rcu: Abstract rcu_start_future_gp() from rcu_nocb_wait_gp()
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59
60 #include "rcu.h"
61
62 /* Data structures. */
63
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = 0UL - 300UL, \
72 .completed = 0UL - 300UL, \
73 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 .name = #sname, \
79 .abbr = sabbr, \
80 }
81
82 struct rcu_state rcu_sched_state =
83 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
84 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
85
86 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
87 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
88
89 static struct rcu_state *rcu_state;
90 LIST_HEAD(rcu_struct_flavors);
91
92 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
93 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
94 module_param(rcu_fanout_leaf, int, 0444);
95 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
96 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
97 NUM_RCU_LVL_0,
98 NUM_RCU_LVL_1,
99 NUM_RCU_LVL_2,
100 NUM_RCU_LVL_3,
101 NUM_RCU_LVL_4,
102 };
103 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
104
105 /*
106 * The rcu_scheduler_active variable transitions from zero to one just
107 * before the first task is spawned. So when this variable is zero, RCU
108 * can assume that there is but one task, allowing RCU to (for example)
109 * optimize synchronize_sched() to a simple barrier(). When this variable
110 * is one, RCU must actually do all the hard work required to detect real
111 * grace periods. This variable is also used to suppress boot-time false
112 * positives from lockdep-RCU error checking.
113 */
114 int rcu_scheduler_active __read_mostly;
115 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
116
117 /*
118 * The rcu_scheduler_fully_active variable transitions from zero to one
119 * during the early_initcall() processing, which is after the scheduler
120 * is capable of creating new tasks. So RCU processing (for example,
121 * creating tasks for RCU priority boosting) must be delayed until after
122 * rcu_scheduler_fully_active transitions from zero to one. We also
123 * currently delay invocation of any RCU callbacks until after this point.
124 *
125 * It might later prove better for people registering RCU callbacks during
126 * early boot to take responsibility for these callbacks, but one step at
127 * a time.
128 */
129 static int rcu_scheduler_fully_active __read_mostly;
130
131 #ifdef CONFIG_RCU_BOOST
132
133 /*
134 * Control variables for per-CPU and per-rcu_node kthreads. These
135 * handle all flavors of RCU.
136 */
137 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
139 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
140 DEFINE_PER_CPU(char, rcu_cpu_has_work);
141
142 #endif /* #ifdef CONFIG_RCU_BOOST */
143
144 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
145 static void invoke_rcu_core(void);
146 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
147
148 /*
149 * Track the rcutorture test sequence number and the update version
150 * number within a given test. The rcutorture_testseq is incremented
151 * on every rcutorture module load and unload, so has an odd value
152 * when a test is running. The rcutorture_vernum is set to zero
153 * when rcutorture starts and is incremented on each rcutorture update.
154 * These variables enable correlating rcutorture output with the
155 * RCU tracing information.
156 */
157 unsigned long rcutorture_testseq;
158 unsigned long rcutorture_vernum;
159
160 /*
161 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
162 * permit this function to be invoked without holding the root rcu_node
163 * structure's ->lock, but of course results can be subject to change.
164 */
165 static int rcu_gp_in_progress(struct rcu_state *rsp)
166 {
167 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
168 }
169
170 /*
171 * Note a quiescent state. Because we do not need to know
172 * how many quiescent states passed, just if there was at least
173 * one since the start of the grace period, this just sets a flag.
174 * The caller must have disabled preemption.
175 */
176 void rcu_sched_qs(int cpu)
177 {
178 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
179
180 if (rdp->passed_quiesce == 0)
181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182 rdp->passed_quiesce = 1;
183 }
184
185 void rcu_bh_qs(int cpu)
186 {
187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
188
189 if (rdp->passed_quiesce == 0)
190 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
191 rdp->passed_quiesce = 1;
192 }
193
194 /*
195 * Note a context switch. This is a quiescent state for RCU-sched,
196 * and requires special handling for preemptible RCU.
197 * The caller must have disabled preemption.
