e9a4ae94647f3874d7568b60e2d492560cb8fd5a
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49
50 #include "rcutree.h"
51
52 #ifdef CONFIG_DEBUG_LOCK_ALLOC
53 static struct lock_class_key rcu_lock_key;
54 struct lockdep_map rcu_lock_map =
55 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
56 EXPORT_SYMBOL_GPL(rcu_lock_map);
57 #endif
58
59 /* Data structures. */
60
61 #define RCU_STATE_INITIALIZER(name) { \
62 .level = { &name.node[0] }, \
63 .levelcnt = { \
64 NUM_RCU_LVL_0, /* root of hierarchy. */ \
65 NUM_RCU_LVL_1, \
66 NUM_RCU_LVL_2, \
67 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_SIGNAL_INIT, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
73 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 }
77
78 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
80
81 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
83
84 extern long rcu_batches_completed_sched(void);
85 static struct rcu_node *rcu_get_root(struct rcu_state *rsp);
86 static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
87 struct rcu_node *rnp, unsigned long flags);
88 static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags);
89 #ifdef CONFIG_HOTPLUG_CPU
90 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp);
91 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
92 static void __rcu_process_callbacks(struct rcu_state *rsp,
93 struct rcu_data *rdp);
94 static void __call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *rcu),
96 struct rcu_state *rsp);
97 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp);
98 static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
99 int preemptable);
100
101 #include "rcutree_plugin.h"
102
103 /*
104 * Note a quiescent state. Because we do not need to know
105 * how many quiescent states passed, just if there was at least
106 * one since the start of the grace period, this just sets a flag.
107 */
108 void rcu_sched_qs(int cpu)
109 {
110 unsigned long flags;
111 struct rcu_data *rdp;
112
113 local_irq_save(flags);
114 rdp = &per_cpu(rcu_sched_data, cpu);
115 rdp->passed_quiesc = 1;
116 rdp->passed_quiesc_completed = rdp->completed;
117 rcu_preempt_qs(cpu);
118 local_irq_restore(flags);
119 }
120
121 void rcu_bh_qs(int cpu)
122 {
123 unsigned long flags;
124 struct rcu_data *rdp;
125
126 local_irq_save(flags);
127 rdp = &per_cpu(rcu_bh_data, cpu);
128 rdp->passed_quiesc = 1;
129 rdp->passed_quiesc_completed = rdp->completed;
130 local_irq_restore(flags);
131 }
132
133 #ifdef CONFIG_NO_HZ
134 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
135 .dynticks_nesting = 1,
136 .dynticks = 1,
137 };
138 #endif /* #ifdef CONFIG_NO_HZ */
139
140 static int blimit = 10; /* Maximum callbacks per softirq. */
141 static int qhimark = 10000; /* If this many pending, ignore blimit. */
142 static int qlowmark = 100; /* Once only this many pending, use blimit. */
143
144 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
145 static int rcu_pending(int cpu);
146
147 /*
148 * Return the number of RCU-sched batches processed thus far for debug & stats.
149 */
150 long rcu_batches_completed_sched(void)
151 {
152 return rcu_sched_state.completed;
153 }
154 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
155
156 /*
157 * Return the number of RCU BH batches processed thus far for debug & stats.
158 */
159 long rcu_batches_completed_bh(void)
160 {
161 return rcu_bh_state.completed;
162 }
163 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
164
165 /*
166 * Does the CPU have callbacks ready to be invoked?
167 */
168 static int
169 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
170 {
171 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
172 }
173
174 /*
175 * Does the current CPU require a yet-as-unscheduled grace period?
176 */
177 static int
178 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
179 {
180 /* ACCESS_ONCE() because we are accessing outside of lock. */
181 return *rdp->nxttail[RCU_DONE_TAIL] &&
182 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
183 }
184
185 /*
186 * Return the root node of the specified rcu_state structure.
187 */
188 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
189 {
190 return &rsp->node[0];
191 }
192
193 #ifdef CONFIG_SMP
194
195 /*
196 * If the specified CPU is offline, tell the caller that it is in
197 * a quiescent state. Otherwise, whack it with a reschedule IPI.
198 * Grace periods can end up waiting on an offline CPU when that
199 * CPU is in the process of coming online -- it will be added to the
200 * rcu_node bitmasks before it actually makes it online. The same thing
201 * can happen while a CPU is in the process of coming online. Because this
202 * race is quite rare, we check for it after detecting that the grace
203 * period has been delayed rather than checking each and every CPU
204 * each and every time we start a new grace period.
205 */
206 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
207 {
208 /*
209 * If the CPU is offline, it is in a quiescent state. We can
210 * trust its state not to change because interrupts are disabled.
211 */
212 if (cpu_is_offline(rdp->cpu)) {
213 rdp->offline_fqs++;
214 return 1;
215 }
216
217 /* If preemptable RCU, no point in sending reschedule IPI. */
218 if (rdp->preemptable)
219 return 0;
220
221 /* The CPU is online, so send it a reschedule IPI. */
222 if (rdp->cpu != smp_processor_id())
223 smp_send_reschedule(rdp->cpu);
224 else
225 set_need_resched();
226 rdp->resched_ipi++;
227 return 0;
228 }
229
230 #endif /* #ifdef CONFIG_SMP */
231
232 #ifdef CONFIG_NO_HZ
233
234 /**
235 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
236 *
237 * Enter nohz mode, in other words, -leave- the mode in which RCU
238 * read-side critical sections can occur. (Though RCU read-side
239 * critical sections can occur in irq handlers in nohz mode, a possibility
240 * handled by rcu_irq_enter() and rcu_irq_exit()).
241 */
242 void rcu_enter_nohz(void)
243 {
244 unsigned long flags;
245 struct rcu_dynticks *rdtp;
246
247 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
248 local_irq_save(flags);
249 rdtp = &__get_cpu_var(rcu_dynticks);
250 rdtp->dynticks++;
251 rdtp->dynticks_nesting--;
252 WARN_ON_ONCE(rdtp->dynticks & 0x1);
253 local_irq_restore(flags);
254 }
255
256 /*
257 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
258 *
259 * Exit nohz mode, in other words, -enter- the mode in which RCU
260 * read-side critical sections normally occur.
