rcu: Provide RCU CPU stall warnings for tiny RCU
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59
60 #include "rcu.h"
61
62 /* Data structures. */
63
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67 #define RCU_STATE_INITIALIZER(sname, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = 0UL - 300UL, \
72 .completed = 0UL - 300UL, \
73 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 .name = #sname, \
79 }
80
81 struct rcu_state rcu_sched_state =
82 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89 LIST_HEAD(rcu_struct_flavors);
90
91 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
92 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
93 module_param(rcu_fanout_leaf, int, 0444);
94 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
95 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
96 NUM_RCU_LVL_0,
97 NUM_RCU_LVL_1,
98 NUM_RCU_LVL_2,
99 NUM_RCU_LVL_3,
100 NUM_RCU_LVL_4,
101 };
102 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
103
104 /*
105 * The rcu_scheduler_active variable transitions from zero to one just
106 * before the first task is spawned. So when this variable is zero, RCU
107 * can assume that there is but one task, allowing RCU to (for example)
108 * optimized synchronize_sched() to a simple barrier(). When this variable
109 * is one, RCU must actually do all the hard work required to detect real
110 * grace periods. This variable is also used to suppress boot-time false
111 * positives from lockdep-RCU error checking.
112 */
113 int rcu_scheduler_active __read_mostly;
114 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
115
116 /*
117 * The rcu_scheduler_fully_active variable transitions from zero to one
118 * during the early_initcall() processing, which is after the scheduler
119 * is capable of creating new tasks. So RCU processing (for example,
120 * creating tasks for RCU priority boosting) must be delayed until after
121 * rcu_scheduler_fully_active transitions from zero to one. We also
122 * currently delay invocation of any RCU callbacks until after this point.
123 *
124 * It might later prove better for people registering RCU callbacks during
125 * early boot to take responsibility for these callbacks, but one step at
126 * a time.
127 */
128 static int rcu_scheduler_fully_active __read_mostly;
129
130 #ifdef CONFIG_RCU_BOOST
131
132 /*
133 * Control variables for per-CPU and per-rcu_node kthreads. These
134 * handle all flavors of RCU.
135 */
136 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
137 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139 DEFINE_PER_CPU(char, rcu_cpu_has_work);
140
141 #endif /* #ifdef CONFIG_RCU_BOOST */
142
143 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 static void invoke_rcu_core(void);
145 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146
147 /*
148 * Track the rcutorture test sequence number and the update version
149 * number within a given test. The rcutorture_testseq is incremented
150 * on every rcutorture module load and unload, so has an odd value
151 * when a test is running. The rcutorture_vernum is set to zero
152 * when rcutorture starts and is incremented on each rcutorture update.
153 * These variables enable correlating rcutorture output with the
154 * RCU tracing information.
155 */
156 unsigned long rcutorture_testseq;
157 unsigned long rcutorture_vernum;
158
159 /*
160 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161 * permit this function to be invoked without holding the root rcu_node
162 * structure's ->lock, but of course results can be subject to change.
163 */
164 static int rcu_gp_in_progress(struct rcu_state *rsp)
165 {
166 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167 }
168
169 /*
170 * Note a quiescent state. Because we do not need to know
171 * how many quiescent states passed, just if there was at least
172 * one since the start of the grace period, this just sets a flag.
173 * The caller must have disabled preemption.
174 */
175 void rcu_sched_qs(int cpu)
176 {
177 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 void rcu_bh_qs(int cpu)
185 {
186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187
188 if (rdp->passed_quiesce == 0)
189 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190 rdp->passed_quiesce = 1;
191 }
192
193 /*
194 * Note a context switch. This is a quiescent state for RCU-sched,
195 * and requires special handling for preemptible RCU.
196 * The caller must have disabled preemption.
197 */
198 void rcu_note_context_switch(int cpu)
199 {
200 trace_rcu_utilization("Start context switch");
201 rcu_sched_qs(cpu);
202 rcu_preempt_note_context_switch(cpu);
203 trace_rcu_utilization("End context switch");
204 }
205 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206
207 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209 .dynticks = ATOMIC_INIT(1),
210 };
211
212 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
213 static long qhimark = 10000; /* If this many pending, ignore blimit. */
214 static long qlowmark = 100; /* Once only this many pending, use blimit. */
215
216 module_param(blimit, long, 0444);
217 module_param(qhimark, long, 0444);
218 module_param(qlowmark, long, 0444);
219
220 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
221 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
222
223 module_param(jiffies_till_first_fqs, ulong, 0644);
224 module_param(jiffies_till_next_fqs, ulong, 0644);
225
226 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
227 static void force_quiescent_state(struct rcu_state *rsp);
228 static int rcu_pending(int cpu);
229
230 /*
231 * Return the number of RCU-sched batches processed thus far for debug & stats.
232 */
233 long rcu_batches_completed_sched(void)
234 {
235 return rcu_sched_state.completed;
236 }
237 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
238
239 /*
240 * Return the number of RCU BH batches processed thus far for debug & stats.
241 */
242 long rcu_batches_completed_bh(void)
243 {
244 return rcu_bh_state.completed;
245 }
246 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
247
248 /*
249 * Force a quiescent state for RCU BH.
250 */
251 void rcu_bh_force_quiescent_state(void)
252 {
253 force_quiescent_state(&rcu_bh_state);
254 }
255 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
256
257 /*
258 * Record the number of times rcutorture tests have been initiated and
259 * terminated. This information allows the debugfs tracing stats to be
260 * correlated to the rcutorture messages, even when the rcutorture module
261 * is being repeatedly loaded and unloaded. In other words, we cannot
262 * store this state in rcutorture itself.
263 */
264 void rcutorture_record_test_transition(void)
265 {
266 rcutorture_testseq++;
267 rcutorture_vernum = 0;
268 }
269 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
270
271 /*
272 * Record the number of writer passes through the current rcutorture test.
273 * This is also used to correlate debugfs tracing stats with the rcutorture
274 * messages.
275 */
276 void rcutorture_record_progress(unsigned long vernum)
277 {
278 rcutorture_vernum++;
279 }
280 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
281
282 /*
283 * Force a quiescent state for RCU-sched.
284 */
285 void rcu_sched_force_quiescent_state(void)
286 {
287 force_quiescent_state(&rcu_sched_state);
288 }
289 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
290
291 /*
292 * Does the CPU have callbacks ready to be invoked?
293 */
294 static int
295 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
296 {
297 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
298 rdp->nxttail[RCU_DONE_TAIL] != NULL;
299 }
300
301 /*
302 * Does the current CPU require a yet-as-unscheduled grace period?
303 */
304 static int
305 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
306 {
307 struct rcu_head **ntp;
308
309 ntp = rdp->nxttail[RCU_DONE_TAIL +
310 (ACCESS_ONCE(rsp->completed) != rdp->completed)];
311 return rdp->nxttail[RCU_DONE_TAIL] && ntp && *ntp &&
312 !rcu_gp_in_progress(rsp);
313 }
314
315 /*
316 * Return the root node of the specified rcu_state structure.
317 */
318 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
319 {
320 return &rsp->node[0];
321 }
322
323 /*
324 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
325 *
326 * If the new value of the ->dynticks_nesting counter now is zero,
327 * we really have entered idle, and must do the appropriate accounting.
328 * The caller must have disabled interrupts.
329 */
330 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
331 bool user)
332 {
333 trace_rcu_dyntick("Start", oldval, 0);
334 if (!user && !is_idle_task(current)) {
335 struct task_struct *idle = idle_task(smp_processor_id());
336
337 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
338 ftrace_dump(DUMP_ORIG);
339 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
340 current->pid, current->comm,
341 idle->pid, idle->comm); /* must be idle task! */
342 }
343 rcu_prepare_for_idle(smp_processor_id());
344 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
345 smp_mb__before_atomic_inc(); /* See above. */
346 atomic_inc(&rdtp->dynticks);
347 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
348 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
349
350 /*
351 * It is illegal to enter an extended quiescent state while
352 * in an RCU read-side critical section.
353 */
354 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
355 "Illegal idle entry in RCU read-side critical section.");
356 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
357 "Illegal idle entry in RCU-bh read-side critical section.");
358 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
359 "Illegal idle entry in RCU-sched read-side critical section.");
360 }
361
362 /*
363 * Enter an RCU extended quiescent state, which can be either the
364 * idle loop or adaptive-tickless usermode execution.
365 */
366 static void rcu_eqs_enter(bool user)
367 {
368 long long oldval;
369 struct rcu_dynticks *rdtp;
370
371 rdtp = &__get_cpu_var(rcu_dynticks);
372 oldval = rdtp->dynticks_nesting;
373 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
374 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
375 rdtp->dynticks_nesting = 0;
376 else
377 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
378 rcu_eqs_enter_common(rdtp, oldval, user);
379 }
380
381 /**
382 * rcu_idle_enter - inform RCU that current CPU is entering idle
383 *
384 * Enter idle mode, in other words, -leave- the mode in which RCU
385 * read-side critical sections can occur. (Though RCU read-side
386 * critical sections can occur in irq handlers in idle, a possibility
387 * handled by irq_enter() and irq_exit().)
388 *
389 * We crowbar the ->dynticks_nesting field to zero to allow for
390 * the possibility of usermode upcalls having messed up our count
391 * of interrupt nesting level during the prior busy period.
392 */
393 void rcu_idle_enter(void)
394 {
395 unsigned long flags;
396
397 local_irq_save(flags);
398 rcu_eqs_enter(false);
399 local_irq_restore(flags);
400 }
401 EXPORT_SYMBOL_GPL(rcu_idle_enter);
402
403 #ifdef CONFIG_RCU_USER_QS
404 /**
405 * rcu_user_enter - inform RCU that we are resuming userspace.
406 *
407 * Enter RCU idle mode right before resuming userspace. No use of RCU
408 * is permitted between this call and rcu_user_exit(). This way the
409 * CPU doesn't need to maintain the tick for RCU maintenance purposes
410 * when the CPU runs in userspace.
411 */
412 void rcu_user_enter(void)
413 {
414 rcu_eqs_enter(1);
415 }
416
417 /**
418 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
419 * after the current irq returns.
420 *
421 * This is similar to rcu_user_enter() but in the context of a non-nesting
422 * irq. After this call, RCU enters into idle mode when the interrupt
423 * returns.
424 */
425 void rcu_user_enter_after_irq(void)
426 {
427 unsigned long flags;
428 struct rcu_dynticks *rdtp;
429
430 local_irq_save(flags);
431 rdtp = &__get_cpu_var(rcu_dynticks);
432 /* Ensure this irq is interrupting a non-idle RCU state. */
433 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
434 rdtp->dynticks_nesting = 1;
435 local_irq_restore(flags);
436 }
437 #endif /* CONFIG_RCU_USER_QS */
438
439 /**
440 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
441 *
442 * Exit from an interrupt handler, which might possibly result in entering
443 * idle mode, in other words, leaving the mode in which read-side critical
444 * sections can occur.
445 *
446 * This code assumes that the idle loop never does anything that might
447 * result in unbalanced calls to irq_enter() and irq_exit(). If your
448 * architecture violates this assumption, RCU will give you what you
449 * deserve, good and hard. But very infrequently and irreproducibly.
450 *
451 * Use things like work queues to work around this limitation.
452 *
453 * You have been warned.
454 */
455 void rcu_irq_exit(void)
456 {
457 unsigned long flags;
458 long long oldval;
459 struct rcu_dynticks *rdtp;
460
461 local_irq_save(flags);
462 rdtp = &__get_cpu_var(rcu_dynticks);
463 oldval = rdtp->dynticks_nesting;
464 rdtp->dynticks_nesting--;
465 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
466 if (rdtp->dynticks_nesting)
467 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
468 else
469 rcu_eqs_enter_common(rdtp, oldval, true);
470 local_irq_restore(flags);
471 }
472
473 /*
474 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
475 *
476 * If the new value of the ->dynticks_nesting counter was previously zero,
477 * we really have exited idle, and must do the appropriate accounting.
