rcu: Clean up code based on review feedback from Josh Triplett, part 3
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49
50 #include "rcutree.h"
51
52 /* Data structures. */
53
54 #define RCU_STATE_INITIALIZER(name) { \
55 .level = { &name.node[0] }, \
56 .levelcnt = { \
57 NUM_RCU_LVL_0, /* root of hierarchy. */ \
58 NUM_RCU_LVL_1, \
59 NUM_RCU_LVL_2, \
60 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
61 }, \
62 .signaled = RCU_SIGNAL_INIT, \
63 .gpnum = -300, \
64 .completed = -300, \
65 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
66 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
67 .n_force_qs = 0, \
68 .n_force_qs_ngp = 0, \
69 }
70
71 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
72 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
73
74 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
75 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
76
77
78 /*
79 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
80 * permit this function to be invoked without holding the root rcu_node
81 * structure's ->lock, but of course results can be subject to change.
82 */
83 static int rcu_gp_in_progress(struct rcu_state *rsp)
84 {
85 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
86 }
87
88 /*
89 * Note a quiescent state. Because we do not need to know
90 * how many quiescent states passed, just if there was at least
91 * one since the start of the grace period, this just sets a flag.
92 */
93 void rcu_sched_qs(int cpu)
94 {
95 struct rcu_data *rdp;
96
97 rdp = &per_cpu(rcu_sched_data, cpu);
98 rdp->passed_quiesc_completed = rdp->completed;
99 barrier();
100 rdp->passed_quiesc = 1;
101 rcu_preempt_note_context_switch(cpu);
102 }
103
104 void rcu_bh_qs(int cpu)
105 {
106 struct rcu_data *rdp;
107
108 rdp = &per_cpu(rcu_bh_data, cpu);
109 rdp->passed_quiesc_completed = rdp->completed;
110 barrier();
111 rdp->passed_quiesc = 1;
112 }
113
114 #ifdef CONFIG_NO_HZ
115 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
116 .dynticks_nesting = 1,
117 .dynticks = 1,
118 };
119 #endif /* #ifdef CONFIG_NO_HZ */
120
121 static int blimit = 10; /* Maximum callbacks per softirq. */
122 static int qhimark = 10000; /* If this many pending, ignore blimit. */
123 static int qlowmark = 100; /* Once only this many pending, use blimit. */
124
125 module_param(blimit, int, 0);
126 module_param(qhimark, int, 0);
127 module_param(qlowmark, int, 0);
128
129 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
130 static int rcu_pending(int cpu);
131
132 /*
133 * Return the number of RCU-sched batches processed thus far for debug & stats.
134 */
135 long rcu_batches_completed_sched(void)
136 {
137 return rcu_sched_state.completed;
138 }
139 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
140
141 /*
142 * Return the number of RCU BH batches processed thus far for debug & stats.
143 */
144 long rcu_batches_completed_bh(void)
145 {
146 return rcu_bh_state.completed;
147 }
148 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
149
150 /*
151 * Does the CPU have callbacks ready to be invoked?
152 */
153 static int
154 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
155 {
156 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
157 }
158
159 /*
160 * Does the current CPU require a yet-as-unscheduled grace period?
161 */
162 static int
163 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
164 {
165 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
166 }
167
168 /*
169 * Return the root node of the specified rcu_state structure.
170 */
171 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
172 {
173 return &rsp->node[0];
174 }
175
176 #ifdef CONFIG_SMP
177
178 /*
179 * If the specified CPU is offline, tell the caller that it is in
180 * a quiescent state. Otherwise, whack it with a reschedule IPI.
181 * Grace periods can end up waiting on an offline CPU when that
182 * CPU is in the process of coming online -- it will be added to the
183 * rcu_node bitmasks before it actually makes it online. The same thing
184 * can happen while a CPU is in the process of coming online. Because this
185 * race is quite rare, we check for it after detecting that the grace
186 * period has been delayed rather than checking each and every CPU
187 * each and every time we start a new grace period.
188 */
189 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
190 {
191 /*
192 * If the CPU is offline, it is in a quiescent state. We can
193 * trust its state not to change because interrupts are disabled.
194 */
195 if (cpu_is_offline(rdp->cpu)) {
196 rdp->offline_fqs++;
197 return 1;
198 }
199
200 /* If preemptable RCU, no point in sending reschedule IPI. */
201 if (rdp->preemptable)
202 return 0;
203
204 /* The CPU is online, so send it a reschedule IPI. */
205 if (rdp->cpu != smp_processor_id())
206 smp_send_reschedule(rdp->cpu);
207 else
208 set_need_resched();
209 rdp->resched_ipi++;
210 return 0;
211 }
212
213 #endif /* #ifdef CONFIG_SMP */
214
215 #ifdef CONFIG_NO_HZ
216
217 /**
218 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
219 *
220 * Enter nohz mode, in other words, -leave- the mode in which RCU
221 * read-side critical sections can occur. (Though RCU read-side
222 * critical sections can occur in irq handlers in nohz mode, a possibility
223 * handled by rcu_irq_enter() and rcu_irq_exit()).
224 */
225 void rcu_enter_nohz(void)
226 {
227 unsigned long flags;
228 struct rcu_dynticks *rdtp;
229
230 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
231 local_irq_save(flags);
232 rdtp = &__get_cpu_var(rcu_dynticks);
233 rdtp->dynticks++;
234 rdtp->dynticks_nesting--;
235 WARN_ON_ONCE(rdtp->dynticks & 0x1);
236 local_irq_restore(flags);
237 }
238
239 /*
240 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
241 *
242 * Exit nohz mode, in other words, -enter- the mode in which RCU
243 * read-side critical sections normally occur.