261 */
262 void rcu_exit_nohz(void)
263 {
264 unsigned long flags;
265 struct rcu_dynticks *rdtp;
266
267 local_irq_save(flags);
268 rdtp = &__get_cpu_var(rcu_dynticks);
269 rdtp->dynticks++;
270 rdtp->dynticks_nesting++;
271 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
272 local_irq_restore(flags);
273 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
274 }
275
276 /**
277 * rcu_nmi_enter - inform RCU of entry to NMI context
278 *
279 * If the CPU was idle with dynamic ticks active, and there is no
280 * irq handler running, this updates rdtp->dynticks_nmi to let the
281 * RCU grace-period handling know that the CPU is active.
282 */
283 void rcu_nmi_enter(void)
284 {
285 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
286
287 if (rdtp->dynticks & 0x1)
288 return;
289 rdtp->dynticks_nmi++;
290 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
291 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
292 }
293
294 /**
295 * rcu_nmi_exit - inform RCU of exit from NMI context
296 *
297 * If the CPU was idle with dynamic ticks active, and there is no
298 * irq handler running, this updates rdtp->dynticks_nmi to let the
299 * RCU grace-period handling know that the CPU is no longer active.
300 */
301 void rcu_nmi_exit(void)
302 {
303 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
304
305 if (rdtp->dynticks & 0x1)
306 return;
307 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
308 rdtp->dynticks_nmi++;
309 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
310 }
311
312 /**
313 * rcu_irq_enter - inform RCU of entry to hard irq context
314 *
315 * If the CPU was idle with dynamic ticks active, this updates the
316 * rdtp->dynticks to let the RCU handling know that the CPU is active.
317 */
318 void rcu_irq_enter(void)
319 {
320 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
321
322 if (rdtp->dynticks_nesting++)
323 return;
324 rdtp->dynticks++;
325 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
326 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
327 }
328
329 /**
330 * rcu_irq_exit - inform RCU of exit from hard irq context
331 *
332 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
333 * to put let the RCU handling be aware that the CPU is going back to idle
334 * with no ticks.
335 */
336 void rcu_irq_exit(void)
337 {
338 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
339
340 if (--rdtp->dynticks_nesting)
341 return;
342 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
343 rdtp->dynticks++;
344 WARN_ON_ONCE(rdtp->dynticks & 0x1);
345
346 /* If the interrupt queued a callback, get out of dyntick mode. */
347 if (__get_cpu_var(rcu_sched_data).nxtlist ||
348 __get_cpu_var(rcu_bh_data).nxtlist)
349 set_need_resched();
350 }
351
352 /*
353 * Record the specified "completed" value, which is later used to validate
354 * dynticks counter manipulations. Specify "rsp->completed - 1" to
355 * unconditionally invalidate any future dynticks manipulations (which is
356 * useful at the beginning of a grace period).
357 */
358 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
359 {
360 rsp->dynticks_completed = comp;
361 }
362
363 #ifdef CONFIG_SMP
364
365 /*
366 * Recall the previously recorded value of the completion for dynticks.
367 */
368 static long dyntick_recall_completed(struct rcu_state *rsp)
369 {
370 return rsp->dynticks_completed;
371 }
372
373 /*
374 * Snapshot the specified CPU's dynticks counter so that we can later
375 * credit them with an implicit quiescent state. Return 1 if this CPU
376 * is already in a quiescent state courtesy of dynticks idle mode.
377 */
378 static int dyntick_save_progress_counter(struct rcu_data *rdp)
379 {
380 int ret;
381 int snap;
382 int snap_nmi;
383
384 snap = rdp->dynticks->dynticks;
385 snap_nmi = rdp->dynticks->dynticks_nmi;
386 smp_mb(); /* Order sampling of snap with end of grace period. */
387 rdp->dynticks_snap = snap;
388 rdp->dynticks_nmi_snap = snap_nmi;
389 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
390 if (ret)
391 rdp->dynticks_fqs++;
392 return ret;
393 }
394
395 /*
396 * Return true if the specified CPU has passed through a quiescent
397 * state by virtue of being in or having passed through an dynticks
398 * idle state since the last call to dyntick_save_progress_counter()
399 * for this same CPU.
400 */
401 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
402 {
403 long curr;
404 long curr_nmi;
405 long snap;
406 long snap_nmi;
407
408 curr = rdp->dynticks->dynticks;
409 snap = rdp->dynticks_snap;
410 curr_nmi = rdp->dynticks->dynticks_nmi;
411 snap_nmi = rdp->dynticks_nmi_snap;
412 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
413
414 /*
415 * If the CPU passed through or entered a dynticks idle phase with
416 * no active irq/NMI handlers, then we can safely pretend that the CPU
417 * already acknowledged the request to pass through a quiescent
418 * state. Either way, that CPU cannot possibly be in an RCU
419 * read-side critical section that started before the beginning
420 * of the current RCU grace period.
421 */
422 if ((curr != snap || (curr & 0x1) == 0) &&
423 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
424 rdp->dynticks_fqs++;
425 return 1;
426 }
427
428 /* Go check for the CPU being offline. */
429 return rcu_implicit_offline_qs(rdp);
430 }
431
432 #endif /* #ifdef CONFIG_SMP */
433
434 #else /* #ifdef CONFIG_NO_HZ */
435
436 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
437 {
438 }
439
440 #ifdef CONFIG_SMP
441
442 /*
443 * If there are no dynticks, then the only way that a CPU can passively
444 * be in a quiescent state is to be offline. Unlike dynticks idle, which
445 * is a point in time during the prior (already finished) grace period,
446 * an offline CPU is always in a quiescent state, and thus can be
447 * unconditionally applied. So just return the current value of completed.
