c634a92d121704a0b6e9ff80cabf165df61b9500
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49
50 #include "rcutree.h"
51
52 #ifdef CONFIG_DEBUG_LOCK_ALLOC
53 static struct lock_class_key rcu_lock_key;
54 struct lockdep_map rcu_lock_map =
55 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
56 EXPORT_SYMBOL_GPL(rcu_lock_map);
57 #endif
58
59 /* Data structures. */
60
61 #define RCU_STATE_INITIALIZER(name) { \
62 .level = { &name.node[0] }, \
63 .levelcnt = { \
64 NUM_RCU_LVL_0, /* root of hierarchy. */ \
65 NUM_RCU_LVL_1, \
66 NUM_RCU_LVL_2, \
67 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_SIGNAL_INIT, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
73 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 }
77
78 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
80
81 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
83
84 extern long rcu_batches_completed_sched(void);
85 static struct rcu_node *rcu_get_root(struct rcu_state *rsp);
86 static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
87 struct rcu_node *rnp, unsigned long flags);
88 static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags);
89 #ifdef CONFIG_HOTPLUG_CPU
90 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp);
91 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
92 static void __rcu_process_callbacks(struct rcu_state *rsp,
93 struct rcu_data *rdp);
94 static void __call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *rcu),
96 struct rcu_state *rsp);
97 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp);
98 static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
99 int preemptable);
100
101 #include "rcutree_plugin.h"
102
103 /*
104 * Note a quiescent state. Because we do not need to know
105 * how many quiescent states passed, just if there was at least
106 * one since the start of the grace period, this just sets a flag.
107 */
108 void rcu_sched_qs(int cpu)
109 {
110 unsigned long flags;
111 struct rcu_data *rdp;
112
113 local_irq_save(flags);
114 rdp = &per_cpu(rcu_sched_data, cpu);
115 rdp->passed_quiesc = 1;
116 rdp->passed_quiesc_completed = rdp->completed;
117 rcu_preempt_qs(cpu);
118 local_irq_restore(flags);
119 }
120
121 void rcu_bh_qs(int cpu)
122 {
123 unsigned long flags;
124 struct rcu_data *rdp;
125
126 local_irq_save(flags);
127 rdp = &per_cpu(rcu_bh_data, cpu);
128 rdp->passed_quiesc = 1;
129 rdp->passed_quiesc_completed = rdp->completed;
130 local_irq_restore(flags);
131 }
132
133 #ifdef CONFIG_NO_HZ
134 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
135 .dynticks_nesting = 1,
136 .dynticks = 1,
137 };
138 #endif /* #ifdef CONFIG_NO_HZ */
139
140 static int blimit = 10; /* Maximum callbacks per softirq. */
141 static int qhimark = 10000; /* If this many pending, ignore blimit. */
142 static int qlowmark = 100; /* Once only this many pending, use blimit. */
143
144 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
145 static int rcu_pending(int cpu);
146
147 /*
148 * Return the number of RCU-sched batches processed thus far for debug & stats.
149 */
150 long rcu_batches_completed_sched(void)
151 {
152 return rcu_sched_state.completed;
153 }
154 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
155
156 /*
157 * Return the number of RCU BH batches processed thus far for debug & stats.
158 */
159 long rcu_batches_completed_bh(void)
160 {
161 return rcu_bh_state.completed;
162 }
163 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
164
165 /*
166 * Does the CPU have callbacks ready to be invoked?
167 */
168 static int
169 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
170 {
171 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
172 }
173
174 /*
175 * Does the current CPU require a yet-as-unscheduled grace period?
176 */
177 static int
178 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
179 {
180 /* ACCESS_ONCE() because we are accessing outside of lock. */
181 return *rdp->nxttail[RCU_DONE_TAIL] &&
182 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
183 }
184
185 /*
186 * Return the root node of the specified rcu_state structure.
187 */
188 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
189 {
190 return &rsp->node[0];
191 }
192
193 #ifdef CONFIG_SMP
194
195 /*
196 * If the specified CPU is offline, tell the caller that it is in
197 * a quiescent state. Otherwise, whack it with a reschedule IPI.
198 * Grace periods can end up waiting on an offline CPU when that
199 * CPU is in the process of coming online -- it will be added to the
200 * rcu_node bitmasks before it actually makes it online. The same thing
201 * can happen while a CPU is in the process of coming online. Because this
202 * race is quite rare, we check for it after detecting that the grace
203 * period has been delayed rather than checking each and every CPU
204 * each and every time we start a new grace period.
205 */
206 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
207 {
208 /*
209 * If the CPU is offline, it is in a quiescent state. We can
210 * trust its state not to change because interrupts are disabled.
211 */
212 if (cpu_is_offline(rdp->cpu)) {
213 rdp->offline_fqs++;
214 return 1;
215 }
216
217 /* If preemptable RCU, no point in sending reschedule IPI. */
218 if (rdp->preemptable)
219 return 0;
220
221 /* The CPU is online, so send it a reschedule IPI. */
222 if (rdp->cpu != smp_processor_id())
223 smp_send_reschedule(rdp->cpu);
224 else
225 set_need_resched();
226 rdp->resched_ipi++;
227 return 0;
228 }
229
230 #endif /* #ifdef CONFIG_SMP */
231
232 #ifdef CONFIG_NO_HZ
233
234 /**
235 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
236 *
237 * Enter nohz mode, in other words, -leave- the mode in which RCU
238 * read-side critical sections can occur. (Though RCU read-side
239 * critical sections can occur in irq handlers in nohz mode, a possibility
240 * handled by rcu_irq_enter() and rcu_irq_exit()).
241 */
242 void rcu_enter_nohz(void)
243 {
244 unsigned long flags;
245 struct rcu_dynticks *rdtp;
246
247 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
248 local_irq_save(flags);
249 rdtp = &__get_cpu_var(rcu_dynticks);
250 rdtp->dynticks++;
251 rdtp->dynticks_nesting--;
252 WARN_ON_ONCE(rdtp->dynticks & 0x1);
253 local_irq_restore(flags);
254 }
255
256 /*
257 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
258 *
259 * Exit nohz mode, in other words, -enter- the mode in which RCU
260 * read-side critical sections normally occur.