478 * The caller must have disabled interrupts.
479 */
480 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
481 int user)
482 {
483 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
484 atomic_inc(&rdtp->dynticks);
485 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
486 smp_mb__after_atomic_inc(); /* See above. */
487 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
488 rcu_cleanup_after_idle(smp_processor_id());
489 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
490 if (!user && !is_idle_task(current)) {
491 struct task_struct *idle = idle_task(smp_processor_id());
492
493 trace_rcu_dyntick("Error on exit: not idle task",
494 oldval, rdtp->dynticks_nesting);
495 ftrace_dump(DUMP_ORIG);
496 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
497 current->pid, current->comm,
498 idle->pid, idle->comm); /* must be idle task! */
499 }
500 }
501
502 /*
503 * Exit an RCU extended quiescent state, which can be either the
504 * idle loop or adaptive-tickless usermode execution.
505 */
506 static void rcu_eqs_exit(bool user)
507 {
508 struct rcu_dynticks *rdtp;
509 long long oldval;
510
511 rdtp = &__get_cpu_var(rcu_dynticks);
512 oldval = rdtp->dynticks_nesting;
513 WARN_ON_ONCE(oldval < 0);
514 if (oldval & DYNTICK_TASK_NEST_MASK)
515 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
516 else
517 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
518 rcu_eqs_exit_common(rdtp, oldval, user);
519 }
520
521 /**
522 * rcu_idle_exit - inform RCU that current CPU is leaving idle
523 *
524 * Exit idle mode, in other words, -enter- the mode in which RCU
525 * read-side critical sections can occur.
526 *
527 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
528 * allow for the possibility of usermode upcalls messing up our count
529 * of interrupt nesting level during the busy period that is just
530 * now starting.
531 */
532 void rcu_idle_exit(void)
533 {
534 unsigned long flags;
535
536 local_irq_save(flags);
537 rcu_eqs_exit(false);
538 local_irq_restore(flags);
539 }
540 EXPORT_SYMBOL_GPL(rcu_idle_exit);
541
542 #ifdef CONFIG_RCU_USER_QS
543 /**
544 * rcu_user_exit - inform RCU that we are exiting userspace.
545 *
546 * Exit RCU idle mode while entering the kernel because it can
547 * run a RCU read side critical section anytime.
548 */
549 void rcu_user_exit(void)
550 {
551 rcu_eqs_exit(1);
552 }
553
554 /**
555 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
556 * idle mode after the current non-nesting irq returns.
557 *
558 * This is similar to rcu_user_exit() but in the context of an irq.
559 * This is called when the irq has interrupted a userspace RCU idle mode
560 * context. When the current non-nesting interrupt returns after this call,
561 * the CPU won't restore the RCU idle mode.
562 */
563 void rcu_user_exit_after_irq(void)
564 {
565 unsigned long flags;
566 struct rcu_dynticks *rdtp;
567
568 local_irq_save(flags);
569 rdtp = &__get_cpu_var(rcu_dynticks);
570 /* Ensure we are interrupting an RCU idle mode. */
571 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
572 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
573 local_irq_restore(flags);
574 }
575 #endif /* CONFIG_RCU_USER_QS */
576
577 /**
578 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
579 *
580 * Enter an interrupt handler, which might possibly result in exiting
581 * idle mode, in other words, entering the mode in which read-side critical
582 * sections can occur.
583 *
584 * Note that the Linux kernel is fully capable of entering an interrupt
585 * handler that it never exits, for example when doing upcalls to
586 * user mode! This code assumes that the idle loop never does upcalls to
587 * user mode. If your architecture does do upcalls from the idle loop (or
588 * does anything else that results in unbalanced calls to the irq_enter()
589 * and irq_exit() functions), RCU will give you what you deserve, good
590 * and hard. But very infrequently and irreproducibly.
591 *
592 * Use things like work queues to work around this limitation.
593 *
594 * You have been warned.
595 */
596 void rcu_irq_enter(void)
597 {
598 unsigned long flags;
599 struct rcu_dynticks *rdtp;
600 long long oldval;
601
602 local_irq_save(flags);
603 rdtp = &__get_cpu_var(rcu_dynticks);
604 oldval = rdtp->dynticks_nesting;
605 rdtp->dynticks_nesting++;
606 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
607 if (oldval)
608 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
609 else
610 rcu_eqs_exit_common(rdtp, oldval, true);
611 local_irq_restore(flags);
612 }
613
614 /**
615 * rcu_nmi_enter - inform RCU of entry to NMI context
616 *
617 * If the CPU was idle with dynamic ticks active, and there is no
618 * irq handler running, this updates rdtp->dynticks_nmi to let the
619 * RCU grace-period handling know that the CPU is active.
620 */
621 void rcu_nmi_enter(void)
622 {
623 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
624
625 if (rdtp->dynticks_nmi_nesting == 0 &&
626 (atomic_read(&rdtp->dynticks) & 0x1))
627 return;
628 rdtp->dynticks_nmi_nesting++;
629 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
630 atomic_inc(&rdtp->dynticks);
631 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
632 smp_mb__after_atomic_inc(); /* See above. */
633 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
634 }
635
636 /**
637 * rcu_nmi_exit - inform RCU of exit from NMI context
638 *
639 * If the CPU was idle with dynamic ticks active, and there is no
640 * irq handler running, this updates rdtp->dynticks_nmi to let the
641 * RCU grace-period handling know that the CPU is no longer active.
642 */
643 void rcu_nmi_exit(void)
644 {
645 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
646
647 if (rdtp->dynticks_nmi_nesting == 0 ||
648 --rdtp->dynticks_nmi_nesting != 0)
649 return;
650 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
651 smp_mb__before_atomic_inc(); /* See above. */
652 atomic_inc(&rdtp->dynticks);
653 smp_mb__after_atomic_inc(); /* Force delay to next write. */
654 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
655 }
656
657 /**
658 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
659 *
660 * If the current CPU is in its idle loop and is neither in an interrupt
661 * or NMI handler, return true.
662 */
663 int rcu_is_cpu_idle(void)
664 {
665 int ret;
666
667 preempt_disable();
668 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
669 preempt_enable();
670 return ret;
671 }
672 EXPORT_SYMBOL(rcu_is_cpu_idle);
673
674 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
675
676 /*
677 * Is the current CPU online? Disable preemption to avoid false positives
678 * that could otherwise happen due to the current CPU number being sampled,
679 * this task being preempted, its old CPU being taken offline, resuming
680 * on some other CPU, then determining that its old CPU is now offline.
681 * It is OK to use RCU on an offline processor during initial boot, hence
682 * the check for rcu_scheduler_fully_active. Note also that it is OK
683 * for a CPU coming online to use RCU for one jiffy prior to marking itself
684 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
685 * offline to continue to use RCU for one jiffy after marking itself
686 * offline in the cpu_online_mask. This leniency is necessary given the
687 * non-atomic nature of the online and offline processing, for example,
688 * the fact that a CPU enters the scheduler after completing the CPU_DYING
689 * notifiers.
690 *
691 * This is also why RCU internally marks CPUs online during the
692 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
693 *
694 * Disable checking if in an NMI handler because we cannot safely report
695 * errors from NMI handlers anyway.
696 */
697 bool rcu_lockdep_current_cpu_online(void)
698 {
699 struct rcu_data *rdp;
700 struct rcu_node *rnp;
701 bool ret;
702
703 if (in_nmi())
704 return 1;
705 preempt_disable();
706 rdp = &__get_cpu_var(rcu_sched_data);
707 rnp = rdp->mynode;
708 ret = (rdp->grpmask & rnp->qsmaskinit) ||
709 !rcu_scheduler_fully_active;
710 preempt_enable();
711 return ret;
712 }
713 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
714
715 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
716
717 /**
718 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
719 *
720 * If the current CPU is idle or running at a first-level (not nested)
721 * interrupt from idle, return true. The caller must have at least
722 * disabled preemption.
723 */
724 int rcu_is_cpu_rrupt_from_idle(void)
725 {
726 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
727 }
728
729 /*
730 * Snapshot the specified CPU's dynticks counter so that we can later
731 * credit them with an implicit quiescent state. Return 1 if this CPU
732 * is in dynticks idle mode, which is an extended quiescent state.
733 */
734 static int dyntick_save_progress_counter(struct rcu_data *rdp)
735 {
736 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
737 return (rdp->dynticks_snap & 0x1) == 0;
738 }
739
740 /*
741 * Return true if the specified CPU has passed through a quiescent
742 * state by virtue of being in or having passed through an dynticks
743 * idle state since the last call to dyntick_save_progress_counter()
744 * for this same CPU, or by virtue of having been offline.
745 */
746 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
747 {
748 unsigned int curr;
749 unsigned int snap;
750
751 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
752 snap = (unsigned int)rdp->dynticks_snap;
753
754 /*
755 * If the CPU passed through or entered a dynticks idle phase with
756 * no active irq/NMI handlers, then we can safely pretend that the CPU
757 * already acknowledged the request to pass through a quiescent
758 * state. Either way, that CPU cannot possibly be in an RCU
759 * read-side critical section that started before the beginning
760 * of the current RCU grace period.
761 */
762 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
763 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
764 rdp->dynticks_fqs++;
765 return 1;
766 }
767
768 /*
769 * Check for the CPU being offline, but only if the grace period
770 * is old enough. We don't need to worry about the CPU changing
771 * state: If we see it offline even once, it has been through a
772 * quiescent state.
773 *
774 * The reason for insisting that the grace period be at least
775 * one jiffy old is that CPUs that are not quite online and that
776 * have just gone offline can still execute RCU read-side critical
777 * sections.
778 */
779 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
780 return 0; /* Grace period is not old enough. */
781 barrier();
782 if (cpu_is_offline(rdp->cpu)) {
783 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
784 rdp->offline_fqs++;
785 return 1;
786 }
787 return 0;
788 }
789
790 static void record_gp_stall_check_time(struct rcu_state *rsp)
791 {
792 rsp->gp_start = jiffies;
793 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
794 }
795
796 /*
797 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
798 * for architectures that do not implement trigger_all_cpu_backtrace().
799 * The NMI-triggered stack traces are more accurate because they are
800 * printed by the target CPU.
801 */
802 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
803 {
804 int cpu;
805 unsigned long flags;
806 struct rcu_node *rnp;
807
808 rcu_for_each_leaf_node(rsp, rnp) {
809 raw_spin_lock_irqsave(&rnp->lock, flags);
810 if (rnp->qsmask != 0) {
811 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
812 if (rnp->qsmask & (1UL << cpu))
813 dump_cpu_task(rnp->grplo + cpu);
814 }
815 raw_spin_unlock_irqrestore(&rnp->lock, flags);
816 }
817 }
818
819 static void print_other_cpu_stall(struct rcu_state *rsp)
820 {
821 int cpu;
822 long delta;
823 unsigned long flags;
824 int ndetected = 0;
825 struct rcu_node *rnp = rcu_get_root(rsp);
826 long totqlen = 0;
827
828 /* Only let one CPU complain about others per time interval. */
829
830 raw_spin_lock_irqsave(&rnp->lock, flags);
831 delta = jiffies - rsp->jiffies_stall;
832 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
833 raw_spin_unlock_irqrestore(&rnp->lock, flags);
834 return;
835 }
836 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
837 raw_spin_unlock_irqrestore(&rnp->lock, flags);
838
839 /*
840 * OK, time to rat on our buddy...
841 * See Documentation/RCU/stallwarn.txt for info on how to debug
842 * RCU CPU stall warnings.
843 */
844 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
845 rsp->name);
846 print_cpu_stall_info_begin();
847 rcu_for_each_leaf_node(rsp, rnp) {
848 raw_spin_lock_irqsave(&rnp->lock, flags);
849 ndetected += rcu_print_task_stall(rnp);
850 if (rnp->qsmask != 0) {
851 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
852 if (rnp->qsmask & (1UL << cpu)) {
853 print_cpu_stall_info(rsp,
854 rnp->grplo + cpu);
855 ndetected++;
856 }
857 }
858 raw_spin_unlock_irqrestore(&rnp->lock, flags);
859 }
860
861 /*
862 * Now rat on any tasks that got kicked up to the root rcu_node
863 * due to CPU offlining.