448 */
449 static long dyntick_recall_completed(struct rcu_state *rsp)
450 {
451 return rsp->completed;
452 }
453
454 static int dyntick_save_progress_counter(struct rcu_data *rdp)
455 {
456 return 0;
457 }
458
459 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
460 {
461 return rcu_implicit_offline_qs(rdp);
462 }
463
464 #endif /* #ifdef CONFIG_SMP */
465
466 #endif /* #else #ifdef CONFIG_NO_HZ */
467
468 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
469
470 static void record_gp_stall_check_time(struct rcu_state *rsp)
471 {
472 rsp->gp_start = jiffies;
473 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
474 }
475
476 static void print_other_cpu_stall(struct rcu_state *rsp)
477 {
478 int cpu;
479 long delta;
480 unsigned long flags;
481 struct rcu_node *rnp = rcu_get_root(rsp);
482 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
483 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
484
485 /* Only let one CPU complain about others per time interval. */
486
487 spin_lock_irqsave(&rnp->lock, flags);
488 delta = jiffies - rsp->jiffies_stall;
489 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
490 spin_unlock_irqrestore(&rnp->lock, flags);
491 return;
492 }
493 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
494 spin_unlock_irqrestore(&rnp->lock, flags);
495
496 /* OK, time to rat on our buddy... */
497
498 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
499 for (; rnp_cur < rnp_end; rnp_cur++) {
500 rcu_print_task_stall(rnp);
501 if (rnp_cur->qsmask == 0)
502 continue;
503 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
504 if (rnp_cur->qsmask & (1UL << cpu))
505 printk(" %d", rnp_cur->grplo + cpu);
506 }
507 printk(" (detected by %d, t=%ld jiffies)\n",
508 smp_processor_id(), (long)(jiffies - rsp->gp_start));
509 trigger_all_cpu_backtrace();
510
511 force_quiescent_state(rsp, 0); /* Kick them all. */
512 }
513
514 static void print_cpu_stall(struct rcu_state *rsp)
515 {
516 unsigned long flags;
517 struct rcu_node *rnp = rcu_get_root(rsp);
518
519 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
520 smp_processor_id(), jiffies - rsp->gp_start);
521 trigger_all_cpu_backtrace();
522
523 spin_lock_irqsave(&rnp->lock, flags);
524 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
525 rsp->jiffies_stall =
526 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
527 spin_unlock_irqrestore(&rnp->lock, flags);
528
529 set_need_resched(); /* kick ourselves to get things going. */
530 }
531
532 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
533 {
534 long delta;
535 struct rcu_node *rnp;
536
537 delta = jiffies - rsp->jiffies_stall;
538 rnp = rdp->mynode;
539 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
540
541 /* We haven't checked in, so go dump stack. */
542 print_cpu_stall(rsp);
543
544 } else if (rsp->gpnum != rsp->completed &&
545 delta >= RCU_STALL_RAT_DELAY) {
546
547 /* They had two time units to dump stack, so complain. */
548 print_other_cpu_stall(rsp);
549 }
550 }
551
552 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
553
554 static void record_gp_stall_check_time(struct rcu_state *rsp)
555 {
556 }
557
558 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
559 {
560 }
561
562 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
563
564 /*
565 * Update CPU-local rcu_data state to record the newly noticed grace period.
566 * This is used both when we started the grace period and when we notice
567 * that someone else started the grace period.
568 */
569 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
570 {
571 rdp->qs_pending = 1;
572 rdp->passed_quiesc = 0;
573 rdp->gpnum = rsp->gpnum;
574 }
575
576 /*
577 * Did someone else start a new RCU grace period start since we last
578 * checked? Update local state appropriately if so. Must be called
579 * on the CPU corresponding to rdp.
580 */
581 static int
582 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
583 {
584 unsigned long flags;
585 int ret = 0;
586
587 local_irq_save(flags);
588 if (rdp->gpnum != rsp->gpnum) {
589 note_new_gpnum(rsp, rdp);
590 ret = 1;
591 }
592 local_irq_restore(flags);
593 return ret;
594 }
595
596 /*
597 * Start a new RCU grace period if warranted, re-initializing the hierarchy
598 * in preparation for detecting the next grace period. The caller must hold
599 * the root node's ->lock, which is released before return. Hard irqs must
600 * be disabled.
601 */
602 static void
603 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
604 __releases(rcu_get_root(rsp)->lock)
605 {
606 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
607 struct rcu_node *rnp = rcu_get_root(rsp);
608 struct rcu_node *rnp_cur;
609 struct rcu_node *rnp_end;
610
611 if (!cpu_needs_another_gp(rsp, rdp)) {
612 spin_unlock_irqrestore(&rnp->lock, flags);
613 return;
614 }
615
616 /* Advance to a new grace period and initialize state. */
617 rsp->gpnum++;
618 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
619 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
620 record_gp_stall_check_time(rsp);
621 dyntick_record_completed(rsp, rsp->completed - 1);
622 note_new_gpnum(rsp, rdp);
623
624 /*
625 * Because we are first, we know that all our callbacks will
626 * be covered by this upcoming grace period, even the ones
627 * that were registered arbitrarily recently.
628 */
629 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
630 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
631
632 /* Special-case the common single-level case. */
633 if (NUM_RCU_NODES == 1) {
634 rnp->qsmask = rnp->qsmaskinit;
635 rcu_preempt_check_blocked_tasks(rnp);
636 rnp->gpnum = rsp->gpnum;
637 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
638 spin_unlock_irqrestore(&rnp->lock, flags);
639 return;
640 }
641
642 spin_unlock(&rnp->lock); /* leave irqs disabled. */
643
644
645 /* Exclude any concurrent CPU-hotplug operations. */
646 spin_lock(&rsp->onofflock); /* irqs already disabled. */
647
648 /*
649 * Set the quiescent-state-needed bits in all the rcu_node
650 * structures for all currently online CPUs in breadth-first
651 * order, starting from the root rcu_node structure. This
652 * operation relies on the layout of the hierarchy within the
653 * rsp->node[] array. Note that other CPUs will access only
654 * the leaves of the hierarchy, which still indicate that no
655 * grace period is in progress, at least until the corresponding
656 * leaf node has been initialized. In addition, we have excluded
657 * CPU-hotplug operations.
