rcu: Kick adaptive-ticks CPUs that are holding up RCU grace periods
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59
60 #include "rcu.h"
61
62 /* Data structures. */
63
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67 #define RCU_STATE_INITIALIZER(sname, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = 0UL - 300UL, \
72 .completed = 0UL - 300UL, \
73 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 .name = #sname, \
79 }
80
81 struct rcu_state rcu_sched_state =
82 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89 LIST_HEAD(rcu_struct_flavors);
90
91 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
92 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
93 module_param(rcu_fanout_leaf, int, 0444);
94 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
95 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
96 NUM_RCU_LVL_0,
97 NUM_RCU_LVL_1,
98 NUM_RCU_LVL_2,
99 NUM_RCU_LVL_3,
100 NUM_RCU_LVL_4,
101 };
102 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
103
104 /*
105 * The rcu_scheduler_active variable transitions from zero to one just
106 * before the first task is spawned. So when this variable is zero, RCU
107 * can assume that there is but one task, allowing RCU to (for example)
108 * optimize synchronize_sched() to a simple barrier(). When this variable
109 * is one, RCU must actually do all the hard work required to detect real
110 * grace periods. This variable is also used to suppress boot-time false
111 * positives from lockdep-RCU error checking.
112 */
113 int rcu_scheduler_active __read_mostly;
114 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
115
116 /*
117 * The rcu_scheduler_fully_active variable transitions from zero to one
118 * during the early_initcall() processing, which is after the scheduler
119 * is capable of creating new tasks. So RCU processing (for example,
120 * creating tasks for RCU priority boosting) must be delayed until after
121 * rcu_scheduler_fully_active transitions from zero to one. We also
122 * currently delay invocation of any RCU callbacks until after this point.
123 *
124 * It might later prove better for people registering RCU callbacks during
125 * early boot to take responsibility for these callbacks, but one step at
126 * a time.
127 */
128 static int rcu_scheduler_fully_active __read_mostly;
129
130 #ifdef CONFIG_RCU_BOOST
131
132 /*
133 * Control variables for per-CPU and per-rcu_node kthreads. These
134 * handle all flavors of RCU.
135 */
136 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
137 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139 DEFINE_PER_CPU(char, rcu_cpu_has_work);
140
141 #endif /* #ifdef CONFIG_RCU_BOOST */
142
143 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 static void invoke_rcu_core(void);
145 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146
147 /*
148 * Track the rcutorture test sequence number and the update version
149 * number within a given test. The rcutorture_testseq is incremented
150 * on every rcutorture module load and unload, so has an odd value
151 * when a test is running. The rcutorture_vernum is set to zero
152 * when rcutorture starts and is incremented on each rcutorture update.
153 * These variables enable correlating rcutorture output with the
154 * RCU tracing information.
155 */
156 unsigned long rcutorture_testseq;
157 unsigned long rcutorture_vernum;
158
159 /*
160 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161 * permit this function to be invoked without holding the root rcu_node
162 * structure's ->lock, but of course results can be subject to change.
163 */
164 static int rcu_gp_in_progress(struct rcu_state *rsp)
165 {
166 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167 }
168
169 /*
170 * Note a quiescent state. Because we do not need to know
171 * how many quiescent states passed, just if there was at least
172 * one since the start of the grace period, this just sets a flag.
173 * The caller must have disabled preemption.
174 */
175 void rcu_sched_qs(int cpu)
176 {
177 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 void rcu_bh_qs(int cpu)
185 {
186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187
188 if (rdp->passed_quiesce == 0)
189 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190 rdp->passed_quiesce = 1;
191 }
192
193 /*
194 * Note a context switch. This is a quiescent state for RCU-sched,
195 * and requires special handling for preemptible RCU.
196 * The caller must have disabled preemption.
197 */
198 void rcu_note_context_switch(int cpu)
199 {
200 trace_rcu_utilization("Start context switch");
201 rcu_sched_qs(cpu);
202 rcu_preempt_note_context_switch(cpu);
203 trace_rcu_utilization("End context switch");
204 }
205 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206
207 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209 .dynticks = ATOMIC_INIT(1),
210 };
211
212 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
213 static long qhimark = 10000; /* If this many pending, ignore blimit. */
214 static long qlowmark = 100; /* Once only this many pending, use blimit. */
215
216 module_param(blimit, long, 0444);
217 module_param(qhimark, long, 0444);
218 module_param(qlowmark, long, 0444);
219
220 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
221 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
222
223 module_param(jiffies_till_first_fqs, ulong, 0644);
224 module_param(jiffies_till_next_fqs, ulong, 0644);
225
226 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
227 static void force_quiescent_state(struct rcu_state *rsp);
228 static int rcu_pending(int cpu);
229
230 /*
231 * Return the number of RCU-sched batches processed thus far for debug & stats.
232 */
233 long rcu_batches_completed_sched(void)
234 {
235 return rcu_sched_state.completed;
236 }
237 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
238
239 /*
240 * Return the number of RCU BH batches processed thus far for debug & stats.
241 */
242 long rcu_batches_completed_bh(void)
243 {
244 return rcu_bh_state.completed;
245 }
246 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
247
248 /*
249 * Force a quiescent state for RCU BH.
250 */
251 void rcu_bh_force_quiescent_state(void)
252 {
253 force_quiescent_state(&rcu_bh_state);
254 }
255 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
256
257 /*
258 * Record the number of times rcutorture tests have been initiated and
259 * terminated. This information allows the debugfs tracing stats to be
260 * correlated to the rcutorture messages, even when the rcutorture module
261 * is being repeatedly loaded and unloaded. In other words, we cannot
262 * store this state in rcutorture itself.
263 */
264 void rcutorture_record_test_transition(void)
265 {
266 rcutorture_testseq++;
267 rcutorture_vernum = 0;
268 }
269 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
270
271 /*
272 * Record the number of writer passes through the current rcutorture test.
273 * This is also used to correlate debugfs tracing stats with the rcutorture
274 * messages.
275 */
276 void rcutorture_record_progress(unsigned long vernum)
277 {
278 rcutorture_vernum++;
279 }
280 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
281
282 /*
283 * Force a quiescent state for RCU-sched.
284 */
285 void rcu_sched_force_quiescent_state(void)
286 {
287 force_quiescent_state(&rcu_sched_state);
288 }
289 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
290
291 /*
292 * Does the CPU have callbacks ready to be invoked?
293 */
294 static int
295 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
296 {
297 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
298 rdp->nxttail[RCU_DONE_TAIL] != NULL;
299 }
300
301 /*
302 * Does the current CPU require a not-yet-started grace period?
303 * The caller must have disabled interrupts to prevent races with
304 * normal callback registry.
305 */
306 static int
307 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
308 {
309 int i;
310
311 if (rcu_gp_in_progress(rsp))
312 return 0; /* No, a grace period is already in progress. */
313 if (!rdp->nxttail[RCU_NEXT_TAIL])
314 return 0; /* No, this is a no-CBs (or offline) CPU. */
315 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
316 return 1; /* Yes, this CPU has newly registered callbacks. */
317 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
318 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
319 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
320 rdp->nxtcompleted[i]))
321 return 1; /* Yes, CBs for future grace period. */
322 return 0; /* No grace period needed. */
323 }
324
325 /*
326 * Return the root node of the specified rcu_state structure.
327 */
328 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
329 {
330 return &rsp->node[0];
331 }
332
333 /*
334 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
335 *
336 * If the new value of the ->dynticks_nesting counter now is zero,
337 * we really have entered idle, and must do the appropriate accounting.
338 * The caller must have disabled interrupts.
339 */
340 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
341 bool user)
342 {
343 trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
344 if (!user && !is_idle_task(current)) {
345 struct task_struct *idle = idle_task(smp_processor_id());
346
347 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
348 ftrace_dump(DUMP_ORIG);
349 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
350 current->pid, current->comm,
351 idle->pid, idle->comm); /* must be idle task! */
352 }
353 rcu_prepare_for_idle(smp_processor_id());
354 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
355 smp_mb__before_atomic_inc(); /* See above. */
356 atomic_inc(&rdtp->dynticks);
357 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
358 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
359
360 /*
361 * It is illegal to enter an extended quiescent state while
362 * in an RCU read-side critical section.
363 */
364 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
365 "Illegal idle entry in RCU read-side critical section.");
366 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
367 "Illegal idle entry in RCU-bh read-side critical section.");
368 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
369 "Illegal idle entry in RCU-sched read-side critical section.");
370 }
371
372 /*
373 * Enter an RCU extended quiescent state, which can be either the
374 * idle loop or adaptive-tickless usermode execution.
375 */
376 static void rcu_eqs_enter(bool user)
377 {
378 long long oldval;
379 struct rcu_dynticks *rdtp;
380
381 rdtp = &__get_cpu_var(rcu_dynticks);
382 oldval = rdtp->dynticks_nesting;
383 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
384 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
385 rdtp->dynticks_nesting = 0;
386 else
387 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
388 rcu_eqs_enter_common(rdtp, oldval, user);
389 }
390
391 /**
392 * rcu_idle_enter - inform RCU that current CPU is entering idle
393 *
394 * Enter idle mode, in other words, -leave- the mode in which RCU
395 * read-side critical sections can occur. (Though RCU read-side
396 * critical sections can occur in irq handlers in idle, a possibility
397 * handled by irq_enter() and irq_exit().)
398 *
399 * We crowbar the ->dynticks_nesting field to zero to allow for
400 * the possibility of usermode upcalls having messed up our count
401 * of interrupt nesting level during the prior busy period.
402 */
403 void rcu_idle_enter(void)
404 {
405 unsigned long flags;
406
407 local_irq_save(flags);
408 rcu_eqs_enter(false);
409 local_irq_restore(flags);
410 }
411 EXPORT_SYMBOL_GPL(rcu_idle_enter);
412
413 #ifdef CONFIG_RCU_USER_QS
414 /**
415 * rcu_user_enter - inform RCU that we are resuming userspace.
416 *
417 * Enter RCU idle mode right before resuming userspace. No use of RCU
418 * is permitted between this call and rcu_user_exit(). This way the
419 * CPU doesn't need to maintain the tick for RCU maintenance purposes
420 * when the CPU runs in userspace.
421 */
422 void rcu_user_enter(void)
423 {
424 rcu_eqs_enter(1);
425 }
426
427 /**
428 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
429 * after the current irq returns.
430 *
431 * This is similar to rcu_user_enter() but in the context of a non-nesting
432 * irq. After this call, RCU enters into idle mode when the interrupt
433 * returns.
434 */
435 void rcu_user_enter_after_irq(void)
436 {
437 unsigned long flags;
438 struct rcu_dynticks *rdtp;
439
440 local_irq_save(flags);
441 rdtp = &__get_cpu_var(rcu_dynticks);
442 /* Ensure this irq is interrupting a non-idle RCU state. */
443 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
444 rdtp->dynticks_nesting = 1;
445 local_irq_restore(flags);
446 }
447 #endif /* CONFIG_RCU_USER_QS */
448
449 /**
450 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
451 *
452 * Exit from an interrupt handler, which might possibly result in entering
453 * idle mode, in other words, leaving the mode in which read-side critical
454 * sections can occur.
455 *
456 * This code assumes that the idle loop never does anything that might
457 * result in unbalanced calls to irq_enter() and irq_exit(). If your
458 * architecture violates this assumption, RCU will give you what you
459 * deserve, good and hard. But very infrequently and irreproducibly.
460 *
461 * Use things like work queues to work around this limitation.
462 *
463 * You have been warned.
464 */
465 void rcu_irq_exit(void)
466 {
467 unsigned long flags;
468 long long oldval;
469 struct rcu_dynticks *rdtp;
470
471 local_irq_save(flags);
472 rdtp = &__get_cpu_var(rcu_dynticks);
473 oldval = rdtp->dynticks_nesting;
474 rdtp->dynticks_nesting--;
475 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
476 if (rdtp->dynticks_nesting)
477 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
478 else
479 rcu_eqs_enter_common(rdtp, oldval, true);
480 local_irq_restore(flags);
481 }
482
483 /*
484 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
485 *
486 * If the new value of the ->dynticks_nesting counter was previously zero,
487 * we really have exited idle, and must do the appropriate accounting.
488 * The caller must have disabled interrupts.