198 */
199 void rcu_note_context_switch(int cpu)
200 {
201 trace_rcu_utilization("Start context switch");
202 rcu_sched_qs(cpu);
203 rcu_preempt_note_context_switch(cpu);
204 trace_rcu_utilization("End context switch");
205 }
206 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
207
208 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
209 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
210 .dynticks = ATOMIC_INIT(1),
211 };
212
213 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
214 static long qhimark = 10000; /* If this many pending, ignore blimit. */
215 static long qlowmark = 100; /* Once only this many pending, use blimit. */
216
217 module_param(blimit, long, 0444);
218 module_param(qhimark, long, 0444);
219 module_param(qlowmark, long, 0444);
220
221 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
222 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
223
224 module_param(jiffies_till_first_fqs, ulong, 0644);
225 module_param(jiffies_till_next_fqs, ulong, 0644);
226
227 static void rcu_start_gp(struct rcu_state *rsp);
228 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
229 static void force_quiescent_state(struct rcu_state *rsp);
230 static int rcu_pending(int cpu);
231
232 /*
233 * Return the number of RCU-sched batches processed thus far for debug & stats.
234 */
235 long rcu_batches_completed_sched(void)
236 {
237 return rcu_sched_state.completed;
238 }
239 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
240
241 /*
242 * Return the number of RCU BH batches processed thus far for debug & stats.
243 */
244 long rcu_batches_completed_bh(void)
245 {
246 return rcu_bh_state.completed;
247 }
248 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
249
250 /*
251 * Force a quiescent state for RCU BH.
252 */
253 void rcu_bh_force_quiescent_state(void)
254 {
255 force_quiescent_state(&rcu_bh_state);
256 }
257 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
258
259 /*
260 * Record the number of times rcutorture tests have been initiated and
261 * terminated. This information allows the debugfs tracing stats to be
262 * correlated to the rcutorture messages, even when the rcutorture module
263 * is being repeatedly loaded and unloaded. In other words, we cannot
264 * store this state in rcutorture itself.
265 */
266 void rcutorture_record_test_transition(void)
267 {
268 rcutorture_testseq++;
269 rcutorture_vernum = 0;
270 }
271 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
272
273 /*
274 * Record the number of writer passes through the current rcutorture test.
275 * This is also used to correlate debugfs tracing stats with the rcutorture
276 * messages.
277 */
278 void rcutorture_record_progress(unsigned long vernum)
279 {
280 rcutorture_vernum++;
281 }
282 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
283
284 /*
285 * Force a quiescent state for RCU-sched.
286 */
287 void rcu_sched_force_quiescent_state(void)
288 {
289 force_quiescent_state(&rcu_sched_state);
290 }
291 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
292
293 /*
294 * Does the CPU have callbacks ready to be invoked?
295 */
296 static int
297 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
298 {
299 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
300 rdp->nxttail[RCU_DONE_TAIL] != NULL;
301 }
302
303 /*
304 * Does the current CPU require a not-yet-started grace period?
305 * The caller must have disabled interrupts to prevent races with
306 * normal callback registry.
307 */
308 static int
309 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
310 {
311 int i;
312
313 if (rcu_gp_in_progress(rsp))
314 return 0; /* No, a grace period is already in progress. */
315 if (rcu_nocb_needs_gp(rsp))
316 return 1; /* Yes, a no-CBs CPU needs one. */
317 if (!rdp->nxttail[RCU_NEXT_TAIL])
318 return 0; /* No, this is a no-CBs (or offline) CPU. */
319 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
320 return 1; /* Yes, this CPU has newly registered callbacks. */
321 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
322 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
323 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
324 rdp->nxtcompleted[i]))
325 return 1; /* Yes, CBs for future grace period. */
326 return 0; /* No grace period needed. */
327 }
328
329 /*
330 * Return the root node of the specified rcu_state structure.
331 */
332 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
333 {
334 return &rsp->node[0];
335 }
336
337 /*
338 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
339 *
340 * If the new value of the ->dynticks_nesting counter now is zero,
341 * we really have entered idle, and must do the appropriate accounting.
342 * The caller must have disabled interrupts.