658 *
659 * Note that the grace period cannot complete until we finish
660 * the initialization process, as there will be at least one
661 * qsmask bit set in the root node until that time, namely the
662 * one corresponding to this CPU, due to the fact that we have
663 * irqs disabled.
664 */
665 rnp_end = &rsp->node[NUM_RCU_NODES];
666 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) {
667 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
668 rnp_cur->qsmask = rnp_cur->qsmaskinit;
669 rcu_preempt_check_blocked_tasks(rnp);
670 rnp->gpnum = rsp->gpnum;
671 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
672 }
673
674 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
675 spin_unlock_irqrestore(&rsp->onofflock, flags);
676 }
677
678 /*
679 * Advance this CPU's callbacks, but only if the current grace period
680 * has ended. This may be called only from the CPU to whom the rdp
681 * belongs.
682 */
683 static void
684 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
685 {
686 long completed_snap;
687 unsigned long flags;
688
689 local_irq_save(flags);
690 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
691
692 /* Did another grace period end? */
693 if (rdp->completed != completed_snap) {
694
695 /* Advance callbacks. No harm if list empty. */
696 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
697 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
698 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
699
700 /* Remember that we saw this grace-period completion. */
701 rdp->completed = completed_snap;
702 }
703 local_irq_restore(flags);
704 }
705
706 /*
707 * Clean up after the prior grace period and let rcu_start_gp() start up
708 * the next grace period if one is needed. Note that the caller must
709 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
710 */
711 static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
712 __releases(rnp->lock)
713 {
714 rsp->completed = rsp->gpnum;
715 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
716 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
717 }
718
719 /*
720 * Similar to cpu_quiet(), for which it is a helper function. Allows
721 * a group of CPUs to be quieted at one go, though all the CPUs in the
722 * group must be represented by the same leaf rcu_node structure.
723 * That structure's lock must be held upon entry, and it is released
724 * before return.
725 */
726 static void
727 cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
728 unsigned long flags)
729 __releases(rnp->lock)
730 {
731 /* Walk up the rcu_node hierarchy. */
732 for (;;) {
733 if (!(rnp->qsmask & mask)) {
734
735 /* Our bit has already been cleared, so done. */
736 spin_unlock_irqrestore(&rnp->lock, flags);
737 return;
738 }
739 rnp->qsmask &= ~mask;
740 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
741
742 /* Other bits still set at this level, so done. */
743 spin_unlock_irqrestore(&rnp->lock, flags);
744 return;
745 }
746 mask = rnp->grpmask;
747 if (rnp->parent == NULL) {
748
749 /* No more levels. Exit loop holding root lock. */
750
751 break;
752 }
753 spin_unlock_irqrestore(&rnp->lock, flags);
754 rnp = rnp->parent;
755 spin_lock_irqsave(&rnp->lock, flags);
756 }
757
758 /*
759 * Get here if we are the last CPU to pass through a quiescent
760 * state for this grace period. Invoke cpu_quiet_msk_finish()
761 * to clean up and start the next grace period if one is needed.
762 */
763 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
764 }
765
766 /*
767 * Record a quiescent state for the specified CPU, which must either be
768 * the current CPU or an offline CPU. The lastcomp argument is used to
769 * make sure we are still in the grace period of interest. We don't want
770 * to end the current grace period based on quiescent states detected in
771 * an earlier grace period!
772 */
773 static void
774 cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
775 {
776 unsigned long flags;
777 unsigned long mask;
778 struct rcu_node *rnp;
779
780 rnp = rdp->mynode;
781 spin_lock_irqsave(&rnp->lock, flags);
782 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
783
784 /*
785 * Someone beat us to it for this grace period, so leave.
786 * The race with GP start is resolved by the fact that we
787 * hold the leaf rcu_node lock, so that the per-CPU bits
788 * cannot yet be initialized -- so we would simply find our
789 * CPU's bit already cleared in cpu_quiet_msk() if this race
790 * occurred.
791 */
792 rdp->passed_quiesc = 0; /* try again later! */
793 spin_unlock_irqrestore(&rnp->lock, flags);
794 return;
795 }
796 mask = rdp->grpmask;
797 if ((rnp->qsmask & mask) == 0) {
798 spin_unlock_irqrestore(&rnp->lock, flags);
799 } else {
800 rdp->qs_pending = 0;
801
802 /*
803 * This GP can't end until cpu checks in, so all of our
804 * callbacks can be processed during the next GP.
805 */
806 rdp = rsp->rda[smp_processor_id()];
807 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
808
809 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
810 }
811 }
812
813 /*
814 * Check to see if there is a new grace period of which this CPU
815 * is not yet aware, and if so, set up local rcu_data state for it.
816 * Otherwise, see if this CPU has just passed through its first
817 * quiescent state for this grace period, and record that fact if so.
818 */
819 static void
820 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
821 {
822 /* If there is now a new grace period, record and return. */
823 if (check_for_new_grace_period(rsp, rdp))
824 return;
825
826 /*
827 * Does this CPU still need to do its part for current grace period?
828 * If no, return and let the other CPUs do their part as well.
829 */
830 if (!rdp->qs_pending)
831 return;
832
833 /*
834 * Was there a quiescent state since the beginning of the grace
835 * period? If no, then exit and wait for the next call.
836 */
837 if (!rdp->passed_quiesc)
838 return;
839
840 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
841 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
842 }
843
844 #ifdef CONFIG_HOTPLUG_CPU
845
846 /*
847 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
848 * and move all callbacks from the outgoing CPU to the current one.