864 */
865 rnp = rcu_get_root(rsp);
866 raw_spin_lock_irqsave(&rnp->lock, flags);
867 ndetected += rcu_print_task_stall(rnp);
868 raw_spin_unlock_irqrestore(&rnp->lock, flags);
869
870 print_cpu_stall_info_end();
871 for_each_possible_cpu(cpu)
872 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
873 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
874 smp_processor_id(), (long)(jiffies - rsp->gp_start),
875 rsp->gpnum, rsp->completed, totqlen);
876 if (ndetected == 0)
877 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
878 else if (!trigger_all_cpu_backtrace())
879 rcu_dump_cpu_stacks(rsp);
880
881 /* Complain about tasks blocking the grace period. */
882
883 rcu_print_detail_task_stall(rsp);
884
885 force_quiescent_state(rsp); /* Kick them all. */
886 }
887
888 static void print_cpu_stall(struct rcu_state *rsp)
889 {
890 int cpu;
891 unsigned long flags;
892 struct rcu_node *rnp = rcu_get_root(rsp);
893 long totqlen = 0;
894
895 /*
896 * OK, time to rat on ourselves...
897 * See Documentation/RCU/stallwarn.txt for info on how to debug
898 * RCU CPU stall warnings.
899 */
900 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
901 print_cpu_stall_info_begin();
902 print_cpu_stall_info(rsp, smp_processor_id());
903 print_cpu_stall_info_end();
904 for_each_possible_cpu(cpu)
905 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
906 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
907 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
908 if (!trigger_all_cpu_backtrace())
909 dump_stack();
910
911 raw_spin_lock_irqsave(&rnp->lock, flags);
912 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
913 rsp->jiffies_stall = jiffies +
914 3 * rcu_jiffies_till_stall_check() + 3;
915 raw_spin_unlock_irqrestore(&rnp->lock, flags);
916
917 set_need_resched(); /* kick ourselves to get things going. */
918 }
919
920 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
921 {
922 unsigned long j;
923 unsigned long js;
924 struct rcu_node *rnp;
925
926 if (rcu_cpu_stall_suppress)
927 return;
928 j = ACCESS_ONCE(jiffies);
929 js = ACCESS_ONCE(rsp->jiffies_stall);
930 rnp = rdp->mynode;
931 if (rcu_gp_in_progress(rsp) &&
932 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
933
934 /* We haven't checked in, so go dump stack. */
935 print_cpu_stall(rsp);
936
937 } else if (rcu_gp_in_progress(rsp) &&
938 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
939
940 /* They had a few time units to dump stack, so complain. */
941 print_other_cpu_stall(rsp);
942 }
943 }
944
945 /**
946 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
947 *
948 * Set the stall-warning timeout way off into the future, thus preventing
949 * any RCU CPU stall-warning messages from appearing in the current set of
950 * RCU grace periods.
951 *
952 * The caller must disable hard irqs.
953 */
954 void rcu_cpu_stall_reset(void)
955 {
956 struct rcu_state *rsp;
957
958 for_each_rcu_flavor(rsp)
959 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
960 }
961
962 /*
963 * Update CPU-local rcu_data state to record the newly noticed grace period.
964 * This is used both when we started the grace period and when we notice
965 * that someone else started the grace period. The caller must hold the
966 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
967 * and must have irqs disabled.
968 */
969 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
970 {
971 if (rdp->gpnum != rnp->gpnum) {
972 /*
973 * If the current grace period is waiting for this CPU,
974 * set up to detect a quiescent state, otherwise don't
975 * go looking for one.
976 */
977 rdp->gpnum = rnp->gpnum;
978 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
979 rdp->passed_quiesce = 0;
980 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
981 zero_cpu_stall_ticks(rdp);
982 }
983 }
984
985 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
986 {
987 unsigned long flags;
988 struct rcu_node *rnp;
989
990 local_irq_save(flags);
991 rnp = rdp->mynode;
992 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
993 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
994 local_irq_restore(flags);
995 return;
996 }
997 __note_new_gpnum(rsp, rnp, rdp);
998 raw_spin_unlock_irqrestore(&rnp->lock, flags);
999 }
1000
1001 /*
1002 * Did someone else start a new RCU grace period start since we last
1003 * checked? Update local state appropriately if so. Must be called
1004 * on the CPU corresponding to rdp.
1005 */
1006 static int
1007 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1008 {
1009 unsigned long flags;
1010 int ret = 0;
1011
1012 local_irq_save(flags);
1013 if (rdp->gpnum != rsp->gpnum) {
1014 note_new_gpnum(rsp, rdp);
1015 ret = 1;
1016 }
1017 local_irq_restore(flags);
1018 return ret;
1019 }
1020
1021 /*
1022 * Initialize the specified rcu_data structure's callback list to empty.
1023 */
1024 static void init_callback_list(struct rcu_data *rdp)
1025 {
1026 int i;
1027
1028 rdp->nxtlist = NULL;
1029 for (i = 0; i < RCU_NEXT_SIZE; i++)
1030 rdp->nxttail[i] = &rdp->nxtlist;
1031 init_nocb_callback_list(rdp);
1032 }
1033
1034 /*
1035 * Advance this CPU's callbacks, but only if the current grace period
1036 * has ended. This may be called only from the CPU to whom the rdp
1037 * belongs. In addition, the corresponding leaf rcu_node structure's
1038 * ->lock must be held by the caller, with irqs disabled.
1039 */
1040 static void
1041 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1042 {
1043 /* Did another grace period end? */
1044 if (rdp->completed != rnp->completed) {
1045
1046 /* Advance callbacks. No harm if list empty. */
1047 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
1048 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
1049 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1050
1051 /* Remember that we saw this grace-period completion. */
1052 rdp->completed = rnp->completed;
1053 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1054
1055 /*
1056 * If we were in an extended quiescent state, we may have
1057 * missed some grace periods that others CPUs handled on
1058 * our behalf. Catch up with this state to avoid noting
1059 * spurious new grace periods. If another grace period
1060 * has started, then rnp->gpnum will have advanced, so
1061 * we will detect this later on. Of course, any quiescent
1062 * states we found for the old GP are now invalid.
1063 */
1064 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1065 rdp->gpnum = rdp->completed;
1066 rdp->passed_quiesce = 0;
1067 }
1068
1069 /*
1070 * If RCU does not need a quiescent state from this CPU,
1071 * then make sure that this CPU doesn't go looking for one.
1072 */
1073 if ((rnp->qsmask & rdp->grpmask) == 0)
1074 rdp->qs_pending = 0;
1075 }
1076 }
1077
1078 /*
1079 * Advance this CPU's callbacks, but only if the current grace period
1080 * has ended. This may be called only from the CPU to whom the rdp
1081 * belongs.
1082 */
1083 static void
1084 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1085 {
1086 unsigned long flags;
1087 struct rcu_node *rnp;
1088
1089 local_irq_save(flags);
1090 rnp = rdp->mynode;
1091 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1092 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1093 local_irq_restore(flags);
1094 return;
1095 }
1096 __rcu_process_gp_end(rsp, rnp, rdp);
1097 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1098 }
1099
1100 /*
1101 * Do per-CPU grace-period initialization for running CPU. The caller
1102 * must hold the lock of the leaf rcu_node structure corresponding to
1103 * this CPU.
1104 */
1105 static void
1106 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1107 {
1108 /* Prior grace period ended, so advance callbacks for current CPU. */
1109 __rcu_process_gp_end(rsp, rnp, rdp);
1110
1111 /* Set state so that this CPU will detect the next quiescent state. */
1112 __note_new_gpnum(rsp, rnp, rdp);
1113 }
1114
1115 /*
1116 * Initialize a new grace period.
1117 */
1118 static int rcu_gp_init(struct rcu_state *rsp)
1119 {
1120 struct rcu_data *rdp;
1121 struct rcu_node *rnp = rcu_get_root(rsp);
1122
1123 raw_spin_lock_irq(&rnp->lock);
1124 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1125
1126 if (rcu_gp_in_progress(rsp)) {
1127 /* Grace period already in progress, don't start another. */
1128 raw_spin_unlock_irq(&rnp->lock);
1129 return 0;
1130 }
1131
1132 /* Advance to a new grace period and initialize state. */
1133 rsp->gpnum++;
1134 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1135 record_gp_stall_check_time(rsp);
1136 raw_spin_unlock_irq(&rnp->lock);
1137
1138 /* Exclude any concurrent CPU-hotplug operations. */
1139 mutex_lock(&rsp->onoff_mutex);
1140
1141 /*
1142 * Set the quiescent-state-needed bits in all the rcu_node
1143 * structures for all currently online CPUs in breadth-first order,
1144 * starting from the root rcu_node structure, relying on the layout
1145 * of the tree within the rsp->node[] array. Note that other CPUs
1146 * will access only the leaves of the hierarchy, thus seeing that no
1147 * grace period is in progress, at least until the corresponding
1148 * leaf node has been initialized. In addition, we have excluded
1149 * CPU-hotplug operations.
1150 *
1151 * The grace period cannot complete until the initialization
1152 * process finishes, because this kthread handles both.
1153 */
1154 rcu_for_each_node_breadth_first(rsp, rnp) {
1155 raw_spin_lock_irq(&rnp->lock);
1156 rdp = this_cpu_ptr(rsp->rda);
1157 rcu_preempt_check_blocked_tasks(rnp);
1158 rnp->qsmask = rnp->qsmaskinit;
1159 rnp->gpnum = rsp->gpnum;
1160 WARN_ON_ONCE(rnp->completed != rsp->completed);
1161 rnp->completed = rsp->completed;
1162 if (rnp == rdp->mynode)
1163 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1164 rcu_preempt_boost_start_gp(rnp);
1165 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1166 rnp->level, rnp->grplo,
1167 rnp->grphi, rnp->qsmask);
1168 raw_spin_unlock_irq(&rnp->lock);
1169 #ifdef CONFIG_PROVE_RCU_DELAY
1170 if ((random32() % (rcu_num_nodes * 8)) == 0)
1171 schedule_timeout_uninterruptible(2);
1172 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1173 cond_resched();
1174 }
1175
1176 mutex_unlock(&rsp->onoff_mutex);
1177 return 1;
1178 }
1179
1180 /*
1181 * Do one round of quiescent-state forcing.
1182 */
1183 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1184 {
1185 int fqs_state = fqs_state_in;
1186 struct rcu_node *rnp = rcu_get_root(rsp);
1187
1188 rsp->n_force_qs++;
1189 if (fqs_state == RCU_SAVE_DYNTICK) {
1190 /* Collect dyntick-idle snapshots. */
1191 force_qs_rnp(rsp, dyntick_save_progress_counter);
1192 fqs_state = RCU_FORCE_QS;
1193 } else {
1194 /* Handle dyntick-idle and offline CPUs. */
1195 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1196 }
1197 /* Clear flag to prevent immediate re-entry. */
1198 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1199 raw_spin_lock_irq(&rnp->lock);
1200 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1201 raw_spin_unlock_irq(&rnp->lock);
1202 }
1203 return fqs_state;
1204 }
1205
1206 /*
1207 * Clean up after the old grace period.
1208 */
1209 static void rcu_gp_cleanup(struct rcu_state *rsp)
1210 {
1211 unsigned long gp_duration;
1212 struct rcu_data *rdp;
1213 struct rcu_node *rnp = rcu_get_root(rsp);
1214
1215 raw_spin_lock_irq(&rnp->lock);
1216 gp_duration = jiffies - rsp->gp_start;
1217 if (gp_duration > rsp->gp_max)
1218 rsp->gp_max = gp_duration;
1219
1220 /*
1221 * We know the grace period is complete, but to everyone else
1222 * it appears to still be ongoing. But it is also the case
1223 * that to everyone else it looks like there is nothing that
1224 * they can do to advance the grace period. It is therefore
1225 * safe for us to drop the lock in order to mark the grace
1226 * period as completed in all of the rcu_node structures.