343 */
344 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
345 bool user)
346 {
347 trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
348 if (!user && !is_idle_task(current)) {
349 struct task_struct *idle = idle_task(smp_processor_id());
350
351 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
352 ftrace_dump(DUMP_ORIG);
353 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
354 current->pid, current->comm,
355 idle->pid, idle->comm); /* must be idle task! */
356 }
357 rcu_prepare_for_idle(smp_processor_id());
358 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
359 smp_mb__before_atomic_inc(); /* See above. */
360 atomic_inc(&rdtp->dynticks);
361 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
362 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
363
364 /*
365 * It is illegal to enter an extended quiescent state while
366 * in an RCU read-side critical section.
367 */
368 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
369 "Illegal idle entry in RCU read-side critical section.");
370 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
371 "Illegal idle entry in RCU-bh read-side critical section.");
372 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
373 "Illegal idle entry in RCU-sched read-side critical section.");
374 }
375
376 /*
377 * Enter an RCU extended quiescent state, which can be either the
378 * idle loop or adaptive-tickless usermode execution.
379 */
380 static void rcu_eqs_enter(bool user)
381 {
382 long long oldval;
383 struct rcu_dynticks *rdtp;
384
385 rdtp = &__get_cpu_var(rcu_dynticks);
386 oldval = rdtp->dynticks_nesting;
387 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
388 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
389 rdtp->dynticks_nesting = 0;
390 else
391 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
392 rcu_eqs_enter_common(rdtp, oldval, user);
393 }
394
395 /**
396 * rcu_idle_enter - inform RCU that current CPU is entering idle
397 *
398 * Enter idle mode, in other words, -leave- the mode in which RCU
399 * read-side critical sections can occur. (Though RCU read-side
400 * critical sections can occur in irq handlers in idle, a possibility
401 * handled by irq_enter() and irq_exit().)
402 *
403 * We crowbar the ->dynticks_nesting field to zero to allow for
404 * the possibility of usermode upcalls having messed up our count
405 * of interrupt nesting level during the prior busy period.
406 */
407 void rcu_idle_enter(void)
408 {
409 unsigned long flags;
410
411 local_irq_save(flags);
412 rcu_eqs_enter(false);
413 local_irq_restore(flags);
414 }
415 EXPORT_SYMBOL_GPL(rcu_idle_enter);
416
417 #ifdef CONFIG_RCU_USER_QS
418 /**
419 * rcu_user_enter - inform RCU that we are resuming userspace.
420 *
421 * Enter RCU idle mode right before resuming userspace. No use of RCU
422 * is permitted between this call and rcu_user_exit(). This way the
423 * CPU doesn't need to maintain the tick for RCU maintenance purposes
424 * when the CPU runs in userspace.
425 */
426 void rcu_user_enter(void)
427 {
428 rcu_eqs_enter(1);
429 }
430
431 /**
432 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
433 * after the current irq returns.
434 *
435 * This is similar to rcu_user_enter() but in the context of a non-nesting
436 * irq. After this call, RCU enters into idle mode when the interrupt
437 * returns.
438 */
439 void rcu_user_enter_after_irq(void)
440 {
441 unsigned long flags;
442 struct rcu_dynticks *rdtp;
443
444 local_irq_save(flags);
445 rdtp = &__get_cpu_var(rcu_dynticks);
446 /* Ensure this irq is interrupting a non-idle RCU state. */
447 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
448 rdtp->dynticks_nesting = 1;
449 local_irq_restore(flags);
450 }
451 #endif /* CONFIG_RCU_USER_QS */
452
453 /**
454 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
455 *
456 * Exit from an interrupt handler, which might possibly result in entering
457 * idle mode, in other words, leaving the mode in which read-side critical
458 * sections can occur.
459 *
460 * This code assumes that the idle loop never does anything that might
461 * result in unbalanced calls to irq_enter() and irq_exit(). If your
462 * architecture violates this assumption, RCU will give you what you
463 * deserve, good and hard. But very infrequently and irreproducibly.
464 *
465 * Use things like work queues to work around this limitation.
466 *
467 * You have been warned.