261 */
262 void rcu_exit_nohz(void)
263 {
264 unsigned long flags;
265 struct rcu_dynticks *rdtp;
266
267 local_irq_save(flags);
268 rdtp = &__get_cpu_var(rcu_dynticks);
269 rdtp->dynticks++;
270 rdtp->dynticks_nesting++;
271 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
272 local_irq_restore(flags);
273 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
274 }
275
276 /**
277 * rcu_nmi_enter - inform RCU of entry to NMI context
278 *
279 * If the CPU was idle with dynamic ticks active, and there is no
280 * irq handler running, this updates rdtp->dynticks_nmi to let the
281 * RCU grace-period handling know that the CPU is active.
282 */
283 void rcu_nmi_enter(void)
284 {
285 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
286
287 if (rdtp->dynticks & 0x1)
288 return;
289 rdtp->dynticks_nmi++;
290 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
291 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
292 }
293
294 /**
295 * rcu_nmi_exit - inform RCU of exit from NMI context
296 *
297 * If the CPU was idle with dynamic ticks active, and there is no
298 * irq handler running, this updates rdtp->dynticks_nmi to let the
299 * RCU grace-period handling know that the CPU is no longer active.
300 */
301 void rcu_nmi_exit(void)
302 {
303 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
304
305 if (rdtp->dynticks & 0x1)
306 return;
307 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
308 rdtp->dynticks_nmi++;
309 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
310 }
311
312 /**
313 * rcu_irq_enter - inform RCU of entry to hard irq context
314 *
315 * If the CPU was idle with dynamic ticks active, this updates the
316 * rdtp->dynticks to let the RCU handling know that the CPU is active.
317 */
318 void rcu_irq_enter(void)
319 {
320 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
321
322 if (rdtp->dynticks_nesting++)
323 return;
324 rdtp->dynticks++;
325 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
326 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
327 }
328
329 /**
330 * rcu_irq_exit - inform RCU of exit from hard irq context
331 *
332 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
333 * to put let the RCU handling be aware that the CPU is going back to idle
334 * with no ticks.
335 */
336 void rcu_irq_exit(void)
337 {
338 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
339
340 if (--rdtp->dynticks_nesting)
341 return;
342 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
343 rdtp->dynticks++;
344 WARN_ON_ONCE(rdtp->dynticks & 0x1);
345
346 /* If the interrupt queued a callback, get out of dyntick mode. */
347 if (__get_cpu_var(rcu_sched_data).nxtlist ||
348 __get_cpu_var(rcu_bh_data).nxtlist)
349 set_need_resched();
350 }
351
352 /*
353 * Record the specified "completed" value, which is later used to validate
354 * dynticks counter manipulations. Specify "rsp->completed - 1" to
355 * unconditionally invalidate any future dynticks manipulations (which is
356 * useful at the beginning of a grace period).
357 */
358 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
359 {
360 rsp->dynticks_completed = comp;
361 }
362
363 #ifdef CONFIG_SMP
364
365 /*
366 * Recall the previously recorded value of the completion for dynticks.
367 */
368 static long dyntick_recall_completed(struct rcu_state *rsp)
369 {
370 return rsp->dynticks_completed;
371 }
372
373 /*
374 * Snapshot the specified CPU's dynticks counter so that we can later
375 * credit them with an implicit quiescent state. Return 1 if this CPU
376 * is already in a quiescent state courtesy of dynticks idle mode.
377 */
378 static int dyntick_save_progress_counter(struct rcu_data *rdp)
379 {
380 int ret;
381 int snap;
382 int snap_nmi;
383
384 snap = rdp->dynticks->dynticks;
385 snap_nmi = rdp->dynticks->dynticks_nmi;
386 smp_mb(); /* Order sampling of snap with end of grace period. */
387 rdp->dynticks_snap = snap;
388 rdp->dynticks_nmi_snap = snap_nmi;
389 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
390 if (ret)
391 rdp->dynticks_fqs++;
392 return ret;
393 }
394
395 /*
396 * Return true if the specified CPU has passed through a quiescent
397 * state by virtue of being in or having passed through an dynticks
398 * idle state since the last call to dyntick_save_progress_counter()
399 * for this same CPU.
400 */
401 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
402 {
403 long curr;
404 long curr_nmi;
405 long snap;
406 long snap_nmi;
407
408 curr = rdp->dynticks->dynticks;
409 snap = rdp->dynticks_snap;
410 curr_nmi = rdp->dynticks->dynticks_nmi;
411 snap_nmi = rdp->dynticks_nmi_snap;
412 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
413
414 /*
415 * If the CPU passed through or entered a dynticks idle phase with
416 * no active irq/NMI handlers, then we can safely pretend that the CPU
417 * already acknowledged the request to pass through a quiescent
418 * state. Either way, that CPU cannot possibly be in an RCU
419 * read-side critical section that started before the beginning
420 * of the current RCU grace period.
421 */
422 if ((curr != snap || (curr & 0x1) == 0) &&
423 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
424 rdp->dynticks_fqs++;
425 return 1;
426 }
427
428 /* Go check for the CPU being offline. */
429 return rcu_implicit_offline_qs(rdp);
430 }
431
432 #endif /* #ifdef CONFIG_SMP */
433
434 #else /* #ifdef CONFIG_NO_HZ */
435
436 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
437 {
438 }
439
440 #ifdef CONFIG_SMP
441
442 /*
443 * If there are no dynticks, then the only way that a CPU can passively
444 * be in a quiescent state is to be offline. Unlike dynticks idle, which
445 * is a point in time during the prior (already finished) grace period,
446 * an offline CPU is always in a quiescent state, and thus can be
447 * unconditionally applied. So just return the current value of completed.
