCE(rsp->jiffies_stall);
598 rnp = rdp->mynode;
599 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
600
601 /* We haven't checked in, so go dump stack. */
602 print_cpu_stall(rsp);
603
604 } else if (rcu_gp_in_progress(rsp) &&
605 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
606
607 /* They had a few time units to dump stack, so complain. */
608 print_other_cpu_stall(rsp);
609 }
610 }
611
612 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
613 {
614 rcu_cpu_stall_suppress = 1;
615 return NOTIFY_DONE;
616 }
617
618 /**
619 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
620 *
621 * Set the stall-warning timeout way off into the future, thus preventing
622 * any RCU CPU stall-warning messages from appearing in the current set of
623 * RCU grace periods.
624 *
625 * The caller must disable hard irqs.
626 */
627 void rcu_cpu_stall_reset(void)
628 {
629 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
630 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
631 rcu_preempt_stall_reset();
632 }
633
634 static struct notifier_block rcu_panic_block = {
635 .notifier_call = rcu_panic,
636 };
637
638 static void __init check_cpu_stall_init(void)
639 {
640 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
641 }
642
643 /*
644 * Update CPU-local rcu_data state to record the newly noticed grace period.
645 * This is used both when we started the grace period and when we notice
646 * that someone else started the grace period. The caller must hold the
647 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
648 * and must have irqs disabled.
649 */
650 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
651 {
652 if (rdp->gpnum != rnp->gpnum) {
653 /*
654 * If the current grace period is waiting for this CPU,
655 * set up to detect a quiescent state, otherwise don't
656 * go looking for one.
657 */
658 rdp->gpnum = rnp->gpnum;
659 if (rnp->qsmask & rdp->grpmask) {
660 rdp->qs_pending = 1;
661 rdp->passed_quiesc = 0;
662 } else
663 rdp->qs_pending = 0;
664 }
665 }
666
667 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
668 {
669 unsigned long flags;
670 struct rcu_node *rnp;
671
672 local_irq_save(flags);
673 rnp = rdp->mynode;
674 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
675 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
676 local_irq_restore(flags);
677 return;
678 }
679 __note_new_gpnum(rsp, rnp, rdp);
680 raw_spin_unlock_irqrestore(&rnp->lock, flags);
681 }
682
683 /*
684 * Did someone else start a new RCU grace period start since we last
685 * checked? Update local state appropriately if so. Must be called
686 * on the CPU corresponding to rdp.
687 */
688 static int
689 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
690 {
691 unsigned long flags;
692 int ret = 0;
693
694 local_irq_save(flags);
695 if (rdp->gpnum != rsp->gpnum) {
696 note_new_gpnum(rsp, rdp);
697 ret = 1;
698 }
699 local_irq_restore(flags);
700 return ret;
701 }
702
703 /*
704 * Advance this CPU's callbacks, but only if the current grace period
705 * has ended. This may be called only from the CPU to whom the rdp
706 * belongs. In addition, the corresponding leaf rcu_node structure's
707 * ->lock must be held by the caller, with irqs disabled.
708 */
709 static void
710 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
711 {
712 /* Did another grace period end? */
713 if (rdp->completed != rnp->completed) {
714
715 /* Advance callbacks. No harm if list empty. */
716 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
717 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
718 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
719
720 /* Remember that we saw this grace-period completion. */
721 rdp->completed = rnp->completed;
722
723 /*
724 * If we were in an extended quiescent state, we may have
725 * missed some grace periods that others CPUs handled on
726 * our behalf. Catch up with this state to avoid noting
727 * spurious new grace periods. If another grace period
728 * has started, then rnp->gpnum will have advanced, so
729 * we will detect this later on.
730 */
731 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
732 rdp->gpnum = rdp->completed;
733
734 /*
735 * If RCU does not need a quiescent state from this CPU,
736 * then make sure that this CPU doesn't go looking for one.
737 */
738 if ((rnp->qsmask & rdp->grpmask) == 0)
739 rdp->qs_pending = 0;
740 }
741 }
742
743 /*
744 * Advance this CPU's callbacks, but only if the current grace period
745 * has ended. This may be called only from the CPU to whom the rdp
746 * belongs.
747 */
748 static void
749 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
750 {
751 unsigned long flags;
752 struct rcu_node *rnp;
753
754 local_irq_save(flags);
755 rnp = rdp->mynode;
756 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
757 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
758 local_irq_restore(flags);
759 return;
760 }
761 __rcu_process_gp_end(rsp, rnp, rdp);
762 raw_spin_unlock_irqrestore(&rnp->lock, flags);
763 }
764
765 /*
766 * Do per-CPU grace-period initialization for running CPU. The caller
767 * must hold the lock of the leaf rcu_node structure corresponding to
768 * this CPU.
769 */
770 static void
771 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
772 {
773 /* Prior grace period ended, so advance callbacks for current CPU. */
774 __rcu_process_gp_end(rsp, rnp, rdp);
775
776 /*
777 * Because this CPU just now started the new grace period, we know
778 * that all of its callbacks will be covered by this upcoming grace
779 * period, even the ones that were registered arbitrarily recently.
780 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
781 *
782 * Other CPUs cannot be sure exactly when the grace period started.
783 * Therefore, their recently registered callbacks must pass through
784 * an additional RCU_NEXT_READY stage, so that they will be handled
785 * by the next RCU grace period.
786 */
787 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
788 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
789
790 /* Set state so that this CPU will detect the next quiescent state. */
791 __note_new_gpnum(rsp, rnp, rdp);
792 }
793
794 /*
795 * Start a new RCU grace period if warranted, re-initializing the hierarchy
796 * in preparation for detecting the next grace period. The caller must hold
797 * the root node's ->lock, which is released before return. Hard irqs must
798 * be disabled.
799 */
800 static void
801 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
802 __releases(rcu_get_root(rsp)->lock)
803 {
804 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
805 struct rcu_node *rnp = rcu_get_root(rsp);
806
807 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
808 if (cpu_needs_another_gp(rsp, rdp))
809 rsp->fqs_need_gp = 1;
810 if (rnp->completed == rsp->completed) {
811 raw_spin_unlock_irqrestore(&rnp->lock, flags);
812 return;
813 }
814 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
815
816 /*
817 * Propagate new ->completed value to rcu_node structures
818 * so that other CPUs don't have to wait until the start
819 * of the next grace period to process their callbacks.
820 */
821 rcu_for_each_node_breadth_first(rsp, rnp) {
822 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
823 rnp->completed = rsp->completed;
824 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
825 }
826 local_irq_restore(flags);
827 return;
828 }
829
830 /* Advance to a new grace period and initialize state. */
831 rsp->gpnum++;
832 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
833 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
834 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
835 record_gp_stall_check_time(rsp);
836
837 /* Special-case the common single-level case. */
838 if (NUM_RCU_NODES == 1) {
839 rcu_preempt_check_blocked_tasks(rnp);
840 rnp->qsmask = rnp->qsmaskinit;
841 rnp->gpnum = rsp->gpnum;
842 rnp->completed = rsp->completed;
843 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
844 rcu_start_gp_per_cpu(rsp, rnp, rdp);
845 rcu_preempt_boost_start_gp(rnp);
846 raw_spin_unlock_irqrestore(&rnp->lock, flags);
847 return;
848 }
849
850 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
851
852
853 /* Exclude any concurrent CPU-hotplug operations. */
854 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
855
856 /*
857 * Set the quiescent-state-needed bits in all the rcu_node
858 * structures for all currently online CPUs in breadth-first
859 * order, starting from the root rcu_node structure. This
860 * operation relies on the layout of the hierarchy within the
861 * rsp->node[] array. Note that other CPUs will access only
862 * the leaves of the hierarchy, which still indicate that no
863 * grace period is in progress, at least until the corresponding
864 * leaf node has been initialized. In addition, we have excluded
865 * CPU-hotplug operations.