244 */
245 void rcu_exit_nohz(void)
246 {
247 unsigned long flags;
248 struct rcu_dynticks *rdtp;
249
250 local_irq_save(flags);
251 rdtp = &__get_cpu_var(rcu_dynticks);
252 rdtp->dynticks++;
253 rdtp->dynticks_nesting++;
254 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
255 local_irq_restore(flags);
256 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
257 }
258
259 /**
260 * rcu_nmi_enter - inform RCU of entry to NMI context
261 *
262 * If the CPU was idle with dynamic ticks active, and there is no
263 * irq handler running, this updates rdtp->dynticks_nmi to let the
264 * RCU grace-period handling know that the CPU is active.
265 */
266 void rcu_nmi_enter(void)
267 {
268 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
269
270 if (rdtp->dynticks & 0x1)
271 return;
272 rdtp->dynticks_nmi++;
273 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
274 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
275 }
276
277 /**
278 * rcu_nmi_exit - inform RCU of exit from NMI context
279 *
280 * If the CPU was idle with dynamic ticks active, and there is no
281 * irq handler running, this updates rdtp->dynticks_nmi to let the
282 * RCU grace-period handling know that the CPU is no longer active.
283 */
284 void rcu_nmi_exit(void)
285 {
286 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
287
288 if (rdtp->dynticks & 0x1)
289 return;
290 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
291 rdtp->dynticks_nmi++;
292 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
293 }
294
295 /**
296 * rcu_irq_enter - inform RCU of entry to hard irq context
297 *
298 * If the CPU was idle with dynamic ticks active, this updates the
299 * rdtp->dynticks to let the RCU handling know that the CPU is active.
300 */
301 void rcu_irq_enter(void)
302 {
303 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
304
305 if (rdtp->dynticks_nesting++)
306 return;
307 rdtp->dynticks++;
308 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
309 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
310 }
311
312 /**
313 * rcu_irq_exit - inform RCU of exit from hard irq context
314 *
315 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
316 * to put let the RCU handling be aware that the CPU is going back to idle
317 * with no ticks.
318 */
319 void rcu_irq_exit(void)
320 {
321 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
322
323 if (--rdtp->dynticks_nesting)
324 return;
325 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
326 rdtp->dynticks++;
327 WARN_ON_ONCE(rdtp->dynticks & 0x1);
328
329 /* If the interrupt queued a callback, get out of dyntick mode. */
330 if (__get_cpu_var(rcu_sched_data).nxtlist ||
331 __get_cpu_var(rcu_bh_data).nxtlist)
332 set_need_resched();
333 }
334
335 /*
336 * Record the specified "completed" value, which is later used to validate
337 * dynticks counter manipulations. Specify "rsp->completed - 1" to
338 * unconditionally invalidate any future dynticks manipulations (which is
339 * useful at the beginning of a grace period).
340 */
341 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
342 {
343 rsp->dynticks_completed = comp;
344 }
345
346 #ifdef CONFIG_SMP
347
348 /*
349 * Recall the previously recorded value of the completion for dynticks.
350 */
351 static long dyntick_recall_completed(struct rcu_state *rsp)
352 {
353 return rsp->dynticks_completed;
354 }
355
356 /*
357 * Snapshot the specified CPU's dynticks counter so that we can later
358 * credit them with an implicit quiescent state. Return 1 if this CPU
359 * is in dynticks idle mode, which is an extended quiescent state.
360 */
361 static int dyntick_save_progress_counter(struct rcu_data *rdp)
362 {
363 int ret;
364 int snap;
365 int snap_nmi;
366
367 snap = rdp->dynticks->dynticks;
368 snap_nmi = rdp->dynticks->dynticks_nmi;
369 smp_mb(); /* Order sampling of snap with end of grace period. */
370 rdp->dynticks_snap = snap;
371 rdp->dynticks_nmi_snap = snap_nmi;
372 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
373 if (ret)
374 rdp->dynticks_fqs++;
375 return ret;
376 }
377
378 /*
379 * Return true if the specified CPU has passed through a quiescent
380 * state by virtue of being in or having passed through an dynticks
381 * idle state since the last call to dyntick_save_progress_counter()
382 * for this same CPU.
383 */
384 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
385 {
386 long curr;
387 long curr_nmi;
388 long snap;
389 long snap_nmi;
390
391 curr = rdp->dynticks->dynticks;
392 snap = rdp->dynticks_snap;
393 curr_nmi = rdp->dynticks->dynticks_nmi;
394 snap_nmi = rdp->dynticks_nmi_snap;
395 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
396
397 /*
398 * If the CPU passed through or entered a dynticks idle phase with
399 * no active irq/NMI handlers, then we can safely pretend that the CPU
400 * already acknowledged the request to pass through a quiescent
401 * state. Either way, that CPU cannot possibly be in an RCU
402 * read-side critical section that started before the beginning
403 * of the current RCU grace period.
404 */
405 if ((curr != snap || (curr & 0x1) == 0) &&
406 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
407 rdp->dynticks_fqs++;
408 return 1;
409 }
410
411 /* Go check for the CPU being offline. */
412 return rcu_implicit_offline_qs(rdp);
413 }
414
415 #endif /* #ifdef CONFIG_SMP */
416
417 #else /* #ifdef CONFIG_NO_HZ */
418
419 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
420 {
421 }
422
423 #ifdef CONFIG_SMP
424
425 /*
426 * If there are no dynticks, then the only way that a CPU can passively
427 * be in a quiescent state is to be offline. Unlike dynticks idle, which
428 * is a point in time during the prior (already finished) grace period,
429 * an offline CPU is always in a quiescent state, and thus can be
430 * unconditionally applied. So just return the current value of completed.