468 */
469 void rcu_irq_exit(void)
470 {
471 unsigned long flags;
472 long long oldval;
473 struct rcu_dynticks *rdtp;
474
475 local_irq_save(flags);
476 rdtp = &__get_cpu_var(rcu_dynticks);
477 oldval = rdtp->dynticks_nesting;
478 rdtp->dynticks_nesting--;
479 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
480 if (rdtp->dynticks_nesting)
481 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
482 else
483 rcu_eqs_enter_common(rdtp, oldval, true);
484 local_irq_restore(flags);
485 }
486
487 /*
488 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
489 *
490 * If the new value of the ->dynticks_nesting counter was previously zero,
491 * we really have exited idle, and must do the appropriate accounting.
492 * The caller must have disabled interrupts.
493 */
494 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
495 int user)
496 {
497 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
498 atomic_inc(&rdtp->dynticks);
499 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
500 smp_mb__after_atomic_inc(); /* See above. */
501 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
502 rcu_cleanup_after_idle(smp_processor_id());
503 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
504 if (!user && !is_idle_task(current)) {
505 struct task_struct *idle = idle_task(smp_processor_id());
506
507 trace_rcu_dyntick("Error on exit: not idle task",
508 oldval, rdtp->dynticks_nesting);
509 ftrace_dump(DUMP_ORIG);
510 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
511 current->pid, current->comm,
512 idle->pid, idle->comm); /* must be idle task! */
513 }
514 }
515
516 /*
517 * Exit an RCU extended quiescent state, which can be either the
518 * idle loop or adaptive-tickless usermode execution.
519 */
520 static void rcu_eqs_exit(bool user)
521 {
522 struct rcu_dynticks *rdtp;
523 long long oldval;
524
525 rdtp = &__get_cpu_var(rcu_dynticks);
526 oldval = rdtp->dynticks_nesting;
527 WARN_ON_ONCE(oldval < 0);
528 if (oldval & DYNTICK_TASK_NEST_MASK)
529 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
530 else
531 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
532 rcu_eqs_exit_common(rdtp, oldval, user);
533 }
534
535 /**
536 * rcu_idle_exit - inform RCU that current CPU is leaving idle
537 *
538 * Exit idle mode, in other words, -enter- the mode in which RCU
539 * read-side critical sections can occur.
540 *
541 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
542 * allow for the possibility of usermode upcalls messing up our count
543 * of interrupt nesting level during the busy period that is just
544 * now starting.
545 */
546 void rcu_idle_exit(void)
547 {
548 unsigned long flags;
549
550 local_irq_save(flags);
551 rcu_eqs_exit(false);
552 local_irq_restore(flags);
553 }
554 EXPORT_SYMBOL_GPL(rcu_idle_exit);
555
556 #ifdef CONFIG_RCU_USER_QS
557 /**
558 * rcu_user_exit - inform RCU that we are exiting userspace.
559 *
560 * Exit RCU idle mode while entering the kernel because it can
561 * run a RCU read side critical section anytime.
562 */
563 void rcu_user_exit(void)
564 {
565 rcu_eqs_exit(1);
566 }
567
568 /**
569 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
570 * idle mode after the current non-nesting irq returns.
571 *
572 * This is similar to rcu_user_exit() but in the context of an irq.
573 * This is called when the irq has interrupted a userspace RCU idle mode
574 * context. When the current non-nesting interrupt returns after this call,
575 * the CPU won't restore the RCU idle mode.
576 */
577 void rcu_user_exit_after_irq(void)
578 {
579 unsigned long flags;
580 struct rcu_dynticks *rdtp;
581
582 local_irq_save(flags);
583 rdtp = &__get_cpu_var(rcu_dynticks);
584 /* Ensure we are interrupting an RCU idle mode. */
585 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
586 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
587 local_irq_restore(flags);
588 }
589 #endif /* CONFIG_RCU_USER_QS */
590
591 /**
592 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
593 *
594 * Enter an interrupt handler, which might possibly result in exiting
595 * idle mode, in other words, entering the mode in which read-side critical
596 * sections can occur.