866 *
867 * Note that the grace period cannot complete until we finish
868 * the initialization process, as there will be at least one
869 * qsmask bit set in the root node until that time, namely the
870 * one corresponding to this CPU, due to the fact that we have
871 * irqs disabled.
872 */
873 rcu_for_each_node_breadth_first(rsp, rnp) {
874 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
875 rcu_preempt_check_blocked_tasks(rnp);
876 rnp->qsmask = rnp->qsmaskinit;
877 rnp->gpnum = rsp->gpnum;
878 rnp->completed = rsp->completed;
879 if (rnp == rdp->mynode)
880 rcu_start_gp_per_cpu(rsp, rnp, rdp);
881 rcu_preempt_boost_start_gp(rnp);
882 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
883 }
884
885 rnp = rcu_get_root(rsp);
886 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
887 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
888 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
889 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
890 }
891
892 /*
893 * Report a full set of quiescent states to the specified rcu_state
894 * data structure. This involves cleaning up after the prior grace
895 * period and letting rcu_start_gp() start up the next grace period
896 * if one is needed. Note that the caller must hold rnp->lock, as
897 * required by rcu_start_gp(), which will release it.
898 */
899 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
900 __releases(rcu_get_root(rsp)->lock)
901 {
902 unsigned long gp_duration;
903
904 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
905
906 /*
907 * Ensure that all grace-period and pre-grace-period activity
908 * is seen before the assignment to rsp->completed.
909 */
910 smp_mb(); /* See above block comment. */
911 gp_duration = jiffies - rsp->gp_start;
912 if (gp_duration > rsp->gp_max)
913 rsp->gp_max = gp_duration;
914 rsp->completed = rsp->gpnum;
915 rsp->signaled = RCU_GP_IDLE;
916 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
917 }
918
919 /*
920 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
921 * Allows quiescent states for a group of CPUs to be reported at one go
922 * to the specified rcu_node structure, though all the CPUs in the group
923 * must be represented by the same rcu_node structure (which need not be
924 * a leaf rcu_node structure, though it often will be). That structure's
925 * lock must be held upon entry, and it is released before return.
926 */
927 static void
928 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
929 struct rcu_node *rnp, unsigned long flags)
930 __releases(rnp->lock)
931 {
932 struct rcu_node *rnp_c;
933
934 /* Walk up the rcu_node hierarchy. */
935 for (;;) {
936 if (!(rnp->qsmask & mask)) {
937
938 /* Our bit has already been cleared, so done. */
939 raw_spin_unlock_irqrestore(&rnp->lock, flags);
940 return;
941 }
942 rnp->qsmask &= ~mask;
943 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
944
945 /* Other bits still set at this level, so done. */
946 raw_spin_unlock_irqrestore(&rnp->lock, flags);
947 return;
948 }
949 mask = rnp->grpmask;
950 if (rnp->parent == NULL) {
951
952 /* No more levels. Exit loop holding root lock. */
953
954 break;
955 }
956 raw_spin_unlock_irqrestore(&rnp->lock, flags);
957 rnp_c = rnp;
958 rnp = rnp->parent;
959 raw_spin_lock_irqsave(&rnp->lock, flags);
960 WARN_ON_ONCE(rnp_c->qsmask);
961 }
962
963 /*
964 * Get here if we are the last CPU to pass through a quiescent
965 * state for this grace period. Invoke rcu_report_qs_rsp()
966 * to clean up and start the next grace period if one is needed.
967 */
968 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
969 }
970
971 /*
972 * Record a quiescent state for the specified CPU to that CPU's rcu_data
973 * structure. This must be either called from the specified CPU, or
974 * called when the specified CPU is known to be offline (and when it is
975 * also known that no other CPU is concurrently trying to help the offline
976 * CPU). The lastcomp argument is used to make sure we are still in the
977 * grace period of interest. We don't want to end the current grace period
978 * based on quiescent states detected in an earlier grace period!
979 */
980 static void
981 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
982 {
983 unsigned long flags;
984 unsigned long mask;
985 struct rcu_node *rnp;
986
987 rnp = rdp->mynode;
988 raw_spin_lock_irqsave(&rnp->lock, flags);
989 if (lastcomp != rnp->completed) {
990
991 /*
992 * Someone beat us to it for this grace period, so leave.
993 * The race with GP start is resolved by the fact that we
994 * hold the leaf rcu_node lock, so that the per-CPU bits
995 * cannot yet be initialized -- so we would simply find our
996 * CPU's bit already cleared in rcu_report_qs_rnp() if this
997 * race occurred.
998 */
999 rdp->passed_quiesc = 0; /* try again later! */
1000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1001 return;
1002 }
1003 mask = rdp->grpmask;
1004 if ((rnp->qsmask & mask) == 0) {
1005 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1006 } else {
1007 rdp->qs_pending = 0;
1008
1009 /*
1010 * This GP can't end until cpu checks in, so all of our
1011 * callbacks can be processed during the next GP.
1012 */
1013 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1014
1015 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1016 }
1017 }
1018
1019 /*
1020 * Check to see if there is a new grace period of which this CPU
1021 * is not yet aware, and if so, set up local rcu_data state for it.
1022 * Otherwise, see if this CPU has just passed through its first
1023 * quiescent state for this grace period, and record that fact if so.
1024 */
1025 static void
1026 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1027 {
1028 /* If there is now a new grace period, record and return. */
1029 if (check_for_new_grace_period(rsp, rdp))
1030 return;
1031
1032 /*
1033 * Does this CPU still need to do its part for current grace period?
1034 * If no, return and let the other CPUs do their part as well.
1035 */
1036 if (!rdp->qs_pending)
1037 return;
1038
1039 /*
1040 * Was there a quiescent state since the beginning of the grace
1041 * period? If no, then exit and wait for the next call.
1042 */
1043 if (!rdp->passed_quiesc)
1044 return;
1045
1046 /*
1047 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1048 * judge of that).
1049 */
1050 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1051 }
1052
1053 #ifdef CONFIG_HOTPLUG_CPU
1054
1055 /*
1056 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1057 * Synchronization is not required because this function executes
1058 * in stop_machine() context.
1059 */
1060 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1061 {
1062 int i;
1063 /* current DYING CPU is cleared in the cpu_online_mask */
1064 int receive_cpu = cpumask_any(cpu_online_mask);
1065 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1066 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1067
1068 if (rdp->nxtlist == NULL)
1069 return; /* irqs disabled, so comparison is stable. */
1070
1071 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1072 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1073 receive_rdp->qlen += rdp->qlen;
1074 receive_rdp->n_cbs_adopted += rdp->qlen;
1075 rdp->n_cbs_orphaned += rdp->qlen;
1076
1077 rdp->nxtlist = NULL;
1078 for (i = 0; i < RCU_NEXT_SIZE; i++)
1079 rdp->nxttail[i] = &rdp->nxtlist;
1080 rdp->qlen = 0;
1081 }
1082
1083 /*
1084 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1085 * and move all callbacks from the outgoing CPU to the current one.