849 */
850 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
851 {
852 int i;
853 unsigned long flags;
854 long lastcomp;
855 unsigned long mask;
856 struct rcu_data *rdp = rsp->rda[cpu];
857 struct rcu_data *rdp_me;
858 struct rcu_node *rnp;
859
860 /* Exclude any attempts to start a new grace period. */
861 spin_lock_irqsave(&rsp->onofflock, flags);
862
863 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
864 rnp = rdp->mynode;
865 mask = rdp->grpmask; /* rnp->grplo is constant. */
866 do {
867 spin_lock(&rnp->lock); /* irqs already disabled. */
868 rnp->qsmaskinit &= ~mask;
869 if (rnp->qsmaskinit != 0) {
870 spin_unlock(&rnp->lock); /* irqs remain disabled. */
871 break;
872 }
873 rcu_preempt_offline_tasks(rsp, rnp);
874 mask = rnp->grpmask;
875 spin_unlock(&rnp->lock); /* irqs remain disabled. */
876 rnp = rnp->parent;
877 } while (rnp != NULL);
878 lastcomp = rsp->completed;
879
880 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
881
882 /* Being offline is a quiescent state, so go record it. */
883 cpu_quiet(cpu, rsp, rdp, lastcomp);
884
885 /*
886 * Move callbacks from the outgoing CPU to the running CPU.
887 * Note that the outgoing CPU is now quiscent, so it is now
888 * (uncharacteristically) safe to access its rcu_data structure.
889 * Note also that we must carefully retain the order of the
890 * outgoing CPU's callbacks in order for rcu_barrier() to work
891 * correctly. Finally, note that we start all the callbacks
892 * afresh, even those that have passed through a grace period
893 * and are therefore ready to invoke. The theory is that hotplug
894 * events are rare, and that if they are frequent enough to
895 * indefinitely delay callbacks, you have far worse things to
896 * be worrying about.
897 */
898 rdp_me = rsp->rda[smp_processor_id()];
899 if (rdp->nxtlist != NULL) {
900 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
901 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
902 rdp->nxtlist = NULL;
903 for (i = 0; i < RCU_NEXT_SIZE; i++)
904 rdp->nxttail[i] = &rdp->nxtlist;
905 rdp_me->qlen += rdp->qlen;
906 rdp->qlen = 0;
907 }
908 local_irq_restore(flags);
909 }
910
911 /*
912 * Remove the specified CPU from the RCU hierarchy and move any pending
913 * callbacks that it might have to the current CPU. This code assumes
914 * that at least one CPU in the system will remain running at all times.
915 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
916 */
917 static void rcu_offline_cpu(int cpu)
918 {
919 __rcu_offline_cpu(cpu, &rcu_sched_state);
920 __rcu_offline_cpu(cpu, &rcu_bh_state);
921 rcu_preempt_offline_cpu(cpu);
922 }
923
924 #else /* #ifdef CONFIG_HOTPLUG_CPU */
925
926 static void rcu_offline_cpu(int cpu)
927 {
928 }
929
930 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
931
932 /*
933 * Invoke any RCU callbacks that have made it to the end of their grace
934 * period. Thottle as specified by rdp->blimit.
935 */
936 static void rcu_do_batch(struct rcu_data *rdp)
937 {
938 unsigned long flags;
939 struct rcu_head *next, *list, **tail;
940 int count;
941
942 /* If no callbacks are ready, just return.*/
943 if (!cpu_has_callbacks_ready_to_invoke(rdp))
944 return;
945
946 /*
947 * Extract the list of ready callbacks, disabling to prevent
948 * races with call_rcu() from interrupt handlers.
949 */
950 local_irq_save(flags);
951 list = rdp->nxtlist;
952 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
953 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
954 tail = rdp->nxttail[RCU_DONE_TAIL];
955 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
956 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
957 rdp->nxttail[count] = &rdp->nxtlist;
958 local_irq_restore(flags);
959
960 /* Invoke callbacks. */
961 count = 0;
962 while (list) {
963 next = list->next;
964 prefetch(next);
965 list->func(list);
966 list = next;
967 if (++count >= rdp->blimit)
968 break;
969 }
970
971 local_irq_save(flags);
972
973 /* Update count, and requeue any remaining callbacks. */
974 rdp->qlen -= count;
975 if (list != NULL) {
976 *tail = rdp->nxtlist;
977 rdp->nxtlist = list;
978 for (count = 0; count < RCU_NEXT_SIZE; count++)
979 if (&rdp->nxtlist == rdp->nxttail[count])
980 rdp->nxttail[count] = tail;
981 else
982 break;
983 }
984
985 /* Reinstate batch limit if we have worked down the excess. */
986 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
987 rdp->blimit = blimit;
988
989 local_irq_restore(flags);
990
991 /* Re-raise the RCU softirq if there are callbacks remaining. */
992 if (cpu_has_callbacks_ready_to_invoke(rdp))
993 raise_softirq(RCU_SOFTIRQ);
994 }
995
996 /*
997 * Check to see if this CPU is in a non-context-switch quiescent state
998 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
999 * Also schedule the RCU softirq handler.
1000 *
1001 * This function must be called with hardirqs disabled. It is normally
1002 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1003 * false, there is no point in invoking rcu_check_callbacks().
1004 */
1005 void rcu_check_callbacks(int cpu, int user)
1006 {
1007 if (!rcu_pending(cpu))
1008 return; /* if nothing for RCU to do. */
1009 if (user ||
1010 (idle_cpu(cpu) && rcu_scheduler_active &&
1011 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1012
1013 /*
1014 * Get here if this CPU took its interrupt from user
1015 * mode or from the idle loop, and if this is not a
1016 * nested interrupt. In this case, the CPU is in
1017 * a quiescent state, so note it.
1018 *
1019 * No memory barrier is required here because both
1020 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1021 * variables that other CPUs neither access nor modify,
1022 * at least not while the corresponding CPU is online.
1023 */
1024
1025 rcu_sched_qs(cpu);
1026 rcu_bh_qs(cpu);
1027
1028 } else if (!in_softirq()) {
1029
1030 /*
1031 * Get here if this CPU did not take its interrupt from
1032 * softirq, in other words, if it is not interrupting
1033 * a rcu_bh read-side critical section. This is an _bh
1034 * critical section, so note it.