597 *
598 * Note that the Linux kernel is fully capable of entering an interrupt
599 * handler that it never exits, for example when doing upcalls to
600 * user mode! This code assumes that the idle loop never does upcalls to
601 * user mode. If your architecture does do upcalls from the idle loop (or
602 * does anything else that results in unbalanced calls to the irq_enter()
603 * and irq_exit() functions), RCU will give you what you deserve, good
604 * and hard. But very infrequently and irreproducibly.
605 *
606 * Use things like work queues to work around this limitation.
607 *
608 * You have been warned.
609 */
610 void rcu_irq_enter(void)
611 {
612 unsigned long flags;
613 struct rcu_dynticks *rdtp;
614 long long oldval;
615
616 local_irq_save(flags);
617 rdtp = &__get_cpu_var(rcu_dynticks);
618 oldval = rdtp->dynticks_nesting;
619 rdtp->dynticks_nesting++;
620 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
621 if (oldval)
622 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
623 else
624 rcu_eqs_exit_common(rdtp, oldval, true);
625 local_irq_restore(flags);
626 }
627
628 /**
629 * rcu_nmi_enter - inform RCU of entry to NMI context
630 *
631 * If the CPU was idle with dynamic ticks active, and there is no
632 * irq handler running, this updates rdtp->dynticks_nmi to let the
633 * RCU grace-period handling know that the CPU is active.
634 */
635 void rcu_nmi_enter(void)
636 {
637 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
638
639 if (rdtp->dynticks_nmi_nesting == 0 &&
640 (atomic_read(&rdtp->dynticks) & 0x1))
641 return;
642 rdtp->dynticks_nmi_nesting++;
643 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
644 atomic_inc(&rdtp->dynticks);
645 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
646 smp_mb__after_atomic_inc(); /* See above. */
647 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
648 }
649
650 /**
651 * rcu_nmi_exit - inform RCU of exit from NMI context
652 *
653 * If the CPU was idle with dynamic ticks active, and there is no
654 * irq handler running, this updates rdtp->dynticks_nmi to let the
655 * RCU grace-period handling know that the CPU is no longer active.
656 */
657 void rcu_nmi_exit(void)
658 {
659 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
660
661 if (rdtp->dynticks_nmi_nesting == 0 ||
662 --rdtp->dynticks_nmi_nesting != 0)
663 return;
664 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
665 smp_mb__before_atomic_inc(); /* See above. */
666 atomic_inc(&rdtp->dynticks);
667 smp_mb__after_atomic_inc(); /* Force delay to next write. */
668 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
669 }
670
671 /**
672 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
673 *
674 * If the current CPU is in its idle loop and is neither in an interrupt
675 * or NMI handler, return true.
676 */
677 int rcu_is_cpu_idle(void)
678 {
679 int ret;
680
681 preempt_disable();
682 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
683 preempt_enable();
684 return ret;
685 }
686 EXPORT_SYMBOL(rcu_is_cpu_idle);
687
688 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
689
690 /*
691 * Is the current CPU online? Disable preemption to avoid false positives
692 * that could otherwise happen due to the current CPU number being sampled,
693 * this task being preempted, its old CPU being taken offline, resuming
694 * on some other CPU, then determining that its old CPU is now offline.
695 * It is OK to use RCU on an offline processor during initial boot, hence
696 * the check for rcu_scheduler_fully_active. Note also that it is OK
697 * for a CPU coming online to use RCU for one jiffy prior to marking itself
698 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
699 * offline to continue to use RCU for one jiffy after marking itself
700 * offline in the cpu_online_mask. This leniency is necessary given the
701 * non-atomic nature of the online and offline processing, for example,
702 * the fact that a CPU enters the scheduler after completing the CPU_DYING
703 * notifiers.
704 *
705 * This is also why RCU internally marks CPUs online during the
706 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
707 *
708 * Disable checking if in an NMI handler because we cannot safely report
709 * errors from NMI handlers anyway.