489 */
490 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
491 int user)
492 {
493 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
494 atomic_inc(&rdtp->dynticks);
495 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
496 smp_mb__after_atomic_inc(); /* See above. */
497 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
498 rcu_cleanup_after_idle(smp_processor_id());
499 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
500 if (!user && !is_idle_task(current)) {
501 struct task_struct *idle = idle_task(smp_processor_id());
502
503 trace_rcu_dyntick("Error on exit: not idle task",
504 oldval, rdtp->dynticks_nesting);
505 ftrace_dump(DUMP_ORIG);
506 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
507 current->pid, current->comm,
508 idle->pid, idle->comm); /* must be idle task! */
509 }
510 }
511
512 /*
513 * Exit an RCU extended quiescent state, which can be either the
514 * idle loop or adaptive-tickless usermode execution.
515 */
516 static void rcu_eqs_exit(bool user)
517 {
518 struct rcu_dynticks *rdtp;
519 long long oldval;
520
521 rdtp = &__get_cpu_var(rcu_dynticks);
522 oldval = rdtp->dynticks_nesting;
523 WARN_ON_ONCE(oldval < 0);
524 if (oldval & DYNTICK_TASK_NEST_MASK)
525 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
526 else
527 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
528 rcu_eqs_exit_common(rdtp, oldval, user);
529 }
530
531 /**
532 * rcu_idle_exit - inform RCU that current CPU is leaving idle
533 *
534 * Exit idle mode, in other words, -enter- the mode in which RCU
535 * read-side critical sections can occur.
536 *
537 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
538 * allow for the possibility of usermode upcalls messing up our count
539 * of interrupt nesting level during the busy period that is just
540 * now starting.
541 */
542 void rcu_idle_exit(void)
543 {
544 unsigned long flags;
545
546 local_irq_save(flags);
547 rcu_eqs_exit(false);
548 local_irq_restore(flags);
549 }
550 EXPORT_SYMBOL_GPL(rcu_idle_exit);
551
552 #ifdef CONFIG_RCU_USER_QS
553 /**
554 * rcu_user_exit - inform RCU that we are exiting userspace.
555 *
556 * Exit RCU idle mode while entering the kernel because it can
557 * run a RCU read side critical section anytime.
558 */
559 void rcu_user_exit(void)
560 {
561 rcu_eqs_exit(1);
562 }
563
564 /**
565 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
566 * idle mode after the current non-nesting irq returns.
567 *
568 * This is similar to rcu_user_exit() but in the context of an irq.
569 * This is called when the irq has interrupted a userspace RCU idle mode
570 * context. When the current non-nesting interrupt returns after this call,
571 * the CPU won't restore the RCU idle mode.
572 */
573 void rcu_user_exit_after_irq(void)
574 {
575 unsigned long flags;
576 struct rcu_dynticks *rdtp;
577
578 local_irq_save(flags);
579 rdtp = &__get_cpu_var(rcu_dynticks);
580 /* Ensure we are interrupting an RCU idle mode. */
581 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
582 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
583 local_irq_restore(flags);
584 }
585 #endif /* CONFIG_RCU_USER_QS */
586
587 /**
588 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
589 *
590 * Enter an interrupt handler, which might possibly result in exiting
591 * idle mode, in other words, entering the mode in which read-side critical
592 * sections can occur.
593 *
594 * Note that the Linux kernel is fully capable of entering an interrupt
595 * handler that it never exits, for example when doing upcalls to
596 * user mode! This code assumes that the idle loop never does upcalls to
597 * user mode. If your architecture does do upcalls from the idle loop (or
598 * does anything else that results in unbalanced calls to the irq_enter()
599 * and irq_exit() functions), RCU will give you what you deserve, good
600 * and hard. But very infrequently and irreproducibly.
601 *
602 * Use things like work queues to work around this limitation.
603 *
604 * You have been warned.
605 */
606 void rcu_irq_enter(void)
607 {
608 unsigned long flags;
609 struct rcu_dynticks *rdtp;
610 long long oldval;
611
612 local_irq_save(flags);
613 rdtp = &__get_cpu_var(rcu_dynticks);
614 oldval = rdtp->dynticks_nesting;
615 rdtp->dynticks_nesting++;
616 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
617 if (oldval)
618 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
619 else
620 rcu_eqs_exit_common(rdtp, oldval, true);
621 local_irq_restore(flags);
622 }
623
624 /**
625 * rcu_nmi_enter - inform RCU of entry to NMI context
626 *
627 * If the CPU was idle with dynamic ticks active, and there is no
628 * irq handler running, this updates rdtp->dynticks_nmi to let the
629 * RCU grace-period handling know that the CPU is active.
630 */
631 void rcu_nmi_enter(void)
632 {
633 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
634
635 if (rdtp->dynticks_nmi_nesting == 0 &&
636 (atomic_read(&rdtp->dynticks) & 0x1))
637 return;
638 rdtp->dynticks_nmi_nesting++;
639 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
640 atomic_inc(&rdtp->dynticks);
641 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
642 smp_mb__after_atomic_inc(); /* See above. */
643 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
644 }
645
646 /**
647 * rcu_nmi_exit - inform RCU of exit from NMI context
648 *
649 * If the CPU was idle with dynamic ticks active, and there is no
650 * irq handler running, this updates rdtp->dynticks_nmi to let the
651 * RCU grace-period handling know that the CPU is no longer active.
652 */
653 void rcu_nmi_exit(void)
654 {
655 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
656
657 if (rdtp->dynticks_nmi_nesting == 0 ||
658 --rdtp->dynticks_nmi_nesting != 0)
659 return;
660 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
661 smp_mb__before_atomic_inc(); /* See above. */
662 atomic_inc(&rdtp->dynticks);
663 smp_mb__after_atomic_inc(); /* Force delay to next write. */
664 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
665 }
666
667 /**
668 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
669 *
670 * If the current CPU is in its idle loop and is neither in an interrupt
671 * or NMI handler, return true.
672 */
673 int rcu_is_cpu_idle(void)
674 {
675 int ret;
676
677 preempt_disable();
678 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
679 preempt_enable();
680 return ret;
681 }
682 EXPORT_SYMBOL(rcu_is_cpu_idle);
683
684 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
685
686 /*
687 * Is the current CPU online? Disable preemption to avoid false positives
688 * that could otherwise happen due to the current CPU number being sampled,
689 * this task being preempted, its old CPU being taken offline, resuming
690 * on some other CPU, then determining that its old CPU is now offline.
691 * It is OK to use RCU on an offline processor during initial boot, hence
692 * the check for rcu_scheduler_fully_active. Note also that it is OK
693 * for a CPU coming online to use RCU for one jiffy prior to marking itself
694 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
695 * offline to continue to use RCU for one jiffy after marking itself
696 * offline in the cpu_online_mask. This leniency is necessary given the
697 * non-atomic nature of the online and offline processing, for example,
698 * the fact that a CPU enters the scheduler after completing the CPU_DYING
699 * notifiers.
700 *
701 * This is also why RCU internally marks CPUs online during the
702 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
703 *
704 * Disable checking if in an NMI handler because we cannot safely report
705 * errors from NMI handlers anyway.
706 */
707 bool rcu_lockdep_current_cpu_online(void)
708 {
709 struct rcu_data *rdp;
710 struct rcu_node *rnp;
711 bool ret;
712
713 if (in_nmi())
714 return 1;
715 preempt_disable();
716 rdp = &__get_cpu_var(rcu_sched_data);
717 rnp = rdp->mynode;
718 ret = (rdp->grpmask & rnp->qsmaskinit) ||
719 !rcu_scheduler_fully_active;
720 preempt_enable();
721 return ret;
722 }
723 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
724
725 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
726
727 /**
728 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
729 *
730 * If the current CPU is idle or running at a first-level (not nested)
731 * interrupt from idle, return true. The caller must have at least
732 * disabled preemption.
733 */
734 static int rcu_is_cpu_rrupt_from_idle(void)
735 {
736 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
737 }
738
739 /*
740 * Snapshot the specified CPU's dynticks counter so that we can later
741 * credit them with an implicit quiescent state. Return 1 if this CPU
742 * is in dynticks idle mode, which is an extended quiescent state.
743 */
744 static int dyntick_save_progress_counter(struct rcu_data *rdp)
745 {
746 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
747 return (rdp->dynticks_snap & 0x1) == 0;
748 }
749
750 /*
751 * Return true if the specified CPU has passed through a quiescent
752 * state by virtue of being in or having passed through an dynticks
753 * idle state since the last call to dyntick_save_progress_counter()
754 * for this same CPU, or by virtue of having been offline.
755 */
756 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
757 {
758 unsigned int curr;
759 unsigned int snap;
760
761 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
762 snap = (unsigned int)rdp->dynticks_snap;
763
764 /*
765 * If the CPU passed through or entered a dynticks idle phase with
766 * no active irq/NMI handlers, then we can safely pretend that the CPU
767 * already acknowledged the request to pass through a quiescent
768 * state. Either way, that CPU cannot possibly be in an RCU
769 * read-side critical section that started before the beginning
770 * of the current RCU grace period.
771 */
772 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
773 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
774 rdp->dynticks_fqs++;
775 return 1;
776 }
777
778 /*
779 * Check for the CPU being offline, but only if the grace period
780 * is old enough. We don't need to worry about the CPU changing
781 * state: If we see it offline even once, it has been through a
782 * quiescent state.
783 *
784 * The reason for insisting that the grace period be at least
785 * one jiffy old is that CPUs that are not quite online and that
786 * have just gone offline can still execute RCU read-side critical
787 * sections.
788 */
789 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
790 return 0; /* Grace period is not old enough. */
791 barrier();
792 if (cpu_is_offline(rdp->cpu)) {
793 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
794 rdp->offline_fqs++;
795 return 1;
796 }
797
798 /*
799 * There is a possibility that a CPU in adaptive-ticks state
800 * might run in the kernel with the scheduling-clock tick disabled
801 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
802 * force the CPU to restart the scheduling-clock tick in this
803 * CPU is in this state.
804 */
805 rcu_kick_nohz_cpu(rdp->cpu);
806
807 return 0;
808 }
809
810 static void record_gp_stall_check_time(struct rcu_state *rsp)
811 {
812 rsp->gp_start = jiffies;
813 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
814 }
815
816 /*
817 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
818 * for architectures that do not implement trigger_all_cpu_backtrace().
819 * The NMI-triggered stack traces are more accurate because they are
820 * printed by the target CPU.
821 */
822 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
823 {
824 int cpu;
825 unsigned long flags;
826 struct rcu_node *rnp;
827
828 rcu_for_each_leaf_node(rsp, rnp) {
829 raw_spin_lock_irqsave(&rnp->lock, flags);
830 if (rnp->qsmask != 0) {
831 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
832 if (rnp->qsmask & (1UL << cpu))
833 dump_cpu_task(rnp->grplo + cpu);
834 }
835 raw_spin_unlock_irqrestore(&rnp->lock, flags);
836 }
837 }
838
839 static void print_other_cpu_stall(struct rcu_state *rsp)
840 {
841 int cpu;
842 long delta;
843 unsigned long flags;
844 int ndetected = 0;
845 struct rcu_node *rnp = rcu_get_root(rsp);
846 long totqlen = 0;
847
848 /* Only let one CPU complain about others per time interval. */
849
850 raw_spin_lock_irqsave(&rnp->lock, flags);
851 delta = jiffies - rsp->jiffies_stall;
852 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
853 raw_spin_unlock_irqrestore(&rnp->lock, flags);
854 return;
855 }
856 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
857 raw_spin_unlock_irqrestore(&rnp->lock, flags);
858
859 /*
860 * OK, time to rat on our buddy...
861 * See Documentation/RCU/stallwarn.txt for info on how to debug
862 * RCU CPU stall warnings.
863 */
864 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
865 rsp->name);
866 print_cpu_stall_info_begin();
867 rcu_for_each_leaf_node(rsp, rnp) {
868 raw_spin_lock_irqsave(&rnp->lock, flags);
869 ndetected += rcu_print_task_stall(rnp);
870 if (rnp->qsmask != 0) {
871 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
872 if (rnp->qsmask & (1UL << cpu)) {
873 print_cpu_stall_info(rsp,
874 rnp->grplo + cpu);
875 ndetected++;
876 }
877 }
878 raw_spin_unlock_irqrestore(&rnp->lock, flags);
879 }
880
881 /*
882 * Now rat on any tasks that got kicked up to the root rcu_node
883 * due to CPU offlining.