1035 */
1036
1037 rcu_bh_qs(cpu);
1038 }
1039 rcu_preempt_check_callbacks(cpu);
1040 raise_softirq(RCU_SOFTIRQ);
1041 }
1042
1043 #ifdef CONFIG_SMP
1044
1045 /*
1046 * Scan the leaf rcu_node structures, processing dyntick state for any that
1047 * have not yet encountered a quiescent state, using the function specified.
1048 * Returns 1 if the current grace period ends while scanning (possibly
1049 * because we made it end).
1050 */
1051 static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1052 int (*f)(struct rcu_data *))
1053 {
1054 unsigned long bit;
1055 int cpu;
1056 unsigned long flags;
1057 unsigned long mask;
1058 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1059 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1060
1061 for (; rnp_cur < rnp_end; rnp_cur++) {
1062 mask = 0;
1063 spin_lock_irqsave(&rnp_cur->lock, flags);
1064 if (rsp->completed != lastcomp) {
1065 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1066 return 1;
1067 }
1068 if (rnp_cur->qsmask == 0) {
1069 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1070 continue;
1071 }
1072 cpu = rnp_cur->grplo;
1073 bit = 1;
1074 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1075 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1076 mask |= bit;
1077 }
1078 if (mask != 0 && rsp->completed == lastcomp) {
1079
1080 /* cpu_quiet_msk() releases rnp_cur->lock. */
1081 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1082 continue;
1083 }
1084 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1085 }
1086 return 0;
1087 }
1088
1089 /*
1090 * Force quiescent states on reluctant CPUs, and also detect which
1091 * CPUs are in dyntick-idle mode.
1092 */
1093 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1094 {
1095 unsigned long flags;
1096 long lastcomp;
1097 struct rcu_node *rnp = rcu_get_root(rsp);
1098 u8 signaled;
1099
1100 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1101 return; /* No grace period in progress, nothing to force. */
1102 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1103 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1104 return; /* Someone else is already on the job. */
1105 }
1106 if (relaxed &&
1107 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1108 goto unlock_ret; /* no emergency and done recently. */
1109 rsp->n_force_qs++;
1110 spin_lock(&rnp->lock);
1111 lastcomp = rsp->completed;
1112 signaled = rsp->signaled;
1113 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1114 if (lastcomp == rsp->gpnum) {
1115 rsp->n_force_qs_ngp++;
1116 spin_unlock(&rnp->lock);
1117 goto unlock_ret; /* no GP in progress, time updated. */
1118 }
1119 spin_unlock(&rnp->lock);
1120 switch (signaled) {
1121 case RCU_GP_INIT:
1122
1123 break; /* grace period still initializing, ignore. */
1124
1125 case RCU_SAVE_DYNTICK:
1126
1127 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1128 break; /* So gcc recognizes the dead code. */
1129
1130 /* Record dyntick-idle state. */
1131 if (rcu_process_dyntick(rsp, lastcomp,
1132 dyntick_save_progress_counter))
1133 goto unlock_ret;
1134
1135 /* Update state, record completion counter. */
1136 spin_lock(&rnp->lock);
1137 if (lastcomp == rsp->completed) {
1138 rsp->signaled = RCU_FORCE_QS;
1139 dyntick_record_completed(rsp, lastcomp);
1140 }
1141 spin_unlock(&rnp->lock);
1142 break;
1143
1144 case RCU_FORCE_QS:
1145
1146 /* Check dyntick-idle state, send IPI to laggarts. */
1147 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1148 rcu_implicit_dynticks_qs))
1149 goto unlock_ret;
1150
1151 /* Leave state in case more forcing is required. */
1152
1153 break;
1154 }
1155 unlock_ret:
1156 spin_unlock_irqrestore(&rsp->fqslock, flags);
1157 }
1158
1159 #else /* #ifdef CONFIG_SMP */
1160
1161 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1162 {
1163 set_need_resched();
1164 }
1165
1166 #endif /* #else #ifdef CONFIG_SMP */
1167
1168 /*
1169 * This does the RCU processing work from softirq context for the
1170 * specified rcu_state and rcu_data structures. This may be called
1171 * only from the CPU to whom the rdp belongs.
1172 */
1173 static void
1174 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1175 {
1176 unsigned long flags;
1177
1178 WARN_ON_ONCE(rdp->beenonline == 0);
1179
1180 /*
1181 * If an RCU GP has gone long enough, go check for dyntick
1182 * idle CPUs and, if needed, send resched IPIs.
1183 */
1184 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1185 force_quiescent_state(rsp, 1);
1186
1187 /*
1188 * Advance callbacks in response to end of earlier grace
1189 * period that some other CPU ended.
1190 */
1191 rcu_process_gp_end(rsp, rdp);
1192
1193 /* Update RCU state based on any recent quiescent states. */
1194 rcu_check_quiescent_state(rsp, rdp);
1195
1196 /* Does this CPU require a not-yet-started grace period? */
1197 if (cpu_needs_another_gp(rsp, rdp)) {
1198 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1199 rcu_start_gp(rsp, flags); /* releases above lock */
1200 }
1201
1202 /* If there are callbacks ready, invoke them. */
1203 rcu_do_batch(rdp);
1204 }
1205
1206 /*
1207 * Do softirq processing for the current CPU.
1208 */
1209 static void rcu_process_callbacks(struct softirq_action *unused)
1210 {
1211 /*
1212 * Memory references from any prior RCU read-side critical sections
1213 * executed by the interrupted code must be seen before any RCU
1214 * grace-period manipulations below.
1215 */
1216 smp_mb(); /* See above block comment. */
1217
1218 __rcu_process_callbacks(&rcu_sched_state,
1219 &__get_cpu_var(rcu_sched_data));
1220 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1221 rcu_preempt_process_callbacks();
1222
1223 /*
1224 * Memory references from any later RCU read-side critical sections
1225 * executed by the interrupted code must be seen after any RCU
1226 * grace-period manipulations above.
1227 */
1228 smp_mb(); /* See above block comment. */
1229 }
1230
1231 static void
1232 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1233 struct rcu_state *rsp)
1234 {
1235 unsigned long flags;
1236 struct rcu_data *rdp;
1237
1238 head->func = func;
1239 head->next = NULL;
1240
1241 smp_mb(); /* Ensure RCU update seen before callback registry. */
1242
1243 /*
1244 * Opportunistically note grace-period endings and beginnings.