448 */
449 static long dyntick_recall_completed(struct rcu_state *rsp)
450 {
451 return rsp->completed;
452 }
453
454 static int dyntick_save_progress_counter(struct rcu_data *rdp)
455 {
456 return 0;
457 }
458
459 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
460 {
461 return rcu_implicit_offline_qs(rdp);
462 }
463
464 #endif /* #ifdef CONFIG_SMP */
465
466 #endif /* #else #ifdef CONFIG_NO_HZ */
467
468 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
469
470 static void record_gp_stall_check_time(struct rcu_state *rsp)
471 {
472 rsp->gp_start = jiffies;
473 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
474 }
475
476 static void print_other_cpu_stall(struct rcu_state *rsp)
477 {
478 int cpu;
479 long delta;
480 unsigned long flags;
481 struct rcu_node *rnp = rcu_get_root(rsp);
482 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
483 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
484
485 /* Only let one CPU complain about others per time interval. */
486
487 spin_lock_irqsave(&rnp->lock, flags);
488 delta = jiffies - rsp->jiffies_stall;
489 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
490 spin_unlock_irqrestore(&rnp->lock, flags);
491 return;
492 }
493 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
494 spin_unlock_irqrestore(&rnp->lock, flags);
495
496 /* OK, time to rat on our buddy... */
497
498 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
499 for (; rnp_cur < rnp_end; rnp_cur++) {
500 rcu_print_task_stall(rnp);
501 if (rnp_cur->qsmask == 0)
502 continue;
503 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
504 if (rnp_cur->qsmask & (1UL << cpu))
505 printk(" %d", rnp_cur->grplo + cpu);
506 }
507 printk(" (detected by %d, t=%ld jiffies)\n",
508 smp_processor_id(), (long)(jiffies - rsp->gp_start));
509 trigger_all_cpu_backtrace();
510
511 force_quiescent_state(rsp, 0); /* Kick them all. */
512 }
513
514 static void print_cpu_stall(struct rcu_state *rsp)
515 {
516 unsigned long flags;
517 struct rcu_node *rnp = rcu_get_root(rsp);
518
519 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
520 smp_processor_id(), jiffies - rsp->gp_start);
521 trigger_all_cpu_backtrace();
522
523 spin_lock_irqsave(&rnp->lock, flags);
524 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
525 rsp->jiffies_stall =
526 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
527 spin_unlock_irqrestore(&rnp->lock, flags);
528
529 set_need_resched(); /* kick ourselves to get things going. */
530 }
531
532 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
533 {
534 long delta;
535 struct rcu_node *rnp;
536
537 delta = jiffies - rsp->jiffies_stall;
538 rnp = rdp->mynode;
539 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
540
541 /* We haven't checked in, so go dump stack. */
542 print_cpu_stall(rsp);
543
544 } else if (rsp->gpnum != rsp->completed &&
545 delta >= RCU_STALL_RAT_DELAY) {
546
547 /* They had two time units to dump stack, so complain. */
548 print_other_cpu_stall(rsp);
549 }
550 }
551
552 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
553
554 static void record_gp_stall_check_time(struct rcu_state *rsp)
555 {
556 }
557
558 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
559 {
560 }
561
562 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
563
564 /*
565 * Update CPU-local rcu_data state to record the newly noticed grace period.
566 * This is used both when we started the grace period and when we notice
567 * that someone else started the grace period.
568 */
569 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
570 {
571 rdp->qs_pending = 1;
572 rdp->passed_quiesc = 0;
573 rdp->gpnum = rsp->gpnum;
574 }
575
576 /*
577 * Did someone else start a new RCU grace period start since we last
578 * checked? Update local state appropriately if so. Must be called
579 * on the CPU corresponding to rdp.
580 */
581 static int
582 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
583 {
584 unsigned long flags;
585 int ret = 0;
586
587 local_irq_save(flags);
588 if (rdp->gpnum != rsp->gpnum) {
589 note_new_gpnum(rsp, rdp);
590 ret = 1;
591 }
592 local_irq_restore(flags);
593 return ret;
594 }
595
596 /*
597 * Start a new RCU grace period if warranted, re-initializing the hierarchy
598 * in preparation for detecting the next grace period. The caller must hold
599 * the root node's ->lock, which is released before return. Hard irqs must
600 * be disabled.
601 */
602 static void
603 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
604 __releases(rcu_get_root(rsp)->lock)
605 {
606 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
607 struct rcu_node *rnp = rcu_get_root(rsp);
608 struct rcu_node *rnp_cur;
609 struct rcu_node *rnp_end;
610
611 if (!cpu_needs_another_gp(rsp, rdp)) {
612 spin_unlock_irqrestore(&rnp->lock, flags);
613 return;
614 }
615
616 /* Advance to a new grace period and initialize state. */
617 rsp->gpnum++;
618 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
619 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
620 record_gp_stall_check_time(rsp);
621 dyntick_record_completed(rsp, rsp->completed - 1);
622 note_new_gpnum(rsp, rdp);
623
624 /*
625 * Because we are first, we know that all our callbacks will
626 * be covered by this upcoming grace period, even the ones
627 * that were registered arbitrarily recently.
628 */
629 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
630 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
631
632 /* Special-case the common single-level case. */
633 if (NUM_RCU_NODES == 1) {
634 rnp->qsmask = rnp->qsmaskinit;
635 rnp->gpnum = rsp->gpnum;
636 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
637 spin_unlock_irqrestore(&rnp->lock, flags);
638 return;
639 }
640
641 spin_unlock(&rnp->lock); /* leave irqs disabled. */
642
643
644 /* Exclude any concurrent CPU-hotplug operations. */
645 spin_lock(&rsp->onofflock); /* irqs already disabled. */
646
647 /*
648 * Set the quiescent-state-needed bits in all the non-leaf RCU
649 * nodes for all currently online CPUs. This operation relies
650 * on the layout of the hierarchy within the rsp->node[] array.
651 * Note that other CPUs will access only the leaves of the
652 * hierarchy, which still indicate that no grace period is in
653 * progress. In addition, we have excluded CPU-hotplug operations.
654 *
655 * We therefore do not need to hold any locks. Any required
656 * memory barriers will be supplied by the locks guarding the
657 * leaf rcu_nodes in the hierarchy.