884 */
885 rnp = rcu_get_root(rsp);
886 raw_spin_lock_irqsave(&rnp->lock, flags);
887 ndetected += rcu_print_task_stall(rnp);
888 raw_spin_unlock_irqrestore(&rnp->lock, flags);
889
890 print_cpu_stall_info_end();
891 for_each_possible_cpu(cpu)
892 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
893 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
894 smp_processor_id(), (long)(jiffies - rsp->gp_start),
895 rsp->gpnum, rsp->completed, totqlen);
896 if (ndetected == 0)
897 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
898 else if (!trigger_all_cpu_backtrace())
899 rcu_dump_cpu_stacks(rsp);
900
901 /* Complain about tasks blocking the grace period. */
902
903 rcu_print_detail_task_stall(rsp);
904
905 force_quiescent_state(rsp); /* Kick them all. */
906 }
907
908 static void print_cpu_stall(struct rcu_state *rsp)
909 {
910 int cpu;
911 unsigned long flags;
912 struct rcu_node *rnp = rcu_get_root(rsp);
913 long totqlen = 0;
914
915 /*
916 * OK, time to rat on ourselves...
917 * See Documentation/RCU/stallwarn.txt for info on how to debug
918 * RCU CPU stall warnings.
919 */
920 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
921 print_cpu_stall_info_begin();
922 print_cpu_stall_info(rsp, smp_processor_id());
923 print_cpu_stall_info_end();
924 for_each_possible_cpu(cpu)
925 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
926 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
927 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
928 if (!trigger_all_cpu_backtrace())
929 dump_stack();
930
931 raw_spin_lock_irqsave(&rnp->lock, flags);
932 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
933 rsp->jiffies_stall = jiffies +
934 3 * rcu_jiffies_till_stall_check() + 3;
935 raw_spin_unlock_irqrestore(&rnp->lock, flags);
936
937 set_need_resched(); /* kick ourselves to get things going. */
938 }
939
940 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
941 {
942 unsigned long j;
943 unsigned long js;
944 struct rcu_node *rnp;
945
946 if (rcu_cpu_stall_suppress)
947 return;
948 j = ACCESS_ONCE(jiffies);
949 js = ACCESS_ONCE(rsp->jiffies_stall);
950 rnp = rdp->mynode;
951 if (rcu_gp_in_progress(rsp) &&
952 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
953
954 /* We haven't checked in, so go dump stack. */
955 print_cpu_stall(rsp);
956
957 } else if (rcu_gp_in_progress(rsp) &&
958 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
959
960 /* They had a few time units to dump stack, so complain. */
961 print_other_cpu_stall(rsp);
962 }
963 }
964
965 /**
966 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
967 *
968 * Set the stall-warning timeout way off into the future, thus preventing
969 * any RCU CPU stall-warning messages from appearing in the current set of
970 * RCU grace periods.
971 *
972 * The caller must disable hard irqs.
973 */
974 void rcu_cpu_stall_reset(void)
975 {
976 struct rcu_state *rsp;
977
978 for_each_rcu_flavor(rsp)
979 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
980 }
981
982 /*
983 * Update CPU-local rcu_data state to record the newly noticed grace period.
984 * This is used both when we started the grace period and when we notice
985 * that someone else started the grace period. The caller must hold the
986 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
987 * and must have irqs disabled.
988 */
989 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
990 {
991 if (rdp->gpnum != rnp->gpnum) {
992 /*
993 * If the current grace period is waiting for this CPU,
994 * set up to detect a quiescent state, otherwise don't
995 * go looking for one.
996 */
997 rdp->gpnum = rnp->gpnum;
998 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
999 rdp->passed_quiesce = 0;
1000 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1001 zero_cpu_stall_ticks(rdp);
1002 }
1003 }
1004
1005 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1006 {
1007 unsigned long flags;
1008 struct rcu_node *rnp;
1009
1010 local_irq_save(flags);
1011 rnp = rdp->mynode;
1012 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1013 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1014 local_irq_restore(flags);
1015 return;
1016 }
1017 __note_new_gpnum(rsp, rnp, rdp);
1018 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1019 }
1020
1021 /*
1022 * Did someone else start a new RCU grace period start since we last
1023 * checked? Update local state appropriately if so. Must be called
1024 * on the CPU corresponding to rdp.
1025 */
1026 static int
1027 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1028 {
1029 unsigned long flags;
1030 int ret = 0;
1031
1032 local_irq_save(flags);
1033 if (rdp->gpnum != rsp->gpnum) {
1034 note_new_gpnum(rsp, rdp);
1035 ret = 1;
1036 }
1037 local_irq_restore(flags);
1038 return ret;
1039 }
1040
1041 /*
1042 * Initialize the specified rcu_data structure's callback list to empty.
1043 */
1044 static void init_callback_list(struct rcu_data *rdp)
1045 {
1046 int i;
1047
1048 rdp->nxtlist = NULL;
1049 for (i = 0; i < RCU_NEXT_SIZE; i++)
1050 rdp->nxttail[i] = &rdp->nxtlist;
1051 init_nocb_callback_list(rdp);
1052 }
1053
1054 /*
1055 * Determine the value that ->completed will have at the end of the
1056 * next subsequent grace period. This is used to tag callbacks so that
1057 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1058 * been dyntick-idle for an extended period with callbacks under the
1059 * influence of RCU_FAST_NO_HZ.
1060 *
1061 * The caller must hold rnp->lock with interrupts disabled.
1062 */
1063 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1064 struct rcu_node *rnp)
1065 {
1066 /*
1067 * If RCU is idle, we just wait for the next grace period.
1068 * But we can only be sure that RCU is idle if we are looking
1069 * at the root rcu_node structure -- otherwise, a new grace
1070 * period might have started, but just not yet gotten around
1071 * to initializing the current non-root rcu_node structure.
1072 */
1073 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1074 return rnp->completed + 1;
1075
1076 /*
1077 * Otherwise, wait for a possible partial grace period and
1078 * then the subsequent full grace period.
1079 */
1080 return rnp->completed + 2;
1081 }
1082
1083 /*
1084 * If there is room, assign a ->completed number to any callbacks on
1085 * this CPU that have not already been assigned. Also accelerate any
1086 * callbacks that were previously assigned a ->completed number that has
1087 * since proven to be too conservative, which can happen if callbacks get
1088 * assigned a ->completed number while RCU is idle, but with reference to
1089 * a non-root rcu_node structure. This function is idempotent, so it does
1090 * not hurt to call it repeatedly.
1091 *
1092 * The caller must hold rnp->lock with interrupts disabled.
1093 */
1094 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1095 struct rcu_data *rdp)
1096 {
1097 unsigned long c;
1098 int i;
1099
1100 /* If the CPU has no callbacks, nothing to do. */
1101 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1102 return;
1103
1104 /*
1105 * Starting from the sublist containing the callbacks most
1106 * recently assigned a ->completed number and working down, find the
1107 * first sublist that is not assignable to an upcoming grace period.
1108 * Such a sublist has something in it (first two tests) and has
1109 * a ->completed number assigned that will complete sooner than
1110 * the ->completed number for newly arrived callbacks (last test).
1111 *
1112 * The key point is that any later sublist can be assigned the
1113 * same ->completed number as the newly arrived callbacks, which
1114 * means that the callbacks in any of these later sublist can be
1115 * grouped into a single sublist, whether or not they have already
1116 * been assigned a ->completed number.
1117 */
1118 c = rcu_cbs_completed(rsp, rnp);
1119 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1120 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1121 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1122 break;
1123
1124 /*
1125 * If there are no sublist for unassigned callbacks, leave.
1126 * At the same time, advance "i" one sublist, so that "i" will
1127 * index into the sublist where all the remaining callbacks should
1128 * be grouped into.
1129 */
1130 if (++i >= RCU_NEXT_TAIL)
1131 return;
1132
1133 /*
1134 * Assign all subsequent callbacks' ->completed number to the next
1135 * full grace period and group them all in the sublist initially
1136 * indexed by "i".
1137 */
1138 for (; i <= RCU_NEXT_TAIL; i++) {
1139 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1140 rdp->nxtcompleted[i] = c;
1141 }
1142
1143 /* Trace depending on how much we were able to accelerate. */
1144 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1145 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccWaitCB");
1146 else
1147 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccReadyCB");
1148 }
1149
1150 /*
1151 * Move any callbacks whose grace period has completed to the
1152 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1153 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1154 * sublist. This function is idempotent, so it does not hurt to
1155 * invoke it repeatedly. As long as it is not invoked -too- often...
1156 *
1157 * The caller must hold rnp->lock with interrupts disabled.
1158 */
1159 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1160 struct rcu_data *rdp)
1161 {
1162 int i, j;
1163
1164 /* If the CPU has no callbacks, nothing to do. */
1165 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1166 return;
1167
1168 /*
1169 * Find all callbacks whose ->completed numbers indicate that they
1170 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1171 */
1172 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1173 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1174 break;
1175 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1176 }
1177 /* Clean up any sublist tail pointers that were misordered above. */
1178 for (j = RCU_WAIT_TAIL; j < i; j++)
1179 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1180
1181 /* Copy down callbacks to fill in empty sublists. */
1182 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1183 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1184 break;
1185 rdp->nxttail[j] = rdp->nxttail[i];
1186 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1187 }
1188
1189 /* Classify any remaining callbacks. */
1190 rcu_accelerate_cbs(rsp, rnp, rdp);
1191 }
1192
1193 /*
1194 * Advance this CPU's callbacks, but only if the current grace period
1195 * has ended. This may be called only from the CPU to whom the rdp
1196 * belongs. In addition, the corresponding leaf rcu_node structure's
1197 * ->lock must be held by the caller, with irqs disabled.
1198 */
1199 static void
1200 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1201 {
1202 /* Did another grace period end? */
1203 if (rdp->completed == rnp->completed) {
1204
1205 /* No, so just accelerate recent callbacks. */
1206 rcu_accelerate_cbs(rsp, rnp, rdp);
1207
1208 } else {
1209
1210 /* Advance callbacks. */
1211 rcu_advance_cbs(rsp, rnp, rdp);
1212
1213 /* Remember that we saw this grace-period completion. */
1214 rdp->completed = rnp->completed;
1215 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1216
1217 /*
1218 * If we were in an extended quiescent state, we may have
1219 * missed some grace periods that others CPUs handled on
1220 * our behalf. Catch up with this state to avoid noting
1221 * spurious new grace periods. If another grace period
1222 * has started, then rnp->gpnum will have advanced, so
1223 * we will detect this later on. Of course, any quiescent
1224 * states we found for the old GP are now invalid.
1225 */
1226 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1227 rdp->gpnum = rdp->completed;
1228 rdp->passed_quiesce = 0;
1229 }
1230
1231 /*
1232 * If RCU does not need a quiescent state from this CPU,
1233 * then make sure that this CPU doesn't go looking for one.
1234 */
1235 if ((rnp->qsmask & rdp->grpmask) == 0)
1236 rdp->qs_pending = 0;
1237 }
1238 }
1239
1240 /*
1241 * Advance this CPU's callbacks, but only if the current grace period
1242 * has ended. This may be called only from the CPU to whom the rdp
1243 * belongs.
1244 */
1245 static void
1246 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1247 {
1248 unsigned long flags;
1249 struct rcu_node *rnp;
1250
1251 local_irq_save(flags);
1252 rnp = rdp->mynode;
1253 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1254 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1255 local_irq_restore(flags);
1256 return;
1257 }
1258 __rcu_process_gp_end(rsp, rnp, rdp);
1259 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1260 }
1261
1262 /*
1263 * Do per-CPU grace-period initialization for running CPU. The caller
1264 * must hold the lock of the leaf rcu_node structure corresponding to
1265 * this CPU.
1266 */
1267 static void
1268 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1269 {
1270 /* Prior grace period ended, so advance callbacks for current CPU. */
1271 __rcu_process_gp_end(rsp, rnp, rdp);
1272
1273 /* Set state so that this CPU will detect the next quiescent state. */
1274 __note_new_gpnum(rsp, rnp, rdp);
1275 }
1276
1277 /*
1278 * Initialize a new grace period.
1279 */
1280 static int rcu_gp_init(struct rcu_state *rsp)
1281 {
1282 struct rcu_data *rdp;
1283 struct rcu_node *rnp = rcu_get_root(rsp);
1284
1285 raw_spin_lock_irq(&rnp->lock);
1286 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1287
1288 if (rcu_gp_in_progress(rsp)) {
1289 /* Grace period already in progress, don't start another. */
1290 raw_spin_unlock_irq(&rnp->lock);
1291 return 0;
1292 }
1293
1294 /* Advance to a new grace period and initialize state. */
1295 rsp->gpnum++;
1296 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1297 record_gp_stall_check_time(rsp);
1298 raw_spin_unlock_irq(&rnp->lock);
1299
1300 /* Exclude any concurrent CPU-hotplug operations. */
1301 mutex_lock(&rsp->onoff_mutex);
1302
1303 /*
1304 * Set the quiescent-state-needed bits in all the rcu_node
1305 * structures for all currently online CPUs in breadth-first order,
1306 * starting from the root rcu_node structure, relying on the layout
1307 * of the tree within the rsp->node[] array. Note that other CPUs
1308 * will access only the leaves of the hierarchy, thus seeing that no
1309 * grace period is in progress, at least until the corresponding
1310 * leaf node has been initialized. In addition, we have excluded
1311 * CPU-hotplug operations.