1245 * Note that we might see a beginning right after we see an
1246 * end, but never vice versa, since this CPU has to pass through
1247 * a quiescent state betweentimes.
1248 */
1249 local_irq_save(flags);
1250 rdp = rsp->rda[smp_processor_id()];
1251 rcu_process_gp_end(rsp, rdp);
1252 check_for_new_grace_period(rsp, rdp);
1253
1254 /* Add the callback to our list. */
1255 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1256 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1257
1258 /* Start a new grace period if one not already started. */
1259 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1260 unsigned long nestflag;
1261 struct rcu_node *rnp_root = rcu_get_root(rsp);
1262
1263 spin_lock_irqsave(&rnp_root->lock, nestflag);
1264 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1265 }
1266
1267 /* Force the grace period if too many callbacks or too long waiting. */
1268 if (unlikely(++rdp->qlen > qhimark)) {
1269 rdp->blimit = LONG_MAX;
1270 force_quiescent_state(rsp, 0);
1271 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1272 force_quiescent_state(rsp, 1);
1273 local_irq_restore(flags);
1274 }
1275
1276 /*
1277 * Queue an RCU-sched callback for invocation after a grace period.
1278 */
1279 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1280 {
1281 __call_rcu(head, func, &rcu_sched_state);
1282 }
1283 EXPORT_SYMBOL_GPL(call_rcu_sched);
1284
1285 /*
1286 * Queue an RCU for invocation after a quicker grace period.
1287 */
1288 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1289 {
1290 __call_rcu(head, func, &rcu_bh_state);
1291 }
1292 EXPORT_SYMBOL_GPL(call_rcu_bh);
1293
1294 /*
1295 * Check to see if there is any immediate RCU-related work to be done
1296 * by the current CPU, for the specified type of RCU, returning 1 if so.
1297 * The checks are in order of increasing expense: checks that can be
1298 * carried out against CPU-local state are performed first. However,
1299 * we must check for CPU stalls first, else we might not get a chance.
1300 */
1301 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1302 {
1303 rdp->n_rcu_pending++;
1304
1305 /* Check for CPU stalls, if enabled. */
1306 check_cpu_stall(rsp, rdp);
1307
1308 /* Is the RCU core waiting for a quiescent state from this CPU? */
1309 if (rdp->qs_pending) {
1310 rdp->n_rp_qs_pending++;
1311 return 1;
1312 }
1313
1314 /* Does this CPU have callbacks ready to invoke? */
1315 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1316 rdp->n_rp_cb_ready++;
1317 return 1;
1318 }
1319
1320 /* Has RCU gone idle with this CPU needing another grace period? */
1321 if (cpu_needs_another_gp(rsp, rdp)) {
1322 rdp->n_rp_cpu_needs_gp++;
1323 return 1;
1324 }
1325
1326 /* Has another RCU grace period completed? */
1327 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1328 rdp->n_rp_gp_completed++;
1329 return 1;
1330 }
1331
1332 /* Has a new RCU grace period started? */
1333 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1334 rdp->n_rp_gp_started++;
1335 return 1;
1336 }
1337
1338 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1339 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
1340 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1341 rdp->n_rp_need_fqs++;
1342 return 1;
1343 }
1344
1345 /* nothing to do */
1346 rdp->n_rp_need_nothing++;
1347 return 0;
1348 }
1349
1350 /*
1351 * Check to see if there is any immediate RCU-related work to be done
1352 * by the current CPU, returning 1 if so. This function is part of the
1353 * RCU implementation; it is -not- an exported member of the RCU API.
1354 */
1355 static int rcu_pending(int cpu)
1356 {
1357 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1358 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1359 rcu_preempt_pending(cpu);
1360 }
1361
1362 /*
1363 * Check to see if any future RCU-related work will need to be done
1364 * by the current CPU, even if none need be done immediately, returning
1365 * 1 if so. This function is part of the RCU implementation; it is -not-
1366 * an exported member of the RCU API.
1367 */
1368 int rcu_needs_cpu(int cpu)
1369 {
1370 /* RCU callbacks either ready or pending? */
1371 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1372 per_cpu(rcu_bh_data, cpu).nxtlist ||
1373 rcu_preempt_needs_cpu(cpu);
1374 }
1375
1376 /*
1377 * Do boot-time initialization of a CPU's per-CPU RCU data.
1378 */
1379 static void __init
1380 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1381 {
1382 unsigned long flags;
1383 int i;
1384 struct rcu_data *rdp = rsp->rda[cpu];
1385 struct rcu_node *rnp = rcu_get_root(rsp);
1386
1387 /* Set up local state, ensuring consistent view of global state. */
1388 spin_lock_irqsave(&rnp->lock, flags);
1389 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1390 rdp->nxtlist = NULL;
1391 for (i = 0; i < RCU_NEXT_SIZE; i++)
1392 rdp->nxttail[i] = &rdp->nxtlist;
1393 rdp->qlen = 0;
1394 #ifdef CONFIG_NO_HZ
1395 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1396 #endif /* #ifdef CONFIG_NO_HZ */
1397 rdp->cpu = cpu;
1398 spin_unlock_irqrestore(&rnp->lock, flags);
1399 }
1400
1401 /*
1402 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1403 * offline event can be happening at a given time. Note also that we
1404 * can accept some slop in the rsp->completed access due to the fact
1405 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1406 */
1407 static void __cpuinit
1408 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1409 {
1410 unsigned long flags;
1411 long lastcomp;
1412 unsigned long mask;
1413 struct rcu_data *rdp = rsp->rda[cpu];
1414 struct rcu_node *rnp = rcu_get_root(rsp);
1415
1416 /* Set up local state, ensuring consistent view of global state. */
1417 spin_lock_irqsave(&rnp->lock, flags);
1418 lastcomp = rsp->completed;
1419 rdp->completed = lastcomp;
1420 rdp->gpnum = lastcomp;
1421 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1422 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1423 rdp->beenonline = 1; /* We have now been online. */
1424 rdp->preemptable = preemptable;
1425 rdp->passed_quiesc_completed = lastcomp - 1;
1426 rdp->blimit = blimit;
1427 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1428
1429 /*
1430 * A new grace period might start here. If so, we won't be part
1431 * of it, but that is OK, as we are currently in a quiescent state.