431 */
432 static long dyntick_recall_completed(struct rcu_state *rsp)
433 {
434 return rsp->completed;
435 }
436
437 static int dyntick_save_progress_counter(struct rcu_data *rdp)
438 {
439 return 0;
440 }
441
442 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
443 {
444 return rcu_implicit_offline_qs(rdp);
445 }
446
447 #endif /* #ifdef CONFIG_SMP */
448
449 #endif /* #else #ifdef CONFIG_NO_HZ */
450
451 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
452
453 static void record_gp_stall_check_time(struct rcu_state *rsp)
454 {
455 rsp->gp_start = jiffies;
456 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
457 }
458
459 static void print_other_cpu_stall(struct rcu_state *rsp)
460 {
461 int cpu;
462 long delta;
463 unsigned long flags;
464 struct rcu_node *rnp = rcu_get_root(rsp);
465 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
466 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
467
468 /* Only let one CPU complain about others per time interval. */
469
470 spin_lock_irqsave(&rnp->lock, flags);
471 delta = jiffies - rsp->jiffies_stall;
472 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
473 spin_unlock_irqrestore(&rnp->lock, flags);
474 return;
475 }
476 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
477 spin_unlock_irqrestore(&rnp->lock, flags);
478
479 /* OK, time to rat on our buddy... */
480
481 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
482 for (; rnp_cur < rnp_end; rnp_cur++) {
483 rcu_print_task_stall(rnp);
484 if (rnp_cur->qsmask == 0)
485 continue;
486 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
487 if (rnp_cur->qsmask & (1UL << cpu))
488 printk(" %d", rnp_cur->grplo + cpu);
489 }
490 printk(" (detected by %d, t=%ld jiffies)\n",
491 smp_processor_id(), (long)(jiffies - rsp->gp_start));
492 trigger_all_cpu_backtrace();
493
494 force_quiescent_state(rsp, 0); /* Kick them all. */
495 }
496
497 static void print_cpu_stall(struct rcu_state *rsp)
498 {
499 unsigned long flags;
500 struct rcu_node *rnp = rcu_get_root(rsp);
501
502 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
503 smp_processor_id(), jiffies - rsp->gp_start);
504 trigger_all_cpu_backtrace();
505
506 spin_lock_irqsave(&rnp->lock, flags);
507 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
508 rsp->jiffies_stall =
509 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
510 spin_unlock_irqrestore(&rnp->lock, flags);
511
512 set_need_resched(); /* kick ourselves to get things going. */
513 }
514
515 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
516 {
517 long delta;
518 struct rcu_node *rnp;
519
520 delta = jiffies - rsp->jiffies_stall;
521 rnp = rdp->mynode;
522 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
523
524 /* We haven't checked in, so go dump stack. */
525 print_cpu_stall(rsp);
526
527 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
528
529 /* They had two time units to dump stack, so complain. */
530 print_other_cpu_stall(rsp);
531 }
532 }
533
534 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
535
536 static void record_gp_stall_check_time(struct rcu_state *rsp)
537 {
538 }
539
540 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
541 {
542 }
543
544 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
545
546 /*
547 * Update CPU-local rcu_data state to record the newly noticed grace period.
548 * This is used both when we started the grace period and when we notice
549 * that someone else started the grace period.
550 */
551 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
552 {
553 rdp->qs_pending = 1;
554 rdp->passed_quiesc = 0;
555 rdp->gpnum = rsp->gpnum;
556 }
557
558 /*
559 * Did someone else start a new RCU grace period start since we last
560 * checked? Update local state appropriately if so. Must be called
561 * on the CPU corresponding to rdp.
562 */
563 static int
564 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
565 {
566 unsigned long flags;
567 int ret = 0;
568
569 local_irq_save(flags);
570 if (rdp->gpnum != rsp->gpnum) {
571 note_new_gpnum(rsp, rdp);
572 ret = 1;
573 }
574 local_irq_restore(flags);
575 return ret;
576 }
577
578 /*
579 * Start a new RCU grace period if warranted, re-initializing the hierarchy
580 * in preparation for detecting the next grace period. The caller must hold
581 * the root node's ->lock, which is released before return. Hard irqs must
582 * be disabled.
583 */
584 static void
585 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
586 __releases(rcu_get_root(rsp)->lock)
587 {
588 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
589 struct rcu_node *rnp = rcu_get_root(rsp);
590
591 if (!cpu_needs_another_gp(rsp, rdp)) {
592 spin_unlock_irqrestore(&rnp->lock, flags);
593 return;
594 }
595
596 /* Advance to a new grace period and initialize state. */
597 rsp->gpnum++;
598 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
599 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
600 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
601 record_gp_stall_check_time(rsp);
602 dyntick_record_completed(rsp, rsp->completed - 1);
603 note_new_gpnum(rsp, rdp);
604
605 /*
606 * Because this CPU just now started the new grace period, we know
607 * that all of its callbacks will be covered by this upcoming grace
608 * period, even the ones that were registered arbitrarily recently.
609 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
610 *
611 * Other CPUs cannot be sure exactly when the grace period started.
612 * Therefore, their recently registered callbacks must pass through
613 * an additional RCU_NEXT_READY stage, so that they will be handled
614 * by the next RCU grace period.
615 */
616 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
617 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
618
619 /* Special-case the common single-level case. */
620 if (NUM_RCU_NODES == 1) {
621 rcu_preempt_check_blocked_tasks(rnp);
622 rnp->qsmask = rnp->qsmaskinit;
623 rnp->gpnum = rsp->gpnum;
624 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
625 spin_unlock_irqrestore(&rnp->lock, flags);
626 return;
627 }
628
629 spin_unlock(&rnp->lock); /* leave irqs disabled. */
630
631
632 /* Exclude any concurrent CPU-hotplug operations. */
633 spin_lock(&rsp->onofflock); /* irqs already disabled. */
634
635 /*
636 * Set the quiescent-state-needed bits in all the rcu_node
637 * structures for all currently online CPUs in breadth-first
638 * order, starting from the root rcu_node structure. This
639 * operation relies on the layout of the hierarchy within the
640 * rsp->node[] array. Note that other CPUs will access only
641 * the leaves of the hierarchy, which still indicate that no
642 * grace period is in progress, at least until the corresponding
643 * leaf node has been initialized. In addition, we have excluded
644 * CPU-hotplug operations.