1312 *
1313 * The grace period cannot complete until the initialization
1314 * process finishes, because this kthread handles both.
1315 */
1316 rcu_for_each_node_breadth_first(rsp, rnp) {
1317 raw_spin_lock_irq(&rnp->lock);
1318 rdp = this_cpu_ptr(rsp->rda);
1319 rcu_preempt_check_blocked_tasks(rnp);
1320 rnp->qsmask = rnp->qsmaskinit;
1321 rnp->gpnum = rsp->gpnum;
1322 WARN_ON_ONCE(rnp->completed != rsp->completed);
1323 rnp->completed = rsp->completed;
1324 if (rnp == rdp->mynode)
1325 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1326 rcu_preempt_boost_start_gp(rnp);
1327 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1328 rnp->level, rnp->grplo,
1329 rnp->grphi, rnp->qsmask);
1330 raw_spin_unlock_irq(&rnp->lock);
1331 #ifdef CONFIG_PROVE_RCU_DELAY
1332 if ((random32() % (rcu_num_nodes * 8)) == 0)
1333 schedule_timeout_uninterruptible(2);
1334 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1335 cond_resched();
1336 }
1337
1338 mutex_unlock(&rsp->onoff_mutex);
1339 return 1;
1340 }
1341
1342 /*
1343 * Do one round of quiescent-state forcing.
1344 */
1345 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1346 {
1347 int fqs_state = fqs_state_in;
1348 struct rcu_node *rnp = rcu_get_root(rsp);
1349
1350 rsp->n_force_qs++;
1351 if (fqs_state == RCU_SAVE_DYNTICK) {
1352 /* Collect dyntick-idle snapshots. */
1353 force_qs_rnp(rsp, dyntick_save_progress_counter);
1354 fqs_state = RCU_FORCE_QS;
1355 } else {
1356 /* Handle dyntick-idle and offline CPUs. */
1357 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1358 }
1359 /* Clear flag to prevent immediate re-entry. */
1360 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1361 raw_spin_lock_irq(&rnp->lock);
1362 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1363 raw_spin_unlock_irq(&rnp->lock);
1364 }
1365 return fqs_state;
1366 }
1367
1368 /*
1369 * Clean up after the old grace period.
1370 */
1371 static void rcu_gp_cleanup(struct rcu_state *rsp)
1372 {
1373 unsigned long gp_duration;
1374 struct rcu_data *rdp;
1375 struct rcu_node *rnp = rcu_get_root(rsp);
1376
1377 raw_spin_lock_irq(&rnp->lock);
1378 gp_duration = jiffies - rsp->gp_start;
1379 if (gp_duration > rsp->gp_max)
1380 rsp->gp_max = gp_duration;
1381
1382 /*
1383 * We know the grace period is complete, but to everyone else
1384 * it appears to still be ongoing. But it is also the case
1385 * that to everyone else it looks like there is nothing that
1386 * they can do to advance the grace period. It is therefore
1387 * safe for us to drop the lock in order to mark the grace
1388 * period as completed in all of the rcu_node structures.
1389 */
1390 raw_spin_unlock_irq(&rnp->lock);
1391
1392 /*
1393 * Propagate new ->completed value to rcu_node structures so
1394 * that other CPUs don't have to wait until the start of the next
1395 * grace period to process their callbacks. This also avoids
1396 * some nasty RCU grace-period initialization races by forcing
1397 * the end of the current grace period to be completely recorded in
1398 * all of the rcu_node structures before the beginning of the next
1399 * grace period is recorded in any of the rcu_node structures.
1400 */
1401 rcu_for_each_node_breadth_first(rsp, rnp) {
1402 raw_spin_lock_irq(&rnp->lock);
1403 rnp->completed = rsp->gpnum;
1404 raw_spin_unlock_irq(&rnp->lock);
1405 cond_resched();
1406 }
1407 rnp = rcu_get_root(rsp);
1408 raw_spin_lock_irq(&rnp->lock);
1409
1410 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1411 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1412 rsp->fqs_state = RCU_GP_IDLE;
1413 rdp = this_cpu_ptr(rsp->rda);
1414 if (cpu_needs_another_gp(rsp, rdp))
1415 rsp->gp_flags = 1;
1416 raw_spin_unlock_irq(&rnp->lock);
1417 }
1418
1419 /*
1420 * Body of kthread that handles grace periods.
1421 */
1422 static int __noreturn rcu_gp_kthread(void *arg)
1423 {
1424 int fqs_state;
1425 unsigned long j;
1426 int ret;
1427 struct rcu_state *rsp = arg;
1428 struct rcu_node *rnp = rcu_get_root(rsp);
1429
1430 for (;;) {
1431
1432 /* Handle grace-period start. */
1433 for (;;) {
1434 wait_event_interruptible(rsp->gp_wq,
1435 rsp->gp_flags &
1436 RCU_GP_FLAG_INIT);
1437 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1438 rcu_gp_init(rsp))
1439 break;
1440 cond_resched();
1441 flush_signals(current);
1442 }
1443
1444 /* Handle quiescent-state forcing. */
1445 fqs_state = RCU_SAVE_DYNTICK;
1446 j = jiffies_till_first_fqs;
1447 if (j > HZ) {
1448 j = HZ;
1449 jiffies_till_first_fqs = HZ;
1450 }
1451 for (;;) {
1452 rsp->jiffies_force_qs = jiffies + j;
1453 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1454 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1455 (!ACCESS_ONCE(rnp->qsmask) &&
1456 !rcu_preempt_blocked_readers_cgp(rnp)),
1457 j);
1458 /* If grace period done, leave loop. */
1459 if (!ACCESS_ONCE(rnp->qsmask) &&
1460 !rcu_preempt_blocked_readers_cgp(rnp))
1461 break;
1462 /* If time for quiescent-state forcing, do it. */
1463 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1464 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1465 cond_resched();
1466 } else {
1467 /* Deal with stray signal. */
1468 cond_resched();
1469 flush_signals(current);
1470 }
1471 j = jiffies_till_next_fqs;
1472 if (j > HZ) {
1473 j = HZ;
1474 jiffies_till_next_fqs = HZ;
1475 } else if (j < 1) {
1476 j = 1;
1477 jiffies_till_next_fqs = 1;
1478 }
1479 }
1480
1481 /* Handle grace-period end. */
1482 rcu_gp_cleanup(rsp);
1483 }
1484 }
1485
1486 /*
1487 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1488 * in preparation for detecting the next grace period. The caller must hold
1489 * the root node's ->lock, which is released before return. Hard irqs must
1490 * be disabled.
1491 *
1492 * Note that it is legal for a dying CPU (which is marked as offline) to
1493 * invoke this function. This can happen when the dying CPU reports its
1494 * quiescent state.
1495 */
1496 static void
1497 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1498 __releases(rcu_get_root(rsp)->lock)
1499 {
1500 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1501 struct rcu_node *rnp = rcu_get_root(rsp);
1502
1503 if (!rsp->gp_kthread ||
1504 !cpu_needs_another_gp(rsp, rdp)) {
1505 /*
1506 * Either we have not yet spawned the grace-period
1507 * task, this CPU does not need another grace period,
1508 * or a grace period is already in progress.
1509 * Either way, don't start a new grace period.
1510 */
1511 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1512 return;
1513 }
1514
1515 /*
1516 * Because there is no grace period in progress right now,
1517 * any callbacks we have up to this point will be satisfied
1518 * by the next grace period. So this is a good place to
1519 * assign a grace period number to recently posted callbacks.
1520 */
1521 rcu_accelerate_cbs(rsp, rnp, rdp);
1522
1523 rsp->gp_flags = RCU_GP_FLAG_INIT;
1524 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
1525
1526 /* Ensure that CPU is aware of completion of last grace period. */
1527 rcu_process_gp_end(rsp, rdp);
1528 local_irq_restore(flags);
1529
1530 /* Wake up rcu_gp_kthread() to start the grace period. */
1531 wake_up(&rsp->gp_wq);
1532 }
1533
1534 /*
1535 * Report a full set of quiescent states to the specified rcu_state
1536 * data structure. This involves cleaning up after the prior grace
1537 * period and letting rcu_start_gp() start up the next grace period
1538 * if one is needed. Note that the caller must hold rnp->lock, as
1539 * required by rcu_start_gp(), which will release it.
1540 */
1541 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1542 __releases(rcu_get_root(rsp)->lock)
1543 {
1544 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1545 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1546 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1547 }
1548
1549 /*
1550 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1551 * Allows quiescent states for a group of CPUs to be reported at one go
1552 * to the specified rcu_node structure, though all the CPUs in the group
1553 * must be represented by the same rcu_node structure (which need not be
1554 * a leaf rcu_node structure, though it often will be). That structure's
1555 * lock must be held upon entry, and it is released before return.
1556 */
1557 static void
1558 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1559 struct rcu_node *rnp, unsigned long flags)
1560 __releases(rnp->lock)
1561 {
1562 struct rcu_node *rnp_c;
1563
1564 /* Walk up the rcu_node hierarchy. */
1565 for (;;) {
1566 if (!(rnp->qsmask & mask)) {
1567
1568 /* Our bit has already been cleared, so done. */
1569 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1570 return;
1571 }
1572 rnp->qsmask &= ~mask;
1573 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1574 mask, rnp->qsmask, rnp->level,
1575 rnp->grplo, rnp->grphi,
1576 !!rnp->gp_tasks);
1577 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1578
1579 /* Other bits still set at this level, so done. */
1580 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1581 return;
1582 }
1583 mask = rnp->grpmask;
1584 if (rnp->parent == NULL) {
1585
1586 /* No more levels. Exit loop holding root lock. */
1587
1588 break;
1589 }
1590 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1591 rnp_c = rnp;
1592 rnp = rnp->parent;
1593 raw_spin_lock_irqsave(&rnp->lock, flags);
1594 WARN_ON_ONCE(rnp_c->qsmask);
1595 }
1596
1597 /*
1598 * Get here if we are the last CPU to pass through a quiescent
1599 * state for this grace period. Invoke rcu_report_qs_rsp()
1600 * to clean up and start the next grace period if one is needed.
1601 */
1602 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1603 }
1604
1605 /*
1606 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1607 * structure. This must be either called from the specified CPU, or
1608 * called when the specified CPU is known to be offline (and when it is
1609 * also known that no other CPU is concurrently trying to help the offline
1610 * CPU). The lastcomp argument is used to make sure we are still in the
1611 * grace period of interest. We don't want to end the current grace period
1612 * based on quiescent states detected in an earlier grace period!
1613 */
1614 static void
1615 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1616 {
1617 unsigned long flags;
1618 unsigned long mask;
1619 struct rcu_node *rnp;
1620
1621 rnp = rdp->mynode;
1622 raw_spin_lock_irqsave(&rnp->lock, flags);
1623 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1624 rnp->completed == rnp->gpnum) {
1625
1626 /*
1627 * The grace period in which this quiescent state was
1628 * recorded has ended, so don't report it upwards.
1629 * We will instead need a new quiescent state that lies
1630 * within the current grace period.
1631 */
1632 rdp->passed_quiesce = 0; /* need qs for new gp. */
1633 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1634 return;
1635 }
1636 mask = rdp->grpmask;
1637 if ((rnp->qsmask & mask) == 0) {
1638 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1639 } else {
1640 rdp->qs_pending = 0;
1641
1642 /*
1643 * This GP can't end until cpu checks in, so all of our
1644 * callbacks can be processed during the next GP.
1645 */
1646 rcu_accelerate_cbs(rsp, rnp, rdp);
1647
1648 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1649 }
1650 }
1651
1652 /*
1653 * Check to see if there is a new grace period of which this CPU
1654 * is not yet aware, and if so, set up local rcu_data state for it.
1655 * Otherwise, see if this CPU has just passed through its first
1656 * quiescent state for this grace period, and record that fact if so.
1657 */
1658 static void
1659 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1660 {
1661 /* If there is now a new grace period, record and return. */
1662 if (check_for_new_grace_period(rsp, rdp))
1663 return;
1664
1665 /*
1666 * Does this CPU still need to do its part for current grace period?