1227 */
1228 raw_spin_unlock_irq(&rnp->lock);
1229
1230 /*
1231 * Propagate new ->completed value to rcu_node structures so
1232 * that other CPUs don't have to wait until the start of the next
1233 * grace period to process their callbacks. This also avoids
1234 * some nasty RCU grace-period initialization races by forcing
1235 * the end of the current grace period to be completely recorded in
1236 * all of the rcu_node structures before the beginning of the next
1237 * grace period is recorded in any of the rcu_node structures.
1238 */
1239 rcu_for_each_node_breadth_first(rsp, rnp) {
1240 raw_spin_lock_irq(&rnp->lock);
1241 rnp->completed = rsp->gpnum;
1242 raw_spin_unlock_irq(&rnp->lock);
1243 cond_resched();
1244 }
1245 rnp = rcu_get_root(rsp);
1246 raw_spin_lock_irq(&rnp->lock);
1247
1248 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1249 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1250 rsp->fqs_state = RCU_GP_IDLE;
1251 rdp = this_cpu_ptr(rsp->rda);
1252 if (cpu_needs_another_gp(rsp, rdp))
1253 rsp->gp_flags = 1;
1254 raw_spin_unlock_irq(&rnp->lock);
1255 }
1256
1257 /*
1258 * Body of kthread that handles grace periods.
1259 */
1260 static int __noreturn rcu_gp_kthread(void *arg)
1261 {
1262 int fqs_state;
1263 unsigned long j;
1264 int ret;
1265 struct rcu_state *rsp = arg;
1266 struct rcu_node *rnp = rcu_get_root(rsp);
1267
1268 for (;;) {
1269
1270 /* Handle grace-period start. */
1271 for (;;) {
1272 wait_event_interruptible(rsp->gp_wq,
1273 rsp->gp_flags &
1274 RCU_GP_FLAG_INIT);
1275 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1276 rcu_gp_init(rsp))
1277 break;
1278 cond_resched();
1279 flush_signals(current);
1280 }
1281
1282 /* Handle quiescent-state forcing. */
1283 fqs_state = RCU_SAVE_DYNTICK;
1284 j = jiffies_till_first_fqs;
1285 if (j > HZ) {
1286 j = HZ;
1287 jiffies_till_first_fqs = HZ;
1288 }
1289 for (;;) {
1290 rsp->jiffies_force_qs = jiffies + j;
1291 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1292 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1293 (!ACCESS_ONCE(rnp->qsmask) &&
1294 !rcu_preempt_blocked_readers_cgp(rnp)),
1295 j);
1296 /* If grace period done, leave loop. */
1297 if (!ACCESS_ONCE(rnp->qsmask) &&
1298 !rcu_preempt_blocked_readers_cgp(rnp))
1299 break;
1300 /* If time for quiescent-state forcing, do it. */
1301 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1302 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1303 cond_resched();
1304 } else {
1305 /* Deal with stray signal. */
1306 cond_resched();
1307 flush_signals(current);
1308 }
1309 j = jiffies_till_next_fqs;
1310 if (j > HZ) {
1311 j = HZ;
1312 jiffies_till_next_fqs = HZ;
1313 } else if (j < 1) {
1314 j = 1;
1315 jiffies_till_next_fqs = 1;
1316 }
1317 }
1318
1319 /* Handle grace-period end. */
1320 rcu_gp_cleanup(rsp);
1321 }
1322 }
1323
1324 /*
1325 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1326 * in preparation for detecting the next grace period. The caller must hold
1327 * the root node's ->lock, which is released before return. Hard irqs must
1328 * be disabled.
1329 *
1330 * Note that it is legal for a dying CPU (which is marked as offline) to
1331 * invoke this function. This can happen when the dying CPU reports its
1332 * quiescent state.
1333 */
1334 static void
1335 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1336 __releases(rcu_get_root(rsp)->lock)
1337 {
1338 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1339 struct rcu_node *rnp = rcu_get_root(rsp);
1340
1341 if (!rsp->gp_kthread ||
1342 !cpu_needs_another_gp(rsp, rdp)) {
1343 /*
1344 * Either we have not yet spawned the grace-period
1345 * task, this CPU does not need another grace period,
1346 * or a grace period is already in progress.
1347 * Either way, don't start a new grace period.
1348 */
1349 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1350 return;
1351 }
1352
1353 /*
1354 * Because there is no grace period in progress right now,
1355 * any callbacks we have up to this point will be satisfied
1356 * by the next grace period. So promote all callbacks to be
1357 * handled after the end of the next grace period. If the
1358 * CPU is not yet aware of the end of the previous grace period,
1359 * we need to allow for the callback advancement that will
1360 * occur when it does become aware. Deadlock prevents us from
1361 * making it aware at this point: We cannot acquire a leaf
1362 * rcu_node ->lock while holding the root rcu_node ->lock.
1363 */
1364 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1365 if (rdp->completed == rsp->completed)
1366 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1367
1368 rsp->gp_flags = RCU_GP_FLAG_INIT;
1369 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
1370
1371 /* Ensure that CPU is aware of completion of last grace period. */
1372 rcu_process_gp_end(rsp, rdp);
1373 local_irq_restore(flags);
1374
1375 /* Wake up rcu_gp_kthread() to start the grace period. */
1376 wake_up(&rsp->gp_wq);
1377 }
1378
1379 /*
1380 * Report a full set of quiescent states to the specified rcu_state
1381 * data structure. This involves cleaning up after the prior grace
1382 * period and letting rcu_start_gp() start up the next grace period
1383 * if one is needed. Note that the caller must hold rnp->lock, as
1384 * required by rcu_start_gp(), which will release it.
1385 */
1386 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1387 __releases(rcu_get_root(rsp)->lock)
1388 {
1389 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1390 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1391 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1392 }
1393
1394 /*
1395 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1396 * Allows quiescent states for a group of CPUs to be reported at one go
1397 * to the specified rcu_node structure, though all the CPUs in the group
1398 * must be represented by the same rcu_node structure (which need not be
1399 * a leaf rcu_node structure, though it often will be). That structure's
1400 * lock must be held upon entry, and it is released before return.
1401 */
1402 static void
1403 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1404 struct rcu_node *rnp, unsigned long flags)
1405 __releases(rnp->lock)
1406 {
1407 struct rcu_node *rnp_c;
1408
1409 /* Walk up the rcu_node hierarchy. */
1410 for (;;) {
1411 if (!(rnp->qsmask & mask)) {
1412
1413 /* Our bit has already been cleared, so done. */
1414 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1415 return;
1416 }
1417 rnp->qsmask &= ~mask;
1418 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1419 mask, rnp->qsmask, rnp->level,
1420 rnp->grplo, rnp->grphi,
1421 !!rnp->gp_tasks);
1422 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1423
1424 /* Other bits still set at this level, so done. */
1425 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1426 return;
1427 }
1428 mask = rnp->grpmask;
1429 if (rnp->parent == NULL) {
1430
1431 /* No more levels. Exit loop holding root lock. */
1432
1433 break;
1434 }
1435 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1436 rnp_c = rnp;
1437 rnp = rnp->parent;
1438 raw_spin_lock_irqsave(&rnp->lock, flags);
1439 WARN_ON_ONCE(rnp_c->qsmask);
1440 }
1441
1442 /*
1443 * Get here if we are the last CPU to pass through a quiescent
1444 * state for this grace period. Invoke rcu_report_qs_rsp()
1445 * to clean up and start the next grace period if one is needed.
1446 */
1447 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1448 }
1449
1450 /*
1451 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1452 * structure. This must be either called from the specified CPU, or
1453 * called when the specified CPU is known to be offline (and when it is
1454 * also known that no other CPU is concurrently trying to help the offline
1455 * CPU). The lastcomp argument is used to make sure we are still in the
1456 * grace period of interest. We don't want to end the current grace period
1457 * based on quiescent states detected in an earlier grace period!
1458 */
1459 static void
1460 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1461 {
1462 unsigned long flags;
1463 unsigned long mask;
1464 struct rcu_node *rnp;
1465
1466 rnp = rdp->mynode;
1467 raw_spin_lock_irqsave(&rnp->lock, flags);
1468 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1469 rnp->completed == rnp->gpnum) {
1470
1471 /*
1472 * The grace period in which this quiescent state was
1473 * recorded has ended, so don't report it upwards.
1474 * We will instead need a new quiescent state that lies
1475 * within the current grace period.
1476 */
1477 rdp->passed_quiesce = 0; /* need qs for new gp. */
1478 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1479 return;
1480 }
1481 mask = rdp->grpmask;
1482 if ((rnp->qsmask & mask) == 0) {
1483 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1484 } else {
1485 rdp->qs_pending = 0;
1486
1487 /*
1488 * This GP can't end until cpu checks in, so all of our
1489 * callbacks can be processed during the next GP.
1490 */
1491 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1492
1493 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1494 }
1495 }
1496
1497 /*
1498 * Check to see if there is a new grace period of which this CPU
1499 * is not yet aware, and if so, set up local rcu_data state for it.
1500 * Otherwise, see if this CPU has just passed through its first
1501 * quiescent state for this grace period, and record that fact if so.
1502 */
1503 static void
1504 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1505 {
1506 /* If there is now a new grace period, record and return. */
1507 if (check_for_new_grace_period(rsp, rdp))
1508 return;
1509
1510 /*
1511 * Does this CPU still need to do its part for current grace period?
1512 * If no, return and let the other CPUs do their part as well.
1513 */
1514 if (!rdp->qs_pending)
1515 return;
1516
1517 /*
1518 * Was there a quiescent state since the beginning of the grace
1519 * period? If no, then exit and wait for the next call.
1520 */
1521 if (!rdp->passed_quiesce)
1522 return;
1523
1524 /*
1525 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1526 * judge of that).
1527 */
1528 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1529 }
1530
1531 #ifdef CONFIG_HOTPLUG_CPU
1532
1533 /*
1534 * Send the specified CPU's RCU callbacks to the orphanage. The
1535 * specified CPU must be offline, and the caller must hold the
1536 * ->orphan_lock.
1537 */
1538 static void
1539 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1540 struct rcu_node *rnp, struct rcu_data *rdp)
1541 {
1542 /* No-CBs CPUs do not have orphanable callbacks. */
1543 if (is_nocb_cpu(rdp->cpu))
1544 return;
1545
1546 /*
1547 * Orphan the callbacks. First adjust the counts. This is safe
1548 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1549 * cannot be running now. Thus no memory barrier is required.
1550 */
1551 if (rdp->nxtlist != NULL) {
1552 rsp->qlen_lazy += rdp->qlen_lazy;
1553 rsp->qlen += rdp->qlen;
1554 rdp->n_cbs_orphaned += rdp->qlen;
1555 rdp->qlen_lazy = 0;
1556 ACCESS_ONCE(rdp->qlen) = 0;
1557 }
1558
1559 /*
1560 * Next, move those callbacks still needing a grace period to
1561 * the orphanage, where some other CPU will pick them up.
1562 * Some of the callbacks might have gone partway through a grace
1563 * period, but that is too bad. They get to start over because we
1564 * cannot assume that grace periods are synchronized across CPUs.
1565 * We don't bother updating the ->nxttail[] array yet, instead
1566 * we just reset the whole thing later on.
1567 */
1568 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1569 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1570 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1571 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1572 }
1573
1574 /*
1575 * Then move the ready-to-invoke callbacks to the orphanage,
1576 * where some other CPU will pick them up. These will not be
1577 * required to pass though another grace period: They are done.