645 *
646 * Note that the grace period cannot complete until we finish
647 * the initialization process, as there will be at least one
648 * qsmask bit set in the root node until that time, namely the
649 * one corresponding to this CPU, due to the fact that we have
650 * irqs disabled.
651 */
652 for (rnp = &rsp->node[0]; rnp < &rsp->node[NUM_RCU_NODES]; rnp++) {
653 spin_lock(&rnp->lock); /* irqs already disabled. */
654 rcu_preempt_check_blocked_tasks(rnp);
655 rnp->qsmask = rnp->qsmaskinit;
656 rnp->gpnum = rsp->gpnum;
657 spin_unlock(&rnp->lock); /* irqs already disabled. */
658 }
659
660 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
661 spin_unlock_irqrestore(&rsp->onofflock, flags);
662 }
663
664 /*
665 * Advance this CPU's callbacks, but only if the current grace period
666 * has ended. This may be called only from the CPU to whom the rdp
667 * belongs.
668 */
669 static void
670 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
671 {
672 long completed_snap;
673 unsigned long flags;
674
675 local_irq_save(flags);
676 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
677
678 /* Did another grace period end? */
679 if (rdp->completed != completed_snap) {
680
681 /* Advance callbacks. No harm if list empty. */
682 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
683 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
684 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
685
686 /* Remember that we saw this grace-period completion. */
687 rdp->completed = completed_snap;
688 }
689 local_irq_restore(flags);
690 }
691
692 /*
693 * Clean up after the prior grace period and let rcu_start_gp() start up
694 * the next grace period if one is needed. Note that the caller must
695 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
696 */
697 static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
698 __releases(rcu_get_root(rsp)->lock)
699 {
700 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
701 rsp->completed = rsp->gpnum;
702 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
703 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
704 }
705
706 /*
707 * Similar to cpu_quiet(), for which it is a helper function. Allows
708 * a group of CPUs to be quieted at one go, though all the CPUs in the
709 * group must be represented by the same leaf rcu_node structure.
710 * That structure's lock must be held upon entry, and it is released
711 * before return.
712 */
713 static void
714 cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
715 unsigned long flags)
716 __releases(rnp->lock)
717 {
718 struct rcu_node *rnp_c;
719
720 /* Walk up the rcu_node hierarchy. */
721 for (;;) {
722 if (!(rnp->qsmask & mask)) {
723
724 /* Our bit has already been cleared, so done. */
725 spin_unlock_irqrestore(&rnp->lock, flags);
726 return;
727 }
728 rnp->qsmask &= ~mask;
729 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
730
731 /* Other bits still set at this level, so done. */
732 spin_unlock_irqrestore(&rnp->lock, flags);
733 return;
734 }
735 mask = rnp->grpmask;
736 if (rnp->parent == NULL) {
737
738 /* No more levels. Exit loop holding root lock. */
739
740 break;
741 }
742 spin_unlock_irqrestore(&rnp->lock, flags);
743 rnp_c = rnp;
744 rnp = rnp->parent;
745 spin_lock_irqsave(&rnp->lock, flags);
746 WARN_ON_ONCE(rnp_c->qsmask);
747 }
748
749 /*
750 * Get here if we are the last CPU to pass through a quiescent
751 * state for this grace period. Invoke cpu_quiet_msk_finish()
752 * to clean up and start the next grace period if one is needed.
753 */
754 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
755 }
756
757 /*
758 * Record a quiescent state for the specified CPU, which must either be
759 * the current CPU. The lastcomp argument is used to make sure we are
760 * still in the grace period of interest. We don't want to end the current
761 * grace period based on quiescent states detected in an earlier grace
762 * period!
763 */
764 static void
765 cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
766 {
767 unsigned long flags;
768 unsigned long mask;
769 struct rcu_node *rnp;
770
771 rnp = rdp->mynode;
772 spin_lock_irqsave(&rnp->lock, flags);
773 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
774
775 /*
776 * Someone beat us to it for this grace period, so leave.
777 * The race with GP start is resolved by the fact that we
778 * hold the leaf rcu_node lock, so that the per-CPU bits
779 * cannot yet be initialized -- so we would simply find our
780 * CPU's bit already cleared in cpu_quiet_msk() if this race
781 * occurred.
782 */
783 rdp->passed_quiesc = 0; /* try again later! */
784 spin_unlock_irqrestore(&rnp->lock, flags);
785 return;
786 }
787 mask = rdp->grpmask;
788 if ((rnp->qsmask & mask) == 0) {
789 spin_unlock_irqrestore(&rnp->lock, flags);
790 } else {
791 rdp->qs_pending = 0;
792
793 /*
794 * This GP can't end until cpu checks in, so all of our
795 * callbacks can be processed during the next GP.
796 */
797 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
798
799 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
800 }
801 }
802
803 /*
804 * Check to see if there is a new grace period of which this CPU
805 * is not yet aware, and if so, set up local rcu_data state for it.
806 * Otherwise, see if this CPU has just passed through its first
807 * quiescent state for this grace period, and record that fact if so.
808 */
809 static void
810 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
811 {
812 /* If there is now a new grace period, record and return. */
813 if (check_for_new_grace_period(rsp, rdp))
814 return;
815
816 /*
817 * Does this CPU still need to do its part for current grace period?
818 * If no, return and let the other CPUs do their part as well.
819 */
820 if (!rdp->qs_pending)
821 return;
822
823 /*
824 * Was there a quiescent state since the beginning of the grace
825 * period? If no, then exit and wait for the next call.
826 */
827 if (!rdp->passed_quiesc)
828 return;
829
830 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
831 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
832 }
833
834 #ifdef CONFIG_HOTPLUG_CPU
835
836 /*
837 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
838 * and move all callbacks from the outgoing CPU to the current one.