1086 * There can only be one CPU hotplug operation at a time, so no other
1087 * CPU can be attempting to update rcu_cpu_kthread_task.
1088 */
1089 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1090 {
1091 unsigned long flags;
1092 unsigned long mask;
1093 int need_report = 0;
1094 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1095 struct rcu_node *rnp;
1096 #ifdef CONFIG_RCU_BOOST
1097 struct task_struct *t;
1098
1099 /* Stop the CPU's kthread. */
1100 t = per_cpu(rcu_cpu_kthread_task, cpu);
1101 if (t != NULL) {
1102 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1103 kthread_stop(t);
1104 }
1105 #endif /* #ifdef CONFIG_RCU_BOOST */
1106
1107 /* Exclude any attempts to start a new grace period. */
1108 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1109
1110 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1111 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1112 mask = rdp->grpmask; /* rnp->grplo is constant. */
1113 do {
1114 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1115 rnp->qsmaskinit &= ~mask;
1116 if (rnp->qsmaskinit != 0) {
1117 if (rnp != rdp->mynode)
1118 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1119 break;
1120 }
1121 if (rnp == rdp->mynode)
1122 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1123 else
1124 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1125 mask = rnp->grpmask;
1126 rnp = rnp->parent;
1127 } while (rnp != NULL);
1128
1129 /*
1130 * We still hold the leaf rcu_node structure lock here, and
1131 * irqs are still disabled. The reason for this subterfuge is
1132 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1133 * held leads to deadlock.
1134 */
1135 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1136 rnp = rdp->mynode;
1137 if (need_report & RCU_OFL_TASKS_NORM_GP)
1138 rcu_report_unblock_qs_rnp(rnp, flags);
1139 else
1140 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1141 if (need_report & RCU_OFL_TASKS_EXP_GP)
1142 rcu_report_exp_rnp(rsp, rnp);
1143 rcu_node_kthread_setaffinity(rnp, -1);
1144 }
1145
1146 /*
1147 * Remove the specified CPU from the RCU hierarchy and move any pending
1148 * callbacks that it might have to the current CPU. This code assumes
1149 * that at least one CPU in the system will remain running at all times.
1150 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1151 */
1152 static void rcu_offline_cpu(int cpu)
1153 {
1154 __rcu_offline_cpu(cpu, &rcu_sched_state);
1155 __rcu_offline_cpu(cpu, &rcu_bh_state);
1156 rcu_preempt_offline_cpu(cpu);
1157 }
1158
1159 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1160
1161 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1162 {
1163 }
1164
1165 static void rcu_offline_cpu(int cpu)
1166 {
1167 }
1168
1169 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1170
1171 /*
1172 * Invoke any RCU callbacks that have made it to the end of their grace
1173 * period. Thottle as specified by rdp->blimit.
1174 */
1175 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1176 {
1177 unsigned long flags;
1178 struct rcu_head *next, *list, **tail;
1179 int count;
1180
1181 /* If no callbacks are ready, just return.*/
1182 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1183 return;
1184
1185 /*
1186 * Extract the list of ready callbacks, disabling to prevent
1187 * races with call_rcu() from interrupt handlers.
1188 */
1189 local_irq_save(flags);
1190 list = rdp->nxtlist;
1191 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1192 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1193 tail = rdp->nxttail[RCU_DONE_TAIL];
1194 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1195 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1196 rdp->nxttail[count] = &rdp->nxtlist;
1197 local_irq_restore(flags);
1198
1199 /* Invoke callbacks. */
1200 count = 0;
1201 while (list) {
1202 next = list->next;
1203 prefetch(next);
1204 debug_rcu_head_unqueue(list);
1205 __rcu_reclaim(list);
1206 list = next;
1207 if (++count >= rdp->blimit)
1208 break;
1209 }
1210
1211 local_irq_save(flags);
1212
1213 /* Update count, and requeue any remaining callbacks. */
1214 rdp->qlen -= count;
1215 rdp->n_cbs_invoked += count;
1216 if (list != NULL) {
1217 *tail = rdp->nxtlist;
1218 rdp->nxtlist = list;
1219 for (count = 0; count < RCU_NEXT_SIZE; count++)
1220 if (&rdp->nxtlist == rdp->nxttail[count])
1221 rdp->nxttail[count] = tail;
1222 else
1223 break;
1224 }
1225
1226 /* Reinstate batch limit if we have worked down the excess. */
1227 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1228 rdp->blimit = blimit;
1229
1230 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1231 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1232 rdp->qlen_last_fqs_check = 0;
1233 rdp->n_force_qs_snap = rsp->n_force_qs;
1234 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1235 rdp->qlen_last_fqs_check = rdp->qlen;
1236
1237 local_irq_restore(flags);
1238
1239 /* Re-raise the RCU softirq if there are callbacks remaining. */
1240 if (cpu_has_callbacks_ready_to_invoke(rdp))
1241 invoke_rcu_core();
1242 }
1243
1244 /*
1245 * Check to see if this CPU is in a non-context-switch quiescent state
1246 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1247 * Also schedule the RCU softirq handler.
1248 *
1249 * This function must be called with hardirqs disabled. It is normally
1250 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1251 * false, there is no point in invoking rcu_check_callbacks().
1252 */
1253 void rcu_check_callbacks(int cpu, int user)
1254 {
1255 if (user ||
1256 (idle_cpu(cpu) && rcu_scheduler_active &&
1257 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1258
1259 /*
1260 * Get here if this CPU took its interrupt from user
1261 * mode or from the idle loop, and if this is not a
1262 * nested interrupt. In this case, the CPU is in
1263 * a quiescent state, so note it.
1264 *
1265 * No memory barrier is required here because both
1266 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1267 * variables that other CPUs neither access nor modify,
1268 * at least not while the corresponding CPU is online.
1269 */
1270
1271 rcu_sched_qs(cpu);
1272 rcu_bh_qs(cpu);
1273
1274 } else if (!in_softirq()) {
1275
1276 /*
1277 * Get here if this CPU did not take its interrupt from
1278 * softirq, in other words, if it is not interrupting
1279 * a rcu_bh read-side critical section. This is an _bh
1280 * critical section, so note it.
1281 */
1282
1283 rcu_bh_qs(cpu);
1284 }
1285 rcu_preempt_check_callbacks(cpu);
1286 if (rcu_pending(cpu))
1287 invoke_rcu_core();
1288 }
1289
1290 #ifdef CONFIG_SMP
1291
1292 /*
1293 * Scan the leaf rcu_node structures, processing dyntick state for any that
1294 * have not yet encountered a quiescent state, using the function specified.
1295 * Also initiate boosting for any threads blocked on the root rcu_node.
1296 *
1297 * The caller must have suppressed start of new grace periods.