1578 */
1579 if (rdp->nxtlist != NULL) {
1580 *rsp->orphan_donetail = rdp->nxtlist;
1581 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1582 }
1583
1584 /* Finally, initialize the rcu_data structure's list to empty. */
1585 init_callback_list(rdp);
1586 }
1587
1588 /*
1589 * Adopt the RCU callbacks from the specified rcu_state structure's
1590 * orphanage. The caller must hold the ->orphan_lock.
1591 */
1592 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1593 {
1594 int i;
1595 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1596
1597 /* No-CBs CPUs are handled specially. */
1598 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1599 return;
1600
1601 /* Do the accounting first. */
1602 rdp->qlen_lazy += rsp->qlen_lazy;
1603 rdp->qlen += rsp->qlen;
1604 rdp->n_cbs_adopted += rsp->qlen;
1605 if (rsp->qlen_lazy != rsp->qlen)
1606 rcu_idle_count_callbacks_posted();
1607 rsp->qlen_lazy = 0;
1608 rsp->qlen = 0;
1609
1610 /*
1611 * We do not need a memory barrier here because the only way we
1612 * can get here if there is an rcu_barrier() in flight is if
1613 * we are the task doing the rcu_barrier().
1614 */
1615
1616 /* First adopt the ready-to-invoke callbacks. */
1617 if (rsp->orphan_donelist != NULL) {
1618 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1619 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1620 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1621 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1622 rdp->nxttail[i] = rsp->orphan_donetail;
1623 rsp->orphan_donelist = NULL;
1624 rsp->orphan_donetail = &rsp->orphan_donelist;
1625 }
1626
1627 /* And then adopt the callbacks that still need a grace period. */
1628 if (rsp->orphan_nxtlist != NULL) {
1629 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1630 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1631 rsp->orphan_nxtlist = NULL;
1632 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1633 }
1634 }
1635
1636 /*
1637 * Trace the fact that this CPU is going offline.
1638 */
1639 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1640 {
1641 RCU_TRACE(unsigned long mask);
1642 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1643 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1644
1645 RCU_TRACE(mask = rdp->grpmask);
1646 trace_rcu_grace_period(rsp->name,
1647 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1648 "cpuofl");
1649 }
1650
1651 /*
1652 * The CPU has been completely removed, and some other CPU is reporting
1653 * this fact from process context. Do the remainder of the cleanup,
1654 * including orphaning the outgoing CPU's RCU callbacks, and also
1655 * adopting them. There can only be one CPU hotplug operation at a time,
1656 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1657 */
1658 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1659 {
1660 unsigned long flags;
1661 unsigned long mask;
1662 int need_report = 0;
1663 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1664 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1665
1666 /* Adjust any no-longer-needed kthreads. */
1667 rcu_boost_kthread_setaffinity(rnp, -1);
1668
1669 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1670
1671 /* Exclude any attempts to start a new grace period. */
1672 mutex_lock(&rsp->onoff_mutex);
1673 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1674
1675 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1676 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1677 rcu_adopt_orphan_cbs(rsp);
1678
1679 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1680 mask = rdp->grpmask; /* rnp->grplo is constant. */
1681 do {
1682 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1683 rnp->qsmaskinit &= ~mask;
1684 if (rnp->qsmaskinit != 0) {
1685 if (rnp != rdp->mynode)
1686 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1687 break;
1688 }
1689 if (rnp == rdp->mynode)
1690 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1691 else
1692 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1693 mask = rnp->grpmask;
1694 rnp = rnp->parent;
1695 } while (rnp != NULL);
1696
1697 /*
1698 * We still hold the leaf rcu_node structure lock here, and
1699 * irqs are still disabled. The reason for this subterfuge is
1700 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1701 * held leads to deadlock.
1702 */
1703 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1704 rnp = rdp->mynode;
1705 if (need_report & RCU_OFL_TASKS_NORM_GP)
1706 rcu_report_unblock_qs_rnp(rnp, flags);
1707 else
1708 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1709 if (need_report & RCU_OFL_TASKS_EXP_GP)
1710 rcu_report_exp_rnp(rsp, rnp, true);
1711 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1712 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1713 cpu, rdp->qlen, rdp->nxtlist);
1714 init_callback_list(rdp);
1715 /* Disallow further callbacks on this CPU. */
1716 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1717 mutex_unlock(&rsp->onoff_mutex);
1718 }
1719
1720 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1721
1722 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1723 {
1724 }
1725
1726 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1727 {
1728 }
1729
1730 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1731
1732 /*
1733 * Invoke any RCU callbacks that have made it to the end of their grace
1734 * period. Thottle as specified by rdp->blimit.
1735 */
1736 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1737 {
1738 unsigned long flags;
1739 struct rcu_head *next, *list, **tail;
1740 long bl, count, count_lazy;
1741 int i;
1742
1743 /* If no callbacks are ready, just return.*/
1744 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1745 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1746 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1747 need_resched(), is_idle_task(current),
1748 rcu_is_callbacks_kthread());
1749 return;
1750 }
1751
1752 /*
1753 * Extract the list of ready callbacks, disabling to prevent
1754 * races with call_rcu() from interrupt handlers.
1755 */
1756 local_irq_save(flags);
1757 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1758 bl = rdp->blimit;
1759 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1760 list = rdp->nxtlist;
1761 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1762 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1763 tail = rdp->nxttail[RCU_DONE_TAIL];
1764 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1765 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1766 rdp->nxttail[i] = &rdp->nxtlist;
1767 local_irq_restore(flags);
1768
1769 /* Invoke callbacks. */
1770 count = count_lazy = 0;
1771 while (list) {
1772 next = list->next;
1773 prefetch(next);
1774 debug_rcu_head_unqueue(list);
1775 if (__rcu_reclaim(rsp->name, list))
1776 count_lazy++;
1777 list = next;
1778 /* Stop only if limit reached and CPU has something to do. */
1779 if (++count >= bl &&
1780 (need_resched() ||
1781 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1782 break;
1783 }
1784
1785 local_irq_save(flags);
1786 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1787 is_idle_task(current),
1788 rcu_is_callbacks_kthread());
1789
1790 /* Update count, and requeue any remaining callbacks. */
1791 if (list != NULL) {
1792 *tail = rdp->nxtlist;
1793 rdp->nxtlist = list;
1794 for (i = 0; i < RCU_NEXT_SIZE; i++)
1795 if (&rdp->nxtlist == rdp->nxttail[i])
1796 rdp->nxttail[i] = tail;
1797 else
1798 break;
1799 }
1800 smp_mb(); /* List handling before counting for rcu_barrier(). */
1801 rdp->qlen_lazy -= count_lazy;
1802 ACCESS_ONCE(rdp->qlen) -= count;
1803 rdp->n_cbs_invoked += count;
1804
1805 /* Reinstate batch limit if we have worked down the excess. */
1806 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1807 rdp->blimit = blimit;
1808
1809 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1810 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1811 rdp->qlen_last_fqs_check = 0;
1812 rdp->n_force_qs_snap = rsp->n_force_qs;
1813 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1814 rdp->qlen_last_fqs_check = rdp->qlen;
1815 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1816
1817 local_irq_restore(flags);
1818
1819 /* Re-invoke RCU core processing if there are callbacks remaining. */
1820 if (cpu_has_callbacks_ready_to_invoke(rdp))
1821 invoke_rcu_core();
1822 }
1823
1824 /*
1825 * Check to see if this CPU is in a non-context-switch quiescent state
1826 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1827 * Also schedule RCU core processing.
1828 *
1829 * This function must be called from hardirq context. It is normally
1830 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1831 * false, there is no point in invoking rcu_check_callbacks().
1832 */
1833 void rcu_check_callbacks(int cpu, int user)
1834 {
1835 trace_rcu_utilization("Start scheduler-tick");
1836 increment_cpu_stall_ticks();
1837 if (user || rcu_is_cpu_rrupt_from_idle()) {
1838
1839 /*
1840 * Get here if this CPU took its interrupt from user
1841 * mode or from the idle loop, and if this is not a
1842 * nested interrupt. In this case, the CPU is in
1843 * a quiescent state, so note it.
1844 *
1845 * No memory barrier is required here because both
1846 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1847 * variables that other CPUs neither access nor modify,
1848 * at least not while the corresponding CPU is online.
1849 */
1850
1851 rcu_sched_qs(cpu);
1852 rcu_bh_qs(cpu);
1853
1854 } else if (!in_softirq()) {
1855
1856 /*
1857 * Get here if this CPU did not take its interrupt from
1858 * softirq, in other words, if it is not interrupting
1859 * a rcu_bh read-side critical section. This is an _bh
1860 * critical section, so note it.
1861 */
1862
1863 rcu_bh_qs(cpu);
1864 }
1865 rcu_preempt_check_callbacks(cpu);
1866 if (rcu_pending(cpu))
1867 invoke_rcu_core();
1868 trace_rcu_utilization("End scheduler-tick");
1869 }
1870
1871 /*
1872 * Scan the leaf rcu_node structures, processing dyntick state for any that
1873 * have not yet encountered a quiescent state, using the function specified.
1874 * Also initiate boosting for any threads blocked on the root rcu_node.
1875 *
1876 * The caller must have suppressed start of new grace periods.
1877 */
1878 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1879 {
1880 unsigned long bit;
1881 int cpu;
1882 unsigned long flags;
1883 unsigned long mask;
1884 struct rcu_node *rnp;
1885
1886 rcu_for_each_leaf_node(rsp, rnp) {
1887 cond_resched();
1888 mask = 0;
1889 raw_spin_lock_irqsave(&rnp->lock, flags);
1890 if (!rcu_gp_in_progress(rsp)) {
1891 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1892 return;
1893 }
1894 if (rnp->qsmask == 0) {
1895 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1896 continue;
1897 }
1898 cpu = rnp->grplo;
1899 bit = 1;
1900 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1901 if ((rnp->qsmask & bit) != 0 &&
1902 f(per_cpu_ptr(rsp->rda, cpu)))
1903 mask |= bit;
1904 }
1905 if (mask != 0) {
1906
1907 /* rcu_report_qs_rnp() releases rnp->lock. */
1908 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1909 continue;
1910 }
1911 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1912 }
1913 rnp = rcu_get_root(rsp);
1914 if (rnp->qsmask == 0) {
1915 raw_spin_lock_irqsave(&rnp->lock, flags);
1916 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1917 }
1918 }
1919
1920 /*
1921 * Force quiescent states on reluctant CPUs, and also detect which
1922 * CPUs are in dyntick-idle mode.
1923 */
1924 static void force_quiescent_state(struct rcu_state *rsp)
1925 {
1926 unsigned long flags;
1927 bool ret;
1928 struct rcu_node *rnp;
1929 struct rcu_node *rnp_old = NULL;
1930
1931 /* Funnel through hierarchy to reduce memory contention. */
1932 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
1933 for (; rnp != NULL; rnp = rnp->parent) {
1934 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
1935 !raw_spin_trylock(&rnp->fqslock);
1936 if (rnp_old != NULL)
1937 raw_spin_unlock(&rnp_old->fqslock);
1938 if (ret) {
1939 rsp->n_force_qs_lh++;
1940 return;
1941 }
1942 rnp_old = rnp;
1943 }
1944 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
1945
1946 /* Reached the root of the rcu_node tree, acquire lock. */
1947 raw_spin_lock_irqsave(&rnp_old->lock, flags);
1948 raw_spin_unlock(&rnp_old->fqslock);
1949 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1950 rsp->n_force_qs_lh++;
1951 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1952 return; /* Someone beat us to it. */
1953 }
1954 rsp->gp_flags |= RCU_GP_FLAG_FQS;
1955 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1956 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1957 }
1958
1959 /*
1960 * This does the RCU core processing work for the specified rcu_state
1961 * and rcu_data structures. This may be called only from the CPU to
1962 * whom the rdp belongs.
1963 */
1964 static void
1965 __rcu_process_callbacks(struct rcu_state *rsp)
1966 {
1967 unsigned long flags;
1968 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1969
1970 WARN_ON_ONCE(rdp->beenonline == 0);
1971
1972 /*
1973 * Advance callbacks in response to end of earlier grace
1974 * period that some other CPU ended.