839 */
840 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
841 {
842 int i;
843 unsigned long flags;
844 long lastcomp;
845 unsigned long mask;
846 struct rcu_data *rdp = rsp->rda[cpu];
847 struct rcu_data *rdp_me;
848 struct rcu_node *rnp;
849
850 /* Exclude any attempts to start a new grace period. */
851 spin_lock_irqsave(&rsp->onofflock, flags);
852
853 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
854 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
855 mask = rdp->grpmask; /* rnp->grplo is constant. */
856 do {
857 spin_lock(&rnp->lock); /* irqs already disabled. */
858 rnp->qsmaskinit &= ~mask;
859 if (rnp->qsmaskinit != 0) {
860 spin_unlock(&rnp->lock); /* irqs remain disabled. */
861 break;
862 }
863 rcu_preempt_offline_tasks(rsp, rnp, rdp);
864 mask = rnp->grpmask;
865 spin_unlock(&rnp->lock); /* irqs remain disabled. */
866 rnp = rnp->parent;
867 } while (rnp != NULL);
868 lastcomp = rsp->completed;
869
870 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
871
872 /*
873 * Move callbacks from the outgoing CPU to the running CPU.
874 * Note that the outgoing CPU is now quiescent, so it is now
875 * (uncharacteristically) safe to access its rcu_data structure.
876 * Note also that we must carefully retain the order of the
877 * outgoing CPU's callbacks in order for rcu_barrier() to work
878 * correctly. Finally, note that we start all the callbacks
879 * afresh, even those that have passed through a grace period
880 * and are therefore ready to invoke. The theory is that hotplug
881 * events are rare, and that if they are frequent enough to
882 * indefinitely delay callbacks, you have far worse things to
883 * be worrying about.
884 */
885 if (rdp->nxtlist != NULL) {
886 rdp_me = rsp->rda[smp_processor_id()];
887 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
888 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
889 rdp->nxtlist = NULL;
890 for (i = 0; i < RCU_NEXT_SIZE; i++)
891 rdp->nxttail[i] = &rdp->nxtlist;
892 rdp_me->qlen += rdp->qlen;
893 rdp->qlen = 0;
894 }
895 local_irq_restore(flags);
896 }
897
898 /*
899 * Remove the specified CPU from the RCU hierarchy and move any pending
900 * callbacks that it might have to the current CPU. This code assumes
901 * that at least one CPU in the system will remain running at all times.
902 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
903 */
904 static void rcu_offline_cpu(int cpu)
905 {
906 __rcu_offline_cpu(cpu, &rcu_sched_state);
907 __rcu_offline_cpu(cpu, &rcu_bh_state);
908 rcu_preempt_offline_cpu(cpu);
909 }
910
911 #else /* #ifdef CONFIG_HOTPLUG_CPU */
912
913 static void rcu_offline_cpu(int cpu)
914 {
915 }
916
917 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
918
919 /*
920 * Invoke any RCU callbacks that have made it to the end of their grace
921 * period. Thottle as specified by rdp->blimit.
922 */
923 static void rcu_do_batch(struct rcu_data *rdp)
924 {
925 unsigned long flags;
926 struct rcu_head *next, *list, **tail;
927 int count;
928
929 /* If no callbacks are ready, just return.*/
930 if (!cpu_has_callbacks_ready_to_invoke(rdp))
931 return;
932
933 /*
934 * Extract the list of ready callbacks, disabling to prevent
935 * races with call_rcu() from interrupt handlers.
936 */
937 local_irq_save(flags);
938 list = rdp->nxtlist;
939 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
940 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
941 tail = rdp->nxttail[RCU_DONE_TAIL];
942 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
943 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
944 rdp->nxttail[count] = &rdp->nxtlist;
945 local_irq_restore(flags);
946
947 /* Invoke callbacks. */
948 count = 0;
949 while (list) {
950 next = list->next;
951 prefetch(next);
952 list->func(list);
953 list = next;
954 if (++count >= rdp->blimit)
955 break;
956 }
957
958 local_irq_save(flags);
959
960 /* Update count, and requeue any remaining callbacks. */
961 rdp->qlen -= count;
962 if (list != NULL) {
963 *tail = rdp->nxtlist;
964 rdp->nxtlist = list;
965 for (count = 0; count < RCU_NEXT_SIZE; count++)
966 if (&rdp->nxtlist == rdp->nxttail[count])
967 rdp->nxttail[count] = tail;
968 else
969 break;
970 }
971
972 /* Reinstate batch limit if we have worked down the excess. */
973 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
974 rdp->blimit = blimit;
975
976 local_irq_restore(flags);
977
978 /* Re-raise the RCU softirq if there are callbacks remaining. */
979 if (cpu_has_callbacks_ready_to_invoke(rdp))
980 raise_softirq(RCU_SOFTIRQ);
981 }
982
983 /*
984 * Check to see if this CPU is in a non-context-switch quiescent state
985 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
986 * Also schedule the RCU softirq handler.
987 *
988 * This function must be called with hardirqs disabled. It is normally
989 * invoked from the scheduling-clock interrupt. If rcu_pending returns
990 * false, there is no point in invoking rcu_check_callbacks().
991 */
992 void rcu_check_callbacks(int cpu, int user)
993 {
994 if (!rcu_pending(cpu))
995 return; /* if nothing for RCU to do. */
996 if (user ||
997 (idle_cpu(cpu) && rcu_scheduler_active &&
998 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
999
1000 /*
1001 * Get here if this CPU took its interrupt from user
1002 * mode or from the idle loop, and if this is not a
1003 * nested interrupt. In this case, the CPU is in
1004 * a quiescent state, so note it.
1005 *
1006 * No memory barrier is required here because both
1007 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1008 * variables that other CPUs neither access nor modify,
1009 * at least not while the corresponding CPU is online.