1298 */
1299 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1300 {
1301 unsigned long bit;
1302 int cpu;
1303 unsigned long flags;
1304 unsigned long mask;
1305 struct rcu_node *rnp;
1306
1307 rcu_for_each_leaf_node(rsp, rnp) {
1308 mask = 0;
1309 raw_spin_lock_irqsave(&rnp->lock, flags);
1310 if (!rcu_gp_in_progress(rsp)) {
1311 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1312 return;
1313 }
1314 if (rnp->qsmask == 0) {
1315 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1316 continue;
1317 }
1318 cpu = rnp->grplo;
1319 bit = 1;
1320 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1321 if ((rnp->qsmask & bit) != 0 &&
1322 f(per_cpu_ptr(rsp->rda, cpu)))
1323 mask |= bit;
1324 }
1325 if (mask != 0) {
1326
1327 /* rcu_report_qs_rnp() releases rnp->lock. */
1328 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1329 continue;
1330 }
1331 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1332 }
1333 rnp = rcu_get_root(rsp);
1334 if (rnp->qsmask == 0) {
1335 raw_spin_lock_irqsave(&rnp->lock, flags);
1336 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1337 }
1338 }
1339
1340 /*
1341 * Force quiescent states on reluctant CPUs, and also detect which
1342 * CPUs are in dyntick-idle mode.
1343 */
1344 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1345 {
1346 unsigned long flags;
1347 struct rcu_node *rnp = rcu_get_root(rsp);
1348
1349 if (!rcu_gp_in_progress(rsp))
1350 return; /* No grace period in progress, nothing to force. */
1351 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1352 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1353 return; /* Someone else is already on the job. */
1354 }
1355 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1356 goto unlock_fqs_ret; /* no emergency and done recently. */
1357 rsp->n_force_qs++;
1358 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1359 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1360 if(!rcu_gp_in_progress(rsp)) {
1361 rsp->n_force_qs_ngp++;
1362 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1363 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1364 }
1365 rsp->fqs_active = 1;
1366 switch (rsp->signaled) {
1367 case RCU_GP_IDLE:
1368 case RCU_GP_INIT:
1369
1370 break; /* grace period idle or initializing, ignore. */
1371
1372 case RCU_SAVE_DYNTICK:
1373 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1374 break; /* So gcc recognizes the dead code. */
1375
1376 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1377
1378 /* Record dyntick-idle state. */
1379 force_qs_rnp(rsp, dyntick_save_progress_counter);
1380 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1381 if (rcu_gp_in_progress(rsp))
1382 rsp->signaled = RCU_FORCE_QS;
1383 break;
1384
1385 case RCU_FORCE_QS:
1386
1387 /* Check dyntick-idle state, send IPI to laggarts. */
1388 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1389 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1390
1391 /* Leave state in case more forcing is required. */
1392
1393 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1394 break;
1395 }
1396 rsp->fqs_active = 0;
1397 if (rsp->fqs_need_gp) {
1398 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1399 rsp->fqs_need_gp = 0;
1400 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1401 return;
1402 }
1403 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1404 unlock_fqs_ret:
1405 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1406 }
1407
1408 #else /* #ifdef CONFIG_SMP */
1409
1410 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1411 {
1412 set_need_resched();
1413 }
1414
1415 #endif /* #else #ifdef CONFIG_SMP */
1416
1417 /*
1418 * This does the RCU processing work from softirq context for the
1419 * specified rcu_state and rcu_data structures. This may be called
1420 * only from the CPU to whom the rdp belongs.
1421 */
1422 static void
1423 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1424 {
1425 unsigned long flags;
1426
1427 WARN_ON_ONCE(rdp->beenonline == 0);
1428
1429 /*
1430 * If an RCU GP has gone long enough, go check for dyntick
1431 * idle CPUs and, if needed, send resched IPIs.
1432 */
1433 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1434 force_quiescent_state(rsp, 1);
1435
1436 /*
1437 * Advance callbacks in response to end of earlier grace
1438 * period that some other CPU ended.
1439 */
1440 rcu_process_gp_end(rsp, rdp);
1441
1442 /* Update RCU state based on any recent quiescent states. */
1443 rcu_check_quiescent_state(rsp, rdp);
1444
1445 /* Does this CPU require a not-yet-started grace period? */
1446 if (cpu_needs_another_gp(rsp, rdp)) {
1447 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1448 rcu_start_gp(rsp, flags); /* releases above lock */
1449 }
1450
1451 /* If there are callbacks ready, invoke them. */
1452 if (cpu_has_callbacks_ready_to_invoke(rdp))
1453 invoke_rcu_callbacks(rsp, rdp);
1454 }
1455
1456 #ifdef CONFIG_RCU_BOOST
1457
1458 static void rcu_kthread_do_work(void)
1459 {
1460 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1461 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1462 rcu_preempt_do_callbacks();
1463 }
1464
1465 #endif /* #ifdef CONFIG_RCU_BOOST */
1466
1467 /*
1468 * Do softirq processing for the current CPU.
1469 */
1470 static void rcu_process_callbacks(struct softirq_action *unused)
1471 {
1472 __rcu_process_callbacks(&rcu_sched_state,
1473 &__get_cpu_var(rcu_sched_data));
1474 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1475 rcu_preempt_process_callbacks();
1476
1477 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1478 rcu_needs_cpu_flush();
1479 }
1480
1481 /*
1482 * Wake up the current CPU's kthread. This replaces raise_softirq()
1483 * in earlier versions of RCU. Note that because we are running on
1484 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1485 * cannot disappear out from under us.
1486 */
1487 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1488 {
1489 if (likely(!rsp->boost)) {
1490 rcu_do_batch(rsp, rdp);
1491 return;
1492 }
1493 invoke_rcu_callbacks_kthread();
1494 }
1495
1496 static void invoke_rcu_core(void)
1497 {
1498 raise_softirq(RCU_SOFTIRQ);
1499 }
1500
1501 #ifdef CONFIG_RCU_BOOST
1502
1503 /*
1504 * Wake up the specified per-rcu_node-structure kthread.
1505 * Because the per-rcu_node kthreads are immortal, we don't need
1506 * to do anything to keep them alive.
1507 */
1508 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1509 {
1510 struct task_struct *t;
1511
1512 t = rnp->node_kthread_task;
1513 if (t != NULL)
1514 wake_up_process(t);
1515 }
1516
1517 /*
1518 * Set the specified CPU's kthread to run RT or not, as specified by
1519 * the to_rt argument. The CPU-hotplug locks are held, so the task
1520 * is not going away.
1521 */
1522 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1523 {
1524 int policy;
1525 struct sched_param sp;
1526 struct task_struct *t;
1527
1528 t = per_cpu(rcu_cpu_kthread_task, cpu);
1529 if (t == NULL)
1530 return;
1531 if (to_rt) {
1532 policy = SCHED_FIFO;
1533 sp.sched_priority = RCU_KTHREAD_PRIO;
1534 } else {
1535 policy = SCHED_NORMAL;
1536 sp.sched_priority = 0;
1537 }
1538 sched_setscheduler_nocheck(t, policy, &sp);
1539 }
1540
1541 /*
1542 * Timer handler to initiate the waking up of per-CPU kthreads that
1543 * have yielded the CPU due to excess numbers of RCU callbacks.
1544 * We wake up the per-rcu_node kthread, which in turn will wake up
1545 * the booster kthread.