658 */
659
660 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
661 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) {
662 rnp_cur->qsmask = rnp_cur->qsmaskinit;
663 rnp->gpnum = rsp->gpnum;
664 }
665
666 /*
667 * Now set up the leaf nodes. Here we must be careful. First,
668 * we need to hold the lock in order to exclude other CPUs, which
669 * might be contending for the leaf nodes' locks. Second, as
670 * soon as we initialize a given leaf node, its CPUs might run
671 * up the rest of the hierarchy. We must therefore acquire locks
672 * for each node that we touch during this stage. (But we still
673 * are excluding CPU-hotplug operations.)
674 *
675 * Note that the grace period cannot complete until we finish
676 * the initialization process, as there will be at least one
677 * qsmask bit set in the root node until that time, namely the
678 * one corresponding to this CPU.
679 */
680 rnp_end = &rsp->node[NUM_RCU_NODES];
681 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
682 for (; rnp_cur < rnp_end; rnp_cur++) {
683 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
684 rnp_cur->qsmask = rnp_cur->qsmaskinit;
685 rnp->gpnum = rsp->gpnum;
686 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
687 }
688
689 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
690 spin_unlock_irqrestore(&rsp->onofflock, flags);
691 }
692
693 /*
694 * Advance this CPU's callbacks, but only if the current grace period
695 * has ended. This may be called only from the CPU to whom the rdp
696 * belongs.
697 */
698 static void
699 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
700 {
701 long completed_snap;
702 unsigned long flags;
703
704 local_irq_save(flags);
705 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
706
707 /* Did another grace period end? */
708 if (rdp->completed != completed_snap) {
709
710 /* Advance callbacks. No harm if list empty. */
711 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
712 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
713 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
714
715 /* Remember that we saw this grace-period completion. */
716 rdp->completed = completed_snap;
717 }
718 local_irq_restore(flags);
719 }
720
721 /*
722 * Clean up after the prior grace period and let rcu_start_gp() start up
723 * the next grace period if one is needed. Note that the caller must
724 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
725 */
726 static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
727 __releases(rnp->lock)
728 {
729 rsp->completed = rsp->gpnum;
730 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
731 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
732 }
733
734 /*
735 * Similar to cpu_quiet(), for which it is a helper function. Allows
736 * a group of CPUs to be quieted at one go, though all the CPUs in the
737 * group must be represented by the same leaf rcu_node structure.
738 * That structure's lock must be held upon entry, and it is released
739 * before return.
740 */
741 static void
742 cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
743 unsigned long flags)
744 __releases(rnp->lock)
745 {
746 /* Walk up the rcu_node hierarchy. */
747 for (;;) {
748 if (!(rnp->qsmask & mask)) {
749
750 /* Our bit has already been cleared, so done. */
751 spin_unlock_irqrestore(&rnp->lock, flags);
752 return;
753 }
754 rnp->qsmask &= ~mask;
755 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
756
757 /* Other bits still set at this level, so done. */
758 spin_unlock_irqrestore(&rnp->lock, flags);
759 return;
760 }
761 mask = rnp->grpmask;
762 if (rnp->parent == NULL) {
763
764 /* No more levels. Exit loop holding root lock. */
765
766 break;
767 }
768 spin_unlock_irqrestore(&rnp->lock, flags);
769 rnp = rnp->parent;
770 spin_lock_irqsave(&rnp->lock, flags);
771 }
772
773 /*
774 * Get here if we are the last CPU to pass through a quiescent
775 * state for this grace period. Invoke cpu_quiet_msk_finish()
776 * to clean up and start the next grace period if one is needed.
777 */
778 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
779 }
780
781 /*
782 * Record a quiescent state for the specified CPU, which must either be
783 * the current CPU or an offline CPU. The lastcomp argument is used to
784 * make sure we are still in the grace period of interest. We don't want
785 * to end the current grace period based on quiescent states detected in
786 * an earlier grace period!
787 */
788 static void
789 cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
790 {
791 unsigned long flags;
792 unsigned long mask;
793 struct rcu_node *rnp;
794
795 rnp = rdp->mynode;
796 spin_lock_irqsave(&rnp->lock, flags);
797 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
798
799 /*
800 * Someone beat us to it for this grace period, so leave.
801 * The race with GP start is resolved by the fact that we
802 * hold the leaf rcu_node lock, so that the per-CPU bits
803 * cannot yet be initialized -- so we would simply find our
804 * CPU's bit already cleared in cpu_quiet_msk() if this race
805 * occurred.
806 */
807 rdp->passed_quiesc = 0; /* try again later! */
808 spin_unlock_irqrestore(&rnp->lock, flags);
809 return;
810 }
811 mask = rdp->grpmask;
812 if ((rnp->qsmask & mask) == 0) {
813 spin_unlock_irqrestore(&rnp->lock, flags);
814 } else {
815 rdp->qs_pending = 0;
816
817 /*
818 * This GP can't end until cpu checks in, so all of our
819 * callbacks can be processed during the next GP.
820 */
821 rdp = rsp->rda[smp_processor_id()];
822 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
823
824 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
825 }
826 }
827
828 /*
829 * Check to see if there is a new grace period of which this CPU
830 * is not yet aware, and if so, set up local rcu_data state for it.
831 * Otherwise, see if this CPU has just passed through its first
832 * quiescent state for this grace period, and record that fact if so.
833 */
834 static void
835 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
836 {
837 /* If there is now a new grace period, record and return. */
838 if (check_for_new_grace_period(rsp, rdp))
839 return;
840
841 /*
842 * Does this CPU still need to do its part for current grace period?
843 * If no, return and let the other CPUs do their part as well.
844 */
845 if (!rdp->qs_pending)
846 return;
847
848 /*
849 * Was there a quiescent state since the beginning of the grace
850 * period? If no, then exit and wait for the next call.
851 */
852 if (!rdp->passed_quiesc)
853 return;
854
855 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
856 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
857 }
858
859 #ifdef CONFIG_HOTPLUG_CPU
860
861 /*
862 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
863 * and move all callbacks from the outgoing CPU to the current one.