1975 */
1976 rcu_process_gp_end(rsp, rdp);
1977
1978 /* Update RCU state based on any recent quiescent states. */
1979 rcu_check_quiescent_state(rsp, rdp);
1980
1981 /* Does this CPU require a not-yet-started grace period? */
1982 if (cpu_needs_another_gp(rsp, rdp)) {
1983 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1984 rcu_start_gp(rsp, flags); /* releases above lock */
1985 }
1986
1987 /* If there are callbacks ready, invoke them. */
1988 if (cpu_has_callbacks_ready_to_invoke(rdp))
1989 invoke_rcu_callbacks(rsp, rdp);
1990 }
1991
1992 /*
1993 * Do RCU core processing for the current CPU.
1994 */
1995 static void rcu_process_callbacks(struct softirq_action *unused)
1996 {
1997 struct rcu_state *rsp;
1998
1999 if (cpu_is_offline(smp_processor_id()))
2000 return;
2001 trace_rcu_utilization("Start RCU core");
2002 for_each_rcu_flavor(rsp)
2003 __rcu_process_callbacks(rsp);
2004 trace_rcu_utilization("End RCU core");
2005 }
2006
2007 /*
2008 * Schedule RCU callback invocation. If the specified type of RCU
2009 * does not support RCU priority boosting, just do a direct call,
2010 * otherwise wake up the per-CPU kernel kthread. Note that because we
2011 * are running on the current CPU with interrupts disabled, the
2012 * rcu_cpu_kthread_task cannot disappear out from under us.
2013 */
2014 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2015 {
2016 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2017 return;
2018 if (likely(!rsp->boost)) {
2019 rcu_do_batch(rsp, rdp);
2020 return;
2021 }
2022 invoke_rcu_callbacks_kthread();
2023 }
2024
2025 static void invoke_rcu_core(void)
2026 {
2027 raise_softirq(RCU_SOFTIRQ);
2028 }
2029
2030 /*
2031 * Handle any core-RCU processing required by a call_rcu() invocation.
2032 */
2033 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2034 struct rcu_head *head, unsigned long flags)
2035 {
2036 /*
2037 * If called from an extended quiescent state, invoke the RCU
2038 * core in order to force a re-evaluation of RCU's idleness.
2039 */
2040 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2041 invoke_rcu_core();
2042
2043 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2044 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2045 return;
2046
2047 /*
2048 * Force the grace period if too many callbacks or too long waiting.
2049 * Enforce hysteresis, and don't invoke force_quiescent_state()
2050 * if some other CPU has recently done so. Also, don't bother
2051 * invoking force_quiescent_state() if the newly enqueued callback
2052 * is the only one waiting for a grace period to complete.
2053 */
2054 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2055
2056 /* Are we ignoring a completed grace period? */
2057 rcu_process_gp_end(rsp, rdp);
2058 check_for_new_grace_period(rsp, rdp);
2059
2060 /* Start a new grace period if one not already started. */
2061 if (!rcu_gp_in_progress(rsp)) {
2062 unsigned long nestflag;
2063 struct rcu_node *rnp_root = rcu_get_root(rsp);
2064
2065 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2066 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2067 } else {
2068 /* Give the grace period a kick. */
2069 rdp->blimit = LONG_MAX;
2070 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2071 *rdp->nxttail[RCU_DONE_TAIL] != head)
2072 force_quiescent_state(rsp);
2073 rdp->n_force_qs_snap = rsp->n_force_qs;
2074 rdp->qlen_last_fqs_check = rdp->qlen;
2075 }
2076 }
2077 }
2078
2079 /*
2080 * Helper function for call_rcu() and friends. The cpu argument will
2081 * normally be -1, indicating "currently running CPU". It may specify
2082 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2083 * is expected to specify a CPU.
2084 */
2085 static void
2086 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2087 struct rcu_state *rsp, int cpu, bool lazy)
2088 {
2089 unsigned long flags;
2090 struct rcu_data *rdp;
2091
2092 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2093 debug_rcu_head_queue(head);
2094 head->func = func;
2095 head->next = NULL;
2096
2097 /*
2098 * Opportunistically note grace-period endings and beginnings.
2099 * Note that we might see a beginning right after we see an
2100 * end, but never vice versa, since this CPU has to pass through
2101 * a quiescent state betweentimes.
2102 */
2103 local_irq_save(flags);
2104 rdp = this_cpu_ptr(rsp->rda);
2105
2106 /* Add the callback to our list. */
2107 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2108 int offline;
2109
2110 if (cpu != -1)
2111 rdp = per_cpu_ptr(rsp->rda, cpu);
2112 offline = !__call_rcu_nocb(rdp, head, lazy);
2113 WARN_ON_ONCE(offline);
2114 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2115 local_irq_restore(flags);
2116 return;
2117 }
2118 ACCESS_ONCE(rdp->qlen)++;
2119 if (lazy)
2120 rdp->qlen_lazy++;
2121 else
2122 rcu_idle_count_callbacks_posted();
2123 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2124 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2125 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2126
2127 if (__is_kfree_rcu_offset((unsigned long)func))
2128 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2129 rdp->qlen_lazy, rdp->qlen);
2130 else
2131 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2132
2133 /* Go handle any RCU core processing required. */
2134 __call_rcu_core(rsp, rdp, head, flags);
2135 local_irq_restore(flags);
2136 }
2137
2138 /*
2139 * Queue an RCU-sched callback for invocation after a grace period.
2140 */
2141 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2142 {
2143 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2144 }
2145 EXPORT_SYMBOL_GPL(call_rcu_sched);
2146
2147 /*
2148 * Queue an RCU callback for invocation after a quicker grace period.
2149 */
2150 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2151 {
2152 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2153 }
2154 EXPORT_SYMBOL_GPL(call_rcu_bh);
2155
2156 /*
2157 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2158 * any blocking grace-period wait automatically implies a grace period
2159 * if there is only one CPU online at any point time during execution
2160 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2161 * occasionally incorrectly indicate that there are multiple CPUs online
2162 * when there was in fact only one the whole time, as this just adds
2163 * some overhead: RCU still operates correctly.
2164 */
2165 static inline int rcu_blocking_is_gp(void)
2166 {
2167 int ret;
2168
2169 might_sleep(); /* Check for RCU read-side critical section. */
2170 preempt_disable();
2171 ret = num_online_cpus() <= 1;
2172 preempt_enable();
2173 return ret;
2174 }
2175
2176 /**
2177 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2178 *
2179 * Control will return to the caller some time after a full rcu-sched
2180 * grace period has elapsed, in other words after all currently executing
2181 * rcu-sched read-side critical sections have completed. These read-side
2182 * critical sections are delimited by rcu_read_lock_sched() and
2183 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2184 * local_irq_disable(), and so on may be used in place of
2185 * rcu_read_lock_sched().
2186 *
2187 * This means that all preempt_disable code sequences, including NMI and
2188 * non-threaded hardware-interrupt handlers, in progress on entry will
2189 * have completed before this primitive returns. However, this does not
2190 * guarantee that softirq handlers will have completed, since in some
2191 * kernels, these handlers can run in process context, and can block.
2192 *
2193 * Note that this guarantee implies further memory-ordering guarantees.
2194 * On systems with more than one CPU, when synchronize_sched() returns,
2195 * each CPU is guaranteed to have executed a full memory barrier since the
2196 * end of its last RCU-sched read-side critical section whose beginning
2197 * preceded the call to synchronize_sched(). In addition, each CPU having
2198 * an RCU read-side critical section that extends beyond the return from
2199 * synchronize_sched() is guaranteed to have executed a full memory barrier
2200 * after the beginning of synchronize_sched() and before the beginning of
2201 * that RCU read-side critical section. Note that these guarantees include
2202 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2203 * that are executing in the kernel.
2204 *
2205 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2206 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2207 * to have executed a full memory barrier during the execution of
2208 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2209 * again only if the system has more than one CPU).
2210 *
2211 * This primitive provides the guarantees made by the (now removed)
2212 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2213 * guarantees that rcu_read_lock() sections will have completed.
2214 * In "classic RCU", these two guarantees happen to be one and
2215 * the same, but can differ in realtime RCU implementations.
2216 */
2217 void synchronize_sched(void)
2218 {
2219 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2220 !lock_is_held(&rcu_lock_map) &&
2221 !lock_is_held(&rcu_sched_lock_map),
2222 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2223 if (rcu_blocking_is_gp())
2224 return;
2225 if (rcu_expedited)
2226 synchronize_sched_expedited();
2227 else
2228 wait_rcu_gp(call_rcu_sched);
2229 }
2230 EXPORT_SYMBOL_GPL(synchronize_sched);
2231
2232 /**
2233 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2234 *
2235 * Control will return to the caller some time after a full rcu_bh grace
2236 * period has elapsed, in other words after all currently executing rcu_bh
2237 * read-side critical sections have completed. RCU read-side critical
2238 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2239 * and may be nested.
2240 *
2241 * See the description of synchronize_sched() for more detailed information
2242 * on memory ordering guarantees.
2243 */
2244 void synchronize_rcu_bh(void)
2245 {
2246 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2247 !lock_is_held(&rcu_lock_map) &&
2248 !lock_is_held(&rcu_sched_lock_map),
2249 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2250 if (rcu_blocking_is_gp())
2251 return;
2252 if (rcu_expedited)
2253 synchronize_rcu_bh_expedited();
2254 else
2255 wait_rcu_gp(call_rcu_bh);
2256 }
2257 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2258
2259 static int synchronize_sched_expedited_cpu_stop(void *data)
2260 {
2261 /*
2262 * There must be a full memory barrier on each affected CPU
2263 * between the time that try_stop_cpus() is called and the
2264 * time that it returns.
2265 *
2266 * In the current initial implementation of cpu_stop, the
2267 * above condition is already met when the control reaches
2268 * this point and the following smp_mb() is not strictly
2269 * necessary. Do smp_mb() anyway for documentation and
2270 * robustness against future implementation changes.
2271 */
2272 smp_mb(); /* See above comment block. */
2273 return 0;
2274 }
2275
2276 /**
2277 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2278 *
2279 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2280 * approach to force the grace period to end quickly. This consumes
2281 * significant time on all CPUs and is unfriendly to real-time workloads,
2282 * so is thus not recommended for any sort of common-case code. In fact,
2283 * if you are using synchronize_sched_expedited() in a loop, please
2284 * restructure your code to batch your updates, and then use a single
2285 * synchronize_sched() instead.
2286 *
2287 * Note that it is illegal to call this function while holding any lock
2288 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2289 * to call this function from a CPU-hotplug notifier. Failing to observe
2290 * these restriction will result in deadlock.
2291 *
2292 * This implementation can be thought of as an application of ticket
2293 * locking to RCU, with sync_sched_expedited_started and
2294 * sync_sched_expedited_done taking on the roles of the halves
2295 * of the ticket-lock word. Each task atomically increments
2296 * sync_sched_expedited_started upon entry, snapshotting the old value,
2297 * then attempts to stop all the CPUs. If this succeeds, then each
2298 * CPU will have executed a context switch, resulting in an RCU-sched
2299 * grace period. We are then done, so we use atomic_cmpxchg() to
2300 * update sync_sched_expedited_done to match our snapshot -- but
2301 * only if someone else has not already advanced past our snapshot.
2302 *
2303 * On the other hand, if try_stop_cpus() fails, we check the value
2304 * of sync_sched_expedited_done. If it has advanced past our
2305 * initial snapshot, then someone else must have forced a grace period
2306 * some time after we took our snapshot. In this case, our work is
2307 * done for us, and we can simply return. Otherwise, we try again,
2308 * but keep our initial snapshot for purposes of checking for someone
2309 * doing our work for us.
2310 *
2311 * If we fail too many times in a row, we fall back to synchronize_sched().