710 */
711 bool rcu_lockdep_current_cpu_online(void)
712 {
713 struct rcu_data *rdp;
714 struct rcu_node *rnp;
715 bool ret;
716
717 if (in_nmi())
718 return 1;
719 preempt_disable();
720 rdp = &__get_cpu_var(rcu_sched_data);
721 rnp = rdp->mynode;
722 ret = (rdp->grpmask & rnp->qsmaskinit) ||
723 !rcu_scheduler_fully_active;
724 preempt_enable();
725 return ret;
726 }
727 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
728
729 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
730
731 /**
732 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
733 *
734 * If the current CPU is idle or running at a first-level (not nested)
735 * interrupt from idle, return true. The caller must have at least
736 * disabled preemption.
737 */
738 static int rcu_is_cpu_rrupt_from_idle(void)
739 {
740 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
741 }
742
743 /*
744 * Snapshot the specified CPU's dynticks counter so that we can later
745 * credit them with an implicit quiescent state. Return 1 if this CPU
746 * is in dynticks idle mode, which is an extended quiescent state.
747 */
748 static int dyntick_save_progress_counter(struct rcu_data *rdp)
749 {
750 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
751 return (rdp->dynticks_snap & 0x1) == 0;
752 }
753
754 /*
755 * Return true if the specified CPU has passed through a quiescent
756 * state by virtue of being in or having passed through an dynticks
757 * idle state since the last call to dyntick_save_progress_counter()
758 * for this same CPU, or by virtue of having been offline.
759 */
760 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
761 {
762 unsigned int curr;
763 unsigned int snap;
764
765 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
766 snap = (unsigned int)rdp->dynticks_snap;
767
768 /*
769 * If the CPU passed through or entered a dynticks idle phase with
770 * no active irq/NMI handlers, then we can safely pretend that the CPU
771 * already acknowledged the request to pass through a quiescent
772 * state. Either way, that CPU cannot possibly be in an RCU
773 * read-side critical section that started before the beginning
774 * of the current RCU grace period.
775 */
776 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
777 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
778 rdp->dynticks_fqs++;
779 return 1;
780 }
781
782 /*
783 * Check for the CPU being offline, but only if the grace period
784 * is old enough. We don't need to worry about the CPU changing
785 * state: If we see it offline even once, it has been through a
786 * quiescent state.
787 *
788 * The reason for insisting that the grace period be at least
789 * one jiffy old is that CPUs that are not quite online and that
790 * have just gone offline can still execute RCU read-side critical
791 * sections.
792 */
793 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
794 return 0; /* Grace period is not old enough. */
795 barrier();
796 if (cpu_is_offline(rdp->cpu)) {
797 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
798 rdp->offline_fqs++;
799 return 1;
800 }
801 return 0;
802 }
803
804 static void record_gp_stall_check_time(struct rcu_state *rsp)
805 {
806 rsp->gp_start = jiffies;
807 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
808 }
809
810 /*
811 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
812 * for architectures that do not implement trigger_all_cpu_backtrace().
813 * The NMI-triggered stack traces are more accurate because they are
814 * printed by the target CPU.
815 */
816 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
817 {
818 int cpu;
819 unsigned long flags;
820 struct rcu_node *rnp;
821
822 rcu_for_each_leaf_node(rsp, rnp) {
823 raw_spin_lock_irqsave(&rnp->lock, flags);
824 if (rnp->qsmask != 0) {
825 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
826 if (rnp->qsmask & (1UL << cpu))
827 dump_cpu_task(rnp->grplo + cpu);
828 }
829 raw_spin_unlock_irqrestore(&rnp->lock, flags);
830 }
831 }
832
833 static void print_other_cpu_stall(struct rcu_state *rsp)
834 {
835 int cpu;
836 long delta;
837 unsigned long flags;
838 int ndetected = 0;
839 struct rcu_node *rnp = rcu_get_root(rsp);
840 long totqlen = 0;
841
842 /* Only let one CPU complain about others per time interval. */
843
844 raw_spin_lock_irqsave(&rnp->lock, flags);
845 delta = jiffies - rsp->jiffies_stall;
846 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
847 raw_spin_unlock_irqrestore(&rnp->lock, flags);
848 return;
849 }
850 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
851 raw_spin_unlock_irqrestore(&rnp->lock, flags);
852
853 /*
854 * OK, time to rat on our buddy...