864 */
865 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
866 {
867 int i;
868 unsigned long flags;
869 long lastcomp;
870 unsigned long mask;
871 struct rcu_data *rdp = rsp->rda[cpu];
872 struct rcu_data *rdp_me;
873 struct rcu_node *rnp;
874
875 /* Exclude any attempts to start a new grace period. */
876 spin_lock_irqsave(&rsp->onofflock, flags);
877
878 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
879 rnp = rdp->mynode;
880 mask = rdp->grpmask; /* rnp->grplo is constant. */
881 do {
882 spin_lock(&rnp->lock); /* irqs already disabled. */
883 rnp->qsmaskinit &= ~mask;
884 if (rnp->qsmaskinit != 0) {
885 spin_unlock(&rnp->lock); /* irqs remain disabled. */
886 break;
887 }
888 rcu_preempt_offline_tasks(rsp, rnp);
889 mask = rnp->grpmask;
890 spin_unlock(&rnp->lock); /* irqs remain disabled. */
891 rnp = rnp->parent;
892 } while (rnp != NULL);
893 lastcomp = rsp->completed;
894
895 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
896
897 /* Being offline is a quiescent state, so go record it. */
898 cpu_quiet(cpu, rsp, rdp, lastcomp);
899
900 /*
901 * Move callbacks from the outgoing CPU to the running CPU.
902 * Note that the outgoing CPU is now quiscent, so it is now
903 * (uncharacteristically) safe to access its rcu_data structure.
904 * Note also that we must carefully retain the order of the
905 * outgoing CPU's callbacks in order for rcu_barrier() to work
906 * correctly. Finally, note that we start all the callbacks
907 * afresh, even those that have passed through a grace period
908 * and are therefore ready to invoke. The theory is that hotplug
909 * events are rare, and that if they are frequent enough to
910 * indefinitely delay callbacks, you have far worse things to
911 * be worrying about.
912 */
913 rdp_me = rsp->rda[smp_processor_id()];
914 if (rdp->nxtlist != NULL) {
915 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
916 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
917 rdp->nxtlist = NULL;
918 for (i = 0; i < RCU_NEXT_SIZE; i++)
919 rdp->nxttail[i] = &rdp->nxtlist;
920 rdp_me->qlen += rdp->qlen;
921 rdp->qlen = 0;
922 }
923 local_irq_restore(flags);
924 }
925
926 /*
927 * Remove the specified CPU from the RCU hierarchy and move any pending
928 * callbacks that it might have to the current CPU. This code assumes
929 * that at least one CPU in the system will remain running at all times.
930 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
931 */
932 static void rcu_offline_cpu(int cpu)
933 {
934 __rcu_offline_cpu(cpu, &rcu_sched_state);
935 __rcu_offline_cpu(cpu, &rcu_bh_state);
936 rcu_preempt_offline_cpu(cpu);
937 }
938
939 #else /* #ifdef CONFIG_HOTPLUG_CPU */
940
941 static void rcu_offline_cpu(int cpu)
942 {
943 }
944
945 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
946
947 /*
948 * Invoke any RCU callbacks that have made it to the end of their grace
949 * period. Thottle as specified by rdp->blimit.
950 */
951 static void rcu_do_batch(struct rcu_data *rdp)
952 {
953 unsigned long flags;
954 struct rcu_head *next, *list, **tail;
955 int count;
956
957 /* If no callbacks are ready, just return.*/
958 if (!cpu_has_callbacks_ready_to_invoke(rdp))
959 return;
960
961 /*
962 * Extract the list of ready callbacks, disabling to prevent
963 * races with call_rcu() from interrupt handlers.
964 */
965 local_irq_save(flags);
966 list = rdp->nxtlist;
967 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
968 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
969 tail = rdp->nxttail[RCU_DONE_TAIL];
970 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
971 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
972 rdp->nxttail[count] = &rdp->nxtlist;
973 local_irq_restore(flags);
974
975 /* Invoke callbacks. */
976 count = 0;
977 while (list) {
978 next = list->next;
979 prefetch(next);
980 list->func(list);
981 list = next;
982 if (++count >= rdp->blimit)
983 break;
984 }
985
986 local_irq_save(flags);
987
988 /* Update count, and requeue any remaining callbacks. */
989 rdp->qlen -= count;
990 if (list != NULL) {
991 *tail = rdp->nxtlist;
992 rdp->nxtlist = list;
993 for (count = 0; count < RCU_NEXT_SIZE; count++)
994 if (&rdp->nxtlist == rdp->nxttail[count])
995 rdp->nxttail[count] = tail;
996 else
997 break;
998 }
999
1000 /* Reinstate batch limit if we have worked down the excess. */
1001 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1002 rdp->blimit = blimit;
1003
1004 local_irq_restore(flags);
1005
1006 /* Re-raise the RCU softirq if there are callbacks remaining. */
1007 if (cpu_has_callbacks_ready_to_invoke(rdp))
1008 raise_softirq(RCU_SOFTIRQ);
1009 }
1010
1011 /*
1012 * Check to see if this CPU is in a non-context-switch quiescent state
1013 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1014 * Also schedule the RCU softirq handler.
1015 *
1016 * This function must be called with hardirqs disabled. It is normally
1017 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1018 * false, there is no point in invoking rcu_check_callbacks().
1019 */
1020 void rcu_check_callbacks(int cpu, int user)
1021 {
1022 if (!rcu_pending(cpu))
1023 return; /* if nothing for RCU to do. */
1024 if (user ||
1025 (idle_cpu(cpu) && rcu_scheduler_active &&
1026 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1027
1028 /*
1029 * Get here if this CPU took its interrupt from user
1030 * mode or from the idle loop, and if this is not a
1031 * nested interrupt. In this case, the CPU is in
1032 * a quiescent state, so note it.
1033 *
1034 * No memory barrier is required here because both
1035 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1036 * variables that other CPUs neither access nor modify,
1037 * at least not while the corresponding CPU is online.
1038 */
1039
1040 rcu_sched_qs(cpu);
1041 rcu_bh_qs(cpu);
1042
1043 } else if (!in_softirq()) {
1044
1045 /*
1046 * Get here if this CPU did not take its interrupt from
1047 * softirq, in other words, if it is not interrupting
1048 * a rcu_bh read-side critical section. This is an _bh
1049 * critical section, so note it.