1667 * If no, return and let the other CPUs do their part as well.
1668 */
1669 if (!rdp->qs_pending)
1670 return;
1671
1672 /*
1673 * Was there a quiescent state since the beginning of the grace
1674 * period? If no, then exit and wait for the next call.
1675 */
1676 if (!rdp->passed_quiesce)
1677 return;
1678
1679 /*
1680 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1681 * judge of that).
1682 */
1683 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1684 }
1685
1686 #ifdef CONFIG_HOTPLUG_CPU
1687
1688 /*
1689 * Send the specified CPU's RCU callbacks to the orphanage. The
1690 * specified CPU must be offline, and the caller must hold the
1691 * ->orphan_lock.
1692 */
1693 static void
1694 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1695 struct rcu_node *rnp, struct rcu_data *rdp)
1696 {
1697 /* No-CBs CPUs do not have orphanable callbacks. */
1698 if (is_nocb_cpu(rdp->cpu))
1699 return;
1700
1701 /*
1702 * Orphan the callbacks. First adjust the counts. This is safe
1703 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1704 * cannot be running now. Thus no memory barrier is required.
1705 */
1706 if (rdp->nxtlist != NULL) {
1707 rsp->qlen_lazy += rdp->qlen_lazy;
1708 rsp->qlen += rdp->qlen;
1709 rdp->n_cbs_orphaned += rdp->qlen;
1710 rdp->qlen_lazy = 0;
1711 ACCESS_ONCE(rdp->qlen) = 0;
1712 }
1713
1714 /*
1715 * Next, move those callbacks still needing a grace period to
1716 * the orphanage, where some other CPU will pick them up.
1717 * Some of the callbacks might have gone partway through a grace
1718 * period, but that is too bad. They get to start over because we
1719 * cannot assume that grace periods are synchronized across CPUs.
1720 * We don't bother updating the ->nxttail[] array yet, instead
1721 * we just reset the whole thing later on.
1722 */
1723 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1724 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1725 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1726 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1727 }
1728
1729 /*
1730 * Then move the ready-to-invoke callbacks to the orphanage,
1731 * where some other CPU will pick them up. These will not be
1732 * required to pass though another grace period: They are done.
1733 */
1734 if (rdp->nxtlist != NULL) {
1735 *rsp->orphan_donetail = rdp->nxtlist;
1736 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1737 }
1738
1739 /* Finally, initialize the rcu_data structure's list to empty. */
1740 init_callback_list(rdp);
1741 }
1742
1743 /*
1744 * Adopt the RCU callbacks from the specified rcu_state structure's
1745 * orphanage. The caller must hold the ->orphan_lock.
1746 */
1747 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1748 {
1749 int i;
1750 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1751
1752 /* No-CBs CPUs are handled specially. */
1753 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1754 return;
1755
1756 /* Do the accounting first. */
1757 rdp->qlen_lazy += rsp->qlen_lazy;
1758 rdp->qlen += rsp->qlen;
1759 rdp->n_cbs_adopted += rsp->qlen;
1760 if (rsp->qlen_lazy != rsp->qlen)
1761 rcu_idle_count_callbacks_posted();
1762 rsp->qlen_lazy = 0;
1763 rsp->qlen = 0;
1764
1765 /*
1766 * We do not need a memory barrier here because the only way we
1767 * can get here if there is an rcu_barrier() in flight is if
1768 * we are the task doing the rcu_barrier().
1769 */
1770
1771 /* First adopt the ready-to-invoke callbacks. */
1772 if (rsp->orphan_donelist != NULL) {
1773 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1774 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1775 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1776 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1777 rdp->nxttail[i] = rsp->orphan_donetail;
1778 rsp->orphan_donelist = NULL;
1779 rsp->orphan_donetail = &rsp->orphan_donelist;
1780 }
1781
1782 /* And then adopt the callbacks that still need a grace period. */
1783 if (rsp->orphan_nxtlist != NULL) {
1784 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1785 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1786 rsp->orphan_nxtlist = NULL;
1787 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1788 }
1789 }
1790
1791 /*
1792 * Trace the fact that this CPU is going offline.
1793 */
1794 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1795 {
1796 RCU_TRACE(unsigned long mask);
1797 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1798 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1799
1800 RCU_TRACE(mask = rdp->grpmask);
1801 trace_rcu_grace_period(rsp->name,
1802 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1803 "cpuofl");
1804 }
1805
1806 /*
1807 * The CPU has been completely removed, and some other CPU is reporting
1808 * this fact from process context. Do the remainder of the cleanup,
1809 * including orphaning the outgoing CPU's RCU callbacks, and also
1810 * adopting them. There can only be one CPU hotplug operation at a time,
1811 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1812 */
1813 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1814 {
1815 unsigned long flags;
1816 unsigned long mask;
1817 int need_report = 0;
1818 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1819 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1820
1821 /* Adjust any no-longer-needed kthreads. */
1822 rcu_boost_kthread_setaffinity(rnp, -1);
1823
1824 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1825
1826 /* Exclude any attempts to start a new grace period. */
1827 mutex_lock(&rsp->onoff_mutex);
1828 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1829
1830 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1831 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1832 rcu_adopt_orphan_cbs(rsp);
1833
1834 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1835 mask = rdp->grpmask; /* rnp->grplo is constant. */
1836 do {
1837 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1838 rnp->qsmaskinit &= ~mask;
1839 if (rnp->qsmaskinit != 0) {
1840 if (rnp != rdp->mynode)
1841 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1842 break;
1843 }
1844 if (rnp == rdp->mynode)
1845 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1846 else
1847 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1848 mask = rnp->grpmask;
1849 rnp = rnp->parent;
1850 } while (rnp != NULL);
1851
1852 /*
1853 * We still hold the leaf rcu_node structure lock here, and
1854 * irqs are still disabled. The reason for this subterfuge is
1855 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1856 * held leads to deadlock.
1857 */
1858 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1859 rnp = rdp->mynode;
1860 if (need_report & RCU_OFL_TASKS_NORM_GP)
1861 rcu_report_unblock_qs_rnp(rnp, flags);
1862 else
1863 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1864 if (need_report & RCU_OFL_TASKS_EXP_GP)
1865 rcu_report_exp_rnp(rsp, rnp, true);
1866 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1867 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1868 cpu, rdp->qlen, rdp->nxtlist);
1869 init_callback_list(rdp);
1870 /* Disallow further callbacks on this CPU. */
1871 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1872 mutex_unlock(&rsp->onoff_mutex);
1873 }
1874
1875 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1876
1877 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1878 {
1879 }
1880
1881 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1882 {
1883 }
1884
1885 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1886
1887 /*
1888 * Invoke any RCU callbacks that have made it to the end of their grace
1889 * period. Thottle as specified by rdp->blimit.
1890 */
1891 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1892 {
1893 unsigned long flags;
1894 struct rcu_head *next, *list, **tail;
1895 long bl, count, count_lazy;
1896 int i;
1897
1898 /* If no callbacks are ready, just return. */
1899 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1900 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1901 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1902 need_resched(), is_idle_task(current),
1903 rcu_is_callbacks_kthread());
1904 return;
1905 }
1906
1907 /*
1908 * Extract the list of ready callbacks, disabling to prevent
1909 * races with call_rcu() from interrupt handlers.
1910 */
1911 local_irq_save(flags);
1912 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1913 bl = rdp->blimit;
1914 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1915 list = rdp->nxtlist;
1916 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1917 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1918 tail = rdp->nxttail[RCU_DONE_TAIL];
1919 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1920 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1921 rdp->nxttail[i] = &rdp->nxtlist;
1922 local_irq_restore(flags);
1923
1924 /* Invoke callbacks. */
1925 count = count_lazy = 0;
1926 while (list) {
1927 next = list->next;
1928 prefetch(next);
1929 debug_rcu_head_unqueue(list);
1930 if (__rcu_reclaim(rsp->name, list))
1931 count_lazy++;
1932 list = next;
1933 /* Stop only if limit reached and CPU has something to do. */
1934 if (++count >= bl &&
1935 (need_resched() ||
1936 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1937 break;
1938 }
1939
1940 local_irq_save(flags);
1941 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1942 is_idle_task(current),
1943 rcu_is_callbacks_kthread());
1944
1945 /* Update count, and requeue any remaining callbacks. */
1946 if (list != NULL) {
1947 *tail = rdp->nxtlist;
1948 rdp->nxtlist = list;
1949 for (i = 0; i < RCU_NEXT_SIZE; i++)
1950 if (&rdp->nxtlist == rdp->nxttail[i])
1951 rdp->nxttail[i] = tail;
1952 else
1953 break;
1954 }
1955 smp_mb(); /* List handling before counting for rcu_barrier(). */
1956 rdp->qlen_lazy -= count_lazy;
1957 ACCESS_ONCE(rdp->qlen) -= count;
1958 rdp->n_cbs_invoked += count;
1959
1960 /* Reinstate batch limit if we have worked down the excess. */
1961 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1962 rdp->blimit = blimit;
1963
1964 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1965 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1966 rdp->qlen_last_fqs_check = 0;
1967 rdp->n_force_qs_snap = rsp->n_force_qs;
1968 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1969 rdp->qlen_last_fqs_check = rdp->qlen;
1970 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1971
1972 local_irq_restore(flags);
1973
1974 /* Re-invoke RCU core processing if there are callbacks remaining. */
1975 if (cpu_has_callbacks_ready_to_invoke(rdp))
1976 invoke_rcu_core();
1977 }
1978
1979 /*
1980 * Check to see if this CPU is in a non-context-switch quiescent state
1981 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1982 * Also schedule RCU core processing.
1983 *
1984 * This function must be called from hardirq context. It is normally
1985 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1986 * false, there is no point in invoking rcu_check_callbacks().
1987 */
1988 void rcu_check_callbacks(int cpu, int user)
1989 {
1990 trace_rcu_utilization("Start scheduler-tick");
1991 increment_cpu_stall_ticks();
1992 if (user || rcu_is_cpu_rrupt_from_idle()) {
1993
1994 /*
1995 * Get here if this CPU took its interrupt from user
1996 * mode or from the idle loop, and if this is not a
1997 * nested interrupt. In this case, the CPU is in
1998 * a quiescent state, so note it.
1999 *
2000 * No memory barrier is required here because both
2001 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2002 * variables that other CPUs neither access nor modify,
2003 * at least not while the corresponding CPU is online.
2004 */
2005
2006 rcu_sched_qs(cpu);
2007 rcu_bh_qs(cpu);
2008
2009 } else if (!in_softirq()) {
2010
2011 /*
2012 * Get here if this CPU did not take its interrupt from
2013 * softirq, in other words, if it is not interrupting
2014 * a rcu_bh read-side critical section. This is an _bh
2015 * critical section, so note it.
2016 */
2017
2018 rcu_bh_qs(cpu);
2019 }
2020 rcu_preempt_check_callbacks(cpu);
2021 if (rcu_pending(cpu))
2022 invoke_rcu_core();
2023 trace_rcu_utilization("End scheduler-tick");
2024 }
2025
2026 /*
2027 * Scan the leaf rcu_node structures, processing dyntick state for any that
2028 * have not yet encountered a quiescent state, using the function specified.
2029 * Also initiate boosting for any threads blocked on the root rcu_node.
2030 *
2031 * The caller must have suppressed start of new grace periods.
2032 */
2033 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
2034 {
2035 unsigned long bit;
2036 int cpu;
2037 unsigned long flags;
2038 unsigned long mask;
2039 struct rcu_node *rnp;
2040
2041 rcu_for_each_leaf_node(rsp, rnp) {
2042 cond_resched();
2043 mask = 0;
2044 raw_spin_lock_irqsave(&rnp->lock, flags);
2045 if (!rcu_gp_in_progress(rsp)) {
2046 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2047 return;
2048 }
2049 if (rnp->qsmask == 0) {
2050 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2051 continue;
2052 }
2053 cpu = rnp->grplo;
2054 bit = 1;
2055 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2056 if ((rnp->qsmask & bit) != 0 &&
2057 f(per_cpu_ptr(rsp->rda, cpu)))
2058 mask |= bit;
2059 }
2060 if (mask != 0) {
2061
2062 /* rcu_report_qs_rnp() releases rnp->lock. */
2063 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2064 continue;
2065 }
2066 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2067 }
2068 rnp = rcu_get_root(rsp);
2069 if (rnp->qsmask == 0) {
2070 raw_spin_lock_irqsave(&rnp->lock, flags);
2071 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2072 }
2073 }
2074
2075 /*
2076 * Force quiescent states on reluctant CPUs, and also detect which
2077 * CPUs are in dyntick-idle mode.