1432 */
1433
1434 /* Exclude any attempts to start a new GP on large systems. */
1435 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1436
1437 /* Add CPU to rcu_node bitmasks. */
1438 rnp = rdp->mynode;
1439 mask = rdp->grpmask;
1440 do {
1441 /* Exclude any attempts to start a new GP on small systems. */
1442 spin_lock(&rnp->lock); /* irqs already disabled. */
1443 rnp->qsmaskinit |= mask;
1444 mask = rnp->grpmask;
1445 spin_unlock(&rnp->lock); /* irqs already disabled. */
1446 rnp = rnp->parent;
1447 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1448
1449 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1450
1451 /*
1452 * A new grace period might start here. If so, we will be part of
1453 * it, and its gpnum will be greater than ours, so we will
1454 * participate. It is also possible for the gpnum to have been
1455 * incremented before this function was called, and the bitmasks
1456 * to not be filled out until now, in which case we will also
1457 * participate due to our gpnum being behind.
1458 */
1459
1460 /* Since it is coming online, the CPU is in a quiescent state. */
1461 cpu_quiet(cpu, rsp, rdp, lastcomp);
1462 local_irq_restore(flags);
1463 }
1464
1465 static void __cpuinit rcu_online_cpu(int cpu)
1466 {
1467 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1468 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1469 rcu_preempt_init_percpu_data(cpu);
1470 }
1471
1472 /*
1473 * Handle CPU online/offline notification events.
1474 */
1475 int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1476 unsigned long action, void *hcpu)
1477 {
1478 long cpu = (long)hcpu;
1479
1480 switch (action) {
1481 case CPU_UP_PREPARE:
1482 case CPU_UP_PREPARE_FROZEN:
1483 rcu_online_cpu(cpu);
1484 break;
1485 case CPU_DEAD:
1486 case CPU_DEAD_FROZEN:
1487 case CPU_UP_CANCELED:
1488 case CPU_UP_CANCELED_FROZEN:
1489 rcu_offline_cpu(cpu);
1490 break;
1491 default:
1492 break;
1493 }
1494 return NOTIFY_OK;
1495 }
1496
1497 /*
1498 * Compute the per-level fanout, either using the exact fanout specified
1499 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1500 */
1501 #ifdef CONFIG_RCU_FANOUT_EXACT
1502 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1503 {
1504 int i;
1505
1506 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1507 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1508 }
1509 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1510 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1511 {
1512 int ccur;
1513 int cprv;
1514 int i;
1515
1516 cprv = NR_CPUS;
1517 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1518 ccur = rsp->levelcnt[i];
1519 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1520 cprv = ccur;
1521 }
1522 }
1523 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1524
1525 /*
1526 * Helper function for rcu_init() that initializes one rcu_state structure.
1527 */
1528 static void __init rcu_init_one(struct rcu_state *rsp)
1529 {
1530 int cpustride = 1;
1531 int i;
1532 int j;
1533 struct rcu_node *rnp;
1534
1535 /* Initialize the level-tracking arrays. */
1536
1537 for (i = 1; i < NUM_RCU_LVLS; i++)
1538 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1539 rcu_init_levelspread(rsp);
1540
1541 /* Initialize the elements themselves, starting from the leaves. */
1542
1543 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1544 cpustride *= rsp->levelspread[i];
1545 rnp = rsp->level[i];
1546 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1547 spin_lock_init(&rnp->lock);
1548 rnp->gpnum = 0;
1549 rnp->qsmask = 0;
1550 rnp->qsmaskinit = 0;
1551 rnp->grplo = j * cpustride;
1552 rnp->grphi = (j + 1) * cpustride - 1;
1553 if (rnp->grphi >= NR_CPUS)
1554 rnp->grphi = NR_CPUS - 1;
1555 if (i == 0) {
1556 rnp->grpnum = 0;
1557 rnp->grpmask = 0;
1558 rnp->parent = NULL;
1559 } else {
1560 rnp->grpnum = j % rsp->levelspread[i - 1];
1561 rnp->grpmask = 1UL << rnp->grpnum;
1562 rnp->parent = rsp->level[i - 1] +
1563 j / rsp->levelspread[i - 1];
1564 }
1565 rnp->level = i;
1566 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1567 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1568 }
1569 }
1570 }
1571
1572 /*
1573 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1574 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1575 * structure.
1576 */
1577 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1578 do { \
1579 rcu_init_one(rsp); \
1580 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1581 j = 0; \
1582 for_each_possible_cpu(i) { \
1583 if (i > rnp[j].grphi) \
1584 j++; \
1585 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1586 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1587 rcu_boot_init_percpu_data(i, rsp); \
1588 } \
1589 } while (0)
1590
1591 #ifdef CONFIG_TREE_PREEMPT_RCU
1592
1593 void __init __rcu_init_preempt(void)
1594 {
1595 int i; /* All used by RCU_INIT_FLAVOR(). */
1596 int j;
1597 struct rcu_node *rnp;
1598
1599 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
1600 }
1601
1602 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1603
1604 void __init __rcu_init_preempt(void)
1605 {
1606 }
1607
1608 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1609
1610 void __init __rcu_init(void)
1611 {
1612 int i; /* All used by RCU_INIT_FLAVOR(). */
1613 int j;
1614 struct rcu_node *rnp;
1615
1616 rcu_bootup_announce();
1617 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1618 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1619 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1620 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1621 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1622 __rcu_init_preempt();
1623 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1624 }
1625
1626 module_param(blimit, int, 0);
1627 module_param(qhimark, int, 0);
1628 module_param(qlowmark, int, 0);
This page took 0.093277 seconds and 5 git commands to generate.