1050 */
1051
1052 rcu_bh_qs(cpu);
1053 }
1054 rcu_preempt_check_callbacks(cpu);
1055 raise_softirq(RCU_SOFTIRQ);
1056 }
1057
1058 #ifdef CONFIG_SMP
1059
1060 /*
1061 * Scan the leaf rcu_node structures, processing dyntick state for any that
1062 * have not yet encountered a quiescent state, using the function specified.
1063 * Returns 1 if the current grace period ends while scanning (possibly
1064 * because we made it end).
1065 */
1066 static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1067 int (*f)(struct rcu_data *))
1068 {
1069 unsigned long bit;
1070 int cpu;
1071 unsigned long flags;
1072 unsigned long mask;
1073 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1074 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1075
1076 for (; rnp_cur < rnp_end; rnp_cur++) {
1077 mask = 0;
1078 spin_lock_irqsave(&rnp_cur->lock, flags);
1079 if (rsp->completed != lastcomp) {
1080 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1081 return 1;
1082 }
1083 if (rnp_cur->qsmask == 0) {
1084 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1085 continue;
1086 }
1087 cpu = rnp_cur->grplo;
1088 bit = 1;
1089 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1090 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1091 mask |= bit;
1092 }
1093 if (mask != 0 && rsp->completed == lastcomp) {
1094
1095 /* cpu_quiet_msk() releases rnp_cur->lock. */
1096 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1097 continue;
1098 }
1099 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1100 }
1101 return 0;
1102 }
1103
1104 /*
1105 * Force quiescent states on reluctant CPUs, and also detect which
1106 * CPUs are in dyntick-idle mode.
1107 */
1108 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1109 {
1110 unsigned long flags;
1111 long lastcomp;
1112 struct rcu_node *rnp = rcu_get_root(rsp);
1113 u8 signaled;
1114
1115 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1116 return; /* No grace period in progress, nothing to force. */
1117 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1118 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1119 return; /* Someone else is already on the job. */
1120 }
1121 if (relaxed &&
1122 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1123 goto unlock_ret; /* no emergency and done recently. */
1124 rsp->n_force_qs++;
1125 spin_lock(&rnp->lock);
1126 lastcomp = rsp->completed;
1127 signaled = rsp->signaled;
1128 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1129 if (lastcomp == rsp->gpnum) {
1130 rsp->n_force_qs_ngp++;
1131 spin_unlock(&rnp->lock);
1132 goto unlock_ret; /* no GP in progress, time updated. */
1133 }
1134 spin_unlock(&rnp->lock);
1135 switch (signaled) {
1136 case RCU_GP_INIT:
1137
1138 break; /* grace period still initializing, ignore. */
1139
1140 case RCU_SAVE_DYNTICK:
1141
1142 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1143 break; /* So gcc recognizes the dead code. */
1144
1145 /* Record dyntick-idle state. */
1146 if (rcu_process_dyntick(rsp, lastcomp,
1147 dyntick_save_progress_counter))
1148 goto unlock_ret;
1149
1150 /* Update state, record completion counter. */
1151 spin_lock(&rnp->lock);
1152 if (lastcomp == rsp->completed) {
1153 rsp->signaled = RCU_FORCE_QS;
1154 dyntick_record_completed(rsp, lastcomp);
1155 }
1156 spin_unlock(&rnp->lock);
1157 break;
1158
1159 case RCU_FORCE_QS:
1160
1161 /* Check dyntick-idle state, send IPI to laggarts. */
1162 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1163 rcu_implicit_dynticks_qs))
1164 goto unlock_ret;
1165
1166 /* Leave state in case more forcing is required. */
1167
1168 break;
1169 }
1170 unlock_ret:
1171 spin_unlock_irqrestore(&rsp->fqslock, flags);
1172 }
1173
1174 #else /* #ifdef CONFIG_SMP */
1175
1176 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1177 {
1178 set_need_resched();
1179 }
1180
1181 #endif /* #else #ifdef CONFIG_SMP */
1182
1183 /*
1184 * This does the RCU processing work from softirq context for the
1185 * specified rcu_state and rcu_data structures. This may be called
1186 * only from the CPU to whom the rdp belongs.
1187 */
1188 static void
1189 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1190 {
1191 unsigned long flags;
1192
1193 WARN_ON_ONCE(rdp->beenonline == 0);
1194
1195 /*
1196 * If an RCU GP has gone long enough, go check for dyntick
1197 * idle CPUs and, if needed, send resched IPIs.
1198 */
1199 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1200 force_quiescent_state(rsp, 1);
1201
1202 /*
1203 * Advance callbacks in response to end of earlier grace
1204 * period that some other CPU ended.
1205 */
1206 rcu_process_gp_end(rsp, rdp);
1207
1208 /* Update RCU state based on any recent quiescent states. */
1209 rcu_check_quiescent_state(rsp, rdp);
1210
1211 /* Does this CPU require a not-yet-started grace period? */
1212 if (cpu_needs_another_gp(rsp, rdp)) {
1213 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1214 rcu_start_gp(rsp, flags); /* releases above lock */
1215 }
1216
1217 /* If there are callbacks ready, invoke them. */
1218 rcu_do_batch(rdp);
1219 }
1220
1221 /*
1222 * Do softirq processing for the current CPU.
1223 */
1224 static void rcu_process_callbacks(struct softirq_action *unused)
1225 {
1226 /*
1227 * Memory references from any prior RCU read-side critical sections
1228 * executed by the interrupted code must be seen before any RCU
1229 * grace-period manipulations below.
1230 */
1231 smp_mb(); /* See above block comment. */
1232
1233 __rcu_process_callbacks(&rcu_sched_state,
1234 &__get_cpu_var(rcu_sched_data));
1235 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1236 rcu_preempt_process_callbacks();
1237
1238 /*
1239 * Memory references from any later RCU read-side critical sections
1240 * executed by the interrupted code must be seen after any RCU
1241 * grace-period manipulations above.