1010 */
1011
1012 rcu_sched_qs(cpu);
1013 rcu_bh_qs(cpu);
1014
1015 } else if (!in_softirq()) {
1016
1017 /*
1018 * Get here if this CPU did not take its interrupt from
1019 * softirq, in other words, if it is not interrupting
1020 * a rcu_bh read-side critical section. This is an _bh
1021 * critical section, so note it.
1022 */
1023
1024 rcu_bh_qs(cpu);
1025 }
1026 rcu_preempt_check_callbacks(cpu);
1027 raise_softirq(RCU_SOFTIRQ);
1028 }
1029
1030 #ifdef CONFIG_SMP
1031
1032 /*
1033 * Scan the leaf rcu_node structures, processing dyntick state for any that
1034 * have not yet encountered a quiescent state, using the function specified.
1035 * Returns 1 if the current grace period ends while scanning (possibly
1036 * because we made it end).
1037 */
1038 static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1039 int (*f)(struct rcu_data *))
1040 {
1041 unsigned long bit;
1042 int cpu;
1043 unsigned long flags;
1044 unsigned long mask;
1045 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1046 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1047
1048 for (; rnp_cur < rnp_end; rnp_cur++) {
1049 mask = 0;
1050 spin_lock_irqsave(&rnp_cur->lock, flags);
1051 if (rsp->completed != lastcomp) {
1052 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1053 return 1;
1054 }
1055 if (rnp_cur->qsmask == 0) {
1056 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1057 continue;
1058 }
1059 cpu = rnp_cur->grplo;
1060 bit = 1;
1061 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1062 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1063 mask |= bit;
1064 }
1065 if (mask != 0 && rsp->completed == lastcomp) {
1066
1067 /* cpu_quiet_msk() releases rnp_cur->lock. */
1068 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1069 continue;
1070 }
1071 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1072 }
1073 return 0;
1074 }
1075
1076 /*
1077 * Force quiescent states on reluctant CPUs, and also detect which
1078 * CPUs are in dyntick-idle mode.
1079 */
1080 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1081 {
1082 unsigned long flags;
1083 long lastcomp;
1084 struct rcu_node *rnp = rcu_get_root(rsp);
1085 u8 signaled;
1086
1087 if (!rcu_gp_in_progress(rsp))
1088 return; /* No grace period in progress, nothing to force. */
1089 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1090 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1091 return; /* Someone else is already on the job. */
1092 }
1093 if (relaxed &&
1094 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1095 goto unlock_ret; /* no emergency and done recently. */
1096 rsp->n_force_qs++;
1097 spin_lock(&rnp->lock);
1098 lastcomp = rsp->completed;
1099 signaled = rsp->signaled;
1100 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1101 if (lastcomp == rsp->gpnum) {
1102 rsp->n_force_qs_ngp++;
1103 spin_unlock(&rnp->lock);
1104 goto unlock_ret; /* no GP in progress, time updated. */
1105 }
1106 spin_unlock(&rnp->lock);
1107 switch (signaled) {
1108 case RCU_GP_INIT:
1109
1110 break; /* grace period still initializing, ignore. */
1111
1112 case RCU_SAVE_DYNTICK:
1113
1114 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1115 break; /* So gcc recognizes the dead code. */
1116
1117 /* Record dyntick-idle state. */
1118 if (rcu_process_dyntick(rsp, lastcomp,
1119 dyntick_save_progress_counter))
1120 goto unlock_ret;
1121
1122 /* Update state, record completion counter. */
1123 spin_lock(&rnp->lock);
1124 if (lastcomp == rsp->completed) {
1125 rsp->signaled = RCU_FORCE_QS;
1126 dyntick_record_completed(rsp, lastcomp);
1127 }
1128 spin_unlock(&rnp->lock);
1129 break;
1130
1131 case RCU_FORCE_QS:
1132
1133 /* Check dyntick-idle state, send IPI to laggarts. */
1134 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1135 rcu_implicit_dynticks_qs))
1136 goto unlock_ret;
1137
1138 /* Leave state in case more forcing is required. */
1139
1140 break;
1141 }
1142 unlock_ret:
1143 spin_unlock_irqrestore(&rsp->fqslock, flags);
1144 }
1145
1146 #else /* #ifdef CONFIG_SMP */
1147
1148 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1149 {
1150 set_need_resched();
1151 }
1152
1153 #endif /* #else #ifdef CONFIG_SMP */
1154
1155 /*
1156 * This does the RCU processing work from softirq context for the
1157 * specified rcu_state and rcu_data structures. This may be called
1158 * only from the CPU to whom the rdp belongs.
1159 */
1160 static void
1161 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1162 {
1163 unsigned long flags;
1164
1165 WARN_ON_ONCE(rdp->beenonline == 0);
1166
1167 /*
1168 * If an RCU GP has gone long enough, go check for dyntick
1169 * idle CPUs and, if needed, send resched IPIs.
1170 */
1171 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1172 force_quiescent_state(rsp, 1);
1173
1174 /*
1175 * Advance callbacks in response to end of earlier grace
1176 * period that some other CPU ended.
1177 */
1178 rcu_process_gp_end(rsp, rdp);
1179
1180 /* Update RCU state based on any recent quiescent states. */
1181 rcu_check_quiescent_state(rsp, rdp);
1182
1183 /* Does this CPU require a not-yet-started grace period? */
1184 if (cpu_needs_another_gp(rsp, rdp)) {
1185 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1186 rcu_start_gp(rsp, flags); /* releases above lock */
1187 }
1188
1189 /* If there are callbacks ready, invoke them. */
1190 rcu_do_batch(rdp);
1191 }
1192
1193 /*
1194 * Do softirq processing for the current CPU.
1195 */
1196 static void rcu_process_callbacks(struct softirq_action *unused)
1197 {
1198 /*
1199 * Memory references from any prior RCU read-side critical sections
1200 * executed by the interrupted code must be seen before any RCU
1201 * grace-period manipulations below.