855 * See Documentation/RCU/stallwarn.txt for info on how to debug
856 * RCU CPU stall warnings.
857 */
858 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
859 rsp->name);
860 print_cpu_stall_info_begin();
861 rcu_for_each_leaf_node(rsp, rnp) {
862 raw_spin_lock_irqsave(&rnp->lock, flags);
863 ndetected += rcu_print_task_stall(rnp);
864 if (rnp->qsmask != 0) {
865 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
866 if (rnp->qsmask & (1UL << cpu)) {
867 print_cpu_stall_info(rsp,
868 rnp->grplo + cpu);
869 ndetected++;
870 }
871 }
872 raw_spin_unlock_irqrestore(&rnp->lock, flags);
873 }
874
875 /*
876 * Now rat on any tasks that got kicked up to the root rcu_node
877 * due to CPU offlining.
878 */
879 rnp = rcu_get_root(rsp);
880 raw_spin_lock_irqsave(&rnp->lock, flags);
881 ndetected += rcu_print_task_stall(rnp);
882 raw_spin_unlock_irqrestore(&rnp->lock, flags);
883
884 print_cpu_stall_info_end();
885 for_each_possible_cpu(cpu)
886 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
887 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
888 smp_processor_id(), (long)(jiffies - rsp->gp_start),
889 rsp->gpnum, rsp->completed, totqlen);
890 if (ndetected == 0)
891 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
892 else if (!trigger_all_cpu_backtrace())
893 rcu_dump_cpu_stacks(rsp);
894
895 /* Complain about tasks blocking the grace period. */
896
897 rcu_print_detail_task_stall(rsp);
898
899 force_quiescent_state(rsp); /* Kick them all. */
900 }
901
902 static void print_cpu_stall(struct rcu_state *rsp)
903 {
904 int cpu;
905 unsigned long flags;
906 struct rcu_node *rnp = rcu_get_root(rsp);
907 long totqlen = 0;
908
909 /*
910 * OK, time to rat on ourselves...
911 * See Documentation/RCU/stallwarn.txt for info on how to debug
912 * RCU CPU stall warnings.
913 */
914 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
915 print_cpu_stall_info_begin();
916 print_cpu_stall_info(rsp, smp_processor_id());
917 print_cpu_stall_info_end();
918 for_each_possible_cpu(cpu)
919 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
920 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
921 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
922 if (!trigger_all_cpu_backtrace())
923 dump_stack();
924
925 raw_spin_lock_irqsave(&rnp->lock, flags);
926 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
927 rsp->jiffies_stall = jiffies +
928 3 * rcu_jiffies_till_stall_check() + 3;
929 raw_spin_unlock_irqrestore(&rnp->lock, flags);
930
931 set_need_resched(); /* kick ourselves to get things going. */
932 }
933
934 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
935 {
936 unsigned long j;
937 unsigned long js;
938 struct rcu_node *rnp;
939
940 if (rcu_cpu_stall_suppress)
941 return;
942 j = ACCESS_ONCE(jiffies);
943 js = ACCESS_ONCE(rsp->jiffies_stall);
944 rnp = rdp->mynode;
945 if (rcu_gp_in_progress(rsp) &&
946 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
947
948 /* We haven't checked in, so go dump stack. */
949 print_cpu_stall(rsp);
950
951 } else if (rcu_gp_in_progress(rsp) &&
952 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
953
954 /* They had a few time units to dump stack, so complain. */
955 print_other_cpu_stall(rsp);
956 }
957 }
958
959 /**
960 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
961 *
962 * Set the stall-warning timeout way off into the future, thus preventing
963 * any RCU CPU stall-warning messages from appearing in the current set of
964 * RCU grace periods.
965 *
966 * The caller must disable hard irqs.
967 */
968 void rcu_cpu_stall_reset(void)
969 {
970 struct rcu_state *rsp;
971
972 for_each_rcu_flavor(rsp)
973 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
974 }
975
976 /*
977 * Update CPU-local rcu_data state to record the newly noticed grace period.