1242 */
1243 smp_mb(); /* See above block comment. */
1244 }
1245
1246 static void
1247 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1248 struct rcu_state *rsp)
1249 {
1250 unsigned long flags;
1251 struct rcu_data *rdp;
1252
1253 head->func = func;
1254 head->next = NULL;
1255
1256 smp_mb(); /* Ensure RCU update seen before callback registry. */
1257
1258 /*
1259 * Opportunistically note grace-period endings and beginnings.
1260 * Note that we might see a beginning right after we see an
1261 * end, but never vice versa, since this CPU has to pass through
1262 * a quiescent state betweentimes.
1263 */
1264 local_irq_save(flags);
1265 rdp = rsp->rda[smp_processor_id()];
1266 rcu_process_gp_end(rsp, rdp);
1267 check_for_new_grace_period(rsp, rdp);
1268
1269 /* Add the callback to our list. */
1270 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1271 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1272
1273 /* Start a new grace period if one not already started. */
1274 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1275 unsigned long nestflag;
1276 struct rcu_node *rnp_root = rcu_get_root(rsp);
1277
1278 spin_lock_irqsave(&rnp_root->lock, nestflag);
1279 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1280 }
1281
1282 /* Force the grace period if too many callbacks or too long waiting. */
1283 if (unlikely(++rdp->qlen > qhimark)) {
1284 rdp->blimit = LONG_MAX;
1285 force_quiescent_state(rsp, 0);
1286 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1287 force_quiescent_state(rsp, 1);
1288 local_irq_restore(flags);
1289 }
1290
1291 /*
1292 * Queue an RCU-sched callback for invocation after a grace period.
1293 */
1294 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1295 {
1296 __call_rcu(head, func, &rcu_sched_state);
1297 }
1298 EXPORT_SYMBOL_GPL(call_rcu_sched);
1299
1300 /*
1301 * Queue an RCU for invocation after a quicker grace period.
1302 */
1303 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1304 {
1305 __call_rcu(head, func, &rcu_bh_state);
1306 }
1307 EXPORT_SYMBOL_GPL(call_rcu_bh);
1308
1309 /*
1310 * Check to see if there is any immediate RCU-related work to be done
1311 * by the current CPU, for the specified type of RCU, returning 1 if so.
1312 * The checks are in order of increasing expense: checks that can be
1313 * carried out against CPU-local state are performed first. However,
1314 * we must check for CPU stalls first, else we might not get a chance.
1315 */
1316 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1317 {
1318 rdp->n_rcu_pending++;
1319
1320 /* Check for CPU stalls, if enabled. */
1321 check_cpu_stall(rsp, rdp);
1322
1323 /* Is the RCU core waiting for a quiescent state from this CPU? */
1324 if (rdp->qs_pending) {
1325 rdp->n_rp_qs_pending++;
1326 return 1;
1327 }
1328
1329 /* Does this CPU have callbacks ready to invoke? */
1330 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1331 rdp->n_rp_cb_ready++;
1332 return 1;
1333 }
1334
1335 /* Has RCU gone idle with this CPU needing another grace period? */
1336 if (cpu_needs_another_gp(rsp, rdp)) {
1337 rdp->n_rp_cpu_needs_gp++;
1338 return 1;
1339 }
1340
1341 /* Has another RCU grace period completed? */
1342 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1343 rdp->n_rp_gp_completed++;
1344 return 1;
1345 }
1346
1347 /* Has a new RCU grace period started? */
1348 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1349 rdp->n_rp_gp_started++;
1350 return 1;
1351 }
1352
1353 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1354 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
1355 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1356 rdp->n_rp_need_fqs++;
1357 return 1;
1358 }
1359
1360 /* nothing to do */
1361 rdp->n_rp_need_nothing++;
1362 return 0;
1363 }
1364
1365 /*
1366 * Check to see if there is any immediate RCU-related work to be done
1367 * by the current CPU, returning 1 if so. This function is part of the
1368 * RCU implementation; it is -not- an exported member of the RCU API.
1369 */
1370 static int rcu_pending(int cpu)
1371 {
1372 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1373 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1374 rcu_preempt_pending(cpu);
1375 }
1376
1377 /*
1378 * Check to see if any future RCU-related work will need to be done
1379 * by the current CPU, even if none need be done immediately, returning
1380 * 1 if so. This function is part of the RCU implementation; it is -not-
1381 * an exported member of the RCU API.
1382 */
1383 int rcu_needs_cpu(int cpu)
1384 {
1385 /* RCU callbacks either ready or pending? */
1386 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1387 per_cpu(rcu_bh_data, cpu).nxtlist ||
1388 rcu_preempt_needs_cpu(cpu);
1389 }
1390
1391 /*
1392 * Do boot-time initialization of a CPU's per-CPU RCU data.
1393 */
1394 static void __init
1395 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1396 {
1397 unsigned long flags;
1398 int i;
1399 struct rcu_data *rdp = rsp->rda[cpu];
1400 struct rcu_node *rnp = rcu_get_root(rsp);
1401
1402 /* Set up local state, ensuring consistent view of global state. */
1403 spin_lock_irqsave(&rnp->lock, flags);
1404 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1405 rdp->nxtlist = NULL;
1406 for (i = 0; i < RCU_NEXT_SIZE; i++)
1407 rdp->nxttail[i] = &rdp->nxtlist;
1408 rdp->qlen = 0;
1409 #ifdef CONFIG_NO_HZ
1410 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1411 #endif /* #ifdef CONFIG_NO_HZ */
1412 rdp->cpu = cpu;
1413 spin_unlock_irqrestore(&rnp->lock, flags);
1414 }
1415
1416 /*
1417 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1418 * offline event can be happening at a given time. Note also that we
1419 * can accept some slop in the rsp->completed access due to the fact
1420 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1421 */
1422 static void __cpuinit
1423 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1424 {
1425 unsigned long flags;
1426 long lastcomp;
1427 unsigned long mask;
1428 struct rcu_data *rdp = rsp->rda[cpu];
1429 struct rcu_node *rnp = rcu_get_root(rsp);
1430
1431 /* Set up local state, ensuring consistent view of global state. */
1432 spin_lock_irqsave(&rnp->lock, flags);
1433 lastcomp = rsp->completed;
1434 rdp->completed = lastcomp;
1435 rdp->gpnum = lastcomp;
1436 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1437 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1438 rdp->beenonline = 1; /* We have now been online. */
1439 rdp->preemptable = preemptable;
1440 rdp->passed_quiesc_completed = lastcomp - 1;
1441 rdp->blimit = blimit;
1442 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1443
1444 /*
1445 * A new grace period might start here. If so, we won't be part
1446 * of it, but that is OK, as we are currently in a quiescent state.