2078 */
2079 static void force_quiescent_state(struct rcu_state *rsp)
2080 {
2081 unsigned long flags;
2082 bool ret;
2083 struct rcu_node *rnp;
2084 struct rcu_node *rnp_old = NULL;
2085
2086 /* Funnel through hierarchy to reduce memory contention. */
2087 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2088 for (; rnp != NULL; rnp = rnp->parent) {
2089 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2090 !raw_spin_trylock(&rnp->fqslock);
2091 if (rnp_old != NULL)
2092 raw_spin_unlock(&rnp_old->fqslock);
2093 if (ret) {
2094 rsp->n_force_qs_lh++;
2095 return;
2096 }
2097 rnp_old = rnp;
2098 }
2099 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2100
2101 /* Reached the root of the rcu_node tree, acquire lock. */
2102 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2103 raw_spin_unlock(&rnp_old->fqslock);
2104 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2105 rsp->n_force_qs_lh++;
2106 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2107 return; /* Someone beat us to it. */
2108 }
2109 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2110 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2111 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2112 }
2113
2114 /*
2115 * This does the RCU core processing work for the specified rcu_state
2116 * and rcu_data structures. This may be called only from the CPU to
2117 * whom the rdp belongs.
2118 */
2119 static void
2120 __rcu_process_callbacks(struct rcu_state *rsp)
2121 {
2122 unsigned long flags;
2123 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2124
2125 WARN_ON_ONCE(rdp->beenonline == 0);
2126
2127 /* Handle the end of a grace period that some other CPU ended. */
2128 rcu_process_gp_end(rsp, rdp);
2129
2130 /* Update RCU state based on any recent quiescent states. */
2131 rcu_check_quiescent_state(rsp, rdp);
2132
2133 /* Does this CPU require a not-yet-started grace period? */
2134 local_irq_save(flags);
2135 if (cpu_needs_another_gp(rsp, rdp)) {
2136 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2137 rcu_start_gp(rsp, flags); /* releases above lock */
2138 } else {
2139 local_irq_restore(flags);
2140 }
2141
2142 /* If there are callbacks ready, invoke them. */
2143 if (cpu_has_callbacks_ready_to_invoke(rdp))
2144 invoke_rcu_callbacks(rsp, rdp);
2145 }
2146
2147 /*
2148 * Do RCU core processing for the current CPU.
2149 */
2150 static void rcu_process_callbacks(struct softirq_action *unused)
2151 {
2152 struct rcu_state *rsp;
2153
2154 if (cpu_is_offline(smp_processor_id()))
2155 return;
2156 trace_rcu_utilization("Start RCU core");
2157 for_each_rcu_flavor(rsp)
2158 __rcu_process_callbacks(rsp);
2159 trace_rcu_utilization("End RCU core");
2160 }
2161
2162 /*
2163 * Schedule RCU callback invocation. If the specified type of RCU
2164 * does not support RCU priority boosting, just do a direct call,
2165 * otherwise wake up the per-CPU kernel kthread. Note that because we
2166 * are running on the current CPU with interrupts disabled, the
2167 * rcu_cpu_kthread_task cannot disappear out from under us.
2168 */
2169 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2170 {
2171 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2172 return;
2173 if (likely(!rsp->boost)) {
2174 rcu_do_batch(rsp, rdp);
2175 return;
2176 }
2177 invoke_rcu_callbacks_kthread();
2178 }
2179
2180 static void invoke_rcu_core(void)
2181 {
2182 raise_softirq(RCU_SOFTIRQ);
2183 }
2184
2185 /*
2186 * Handle any core-RCU processing required by a call_rcu() invocation.
2187 */
2188 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2189 struct rcu_head *head, unsigned long flags)
2190 {
2191 /*
2192 * If called from an extended quiescent state, invoke the RCU
2193 * core in order to force a re-evaluation of RCU's idleness.
2194 */
2195 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2196 invoke_rcu_core();
2197
2198 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2199 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2200 return;
2201
2202 /*
2203 * Force the grace period if too many callbacks or too long waiting.
2204 * Enforce hysteresis, and don't invoke force_quiescent_state()
2205 * if some other CPU has recently done so. Also, don't bother
2206 * invoking force_quiescent_state() if the newly enqueued callback
2207 * is the only one waiting for a grace period to complete.
2208 */
2209 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2210
2211 /* Are we ignoring a completed grace period? */
2212 rcu_process_gp_end(rsp, rdp);
2213 check_for_new_grace_period(rsp, rdp);
2214
2215 /* Start a new grace period if one not already started. */
2216 if (!rcu_gp_in_progress(rsp)) {
2217 unsigned long nestflag;
2218 struct rcu_node *rnp_root = rcu_get_root(rsp);
2219
2220 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2221 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2222 } else {
2223 /* Give the grace period a kick. */
2224 rdp->blimit = LONG_MAX;
2225 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2226 *rdp->nxttail[RCU_DONE_TAIL] != head)
2227 force_quiescent_state(rsp);
2228 rdp->n_force_qs_snap = rsp->n_force_qs;
2229 rdp->qlen_last_fqs_check = rdp->qlen;
2230 }
2231 }
2232 }
2233
2234 /*
2235 * Helper function for call_rcu() and friends. The cpu argument will
2236 * normally be -1, indicating "currently running CPU". It may specify
2237 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2238 * is expected to specify a CPU.
2239 */
2240 static void
2241 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2242 struct rcu_state *rsp, int cpu, bool lazy)
2243 {
2244 unsigned long flags;
2245 struct rcu_data *rdp;
2246
2247 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2248 debug_rcu_head_queue(head);
2249 head->func = func;
2250 head->next = NULL;
2251
2252 /*
2253 * Opportunistically note grace-period endings and beginnings.
2254 * Note that we might see a beginning right after we see an
2255 * end, but never vice versa, since this CPU has to pass through
2256 * a quiescent state betweentimes.
2257 */
2258 local_irq_save(flags);
2259 rdp = this_cpu_ptr(rsp->rda);
2260
2261 /* Add the callback to our list. */
2262 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2263 int offline;
2264
2265 if (cpu != -1)
2266 rdp = per_cpu_ptr(rsp->rda, cpu);
2267 offline = !__call_rcu_nocb(rdp, head, lazy);
2268 WARN_ON_ONCE(offline);
2269 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2270 local_irq_restore(flags);
2271 return;
2272 }
2273 ACCESS_ONCE(rdp->qlen)++;
2274 if (lazy)
2275 rdp->qlen_lazy++;
2276 else
2277 rcu_idle_count_callbacks_posted();
2278 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2279 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2280 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2281
2282 if (__is_kfree_rcu_offset((unsigned long)func))
2283 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2284 rdp->qlen_lazy, rdp->qlen);
2285 else
2286 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2287
2288 /* Go handle any RCU core processing required. */
2289 __call_rcu_core(rsp, rdp, head, flags);
2290 local_irq_restore(flags);
2291 }
2292
2293 /*
2294 * Queue an RCU-sched callback for invocation after a grace period.
2295 */
2296 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2297 {
2298 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2299 }
2300 EXPORT_SYMBOL_GPL(call_rcu_sched);
2301
2302 /*
2303 * Queue an RCU callback for invocation after a quicker grace period.
2304 */
2305 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2306 {
2307 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2308 }
2309 EXPORT_SYMBOL_GPL(call_rcu_bh);
2310
2311 /*
2312 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2313 * any blocking grace-period wait automatically implies a grace period
2314 * if there is only one CPU online at any point time during execution
2315 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2316 * occasionally incorrectly indicate that there are multiple CPUs online
2317 * when there was in fact only one the whole time, as this just adds
2318 * some overhead: RCU still operates correctly.
2319 */
2320 static inline int rcu_blocking_is_gp(void)
2321 {
2322 int ret;
2323
2324 might_sleep(); /* Check for RCU read-side critical section. */
2325 preempt_disable();
2326 ret = num_online_cpus() <= 1;
2327 preempt_enable();
2328 return ret;
2329 }
2330
2331 /**
2332 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2333 *
2334 * Control will return to the caller some time after a full rcu-sched
2335 * grace period has elapsed, in other words after all currently executing
2336 * rcu-sched read-side critical sections have completed. These read-side
2337 * critical sections are delimited by rcu_read_lock_sched() and
2338 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2339 * local_irq_disable(), and so on may be used in place of
2340 * rcu_read_lock_sched().
2341 *
2342 * This means that all preempt_disable code sequences, including NMI and
2343 * non-threaded hardware-interrupt handlers, in progress on entry will
2344 * have completed before this primitive returns. However, this does not
2345 * guarantee that softirq handlers will have completed, since in some
2346 * kernels, these handlers can run in process context, and can block.
2347 *
2348 * Note that this guarantee implies further memory-ordering guarantees.
2349 * On systems with more than one CPU, when synchronize_sched() returns,
2350 * each CPU is guaranteed to have executed a full memory barrier since the
2351 * end of its last RCU-sched read-side critical section whose beginning
2352 * preceded the call to synchronize_sched(). In addition, each CPU having
2353 * an RCU read-side critical section that extends beyond the return from
2354 * synchronize_sched() is guaranteed to have executed a full memory barrier
2355 * after the beginning of synchronize_sched() and before the beginning of
2356 * that RCU read-side critical section. Note that these guarantees include
2357 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2358 * that are executing in the kernel.
2359 *
2360 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2361 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2362 * to have executed a full memory barrier during the execution of
2363 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2364 * again only if the system has more than one CPU).
2365 *
2366 * This primitive provides the guarantees made by the (now removed)
2367 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2368 * guarantees that rcu_read_lock() sections will have completed.
2369 * In "classic RCU", these two guarantees happen to be one and
2370 * the same, but can differ in realtime RCU implementations.
2371 */
2372 void synchronize_sched(void)
2373 {
2374 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2375 !lock_is_held(&rcu_lock_map) &&
2376 !lock_is_held(&rcu_sched_lock_map),
2377 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2378 if (rcu_blocking_is_gp())
2379 return;
2380 if (rcu_expedited)
2381 synchronize_sched_expedited();
2382 else
2383 wait_rcu_gp(call_rcu_sched);
2384 }
2385 EXPORT_SYMBOL_GPL(synchronize_sched);
2386
2387 /**
2388 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2389 *
2390 * Control will return to the caller some time after a full rcu_bh grace
2391 * period has elapsed, in other words after all currently executing rcu_bh
2392 * read-side critical sections have completed. RCU read-side critical
2393 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2394 * and may be nested.
2395 *
2396 * See the description of synchronize_sched() for more detailed information
2397 * on memory ordering guarantees.
2398 */
2399 void synchronize_rcu_bh(void)
2400 {
2401 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2402 !lock_is_held(&rcu_lock_map) &&
2403 !lock_is_held(&rcu_sched_lock_map),
2404 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2405 if (rcu_blocking_is_gp())
2406 return;
2407 if (rcu_expedited)
2408 synchronize_rcu_bh_expedited();
2409 else
2410 wait_rcu_gp(call_rcu_bh);
2411 }
2412 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2413
2414 static int synchronize_sched_expedited_cpu_stop(void *data)
2415 {
2416 /*
2417 * There must be a full memory barrier on each affected CPU
2418 * between the time that try_stop_cpus() is called and the
2419 * time that it returns.
2420 *
2421 * In the current initial implementation of cpu_stop, the
2422 * above condition is already met when the control reaches
2423 * this point and the following smp_mb() is not strictly
2424 * necessary. Do smp_mb() anyway for documentation and
2425 * robustness against future implementation changes.
2426 */
2427 smp_mb(); /* See above comment block. */
2428 return 0;
2429 }
2430
2431 /**
2432 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2433 *
2434 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2435 * approach to force the grace period to end quickly. This consumes
2436 * significant time on all CPUs and is unfriendly to real-time workloads,
2437 * so is thus not recommended for any sort of common-case code. In fact,
2438 * if you are using synchronize_sched_expedited() in a loop, please
2439 * restructure your code to batch your updates, and then use a single
2440 * synchronize_sched() instead.
2441 *
2442 * Note that it is illegal to call this function while holding any lock
2443 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2444 * to call this function from a CPU-hotplug notifier. Failing to observe
2445 * these restriction will result in deadlock.