1546 */
1547 static void rcu_cpu_kthread_timer(unsigned long arg)
1548 {
1549 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1550 struct rcu_node *rnp = rdp->mynode;
1551
1552 atomic_or(rdp->grpmask, &rnp->wakemask);
1553 invoke_rcu_node_kthread(rnp);
1554 }
1555
1556 /*
1557 * Drop to non-real-time priority and yield, but only after posting a
1558 * timer that will cause us to regain our real-time priority if we
1559 * remain preempted. Either way, we restore our real-time priority
1560 * before returning.
1561 */
1562 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1563 {
1564 struct sched_param sp;
1565 struct timer_list yield_timer;
1566
1567 setup_timer_on_stack(&yield_timer, f, arg);
1568 mod_timer(&yield_timer, jiffies + 2);
1569 sp.sched_priority = 0;
1570 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1571 set_user_nice(current, 19);
1572 schedule();
1573 sp.sched_priority = RCU_KTHREAD_PRIO;
1574 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1575 del_timer(&yield_timer);
1576 }
1577
1578 /*
1579 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1580 * This can happen while the corresponding CPU is either coming online
1581 * or going offline. We cannot wait until the CPU is fully online
1582 * before starting the kthread, because the various notifier functions
1583 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1584 * the corresponding CPU is online.
1585 *
1586 * Return 1 if the kthread needs to stop, 0 otherwise.
1587 *
1588 * Caller must disable bh. This function can momentarily enable it.
1589 */
1590 static int rcu_cpu_kthread_should_stop(int cpu)
1591 {
1592 while (cpu_is_offline(cpu) ||
1593 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1594 smp_processor_id() != cpu) {
1595 if (kthread_should_stop())
1596 return 1;
1597 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1598 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1599 local_bh_enable();
1600 schedule_timeout_uninterruptible(1);
1601 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1602 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1603 local_bh_disable();
1604 }
1605 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1606 return 0;
1607 }
1608
1609 /*
1610 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1611 * earlier RCU softirq.
1612 */
1613 static int rcu_cpu_kthread(void *arg)
1614 {
1615 int cpu = (int)(long)arg;
1616 unsigned long flags;
1617 int spincnt = 0;
1618 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1619 char work;
1620 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1621
1622 for (;;) {
1623 *statusp = RCU_KTHREAD_WAITING;
1624 rcu_wait(*workp != 0 || kthread_should_stop());
1625 local_bh_disable();
1626 if (rcu_cpu_kthread_should_stop(cpu)) {
1627 local_bh_enable();
1628 break;
1629 }
1630 *statusp = RCU_KTHREAD_RUNNING;
1631 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1632 local_irq_save(flags);
1633 work = *workp;
1634 *workp = 0;
1635 local_irq_restore(flags);
1636 if (work)
1637 rcu_kthread_do_work();
1638 local_bh_enable();
1639 if (*workp != 0)
1640 spincnt++;
1641 else
1642 spincnt = 0;
1643 if (spincnt > 10) {
1644 *statusp = RCU_KTHREAD_YIELDING;
1645 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1646 spincnt = 0;
1647 }
1648 }
1649 *statusp = RCU_KTHREAD_STOPPED;
1650 return 0;
1651 }
1652
1653 /*
1654 * Spawn a per-CPU kthread, setting up affinity and priority.
1655 * Because the CPU hotplug lock is held, no other CPU will be attempting
1656 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1657 * attempting to access it during boot, but the locking in kthread_bind()
1658 * will enforce sufficient ordering.
1659 *
1660 * Please note that we cannot simply refuse to wake up the per-CPU
1661 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1662 * which can result in softlockup complaints if the task ends up being
1663 * idle for more than a couple of minutes.
1664 *
1665 * However, please note also that we cannot bind the per-CPU kthread to its
1666 * CPU until that CPU is fully online. We also cannot wait until the
1667 * CPU is fully online before we create its per-CPU kthread, as this would
1668 * deadlock the system when CPU notifiers tried waiting for grace
1669 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1670 * is online. If its CPU is not yet fully online, then the code in
1671 * rcu_cpu_kthread() will wait until it is fully online, and then do
1672 * the binding.
1673 */
1674 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1675 {
1676 struct sched_param sp;
1677 struct task_struct *t;
1678
1679 if (!rcu_kthreads_spawnable ||
1680 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1681 return 0;
1682 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1683 if (IS_ERR(t))
1684 return PTR_ERR(t);
1685 if (cpu_online(cpu))
1686 kthread_bind(t, cpu);
1687 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1688 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1689 sp.sched_priority = RCU_KTHREAD_PRIO;
1690 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1691 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1692 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1693 return 0;
1694 }
1695
1696 /*
1697 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1698 * kthreads when needed. We ignore requests to wake up kthreads
1699 * for offline CPUs, which is OK because force_quiescent_state()
1700 * takes care of this case.
1701 */
1702 static int rcu_node_kthread(void *arg)
1703 {
1704 int cpu;
1705 unsigned long flags;
1706 unsigned long mask;
1707 struct rcu_node *rnp = (struct rcu_node *)arg;
1708 struct sched_param sp;
1709 struct task_struct *t;
1710
1711 for (;;) {
1712 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1713 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1714 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1715 raw_spin_lock_irqsave(&rnp->lock, flags);
1716 mask = atomic_xchg(&rnp->wakemask, 0);
1717 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1718 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1719 if ((mask & 0x1) == 0)
1720 continue;
1721 preempt_disable();
1722 t = per_cpu(rcu_cpu_kthread_task, cpu);
1723 if (!cpu_online(cpu) || t == NULL) {
1724 preempt_enable();
1725 continue;
1726 }
1727 per_cpu(rcu_cpu_has_work, cpu) = 1;
1728 sp.sched_priority = RCU_KTHREAD_PRIO;
1729 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1730 preempt_enable();
1731 }
1732 }
1733 /* NOTREACHED */
1734 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1735 return 0;
1736 }
1737
1738 /*
1739 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1740 * served by the rcu_node in question. The CPU hotplug lock is still
1741 * held, so the value of rnp->qsmaskinit will be stable.
1742 *
1743 * We don't include outgoingcpu in the affinity set, use -1 if there is
1744 * no outgoing CPU. If there are no CPUs left in the affinity set,
1745 * this function allows the kthread to execute on any CPU.
1746 */
1747 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1748 {
1749 cpumask_var_t cm;
1750 int cpu;
1751 unsigned long mask = rnp->qsmaskinit;
1752
1753 if (rnp->node_kthread_task == NULL)
1754 return;
1755 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1756 return;
1757 cpumask_clear(cm);
1758 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1759 if ((mask & 0x1) && cpu != outgoingcpu)
1760 cpumask_set_cpu(cpu, cm);
1761 if (cpumask_weight(cm) == 0) {
1762 cpumask_setall(cm);
1763 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1764 cpumask_clear_cpu(cpu, cm);
1765 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1766 }
1767 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1768 rcu_boost_kthread_setaffinity(rnp, cm);
1769 free_cpumask_var(cm);
1770 }
1771
1772 /*
1773 * Spawn a per-rcu_node kthread, setting priority and affinity.
1774 * Called during boot before online/offline can happen, or, if
1775 * during runtime, with the main CPU-hotplug locks held. So only
1776 * one of these can be executing at a time.