1447 */
1448
1449 /* Exclude any attempts to start a new GP on large systems. */
1450 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1451
1452 /* Add CPU to rcu_node bitmasks. */
1453 rnp = rdp->mynode;
1454 mask = rdp->grpmask;
1455 do {
1456 /* Exclude any attempts to start a new GP on small systems. */
1457 spin_lock(&rnp->lock); /* irqs already disabled. */
1458 rnp->qsmaskinit |= mask;
1459 mask = rnp->grpmask;
1460 spin_unlock(&rnp->lock); /* irqs already disabled. */
1461 rnp = rnp->parent;
1462 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1463
1464 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1465
1466 /*
1467 * A new grace period might start here. If so, we will be part of
1468 * it, and its gpnum will be greater than ours, so we will
1469 * participate. It is also possible for the gpnum to have been
1470 * incremented before this function was called, and the bitmasks
1471 * to not be filled out until now, in which case we will also
1472 * participate due to our gpnum being behind.
1473 */
1474
1475 /* Since it is coming online, the CPU is in a quiescent state. */
1476 cpu_quiet(cpu, rsp, rdp, lastcomp);
1477 local_irq_restore(flags);
1478 }
1479
1480 static void __cpuinit rcu_online_cpu(int cpu)
1481 {
1482 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1483 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1484 rcu_preempt_init_percpu_data(cpu);
1485 }
1486
1487 /*
1488 * Handle CPU online/offline notification events.
1489 */
1490 int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1491 unsigned long action, void *hcpu)
1492 {
1493 long cpu = (long)hcpu;
1494
1495 switch (action) {
1496 case CPU_UP_PREPARE:
1497 case CPU_UP_PREPARE_FROZEN:
1498 rcu_online_cpu(cpu);
1499 break;
1500 case CPU_DEAD:
1501 case CPU_DEAD_FROZEN:
1502 case CPU_UP_CANCELED:
1503 case CPU_UP_CANCELED_FROZEN:
1504 rcu_offline_cpu(cpu);
1505 break;
1506 default:
1507 break;
1508 }
1509 return NOTIFY_OK;
1510 }
1511
1512 /*
1513 * Compute the per-level fanout, either using the exact fanout specified
1514 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1515 */
1516 #ifdef CONFIG_RCU_FANOUT_EXACT
1517 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1518 {
1519 int i;
1520
1521 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1522 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1523 }
1524 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1525 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1526 {
1527 int ccur;
1528 int cprv;
1529 int i;
1530
1531 cprv = NR_CPUS;
1532 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1533 ccur = rsp->levelcnt[i];
1534 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1535 cprv = ccur;
1536 }
1537 }
1538 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1539
1540 /*
1541 * Helper function for rcu_init() that initializes one rcu_state structure.
1542 */
1543 static void __init rcu_init_one(struct rcu_state *rsp)
1544 {
1545 int cpustride = 1;
1546 int i;
1547 int j;
1548 struct rcu_node *rnp;
1549
1550 /* Initialize the level-tracking arrays. */
1551
1552 for (i = 1; i < NUM_RCU_LVLS; i++)
1553 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1554 rcu_init_levelspread(rsp);
1555
1556 /* Initialize the elements themselves, starting from the leaves. */
1557
1558 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1559 cpustride *= rsp->levelspread[i];
1560 rnp = rsp->level[i];
1561 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1562 spin_lock_init(&rnp->lock);
1563 rnp->gpnum = 0;
1564 rnp->qsmask = 0;
1565 rnp->qsmaskinit = 0;
1566 rnp->grplo = j * cpustride;
1567 rnp->grphi = (j + 1) * cpustride - 1;
1568 if (rnp->grphi >= NR_CPUS)
1569 rnp->grphi = NR_CPUS - 1;
1570 if (i == 0) {
1571 rnp->grpnum = 0;
1572 rnp->grpmask = 0;
1573 rnp->parent = NULL;
1574 } else {
1575 rnp->grpnum = j % rsp->levelspread[i - 1];
1576 rnp->grpmask = 1UL << rnp->grpnum;
1577 rnp->parent = rsp->level[i - 1] +
1578 j / rsp->levelspread[i - 1];
1579 }
1580 rnp->level = i;
1581 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1582 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1583 }
1584 }
1585 }
1586
1587 /*
1588 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1589 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1590 * structure.
1591 */
1592 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1593 do { \
1594 rcu_init_one(rsp); \
1595 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1596 j = 0; \
1597 for_each_possible_cpu(i) { \
1598 if (i > rnp[j].grphi) \
1599 j++; \
1600 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1601 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1602 rcu_boot_init_percpu_data(i, rsp); \
1603 } \
1604 } while (0)
1605
1606 #ifdef CONFIG_TREE_PREEMPT_RCU
1607
1608 void __init __rcu_init_preempt(void)
1609 {
1610 int i; /* All used by RCU_INIT_FLAVOR(). */
1611 int j;
1612 struct rcu_node *rnp;
1613
1614 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
1615 }
1616
1617 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1618
1619 void __init __rcu_init_preempt(void)
1620 {
1621 }
1622
1623 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1624
1625 void __init __rcu_init(void)
1626 {
1627 int i; /* All used by RCU_INIT_FLAVOR(). */
1628 int j;
1629 struct rcu_node *rnp;
1630
1631 rcu_bootup_announce();
1632 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1633 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1634 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1635 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1636 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1637 __rcu_init_preempt();
1638 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1639 }
1640
1641 module_param(blimit, int, 0);
1642 module_param(qhimark, int, 0);
1643 module_param(qlowmark, int, 0);
This page took 0.098559 seconds and 5 git commands to generate.