2446 *
2447 * This implementation can be thought of as an application of ticket
2448 * locking to RCU, with sync_sched_expedited_started and
2449 * sync_sched_expedited_done taking on the roles of the halves
2450 * of the ticket-lock word. Each task atomically increments
2451 * sync_sched_expedited_started upon entry, snapshotting the old value,
2452 * then attempts to stop all the CPUs. If this succeeds, then each
2453 * CPU will have executed a context switch, resulting in an RCU-sched
2454 * grace period. We are then done, so we use atomic_cmpxchg() to
2455 * update sync_sched_expedited_done to match our snapshot -- but
2456 * only if someone else has not already advanced past our snapshot.
2457 *
2458 * On the other hand, if try_stop_cpus() fails, we check the value
2459 * of sync_sched_expedited_done. If it has advanced past our
2460 * initial snapshot, then someone else must have forced a grace period
2461 * some time after we took our snapshot. In this case, our work is
2462 * done for us, and we can simply return. Otherwise, we try again,
2463 * but keep our initial snapshot for purposes of checking for someone
2464 * doing our work for us.
2465 *
2466 * If we fail too many times in a row, we fall back to synchronize_sched().
2467 */
2468 void synchronize_sched_expedited(void)
2469 {
2470 long firstsnap, s, snap;
2471 int trycount = 0;
2472 struct rcu_state *rsp = &rcu_sched_state;
2473
2474 /*
2475 * If we are in danger of counter wrap, just do synchronize_sched().
2476 * By allowing sync_sched_expedited_started to advance no more than
2477 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2478 * that more than 3.5 billion CPUs would be required to force a
2479 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2480 * course be required on a 64-bit system.
2481 */
2482 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2483 (ulong)atomic_long_read(&rsp->expedited_done) +
2484 ULONG_MAX / 8)) {
2485 synchronize_sched();
2486 atomic_long_inc(&rsp->expedited_wrap);
2487 return;
2488 }
2489
2490 /*
2491 * Take a ticket. Note that atomic_inc_return() implies a
2492 * full memory barrier.
2493 */
2494 snap = atomic_long_inc_return(&rsp->expedited_start);
2495 firstsnap = snap;
2496 get_online_cpus();
2497 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2498
2499 /*
2500 * Each pass through the following loop attempts to force a
2501 * context switch on each CPU.
2502 */
2503 while (try_stop_cpus(cpu_online_mask,
2504 synchronize_sched_expedited_cpu_stop,
2505 NULL) == -EAGAIN) {
2506 put_online_cpus();
2507 atomic_long_inc(&rsp->expedited_tryfail);
2508
2509 /* Check to see if someone else did our work for us. */
2510 s = atomic_long_read(&rsp->expedited_done);
2511 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2512 /* ensure test happens before caller kfree */
2513 smp_mb__before_atomic_inc(); /* ^^^ */
2514 atomic_long_inc(&rsp->expedited_workdone1);
2515 return;
2516 }
2517
2518 /* No joy, try again later. Or just synchronize_sched(). */
2519 if (trycount++ < 10) {
2520 udelay(trycount * num_online_cpus());
2521 } else {
2522 wait_rcu_gp(call_rcu_sched);
2523 atomic_long_inc(&rsp->expedited_normal);
2524 return;
2525 }
2526
2527 /* Recheck to see if someone else did our work for us. */
2528 s = atomic_long_read(&rsp->expedited_done);
2529 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2530 /* ensure test happens before caller kfree */
2531 smp_mb__before_atomic_inc(); /* ^^^ */
2532 atomic_long_inc(&rsp->expedited_workdone2);
2533 return;
2534 }
2535
2536 /*
2537 * Refetching sync_sched_expedited_started allows later
2538 * callers to piggyback on our grace period. We retry
2539 * after they started, so our grace period works for them,
2540 * and they started after our first try, so their grace
2541 * period works for us.
2542 */
2543 get_online_cpus();
2544 snap = atomic_long_read(&rsp->expedited_start);
2545 smp_mb(); /* ensure read is before try_stop_cpus(). */
2546 }
2547 atomic_long_inc(&rsp->expedited_stoppedcpus);
2548
2549 /*
2550 * Everyone up to our most recent fetch is covered by our grace
2551 * period. Update the counter, but only if our work is still
2552 * relevant -- which it won't be if someone who started later
2553 * than we did already did their update.
2554 */
2555 do {
2556 atomic_long_inc(&rsp->expedited_done_tries);
2557 s = atomic_long_read(&rsp->expedited_done);
2558 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2559 /* ensure test happens before caller kfree */
2560 smp_mb__before_atomic_inc(); /* ^^^ */
2561 atomic_long_inc(&rsp->expedited_done_lost);
2562 break;
2563 }
2564 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2565 atomic_long_inc(&rsp->expedited_done_exit);
2566
2567 put_online_cpus();
2568 }
2569 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2570
2571 /*
2572 * Check to see if there is any immediate RCU-related work to be done
2573 * by the current CPU, for the specified type of RCU, returning 1 if so.
2574 * The checks are in order of increasing expense: checks that can be
2575 * carried out against CPU-local state are performed first. However,
2576 * we must check for CPU stalls first, else we might not get a chance.
2577 */
2578 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2579 {
2580 struct rcu_node *rnp = rdp->mynode;
2581
2582 rdp->n_rcu_pending++;
2583
2584 /* Check for CPU stalls, if enabled. */
2585 check_cpu_stall(rsp, rdp);
2586
2587 /* Is the RCU core waiting for a quiescent state from this CPU? */
2588 if (rcu_scheduler_fully_active &&
2589 rdp->qs_pending && !rdp->passed_quiesce) {
2590 rdp->n_rp_qs_pending++;
2591 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2592 rdp->n_rp_report_qs++;
2593 return 1;
2594 }
2595
2596 /* Does this CPU have callbacks ready to invoke? */
2597 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2598 rdp->n_rp_cb_ready++;
2599 return 1;
2600 }
2601
2602 /* Has RCU gone idle with this CPU needing another grace period? */
2603 if (cpu_needs_another_gp(rsp, rdp)) {
2604 rdp->n_rp_cpu_needs_gp++;
2605 return 1;
2606 }
2607
2608 /* Has another RCU grace period completed? */
2609 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2610 rdp->n_rp_gp_completed++;
2611 return 1;
2612 }
2613
2614 /* Has a new RCU grace period started? */
2615 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2616 rdp->n_rp_gp_started++;
2617 return 1;
2618 }
2619
2620 /* nothing to do */
2621 rdp->n_rp_need_nothing++;
2622 return 0;
2623 }
2624
2625 /*
2626 * Check to see if there is any immediate RCU-related work to be done
2627 * by the current CPU, returning 1 if so. This function is part of the
2628 * RCU implementation; it is -not- an exported member of the RCU API.
2629 */
2630 static int rcu_pending(int cpu)
2631 {
2632 struct rcu_state *rsp;
2633
2634 for_each_rcu_flavor(rsp)
2635 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2636 return 1;
2637 return 0;
2638 }
2639
2640 /*
2641 * Check to see if any future RCU-related work will need to be done
2642 * by the current CPU, even if none need be done immediately, returning
2643 * 1 if so.
2644 */
2645 static int rcu_cpu_has_callbacks(int cpu)
2646 {
2647 struct rcu_state *rsp;
2648
2649 /* RCU callbacks either ready or pending? */
2650 for_each_rcu_flavor(rsp)
2651 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2652 return 1;
2653 return 0;
2654 }
2655
2656 /*
2657 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2658 * the compiler is expected to optimize this away.
2659 */
2660 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2661 int cpu, unsigned long done)
2662 {
2663 trace_rcu_barrier(rsp->name, s, cpu,
2664 atomic_read(&rsp->barrier_cpu_count), done);
2665 }
2666
2667 /*
2668 * RCU callback function for _rcu_barrier(). If we are last, wake
2669 * up the task executing _rcu_barrier().
2670 */
2671 static void rcu_barrier_callback(struct rcu_head *rhp)
2672 {
2673 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2674 struct rcu_state *rsp = rdp->rsp;
2675
2676 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2677 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2678 complete(&rsp->barrier_completion);
2679 } else {
2680 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2681 }
2682 }
2683
2684 /*
2685 * Called with preemption disabled, and from cross-cpu IRQ context.
2686 */
2687 static void rcu_barrier_func(void *type)
2688 {
2689 struct rcu_state *rsp = type;
2690 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2691
2692 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2693 atomic_inc(&rsp->barrier_cpu_count);
2694 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2695 }
2696
2697 /*
2698 * Orchestrate the specified type of RCU barrier, waiting for all
2699 * RCU callbacks of the specified type to complete.
2700 */
2701 static void _rcu_barrier(struct rcu_state *rsp)
2702 {
2703 int cpu;
2704 struct rcu_data *rdp;
2705 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2706 unsigned long snap_done;
2707
2708 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2709
2710 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2711 mutex_lock(&rsp->barrier_mutex);
2712
2713 /*
2714 * Ensure that all prior references, including to ->n_barrier_done,
2715 * are ordered before the _rcu_barrier() machinery.
2716 */
2717 smp_mb(); /* See above block comment. */
2718
2719 /*
2720 * Recheck ->n_barrier_done to see if others did our work for us.
2721 * This means checking ->n_barrier_done for an even-to-odd-to-even
2722 * transition. The "if" expression below therefore rounds the old
2723 * value up to the next even number and adds two before comparing.
2724 */
2725 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2726 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2727 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2728 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2729 smp_mb(); /* caller's subsequent code after above check. */
2730 mutex_unlock(&rsp->barrier_mutex);
2731 return;
2732 }
2733
2734 /*
2735 * Increment ->n_barrier_done to avoid duplicate work. Use
2736 * ACCESS_ONCE() to prevent the compiler from speculating
2737 * the increment to precede the early-exit check.
2738 */
2739 ACCESS_ONCE(rsp->n_barrier_done)++;
2740 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2741 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2742 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2743
2744 /*
2745 * Initialize the count to one rather than to zero in order to
2746 * avoid a too-soon return to zero in case of a short grace period
2747 * (or preemption of this task). Exclude CPU-hotplug operations
2748 * to ensure that no offline CPU has callbacks queued.
2749 */
2750 init_completion(&rsp->barrier_completion);
2751 atomic_set(&rsp->barrier_cpu_count, 1);
2752 get_online_cpus();
2753
2754 /*
2755 * Force each CPU with callbacks to register a new callback.
2756 * When that callback is invoked, we will know that all of the
2757 * corresponding CPU's preceding callbacks have been invoked.
2758 */
2759 for_each_possible_cpu(cpu) {
2760 if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
2761 continue;
2762 rdp = per_cpu_ptr(rsp->rda, cpu);
2763 if (is_nocb_cpu(cpu)) {
2764 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2765 rsp->n_barrier_done);
2766 atomic_inc(&rsp->barrier_cpu_count);
2767 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2768 rsp, cpu, 0);
2769 } else if (ACCESS_ONCE(rdp->qlen)) {
2770 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2771 rsp->n_barrier_done);
2772 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2773 } else {
2774 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2775 rsp->n_barrier_done);
2776 }
2777 }
2778 put_online_cpus();
2779
2780 /*
2781 * Now that we have an rcu_barrier_callback() callback on each
2782 * CPU, and thus each counted, remove the initial count.
2783 */
2784 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2785 complete(&rsp->barrier_completion);
2786
2787 /* Increment ->n_barrier_done to prevent duplicate work. */
2788 smp_mb(); /* Keep increment after above mechanism. */
2789 ACCESS_ONCE(rsp->n_barrier_done)++;
2790 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2791 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2792 smp_mb(); /* Keep increment before caller's subsequent code. */
2793
2794 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2795 wait_for_completion(&rsp->barrier_completion);
2796
2797 /* Other rcu_barrier() invocations can now safely proceed. */
2798 mutex_unlock(&rsp->barrier_mutex);
2799 }
2800
2801 /**
2802 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2803 */
2804 void rcu_barrier_bh(void)
2805 {
2806 _rcu_barrier(&rcu_bh_state);
2807 }
2808 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2809
2810 /**
2811 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2812 */
2813 void rcu_barrier_sched(void)
2814 {
2815 _rcu_barrier(&rcu_sched_state);
2816 }
2817 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2818
2819 /*
2820 * Do boot-time initialization of a CPU's per-CPU RCU data.