1202 */
1203 smp_mb(); /* See above block comment. */
1204
1205 __rcu_process_callbacks(&rcu_sched_state,
1206 &__get_cpu_var(rcu_sched_data));
1207 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1208 rcu_preempt_process_callbacks();
1209
1210 /*
1211 * Memory references from any later RCU read-side critical sections
1212 * executed by the interrupted code must be seen after any RCU
1213 * grace-period manipulations above.
1214 */
1215 smp_mb(); /* See above block comment. */
1216 }
1217
1218 static void
1219 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1220 struct rcu_state *rsp)
1221 {
1222 unsigned long flags;
1223 struct rcu_data *rdp;
1224
1225 head->func = func;
1226 head->next = NULL;
1227
1228 smp_mb(); /* Ensure RCU update seen before callback registry. */
1229
1230 /*
1231 * Opportunistically note grace-period endings and beginnings.
1232 * Note that we might see a beginning right after we see an
1233 * end, but never vice versa, since this CPU has to pass through
1234 * a quiescent state betweentimes.
1235 */
1236 local_irq_save(flags);
1237 rdp = rsp->rda[smp_processor_id()];
1238 rcu_process_gp_end(rsp, rdp);
1239 check_for_new_grace_period(rsp, rdp);
1240
1241 /* Add the callback to our list. */
1242 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1243 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1244
1245 /* Start a new grace period if one not already started. */
1246 if (!rcu_gp_in_progress(rsp)) {
1247 unsigned long nestflag;
1248 struct rcu_node *rnp_root = rcu_get_root(rsp);
1249
1250 spin_lock_irqsave(&rnp_root->lock, nestflag);
1251 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1252 }
1253
1254 /* Force the grace period if too many callbacks or too long waiting. */
1255 if (unlikely(++rdp->qlen > qhimark)) {
1256 rdp->blimit = LONG_MAX;
1257 force_quiescent_state(rsp, 0);
1258 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1259 force_quiescent_state(rsp, 1);
1260 local_irq_restore(flags);
1261 }
1262
1263 /*
1264 * Queue an RCU-sched callback for invocation after a grace period.
1265 */
1266 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1267 {
1268 __call_rcu(head, func, &rcu_sched_state);
1269 }
1270 EXPORT_SYMBOL_GPL(call_rcu_sched);
1271
1272 /*
1273 * Queue an RCU for invocation after a quicker grace period.
1274 */
1275 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1276 {
1277 __call_rcu(head, func, &rcu_bh_state);
1278 }
1279 EXPORT_SYMBOL_GPL(call_rcu_bh);
1280
1281 /*
1282 * Check to see if there is any immediate RCU-related work to be done
1283 * by the current CPU, for the specified type of RCU, returning 1 if so.
1284 * The checks are in order of increasing expense: checks that can be
1285 * carried out against CPU-local state are performed first. However,
1286 * we must check for CPU stalls first, else we might not get a chance.
1287 */
1288 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1289 {
1290 rdp->n_rcu_pending++;
1291
1292 /* Check for CPU stalls, if enabled. */
1293 check_cpu_stall(rsp, rdp);
1294
1295 /* Is the RCU core waiting for a quiescent state from this CPU? */
1296 if (rdp->qs_pending) {
1297 rdp->n_rp_qs_pending++;
1298 return 1;
1299 }
1300
1301 /* Does this CPU have callbacks ready to invoke? */
1302 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1303 rdp->n_rp_cb_ready++;
1304 return 1;
1305 }
1306
1307 /* Has RCU gone idle with this CPU needing another grace period? */
1308 if (cpu_needs_another_gp(rsp, rdp)) {
1309 rdp->n_rp_cpu_needs_gp++;
1310 return 1;
1311 }
1312
1313 /* Has another RCU grace period completed? */
1314 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1315 rdp->n_rp_gp_completed++;
1316 return 1;
1317 }
1318
1319 /* Has a new RCU grace period started? */
1320 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1321 rdp->n_rp_gp_started++;
1322 return 1;
1323 }
1324
1325 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1326 if (rcu_gp_in_progress(rsp) &&
1327 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1328 rdp->n_rp_need_fqs++;
1329 return 1;
1330 }
1331
1332 /* nothing to do */
1333 rdp->n_rp_need_nothing++;
1334 return 0;
1335 }
1336
1337 /*
1338 * Check to see if there is any immediate RCU-related work to be done
1339 * by the current CPU, returning 1 if so. This function is part of the
1340 * RCU implementation; it is -not- an exported member of the RCU API.
1341 */
1342 static int rcu_pending(int cpu)
1343 {
1344 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1345 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1346 rcu_preempt_pending(cpu);
1347 }
1348
1349 /*
1350 * Check to see if any future RCU-related work will need to be done
1351 * by the current CPU, even if none need be done immediately, returning
1352 * 1 if so. This function is part of the RCU implementation; it is -not-
1353 * an exported member of the RCU API.
1354 */
1355 int rcu_needs_cpu(int cpu)
1356 {
1357 /* RCU callbacks either ready or pending? */
1358 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1359 per_cpu(rcu_bh_data, cpu).nxtlist ||
1360 rcu_preempt_needs_cpu(cpu);
1361 }
1362
1363 /*
1364 * Do boot-time initialization of a CPU's per-CPU RCU data.