1777 */
1778 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1779 struct rcu_node *rnp)
1780 {
1781 unsigned long flags;
1782 int rnp_index = rnp - &rsp->node[0];
1783 struct sched_param sp;
1784 struct task_struct *t;
1785
1786 if (!rcu_kthreads_spawnable ||
1787 rnp->qsmaskinit == 0)
1788 return 0;
1789 if (rnp->node_kthread_task == NULL) {
1790 t = kthread_create(rcu_node_kthread, (void *)rnp,
1791 "rcun%d", rnp_index);
1792 if (IS_ERR(t))
1793 return PTR_ERR(t);
1794 raw_spin_lock_irqsave(&rnp->lock, flags);
1795 rnp->node_kthread_task = t;
1796 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1797 sp.sched_priority = 99;
1798 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1799 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1800 }
1801 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1802 }
1803
1804 /*
1805 * Spawn all kthreads -- called as soon as the scheduler is running.
1806 */
1807 static int __init rcu_spawn_kthreads(void)
1808 {
1809 int cpu;
1810 struct rcu_node *rnp;
1811
1812 rcu_kthreads_spawnable = 1;
1813 for_each_possible_cpu(cpu) {
1814 per_cpu(rcu_cpu_has_work, cpu) = 0;
1815 if (cpu_online(cpu))
1816 (void)rcu_spawn_one_cpu_kthread(cpu);
1817 }
1818 rnp = rcu_get_root(rcu_state);
1819 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1820 if (NUM_RCU_NODES > 1) {
1821 rcu_for_each_leaf_node(rcu_state, rnp)
1822 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1823 }
1824 return 0;
1825 }
1826 early_initcall(rcu_spawn_kthreads);
1827
1828 #else /* #ifdef CONFIG_RCU_BOOST */
1829
1830 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1831 {
1832 }
1833
1834 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1835 {
1836 }
1837
1838 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1839
1840 static void
1841 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1842 struct rcu_state *rsp)
1843 {
1844 unsigned long flags;
1845 struct rcu_data *rdp;
1846
1847 debug_rcu_head_queue(head);
1848 head->func = func;
1849 head->next = NULL;
1850
1851 smp_mb(); /* Ensure RCU update seen before callback registry. */
1852
1853 /*
1854 * Opportunistically note grace-period endings and beginnings.
1855 * Note that we might see a beginning right after we see an
1856 * end, but never vice versa, since this CPU has to pass through
1857 * a quiescent state betweentimes.
1858 */
1859 local_irq_save(flags);
1860 rdp = this_cpu_ptr(rsp->rda);
1861
1862 /* Add the callback to our list. */
1863 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1864 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1865 rdp->qlen++;
1866
1867 /* If interrupts were disabled, don't dive into RCU core. */
1868 if (irqs_disabled_flags(flags)) {
1869 local_irq_restore(flags);
1870 return;
1871 }
1872
1873 /*
1874 * Force the grace period if too many callbacks or too long waiting.
1875 * Enforce hysteresis, and don't invoke force_quiescent_state()
1876 * if some other CPU has recently done so. Also, don't bother
1877 * invoking force_quiescent_state() if the newly enqueued callback
1878 * is the only one waiting for a grace period to complete.
1879 */
1880 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1881
1882 /* Are we ignoring a completed grace period? */
1883 rcu_process_gp_end(rsp, rdp);
1884 check_for_new_grace_period(rsp, rdp);
1885
1886 /* Start a new grace period if one not already started. */
1887 if (!rcu_gp_in_progress(rsp)) {
1888 unsigned long nestflag;
1889 struct rcu_node *rnp_root = rcu_get_root(rsp);
1890
1891 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1892 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1893 } else {
1894 /* Give the grace period a kick. */
1895 rdp->blimit = LONG_MAX;
1896 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1897 *rdp->nxttail[RCU_DONE_TAIL] != head)
1898 force_quiescent_state(rsp, 0);
1899 rdp->n_force_qs_snap = rsp->n_force_qs;
1900 rdp->qlen_last_fqs_check = rdp->qlen;
1901 }
1902 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1903 force_quiescent_state(rsp, 1);
1904 local_irq_restore(flags);
1905 }
1906
1907 /*
1908 * Queue an RCU-sched callback for invocation after a grace period.
1909 */
1910 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1911 {
1912 __call_rcu(head, func, &rcu_sched_state);
1913 }
1914 EXPORT_SYMBOL_GPL(call_rcu_sched);
1915
1916 /*
1917 * Queue an RCU for invocation after a quicker grace period.
1918 */
1919 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1920 {
1921 __call_rcu(head, func, &rcu_bh_state);
1922 }
1923 EXPORT_SYMBOL_GPL(call_rcu_bh);
1924
1925 /**
1926 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1927 *
1928 * Control will return to the caller some time after a full rcu-sched
1929 * grace period has elapsed, in other words after all currently executing
1930 * rcu-sched read-side critical sections have completed. These read-side
1931 * critical sections are delimited by rcu_read_lock_sched() and
1932 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1933 * local_irq_disable(), and so on may be used in place of
1934 * rcu_read_lock_sched().
1935 *
1936 * This means that all preempt_disable code sequences, including NMI and
1937 * hardware-interrupt handlers, in progress on entry will have completed
1938 * before this primitive returns. However, this does not guarantee that
1939 * softirq handlers will have completed, since in some kernels, these
1940 * handlers can run in process context, and can block.
1941 *
1942 * This primitive provides the guarantees made by the (now removed)
1943 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1944 * guarantees that rcu_read_lock() sections will have completed.
1945 * In "classic RCU", these two guarantees happen to be one and
1946 * the same, but can differ in realtime RCU implementations.
1947 */
1948 void synchronize_sched(void)
1949 {
1950 struct rcu_synchronize rcu;
1951
1952 if (rcu_blocking_is_gp())
1953 return;
1954
1955 init_rcu_head_on_stack(&rcu.head);
1956 init_completion(&rcu.completion);
1957 /* Will wake me after RCU finished. */
1958 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1959 /* Wait for it. */
1960 wait_for_completion(&rcu.completion);
1961 destroy_rcu_head_on_stack(&rcu.head);
1962 }
1963 EXPORT_SYMBOL_GPL(synchronize_sched);
1964
1965 /**
1966 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1967 *
1968 * Control will return to the caller some time after a full rcu_bh grace
1969 * period has elapsed, in other words after all currently executing rcu_bh
1970 * read-side critical sections have completed. RCU read-side critical
1971 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1972 * and may be nested.
1973 */
1974 void synchronize_rcu_bh(void)
1975 {
1976 struct rcu_synchronize rcu;
1977
1978 if (rcu_blocking_is_gp())
1979 return;
1980
1981 init_rcu_head_on_stack(&rcu.head);
1982 init_completion(&rcu.completion);
1983 /* Will wake me after RCU finished. */
1984 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1985 /* Wait for it. */
1986 wait_for_completion(&rcu.completion);
1987 destroy_rcu_head_on_stack(&rcu.head);
1988 }
1989 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1990
1991 /*
1992 * Check to see if there is any immediate RCU-related work to be done
1993 * by the current CPU, for the specified type of RCU, returning 1 if so.
1994 * The checks are in order of increasing expense: checks that can be
1995 * carried out against CPU-local state are performed first. However,
1996 * we must check for CPU stalls first, else we might not get a chance.