2312 */
2313 void synchronize_sched_expedited(void)
2314 {
2315 long firstsnap, s, snap;
2316 int trycount = 0;
2317 struct rcu_state *rsp = &rcu_sched_state;
2318
2319 /*
2320 * If we are in danger of counter wrap, just do synchronize_sched().
2321 * By allowing sync_sched_expedited_started to advance no more than
2322 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2323 * that more than 3.5 billion CPUs would be required to force a
2324 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2325 * course be required on a 64-bit system.
2326 */
2327 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2328 (ulong)atomic_long_read(&rsp->expedited_done) +
2329 ULONG_MAX / 8)) {
2330 synchronize_sched();
2331 atomic_long_inc(&rsp->expedited_wrap);
2332 return;
2333 }
2334
2335 /*
2336 * Take a ticket. Note that atomic_inc_return() implies a
2337 * full memory barrier.
2338 */
2339 snap = atomic_long_inc_return(&rsp->expedited_start);
2340 firstsnap = snap;
2341 get_online_cpus();
2342 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2343
2344 /*
2345 * Each pass through the following loop attempts to force a
2346 * context switch on each CPU.
2347 */
2348 while (try_stop_cpus(cpu_online_mask,
2349 synchronize_sched_expedited_cpu_stop,
2350 NULL) == -EAGAIN) {
2351 put_online_cpus();
2352 atomic_long_inc(&rsp->expedited_tryfail);
2353
2354 /* Check to see if someone else did our work for us. */
2355 s = atomic_long_read(&rsp->expedited_done);
2356 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2357 /* ensure test happens before caller kfree */
2358 smp_mb__before_atomic_inc(); /* ^^^ */
2359 atomic_long_inc(&rsp->expedited_workdone1);
2360 return;
2361 }
2362
2363 /* No joy, try again later. Or just synchronize_sched(). */
2364 if (trycount++ < 10) {
2365 udelay(trycount * num_online_cpus());
2366 } else {
2367 wait_rcu_gp(call_rcu_sched);
2368 atomic_long_inc(&rsp->expedited_normal);
2369 return;
2370 }
2371
2372 /* Recheck to see if someone else did our work for us. */
2373 s = atomic_long_read(&rsp->expedited_done);
2374 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2375 /* ensure test happens before caller kfree */
2376 smp_mb__before_atomic_inc(); /* ^^^ */
2377 atomic_long_inc(&rsp->expedited_workdone2);
2378 return;
2379 }
2380
2381 /*
2382 * Refetching sync_sched_expedited_started allows later
2383 * callers to piggyback on our grace period. We retry
2384 * after they started, so our grace period works for them,
2385 * and they started after our first try, so their grace
2386 * period works for us.
2387 */
2388 get_online_cpus();
2389 snap = atomic_long_read(&rsp->expedited_start);
2390 smp_mb(); /* ensure read is before try_stop_cpus(). */
2391 }
2392 atomic_long_inc(&rsp->expedited_stoppedcpus);
2393
2394 /*
2395 * Everyone up to our most recent fetch is covered by our grace
2396 * period. Update the counter, but only if our work is still
2397 * relevant -- which it won't be if someone who started later
2398 * than we did already did their update.
2399 */
2400 do {
2401 atomic_long_inc(&rsp->expedited_done_tries);
2402 s = atomic_long_read(&rsp->expedited_done);
2403 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2404 /* ensure test happens before caller kfree */
2405 smp_mb__before_atomic_inc(); /* ^^^ */
2406 atomic_long_inc(&rsp->expedited_done_lost);
2407 break;
2408 }
2409 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2410 atomic_long_inc(&rsp->expedited_done_exit);
2411
2412 put_online_cpus();
2413 }
2414 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2415
2416 /*
2417 * Check to see if there is any immediate RCU-related work to be done
2418 * by the current CPU, for the specified type of RCU, returning 1 if so.
2419 * The checks are in order of increasing expense: checks that can be
2420 * carried out against CPU-local state are performed first. However,
2421 * we must check for CPU stalls first, else we might not get a chance.
2422 */
2423 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2424 {
2425 struct rcu_node *rnp = rdp->mynode;
2426
2427 rdp->n_rcu_pending++;
2428
2429 /* Check for CPU stalls, if enabled. */
2430 check_cpu_stall(rsp, rdp);
2431
2432 /* Is the RCU core waiting for a quiescent state from this CPU? */
2433 if (rcu_scheduler_fully_active &&
2434 rdp->qs_pending && !rdp->passed_quiesce) {
2435 rdp->n_rp_qs_pending++;
2436 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2437 rdp->n_rp_report_qs++;
2438 return 1;
2439 }
2440
2441 /* Does this CPU have callbacks ready to invoke? */
2442 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2443 rdp->n_rp_cb_ready++;
2444 return 1;
2445 }
2446
2447 /* Has RCU gone idle with this CPU needing another grace period? */
2448 if (cpu_needs_another_gp(rsp, rdp)) {
2449 rdp->n_rp_cpu_needs_gp++;
2450 return 1;
2451 }
2452
2453 /* Has another RCU grace period completed? */
2454 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2455 rdp->n_rp_gp_completed++;
2456 return 1;
2457 }
2458
2459 /* Has a new RCU grace period started? */
2460 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2461 rdp->n_rp_gp_started++;
2462 return 1;
2463 }
2464
2465 /* nothing to do */
2466 rdp->n_rp_need_nothing++;
2467 return 0;
2468 }
2469
2470 /*
2471 * Check to see if there is any immediate RCU-related work to be done
2472 * by the current CPU, returning 1 if so. This function is part of the
2473 * RCU implementation; it is -not- an exported member of the RCU API.
2474 */
2475 static int rcu_pending(int cpu)
2476 {
2477 struct rcu_state *rsp;
2478
2479 for_each_rcu_flavor(rsp)
2480 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2481 return 1;
2482 return 0;
2483 }
2484
2485 /*
2486 * Check to see if any future RCU-related work will need to be done
2487 * by the current CPU, even if none need be done immediately, returning
2488 * 1 if so.
2489 */
2490 static int rcu_cpu_has_callbacks(int cpu)
2491 {
2492 struct rcu_state *rsp;
2493
2494 /* RCU callbacks either ready or pending? */
2495 for_each_rcu_flavor(rsp)
2496 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2497 return 1;
2498 return 0;
2499 }
2500
2501 /*
2502 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2503 * the compiler is expected to optimize this away.
2504 */
2505 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2506 int cpu, unsigned long done)
2507 {
2508 trace_rcu_barrier(rsp->name, s, cpu,
2509 atomic_read(&rsp->barrier_cpu_count), done);
2510 }
2511
2512 /*
2513 * RCU callback function for _rcu_barrier(). If we are last, wake
2514 * up the task executing _rcu_barrier().
2515 */
2516 static void rcu_barrier_callback(struct rcu_head *rhp)
2517 {
2518 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2519 struct rcu_state *rsp = rdp->rsp;
2520
2521 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2522 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2523 complete(&rsp->barrier_completion);
2524 } else {
2525 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2526 }
2527 }
2528
2529 /*
2530 * Called with preemption disabled, and from cross-cpu IRQ context.
2531 */
2532 static void rcu_barrier_func(void *type)
2533 {
2534 struct rcu_state *rsp = type;
2535 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2536
2537 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2538 atomic_inc(&rsp->barrier_cpu_count);
2539 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2540 }
2541
2542 /*
2543 * Orchestrate the specified type of RCU barrier, waiting for all
2544 * RCU callbacks of the specified type to complete.
2545 */
2546 static void _rcu_barrier(struct rcu_state *rsp)
2547 {
2548 int cpu;
2549 struct rcu_data *rdp;
2550 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2551 unsigned long snap_done;
2552
2553 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2554
2555 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2556 mutex_lock(&rsp->barrier_mutex);
2557
2558 /*
2559 * Ensure that all prior references, including to ->n_barrier_done,
2560 * are ordered before the _rcu_barrier() machinery.
2561 */
2562 smp_mb(); /* See above block comment. */
2563
2564 /*
2565 * Recheck ->n_barrier_done to see if others did our work for us.
2566 * This means checking ->n_barrier_done for an even-to-odd-to-even
2567 * transition. The "if" expression below therefore rounds the old
2568 * value up to the next even number and adds two before comparing.
2569 */
2570 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2571 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2572 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2573 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2574 smp_mb(); /* caller's subsequent code after above check. */
2575 mutex_unlock(&rsp->barrier_mutex);
2576 return;
2577 }
2578
2579 /*
2580 * Increment ->n_barrier_done to avoid duplicate work. Use
2581 * ACCESS_ONCE() to prevent the compiler from speculating
2582 * the increment to precede the early-exit check.
2583 */
2584 ACCESS_ONCE(rsp->n_barrier_done)++;
2585 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2586 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2587 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2588
2589 /*
2590 * Initialize the count to one rather than to zero in order to
2591 * avoid a too-soon return to zero in case of a short grace period
2592 * (or preemption of this task). Exclude CPU-hotplug operations
2593 * to ensure that no offline CPU has callbacks queued.
2594 */
2595 init_completion(&rsp->barrier_completion);
2596 atomic_set(&rsp->barrier_cpu_count, 1);
2597 get_online_cpus();
2598
2599 /*
2600 * Force each CPU with callbacks to register a new callback.
2601 * When that callback is invoked, we will know that all of the
2602 * corresponding CPU's preceding callbacks have been invoked.
2603 */
2604 for_each_possible_cpu(cpu) {
2605 if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
2606 continue;
2607 rdp = per_cpu_ptr(rsp->rda, cpu);
2608 if (is_nocb_cpu(cpu)) {
2609 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2610 rsp->n_barrier_done);
2611 atomic_inc(&rsp->barrier_cpu_count);
2612 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2613 rsp, cpu, 0);
2614 } else if (ACCESS_ONCE(rdp->qlen)) {
2615 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2616 rsp->n_barrier_done);
2617 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2618 } else {
2619 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2620 rsp->n_barrier_done);
2621 }
2622 }
2623 put_online_cpus();
2624
2625 /*
2626 * Now that we have an rcu_barrier_callback() callback on each
2627 * CPU, and thus each counted, remove the initial count.
2628 */
2629 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2630 complete(&rsp->barrier_completion);
2631
2632 /* Increment ->n_barrier_done to prevent duplicate work. */
2633 smp_mb(); /* Keep increment after above mechanism. */
2634 ACCESS_ONCE(rsp->n_barrier_done)++;
2635 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2636 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2637 smp_mb(); /* Keep increment before caller's subsequent code. */
2638
2639 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2640 wait_for_completion(&rsp->barrier_completion);
2641
2642 /* Other rcu_barrier() invocations can now safely proceed. */
2643 mutex_unlock(&rsp->barrier_mutex);
2644 }
2645
2646 /**
2647 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2648 */
2649 void rcu_barrier_bh(void)
2650 {
2651 _rcu_barrier(&rcu_bh_state);
2652 }
2653 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2654
2655 /**
2656 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2657 */
2658 void rcu_barrier_sched(void)
2659 {
2660 _rcu_barrier(&rcu_sched_state);
2661 }
2662 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2663
2664 /*
2665 * Do boot-time initialization of a CPU's per-CPU RCU data.