1365 */
1366 static void __init
1367 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1368 {
1369 unsigned long flags;
1370 int i;
1371 struct rcu_data *rdp = rsp->rda[cpu];
1372 struct rcu_node *rnp = rcu_get_root(rsp);
1373
1374 /* Set up local state, ensuring consistent view of global state. */
1375 spin_lock_irqsave(&rnp->lock, flags);
1376 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1377 rdp->nxtlist = NULL;
1378 for (i = 0; i < RCU_NEXT_SIZE; i++)
1379 rdp->nxttail[i] = &rdp->nxtlist;
1380 rdp->qlen = 0;
1381 #ifdef CONFIG_NO_HZ
1382 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1383 #endif /* #ifdef CONFIG_NO_HZ */
1384 rdp->cpu = cpu;
1385 spin_unlock_irqrestore(&rnp->lock, flags);
1386 }
1387
1388 /*
1389 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1390 * offline event can be happening at a given time. Note also that we
1391 * can accept some slop in the rsp->completed access due to the fact
1392 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1393 */
1394 static void __cpuinit
1395 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1396 {
1397 unsigned long flags;
1398 long lastcomp;
1399 unsigned long mask;
1400 struct rcu_data *rdp = rsp->rda[cpu];
1401 struct rcu_node *rnp = rcu_get_root(rsp);
1402
1403 /* Set up local state, ensuring consistent view of global state. */
1404 spin_lock_irqsave(&rnp->lock, flags);
1405 lastcomp = rsp->completed;
1406 rdp->completed = lastcomp;
1407 rdp->gpnum = lastcomp;
1408 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1409 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1410 rdp->beenonline = 1; /* We have now been online. */
1411 rdp->preemptable = preemptable;
1412 rdp->passed_quiesc_completed = lastcomp - 1;
1413 rdp->blimit = blimit;
1414 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1415
1416 /*
1417 * A new grace period might start here. If so, we won't be part
1418 * of it, but that is OK, as we are currently in a quiescent state.
1419 */
1420
1421 /* Exclude any attempts to start a new GP on large systems. */
1422 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1423
1424 /* Add CPU to rcu_node bitmasks. */
1425 rnp = rdp->mynode;
1426 mask = rdp->grpmask;
1427 do {
1428 /* Exclude any attempts to start a new GP on small systems. */
1429 spin_lock(&rnp->lock); /* irqs already disabled. */
1430 rnp->qsmaskinit |= mask;
1431 mask = rnp->grpmask;
1432 spin_unlock(&rnp->lock); /* irqs already disabled. */
1433 rnp = rnp->parent;
1434 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1435
1436 spin_unlock_irqrestore(&rsp->onofflock, flags);
1437 }
1438
1439 static void __cpuinit rcu_online_cpu(int cpu)
1440 {
1441 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1442 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1443 rcu_preempt_init_percpu_data(cpu);
1444 }
1445
1446 /*
1447 * Handle CPU online/offline notification events.
1448 */
1449 int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1450 unsigned long action, void *hcpu)
1451 {
1452 long cpu = (long)hcpu;
1453
1454 switch (action) {
1455 case CPU_UP_PREPARE:
1456 case CPU_UP_PREPARE_FROZEN:
1457 rcu_online_cpu(cpu);
1458 break;
1459 case CPU_DEAD:
1460 case CPU_DEAD_FROZEN:
1461 case CPU_UP_CANCELED:
1462 case CPU_UP_CANCELED_FROZEN:
1463 rcu_offline_cpu(cpu);
1464 break;
1465 default:
1466 break;
1467 }
1468 return NOTIFY_OK;
1469 }
1470
1471 /*
1472 * Compute the per-level fanout, either using the exact fanout specified
1473 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1474 */
1475 #ifdef CONFIG_RCU_FANOUT_EXACT
1476 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1477 {
1478 int i;
1479
1480 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1481 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1482 }
1483 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1484 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1485 {
1486 int ccur;
1487 int cprv;
1488 int i;
1489
1490 cprv = NR_CPUS;
1491 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1492 ccur = rsp->levelcnt[i];
1493 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1494 cprv = ccur;
1495 }
1496 }
1497 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1498
1499 /*
1500 * Helper function for rcu_init() that initializes one rcu_state structure.
1501 */
1502 static void __init rcu_init_one(struct rcu_state *rsp)
1503 {
1504 int cpustride = 1;
1505 int i;
1506 int j;
1507 struct rcu_node *rnp;
1508
1509 /* Initialize the level-tracking arrays. */
1510
1511 for (i = 1; i < NUM_RCU_LVLS; i++)
1512 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1513 rcu_init_levelspread(rsp);
1514
1515 /* Initialize the elements themselves, starting from the leaves. */
1516
1517 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1518 cpustride *= rsp->levelspread[i];
1519 rnp = rsp->level[i];
1520 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1521 spin_lock_init(&rnp->lock);
1522 rnp->gpnum = 0;
1523 rnp->qsmask = 0;
1524 rnp->qsmaskinit = 0;
1525 rnp->grplo = j * cpustride;
1526 rnp->grphi = (j + 1) * cpustride - 1;
1527 if (rnp->grphi >= NR_CPUS)
1528 rnp->grphi = NR_CPUS - 1;
1529 if (i == 0) {
1530 rnp->grpnum = 0;
1531 rnp->grpmask = 0;
1532 rnp->parent = NULL;
1533 } else {
1534 rnp->grpnum = j % rsp->levelspread[i - 1];
1535 rnp->grpmask = 1UL << rnp->grpnum;
1536 rnp->parent = rsp->level[i - 1] +
1537 j / rsp->levelspread[i - 1];
1538 }
1539 rnp->level = i;
1540 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1541 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1542 }
1543 }
1544 }
1545
1546 /*
1547 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1548 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1549 * structure.
1550 */
1551 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1552 do { \
1553 rcu_init_one(rsp); \
1554 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1555 j = 0; \
1556 for_each_possible_cpu(i) { \
1557 if (i > rnp[j].grphi) \
1558 j++; \
1559 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1560 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1561 rcu_boot_init_percpu_data(i, rsp); \
1562 } \
1563 } while (0)
1564
1565 void __init __rcu_init(void)
1566 {
1567 int i; /* All used by RCU_INIT_FLAVOR(). */
1568 int j;
1569 struct rcu_node *rnp;
1570
1571 rcu_bootup_announce();
1572 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1573 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1574 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1575 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1576 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1577 __rcu_init_preempt();
1578 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1579 }
1580
1581 #include "rcutree_plugin.h"
This page took 0.101313 seconds and 5 git commands to generate.