1997 */
1998 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1999 {
2000 struct rcu_node *rnp = rdp->mynode;
2001
2002 rdp->n_rcu_pending++;
2003
2004 /* Check for CPU stalls, if enabled. */
2005 check_cpu_stall(rsp, rdp);
2006
2007 /* Is the RCU core waiting for a quiescent state from this CPU? */
2008 if (rdp->qs_pending && !rdp->passed_quiesc) {
2009
2010 /*
2011 * If force_quiescent_state() coming soon and this CPU
2012 * needs a quiescent state, and this is either RCU-sched
2013 * or RCU-bh, force a local reschedule.
2014 */
2015 rdp->n_rp_qs_pending++;
2016 if (!rdp->preemptible &&
2017 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2018 jiffies))
2019 set_need_resched();
2020 } else if (rdp->qs_pending && rdp->passed_quiesc) {
2021 rdp->n_rp_report_qs++;
2022 return 1;
2023 }
2024
2025 /* Does this CPU have callbacks ready to invoke? */
2026 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2027 rdp->n_rp_cb_ready++;
2028 return 1;
2029 }
2030
2031 /* Has RCU gone idle with this CPU needing another grace period? */
2032 if (cpu_needs_another_gp(rsp, rdp)) {
2033 rdp->n_rp_cpu_needs_gp++;
2034 return 1;
2035 }
2036
2037 /* Has another RCU grace period completed? */
2038 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2039 rdp->n_rp_gp_completed++;
2040 return 1;
2041 }
2042
2043 /* Has a new RCU grace period started? */
2044 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2045 rdp->n_rp_gp_started++;
2046 return 1;
2047 }
2048
2049 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2050 if (rcu_gp_in_progress(rsp) &&
2051 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2052 rdp->n_rp_need_fqs++;
2053 return 1;
2054 }
2055
2056 /* nothing to do */
2057 rdp->n_rp_need_nothing++;
2058 return 0;
2059 }
2060
2061 /*
2062 * Check to see if there is any immediate RCU-related work to be done
2063 * by the current CPU, returning 1 if so. This function is part of the
2064 * RCU implementation; it is -not- an exported member of the RCU API.
2065 */
2066 static int rcu_pending(int cpu)
2067 {
2068 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2069 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2070 rcu_preempt_pending(cpu);
2071 }
2072
2073 /*
2074 * Check to see if any future RCU-related work will need to be done
2075 * by the current CPU, even if none need be done immediately, returning
2076 * 1 if so.
2077 */
2078 static int rcu_needs_cpu_quick_check(int cpu)
2079 {
2080 /* RCU callbacks either ready or pending? */
2081 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2082 per_cpu(rcu_bh_data, cpu).nxtlist ||
2083 rcu_preempt_needs_cpu(cpu);
2084 }
2085
2086 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2087 static atomic_t rcu_barrier_cpu_count;
2088 static DEFINE_MUTEX(rcu_barrier_mutex);
2089 static struct completion rcu_barrier_completion;
2090
2091 static void rcu_barrier_callback(struct rcu_head *notused)
2092 {
2093 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2094 complete(&rcu_barrier_completion);
2095 }
2096
2097 /*
2098 * Called with preemption disabled, and from cross-cpu IRQ context.
2099 */
2100 static void rcu_barrier_func(void *type)
2101 {
2102 int cpu = smp_processor_id();
2103 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2104 void (*call_rcu_func)(struct rcu_head *head,
2105 void (*func)(struct rcu_head *head));
2106
2107 atomic_inc(&rcu_barrier_cpu_count);
2108 call_rcu_func = type;
2109 call_rcu_func(head, rcu_barrier_callback);
2110 }
2111
2112 /*
2113 * Orchestrate the specified type of RCU barrier, waiting for all
2114 * RCU callbacks of the specified type to complete.
2115 */
2116 static void _rcu_barrier(struct rcu_state *rsp,
2117 void (*call_rcu_func)(struct rcu_head *head,
2118 void (*func)(struct rcu_head *head)))
2119 {
2120 BUG_ON(in_interrupt());
2121 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2122 mutex_lock(&rcu_barrier_mutex);
2123 init_completion(&rcu_barrier_completion);
2124 /*
2125 * Initialize rcu_barrier_cpu_count to 1, then invoke
2126 * rcu_barrier_func() on each CPU, so that each CPU also has
2127 * incremented rcu_barrier_cpu_count. Only then is it safe to
2128 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2129 * might complete its grace period before all of the other CPUs
2130 * did their increment, causing this function to return too
2131 * early. Note that on_each_cpu() disables irqs, which prevents
2132 * any CPUs from coming online or going offline until each online
2133 * CPU has queued its RCU-barrier callback.
2134 */
2135 atomic_set(&rcu_barrier_cpu_count, 1);
2136 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2137 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2138 complete(&rcu_barrier_completion);
2139 wait_for_completion(&rcu_barrier_completion);
2140 mutex_unlock(&rcu_barrier_mutex);
2141 }
2142
2143 /**
2144 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2145 */
2146 void rcu_barrier_bh(void)
2147 {
2148 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2149 }
2150 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2151
2152 /**
2153 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2154 */
2155 void rcu_barrier_sched(void)
2156 {
2157 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2158 }
2159 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2160
2161 /*
2162 * Do boot-time initialization of a CPU's per-CPU RCU data.
2163 */
2164 static void __init
2165 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2166 {
2167 unsigned long flags;
2168 int i;
2169 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2170 struct rcu_node *rnp = rcu_get_root(rsp);
2171
2172 /* Set up local state, ensuring consistent view of global state. */
2173 raw_spin_lock_irqsave(&rnp->lock, flags);
2174 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2175 rdp->nxtlist = NULL;
2176 for (i = 0; i < RCU_NEXT_SIZE; i++)
2177 rdp->nxttail[i] = &rdp->nxtlist;
2178 rdp->qlen = 0;
2179 #ifdef CONFIG_NO_HZ
2180 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2181 #endif /* #ifdef CONFIG_NO_HZ */
2182 rdp->cpu = cpu;
2183 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2184 }
2185
2186 /*
2187 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2188 * offline event can be happening at a given time. Note also that we
2189 * can accept some slop in the rsp->completed access due to the fact
2190 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2191 */
2192 static void __cpuinit
2193 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2194 {
2195 unsigned long flags;
2196 unsigned long mask;
2197 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2198 struct rcu_node *rnp = rcu_get_root(rsp);
2199
2200 /* Set up local state, ensuring consistent view of global state. */
2201 raw_spin_lock_irqsave(&rnp->lock, flags);
2202 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
2203 rdp->qs_pending = 1; /* so set up to respond to current GP. */
2204 rdp->beenonline = 1; /* We have now been online. */
2205 rdp->preemptible = preemptible;
2206 rdp->qlen_last_fqs_check = 0;
2207 rdp->n_force_qs_snap = rsp->n_force_qs;
2208 rdp->blimit = blimit;
2209 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2210
2211 /*
2212 * A new grace period might start here. If so, we won't be part
2213 * of it, but that is OK, as we are currently in a quiescent state.