2666 */
2667 static void __init
2668 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2669 {
2670 unsigned long flags;
2671 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2672 struct rcu_node *rnp = rcu_get_root(rsp);
2673
2674 /* Set up local state, ensuring consistent view of global state. */
2675 raw_spin_lock_irqsave(&rnp->lock, flags);
2676 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2677 init_callback_list(rdp);
2678 rdp->qlen_lazy = 0;
2679 ACCESS_ONCE(rdp->qlen) = 0;
2680 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2681 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2682 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2683 #ifdef CONFIG_RCU_USER_QS
2684 WARN_ON_ONCE(rdp->dynticks->in_user);
2685 #endif
2686 rdp->cpu = cpu;
2687 rdp->rsp = rsp;
2688 rcu_boot_init_nocb_percpu_data(rdp);
2689 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2690 }
2691
2692 /*
2693 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2694 * offline event can be happening at a given time. Note also that we
2695 * can accept some slop in the rsp->completed access due to the fact
2696 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2697 */
2698 static void __cpuinit
2699 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2700 {
2701 unsigned long flags;
2702 unsigned long mask;
2703 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2704 struct rcu_node *rnp = rcu_get_root(rsp);
2705
2706 /* Exclude new grace periods. */
2707 mutex_lock(&rsp->onoff_mutex);
2708
2709 /* Set up local state, ensuring consistent view of global state. */
2710 raw_spin_lock_irqsave(&rnp->lock, flags);
2711 rdp->beenonline = 1; /* We have now been online. */
2712 rdp->preemptible = preemptible;
2713 rdp->qlen_last_fqs_check = 0;
2714 rdp->n_force_qs_snap = rsp->n_force_qs;
2715 rdp->blimit = blimit;
2716 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2717 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2718 atomic_set(&rdp->dynticks->dynticks,
2719 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2720 rcu_prepare_for_idle_init(cpu);
2721 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2722
2723 /* Add CPU to rcu_node bitmasks. */
2724 rnp = rdp->mynode;
2725 mask = rdp->grpmask;
2726 do {
2727 /* Exclude any attempts to start a new GP on small systems. */
2728 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2729 rnp->qsmaskinit |= mask;
2730 mask = rnp->grpmask;
2731 if (rnp == rdp->mynode) {
2732 /*
2733 * If there is a grace period in progress, we will
2734 * set up to wait for it next time we run the
2735 * RCU core code.
2736 */
2737 rdp->gpnum = rnp->completed;
2738 rdp->completed = rnp->completed;
2739 rdp->passed_quiesce = 0;
2740 rdp->qs_pending = 0;
2741 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2742 }
2743 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2744 rnp = rnp->parent;
2745 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2746 local_irq_restore(flags);
2747
2748 mutex_unlock(&rsp->onoff_mutex);
2749 }
2750
2751 static void __cpuinit rcu_prepare_cpu(int cpu)
2752 {
2753 struct rcu_state *rsp;
2754
2755 for_each_rcu_flavor(rsp)
2756 rcu_init_percpu_data(cpu, rsp,
2757 strcmp(rsp->name, "rcu_preempt") == 0);
2758 }
2759
2760 /*
2761 * Handle CPU online/offline notification events.
2762 */
2763 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2764 unsigned long action, void *hcpu)
2765 {
2766 long cpu = (long)hcpu;
2767 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2768 struct rcu_node *rnp = rdp->mynode;
2769 struct rcu_state *rsp;
2770 int ret = NOTIFY_OK;
2771
2772 trace_rcu_utilization("Start CPU hotplug");
2773 switch (action) {
2774 case CPU_UP_PREPARE:
2775 case CPU_UP_PREPARE_FROZEN:
2776 rcu_prepare_cpu(cpu);
2777 rcu_prepare_kthreads(cpu);
2778 break;
2779 case CPU_ONLINE:
2780 case CPU_DOWN_FAILED:
2781 rcu_boost_kthread_setaffinity(rnp, -1);
2782 break;
2783 case CPU_DOWN_PREPARE:
2784 if (nocb_cpu_expendable(cpu))
2785 rcu_boost_kthread_setaffinity(rnp, cpu);
2786 else
2787 ret = NOTIFY_BAD;
2788 break;
2789 case CPU_DYING:
2790 case CPU_DYING_FROZEN:
2791 /*
2792 * The whole machine is "stopped" except this CPU, so we can
2793 * touch any data without introducing corruption. We send the
2794 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2795 */
2796 for_each_rcu_flavor(rsp)
2797 rcu_cleanup_dying_cpu(rsp);
2798 rcu_cleanup_after_idle(cpu);
2799 break;
2800 case CPU_DEAD:
2801 case CPU_DEAD_FROZEN:
2802 case CPU_UP_CANCELED:
2803 case CPU_UP_CANCELED_FROZEN:
2804 for_each_rcu_flavor(rsp)
2805 rcu_cleanup_dead_cpu(cpu, rsp);
2806 break;
2807 default:
2808 break;
2809 }
2810 trace_rcu_utilization("End CPU hotplug");
2811 return ret;
2812 }
2813
2814 /*
2815 * Spawn the kthread that handles this RCU flavor's grace periods.
2816 */
2817 static int __init rcu_spawn_gp_kthread(void)
2818 {
2819 unsigned long flags;
2820 struct rcu_node *rnp;
2821 struct rcu_state *rsp;
2822 struct task_struct *t;
2823
2824 for_each_rcu_flavor(rsp) {
2825 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2826 BUG_ON(IS_ERR(t));
2827 rnp = rcu_get_root(rsp);
2828 raw_spin_lock_irqsave(&rnp->lock, flags);
2829 rsp->gp_kthread = t;
2830 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2831 rcu_spawn_nocb_kthreads(rsp);
2832 }
2833 return 0;
2834 }
2835 early_initcall(rcu_spawn_gp_kthread);
2836
2837 /*
2838 * This function is invoked towards the end of the scheduler's initialization
2839 * process. Before this is called, the idle task might contain
2840 * RCU read-side critical sections (during which time, this idle
2841 * task is booting the system). After this function is called, the
2842 * idle tasks are prohibited from containing RCU read-side critical
2843 * sections. This function also enables RCU lockdep checking.
2844 */
2845 void rcu_scheduler_starting(void)
2846 {
2847 WARN_ON(num_online_cpus() != 1);
2848 WARN_ON(nr_context_switches() > 0);
2849 rcu_scheduler_active = 1;
2850 }
2851
2852 /*
2853 * Compute the per-level fanout, either using the exact fanout specified
2854 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2855 */
2856 #ifdef CONFIG_RCU_FANOUT_EXACT
2857 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2858 {
2859 int i;
2860
2861 for (i = rcu_num_lvls - 1; i > 0; i--)
2862 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2863 rsp->levelspread[0] = rcu_fanout_leaf;
2864 }
2865 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2866 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2867 {
2868 int ccur;
2869 int cprv;
2870 int i;
2871
2872 cprv = nr_cpu_ids;
2873 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2874 ccur = rsp->levelcnt[i];
2875 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2876 cprv = ccur;
2877 }
2878 }
2879 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2880
2881 /*
2882 * Helper function for rcu_init() that initializes one rcu_state structure.
2883 */
2884 static void __init rcu_init_one(struct rcu_state *rsp,
2885 struct rcu_data __percpu *rda)
2886 {
2887 static char *buf[] = { "rcu_node_0",
2888 "rcu_node_1",
2889 "rcu_node_2",
2890 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2891 static char *fqs[] = { "rcu_node_fqs_0",
2892 "rcu_node_fqs_1",
2893 "rcu_node_fqs_2",
2894 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
2895 int cpustride = 1;
2896 int i;
2897 int j;
2898 struct rcu_node *rnp;
2899
2900 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2901
2902 /* Initialize the level-tracking arrays. */
2903
2904 for (i = 0; i < rcu_num_lvls; i++)
2905 rsp->levelcnt[i] = num_rcu_lvl[i];
2906 for (i = 1; i < rcu_num_lvls; i++)
2907 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2908 rcu_init_levelspread(rsp);
2909
2910 /* Initialize the elements themselves, starting from the leaves. */
2911
2912 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2913 cpustride *= rsp->levelspread[i];
2914 rnp = rsp->level[i];
2915 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2916 raw_spin_lock_init(&rnp->lock);
2917 lockdep_set_class_and_name(&rnp->lock,
2918 &rcu_node_class[i], buf[i]);
2919 raw_spin_lock_init(&rnp->fqslock);
2920 lockdep_set_class_and_name(&rnp->fqslock,
2921 &rcu_fqs_class[i], fqs[i]);
2922 rnp->gpnum = rsp->gpnum;
2923 rnp->completed = rsp->completed;
2924 rnp->qsmask = 0;
2925 rnp->qsmaskinit = 0;
2926 rnp->grplo = j * cpustride;
2927 rnp->grphi = (j + 1) * cpustride - 1;
2928 if (rnp->grphi >= NR_CPUS)
2929 rnp->grphi = NR_CPUS - 1;
2930 if (i == 0) {
2931 rnp->grpnum = 0;
2932 rnp->grpmask = 0;
2933 rnp->parent = NULL;
2934 } else {
2935 rnp->grpnum = j % rsp->levelspread[i - 1];
2936 rnp->grpmask = 1UL << rnp->grpnum;
2937 rnp->parent = rsp->level[i - 1] +
2938 j / rsp->levelspread[i - 1];
2939 }
2940 rnp->level = i;
2941 INIT_LIST_HEAD(&rnp->blkd_tasks);
2942 }
2943 }
2944
2945 rsp->rda = rda;
2946 init_waitqueue_head(&rsp->gp_wq);
2947 rnp = rsp->level[rcu_num_lvls - 1];
2948 for_each_possible_cpu(i) {
2949 while (i > rnp->grphi)
2950 rnp++;
2951 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2952 rcu_boot_init_percpu_data(i, rsp);
2953 }
2954 list_add(&rsp->flavors, &rcu_struct_flavors);
2955 }
2956
2957 /*
2958 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2959 * replace the definitions in rcutree.h because those are needed to size
2960 * the ->node array in the rcu_state structure.
2961 */
2962 static void __init rcu_init_geometry(void)
2963 {
2964 int i;
2965 int j;
2966 int n = nr_cpu_ids;
2967 int rcu_capacity[MAX_RCU_LVLS + 1];
2968
2969 /* If the compile-time values are accurate, just leave. */
2970 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
2971 nr_cpu_ids == NR_CPUS)
2972 return;
2973
2974 /*
2975 * Compute number of nodes that can be handled an rcu_node tree
2976 * with the given number of levels. Setting rcu_capacity[0] makes
2977 * some of the arithmetic easier.
2978 */
2979 rcu_capacity[0] = 1;
2980 rcu_capacity[1] = rcu_fanout_leaf;
2981 for (i = 2; i <= MAX_RCU_LVLS; i++)
2982 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2983
2984 /*
2985 * The boot-time rcu_fanout_leaf parameter is only permitted
2986 * to increase the leaf-level fanout, not decrease it. Of course,
2987 * the leaf-level fanout cannot exceed the number of bits in
2988 * the rcu_node masks. Finally, the tree must be able to accommodate
2989 * the configured number of CPUs. Complain and fall back to the
2990 * compile-time values if these limits are exceeded.
2991 */
2992 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2993 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2994 n > rcu_capacity[MAX_RCU_LVLS]) {
2995 WARN_ON(1);
2996 return;
2997 }
2998
2999 /* Calculate the number of rcu_nodes at each level of the tree. */
3000 for (i = 1; i <= MAX_RCU_LVLS; i++)
3001 if (n <= rcu_capacity[i]) {
3002 for (j = 0; j <= i; j++)
3003 num_rcu_lvl[j] =
3004 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3005 rcu_num_lvls = i;
3006 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3007 num_rcu_lvl[j] = 0;
3008 break;
3009 }
3010
3011 /* Calculate the total number of rcu_node structures. */
3012 rcu_num_nodes = 0;
3013 for (i = 0; i <= MAX_RCU_LVLS; i++)
3014 rcu_num_nodes += num_rcu_lvl[i];
3015 rcu_num_nodes -= n;
3016 }
3017
3018 void __init rcu_init(void)
3019 {
3020 int cpu;
3021
3022 rcu_bootup_announce();
3023 rcu_init_geometry();
3024 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3025 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3026 __rcu_init_preempt();
3027 rcu_init_nocb();
3028 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3029
3030 /*
3031 * We don't need protection against CPU-hotplug here because
3032 * this is called early in boot, before either interrupts
3033 * or the scheduler are operational.
3034 */
3035 cpu_notifier(rcu_cpu_notify, 0);
3036 for_each_online_cpu(cpu)
3037 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3038 }
3039
3040 #include "rcutree_plugin.h"
This page took 0.136756 seconds and 5 git commands to generate.