2821 */
2822 static void __init
2823 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2824 {
2825 unsigned long flags;
2826 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2827 struct rcu_node *rnp = rcu_get_root(rsp);
2828
2829 /* Set up local state, ensuring consistent view of global state. */
2830 raw_spin_lock_irqsave(&rnp->lock, flags);
2831 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2832 init_callback_list(rdp);
2833 rdp->qlen_lazy = 0;
2834 ACCESS_ONCE(rdp->qlen) = 0;
2835 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2836 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2837 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2838 rdp->cpu = cpu;
2839 rdp->rsp = rsp;
2840 rcu_boot_init_nocb_percpu_data(rdp);
2841 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2842 }
2843
2844 /*
2845 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2846 * offline event can be happening at a given time. Note also that we
2847 * can accept some slop in the rsp->completed access due to the fact
2848 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2849 */
2850 static void __cpuinit
2851 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2852 {
2853 unsigned long flags;
2854 unsigned long mask;
2855 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2856 struct rcu_node *rnp = rcu_get_root(rsp);
2857
2858 /* Exclude new grace periods. */
2859 mutex_lock(&rsp->onoff_mutex);
2860
2861 /* Set up local state, ensuring consistent view of global state. */
2862 raw_spin_lock_irqsave(&rnp->lock, flags);
2863 rdp->beenonline = 1; /* We have now been online. */
2864 rdp->preemptible = preemptible;
2865 rdp->qlen_last_fqs_check = 0;
2866 rdp->n_force_qs_snap = rsp->n_force_qs;
2867 rdp->blimit = blimit;
2868 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2869 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2870 atomic_set(&rdp->dynticks->dynticks,
2871 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2872 rcu_prepare_for_idle_init(cpu);
2873 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2874
2875 /* Add CPU to rcu_node bitmasks. */
2876 rnp = rdp->mynode;
2877 mask = rdp->grpmask;
2878 do {
2879 /* Exclude any attempts to start a new GP on small systems. */
2880 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2881 rnp->qsmaskinit |= mask;
2882 mask = rnp->grpmask;
2883 if (rnp == rdp->mynode) {
2884 /*
2885 * If there is a grace period in progress, we will
2886 * set up to wait for it next time we run the
2887 * RCU core code.
2888 */
2889 rdp->gpnum = rnp->completed;
2890 rdp->completed = rnp->completed;
2891 rdp->passed_quiesce = 0;
2892 rdp->qs_pending = 0;
2893 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2894 }
2895 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2896 rnp = rnp->parent;
2897 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2898 local_irq_restore(flags);
2899
2900 mutex_unlock(&rsp->onoff_mutex);
2901 }
2902
2903 static void __cpuinit rcu_prepare_cpu(int cpu)
2904 {
2905 struct rcu_state *rsp;
2906
2907 for_each_rcu_flavor(rsp)
2908 rcu_init_percpu_data(cpu, rsp,
2909 strcmp(rsp->name, "rcu_preempt") == 0);
2910 }
2911
2912 /*
2913 * Handle CPU online/offline notification events.
2914 */
2915 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2916 unsigned long action, void *hcpu)
2917 {
2918 long cpu = (long)hcpu;
2919 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2920 struct rcu_node *rnp = rdp->mynode;
2921 struct rcu_state *rsp;
2922 int ret = NOTIFY_OK;
2923
2924 trace_rcu_utilization("Start CPU hotplug");
2925 switch (action) {
2926 case CPU_UP_PREPARE:
2927 case CPU_UP_PREPARE_FROZEN:
2928 rcu_prepare_cpu(cpu);
2929 rcu_prepare_kthreads(cpu);
2930 break;
2931 case CPU_ONLINE:
2932 case CPU_DOWN_FAILED:
2933 rcu_boost_kthread_setaffinity(rnp, -1);
2934 break;
2935 case CPU_DOWN_PREPARE:
2936 if (nocb_cpu_expendable(cpu))
2937 rcu_boost_kthread_setaffinity(rnp, cpu);
2938 else
2939 ret = NOTIFY_BAD;
2940 break;
2941 case CPU_DYING:
2942 case CPU_DYING_FROZEN:
2943 /*
2944 * The whole machine is "stopped" except this CPU, so we can
2945 * touch any data without introducing corruption. We send the
2946 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2947 */
2948 for_each_rcu_flavor(rsp)
2949 rcu_cleanup_dying_cpu(rsp);
2950 rcu_cleanup_after_idle(cpu);
2951 break;
2952 case CPU_DEAD:
2953 case CPU_DEAD_FROZEN:
2954 case CPU_UP_CANCELED:
2955 case CPU_UP_CANCELED_FROZEN:
2956 for_each_rcu_flavor(rsp)
2957 rcu_cleanup_dead_cpu(cpu, rsp);
2958 break;
2959 default:
2960 break;
2961 }
2962 trace_rcu_utilization("End CPU hotplug");
2963 return ret;
2964 }
2965
2966 /*
2967 * Spawn the kthread that handles this RCU flavor's grace periods.
2968 */
2969 static int __init rcu_spawn_gp_kthread(void)
2970 {
2971 unsigned long flags;
2972 struct rcu_node *rnp;
2973 struct rcu_state *rsp;
2974 struct task_struct *t;
2975
2976 for_each_rcu_flavor(rsp) {
2977 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2978 BUG_ON(IS_ERR(t));
2979 rnp = rcu_get_root(rsp);
2980 raw_spin_lock_irqsave(&rnp->lock, flags);
2981 rsp->gp_kthread = t;
2982 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2983 rcu_spawn_nocb_kthreads(rsp);
2984 }
2985 return 0;
2986 }
2987 early_initcall(rcu_spawn_gp_kthread);
2988
2989 /*
2990 * This function is invoked towards the end of the scheduler's initialization
2991 * process. Before this is called, the idle task might contain
2992 * RCU read-side critical sections (during which time, this idle
2993 * task is booting the system). After this function is called, the
2994 * idle tasks are prohibited from containing RCU read-side critical
2995 * sections. This function also enables RCU lockdep checking.
2996 */
2997 void rcu_scheduler_starting(void)
2998 {
2999 WARN_ON(num_online_cpus() != 1);
3000 WARN_ON(nr_context_switches() > 0);
3001 rcu_scheduler_active = 1;
3002 }
3003
3004 /*
3005 * Compute the per-level fanout, either using the exact fanout specified
3006 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3007 */
3008 #ifdef CONFIG_RCU_FANOUT_EXACT
3009 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3010 {
3011 int i;
3012
3013 for (i = rcu_num_lvls - 1; i > 0; i--)
3014 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3015 rsp->levelspread[0] = rcu_fanout_leaf;
3016 }
3017 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3018 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3019 {
3020 int ccur;
3021 int cprv;
3022 int i;
3023
3024 cprv = nr_cpu_ids;
3025 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3026 ccur = rsp->levelcnt[i];
3027 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3028 cprv = ccur;
3029 }
3030 }
3031 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3032
3033 /*
3034 * Helper function for rcu_init() that initializes one rcu_state structure.
3035 */
3036 static void __init rcu_init_one(struct rcu_state *rsp,
3037 struct rcu_data __percpu *rda)
3038 {
3039 static char *buf[] = { "rcu_node_0",
3040 "rcu_node_1",
3041 "rcu_node_2",
3042 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3043 static char *fqs[] = { "rcu_node_fqs_0",
3044 "rcu_node_fqs_1",
3045 "rcu_node_fqs_2",
3046 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3047 int cpustride = 1;
3048 int i;
3049 int j;
3050 struct rcu_node *rnp;
3051
3052 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3053
3054 /* Silence gcc 4.8 warning about array index out of range. */
3055 if (rcu_num_lvls > RCU_NUM_LVLS)
3056 panic("rcu_init_one: rcu_num_lvls overflow");
3057
3058 /* Initialize the level-tracking arrays. */
3059
3060 for (i = 0; i < rcu_num_lvls; i++)
3061 rsp->levelcnt[i] = num_rcu_lvl[i];
3062 for (i = 1; i < rcu_num_lvls; i++)
3063 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3064 rcu_init_levelspread(rsp);
3065
3066 /* Initialize the elements themselves, starting from the leaves. */
3067
3068 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3069 cpustride *= rsp->levelspread[i];
3070 rnp = rsp->level[i];
3071 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3072 raw_spin_lock_init(&rnp->lock);
3073 lockdep_set_class_and_name(&rnp->lock,
3074 &rcu_node_class[i], buf[i]);
3075 raw_spin_lock_init(&rnp->fqslock);
3076 lockdep_set_class_and_name(&rnp->fqslock,
3077 &rcu_fqs_class[i], fqs[i]);
3078 rnp->gpnum = rsp->gpnum;
3079 rnp->completed = rsp->completed;
3080 rnp->qsmask = 0;
3081 rnp->qsmaskinit = 0;
3082 rnp->grplo = j * cpustride;
3083 rnp->grphi = (j + 1) * cpustride - 1;
3084 if (rnp->grphi >= NR_CPUS)
3085 rnp->grphi = NR_CPUS - 1;
3086 if (i == 0) {
3087 rnp->grpnum = 0;
3088 rnp->grpmask = 0;
3089 rnp->parent = NULL;
3090 } else {
3091 rnp->grpnum = j % rsp->levelspread[i - 1];
3092 rnp->grpmask = 1UL << rnp->grpnum;
3093 rnp->parent = rsp->level[i - 1] +
3094 j / rsp->levelspread[i - 1];
3095 }
3096 rnp->level = i;
3097 INIT_LIST_HEAD(&rnp->blkd_tasks);
3098 }
3099 }
3100
3101 rsp->rda = rda;
3102 init_waitqueue_head(&rsp->gp_wq);
3103 rnp = rsp->level[rcu_num_lvls - 1];
3104 for_each_possible_cpu(i) {
3105 while (i > rnp->grphi)
3106 rnp++;
3107 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3108 rcu_boot_init_percpu_data(i, rsp);
3109 }
3110 list_add(&rsp->flavors, &rcu_struct_flavors);
3111 }
3112
3113 /*
3114 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3115 * replace the definitions in rcutree.h because those are needed to size
3116 * the ->node array in the rcu_state structure.
3117 */
3118 static void __init rcu_init_geometry(void)
3119 {
3120 int i;
3121 int j;
3122 int n = nr_cpu_ids;
3123 int rcu_capacity[MAX_RCU_LVLS + 1];
3124
3125 /* If the compile-time values are accurate, just leave. */
3126 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3127 nr_cpu_ids == NR_CPUS)
3128 return;
3129
3130 /*
3131 * Compute number of nodes that can be handled an rcu_node tree
3132 * with the given number of levels. Setting rcu_capacity[0] makes
3133 * some of the arithmetic easier.
3134 */
3135 rcu_capacity[0] = 1;
3136 rcu_capacity[1] = rcu_fanout_leaf;
3137 for (i = 2; i <= MAX_RCU_LVLS; i++)
3138 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3139
3140 /*
3141 * The boot-time rcu_fanout_leaf parameter is only permitted
3142 * to increase the leaf-level fanout, not decrease it. Of course,
3143 * the leaf-level fanout cannot exceed the number of bits in
3144 * the rcu_node masks. Finally, the tree must be able to accommodate
3145 * the configured number of CPUs. Complain and fall back to the
3146 * compile-time values if these limits are exceeded.
3147 */
3148 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3149 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3150 n > rcu_capacity[MAX_RCU_LVLS]) {
3151 WARN_ON(1);
3152 return;
3153 }
3154
3155 /* Calculate the number of rcu_nodes at each level of the tree. */
3156 for (i = 1; i <= MAX_RCU_LVLS; i++)
3157 if (n <= rcu_capacity[i]) {
3158 for (j = 0; j <= i; j++)
3159 num_rcu_lvl[j] =
3160 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3161 rcu_num_lvls = i;
3162 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3163 num_rcu_lvl[j] = 0;
3164 break;
3165 }
3166
3167 /* Calculate the total number of rcu_node structures. */
3168 rcu_num_nodes = 0;
3169 for (i = 0; i <= MAX_RCU_LVLS; i++)
3170 rcu_num_nodes += num_rcu_lvl[i];
3171 rcu_num_nodes -= n;
3172 }
3173
3174 void __init rcu_init(void)
3175 {
3176 int cpu;
3177
3178 rcu_bootup_announce();
3179 rcu_init_geometry();
3180 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3181 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3182 __rcu_init_preempt();
3183 rcu_init_nocb();
3184 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3185
3186 /*
3187 * We don't need protection against CPU-hotplug here because
3188 * this is called early in boot, before either interrupts
3189 * or the scheduler are operational.
3190 */
3191 cpu_notifier(rcu_cpu_notify, 0);
3192 for_each_online_cpu(cpu)
3193 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3194 }
3195
3196 #include "rcutree_plugin.h"
This page took 0.143149 seconds and 5 git commands to generate.