2214 */
2215
2216 /* Exclude any attempts to start a new GP on large systems. */
2217 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2218
2219 /* Add CPU to rcu_node bitmasks. */
2220 rnp = rdp->mynode;
2221 mask = rdp->grpmask;
2222 do {
2223 /* Exclude any attempts to start a new GP on small systems. */
2224 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2225 rnp->qsmaskinit |= mask;
2226 mask = rnp->grpmask;
2227 if (rnp == rdp->mynode) {
2228 rdp->gpnum = rnp->completed; /* if GP in progress... */
2229 rdp->completed = rnp->completed;
2230 rdp->passed_quiesc_completed = rnp->completed - 1;
2231 }
2232 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2233 rnp = rnp->parent;
2234 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2235
2236 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2237 }
2238
2239 static void __cpuinit rcu_prepare_cpu(int cpu)
2240 {
2241 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2242 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2243 rcu_preempt_init_percpu_data(cpu);
2244 }
2245
2246 #ifdef CONFIG_RCU_BOOST
2247
2248 static void __cpuinit rcu_prepare_kthreads(int cpu)
2249 {
2250 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2251 struct rcu_node *rnp = rdp->mynode;
2252
2253 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2254 if (rcu_kthreads_spawnable) {
2255 (void)rcu_spawn_one_cpu_kthread(cpu);
2256 if (rnp->node_kthread_task == NULL)
2257 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2258 }
2259 }
2260
2261 #else /* #ifdef CONFIG_RCU_BOOST */
2262
2263 static void __cpuinit rcu_prepare_kthreads(int cpu)
2264 {
2265 }
2266
2267 #endif /* #else #ifdef CONFIG_RCU_BOOST */
2268
2269 /*
2270 * Handle CPU online/offline notification events.
2271 */
2272 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2273 unsigned long action, void *hcpu)
2274 {
2275 long cpu = (long)hcpu;
2276 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2277 struct rcu_node *rnp = rdp->mynode;
2278
2279 switch (action) {
2280 case CPU_UP_PREPARE:
2281 case CPU_UP_PREPARE_FROZEN:
2282 rcu_prepare_cpu(cpu);
2283 rcu_prepare_kthreads(cpu);
2284 break;
2285 case CPU_ONLINE:
2286 case CPU_DOWN_FAILED:
2287 rcu_node_kthread_setaffinity(rnp, -1);
2288 rcu_cpu_kthread_setrt(cpu, 1);
2289 break;
2290 case CPU_DOWN_PREPARE:
2291 rcu_node_kthread_setaffinity(rnp, cpu);
2292 rcu_cpu_kthread_setrt(cpu, 0);
2293 break;
2294 case CPU_DYING:
2295 case CPU_DYING_FROZEN:
2296 /*
2297 * The whole machine is "stopped" except this CPU, so we can
2298 * touch any data without introducing corruption. We send the
2299 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2300 */
2301 rcu_send_cbs_to_online(&rcu_bh_state);
2302 rcu_send_cbs_to_online(&rcu_sched_state);
2303 rcu_preempt_send_cbs_to_online();
2304 break;
2305 case CPU_DEAD:
2306 case CPU_DEAD_FROZEN:
2307 case CPU_UP_CANCELED:
2308 case CPU_UP_CANCELED_FROZEN:
2309 rcu_offline_cpu(cpu);
2310 break;
2311 default:
2312 break;
2313 }
2314 return NOTIFY_OK;
2315 }
2316
2317 /*
2318 * This function is invoked towards the end of the scheduler's initialization
2319 * process. Before this is called, the idle task might contain
2320 * RCU read-side critical sections (during which time, this idle
2321 * task is booting the system). After this function is called, the
2322 * idle tasks are prohibited from containing RCU read-side critical
2323 * sections. This function also enables RCU lockdep checking.
2324 */
2325 void rcu_scheduler_starting(void)
2326 {
2327 WARN_ON(num_online_cpus() != 1);
2328 WARN_ON(nr_context_switches() > 0);
2329 rcu_scheduler_active = 1;
2330 }
2331
2332 /*
2333 * Compute the per-level fanout, either using the exact fanout specified
2334 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2335 */
2336 #ifdef CONFIG_RCU_FANOUT_EXACT
2337 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2338 {
2339 int i;
2340
2341 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2342 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2343 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2344 }
2345 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2346 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2347 {
2348 int ccur;
2349 int cprv;
2350 int i;
2351
2352 cprv = NR_CPUS;
2353 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2354 ccur = rsp->levelcnt[i];
2355 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2356 cprv = ccur;
2357 }
2358 }
2359 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2360
2361 /*
2362 * Helper function for rcu_init() that initializes one rcu_state structure.
2363 */
2364 static void __init rcu_init_one(struct rcu_state *rsp,
2365 struct rcu_data __percpu *rda)
2366 {
2367 static char *buf[] = { "rcu_node_level_0",
2368 "rcu_node_level_1",
2369 "rcu_node_level_2",
2370 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2371 int cpustride = 1;
2372 int i;
2373 int j;
2374 struct rcu_node *rnp;
2375
2376 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2377
2378 /* Initialize the level-tracking arrays. */
2379
2380 for (i = 1; i < NUM_RCU_LVLS; i++)
2381 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2382 rcu_init_levelspread(rsp);
2383
2384 /* Initialize the elements themselves, starting from the leaves. */
2385
2386 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2387 cpustride *= rsp->levelspread[i];
2388 rnp = rsp->level[i];
2389 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2390 raw_spin_lock_init(&rnp->lock);
2391 lockdep_set_class_and_name(&rnp->lock,
2392 &rcu_node_class[i], buf[i]);
2393 rnp->gpnum = 0;
2394 rnp->qsmask = 0;
2395 rnp->qsmaskinit = 0;
2396 rnp->grplo = j * cpustride;
2397 rnp->grphi = (j + 1) * cpustride - 1;
2398 if (rnp->grphi >= NR_CPUS)
2399 rnp->grphi = NR_CPUS - 1;
2400 if (i == 0) {
2401 rnp->grpnum = 0;
2402 rnp->grpmask = 0;
2403 rnp->parent = NULL;
2404 } else {
2405 rnp->grpnum = j % rsp->levelspread[i - 1];
2406 rnp->grpmask = 1UL << rnp->grpnum;
2407 rnp->parent = rsp->level[i - 1] +
2408 j / rsp->levelspread[i - 1];
2409 }
2410 rnp->level = i;
2411 INIT_LIST_HEAD(&rnp->blkd_tasks);
2412 }
2413 }
2414
2415 rsp->rda = rda;
2416 rnp = rsp->level[NUM_RCU_LVLS - 1];
2417 for_each_possible_cpu(i) {
2418 while (i > rnp->grphi)
2419 rnp++;
2420 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2421 rcu_boot_init_percpu_data(i, rsp);
2422 }
2423 }
2424
2425 void __init rcu_init(void)
2426 {
2427 int cpu;
2428
2429 rcu_bootup_announce();
2430 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2431 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2432 __rcu_init_preempt();
2433 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2434
2435 /*
2436 * We don't need protection against CPU-hotplug here because
2437 * this is called early in boot, before either interrupts
2438 * or the scheduler are operational.
2439 */
2440 cpu_notifier(rcu_cpu_notify, 0);
2441 for_each_online_cpu(cpu)
2442 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2443 check_cpu_stall_init();
2444 }
2445
2446 #include "rcutree_plugin.h"
This page took 0.141568 seconds and 5 git commands to generate.