978 * This is used both when we started the grace period and when we notice
979 * that someone else started the grace period. The caller must hold the
980 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
981 * and must have irqs disabled.
982 */
983 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
984 {
985 if (rdp->gpnum != rnp->gpnum) {
986 /*
987 * If the current grace period is waiting for this CPU,
988 * set up to detect a quiescent state, otherwise don't
989 * go looking for one.
990 */
991 rdp->gpnum = rnp->gpnum;
992 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
993 rdp->passed_quiesce = 0;
994 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
995 zero_cpu_stall_ticks(rdp);
996 }
997 }
998
999 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1000 {
1001 unsigned long flags;
1002 struct rcu_node *rnp;
1003
1004 local_irq_save(flags);
1005 rnp = rdp->mynode;
1006 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1007 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1008 local_irq_restore(flags);
1009 return;
1010 }
1011 __note_new_gpnum(rsp, rnp, rdp);
1012 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1013 }
1014
1015 /*
1016 * Did someone else start a new RCU grace period start since we last
1017 * checked? Update local state appropriately if so. Must be called
1018 * on the CPU corresponding to rdp.
1019 */
1020 static int
1021 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1022 {
1023 unsigned long flags;
1024 int ret = 0;
1025
1026 local_irq_save(flags);
1027 if (rdp->gpnum != rsp->gpnum) {
1028 note_new_gpnum(rsp, rdp);
1029 ret = 1;
1030 }
1031 local_irq_restore(flags);
1032 return ret;
1033 }
1034
1035 /*
1036 * Initialize the specified rcu_data structure's callback list to empty.
1037 */
1038 static void init_callback_list(struct rcu_data *rdp)
1039 {
1040 int i;
1041
1042 if (init_nocb_callback_list(rdp))
1043 return;
1044 rdp->nxtlist = NULL;
1045 for (i = 0; i < RCU_NEXT_SIZE; i++)
1046 rdp->nxttail[i] = &rdp->nxtlist;
1047 }
1048
1049 /*
1050 * Determine the value that ->completed will have at the end of the
1051 * next subsequent grace period. This is used to tag callbacks so that
1052 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1053 * been dyntick-idle for an extended period with callbacks under the
1054 * influence of RCU_FAST_NO_HZ.
1055 *
1056 * The caller must hold rnp->lock with interrupts disabled.
1057 */
1058 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1059 struct rcu_node *rnp)
1060 {
1061 /*
1062 * If RCU is idle, we just wait for the next grace period.
1063 * But we can only be sure that RCU is idle if we are looking
1064 * at the root rcu_node structure -- otherwise, a new grace
1065 * period might have started, but just not yet gotten around
1066 * to initializing the current non-root rcu_node structure.
1067 */
1068 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1069 return rnp->completed + 1;
1070
1071 /*
1072 * Otherwise, wait for a possible partial grace period and
1073 * then the subsequent full grace period.
1074 */
1075 return rnp->completed + 2;
1076 }
1077
1078 /*
1079 * Trace-event helper function for rcu_start_future_gp() and
1080 * rcu_nocb_wait_gp().
1081 */
1082 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1083 unsigned long c, char *s)
1084 {
1085 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1086 rnp->completed, c, rnp->level,
1087 rnp->grplo, rnp->grphi, s);
1088 }
1089
1090 /*
1091 * Start some future grace period, as needed to handle newly arrived
1092 * callbacks. The required future grace periods are recorded in each
1093 * rcu_node structure's ->need_future_gp field.
1094 *
1095 * The caller must hold the specified rcu_node structure's ->lock.
1096 */
1097 static unsigned long __maybe_unused
1098 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1099 {
1100 unsigned long c;
1101 int i;
1102 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1103
1104 /*
1105 * Pick up grace-period number for new callbacks. If this
1106 * grace period is already marked as needed, return to the caller.
1107 */
1108 c = rcu_cbs_completed(rdp->rsp, rnp);
1109 trace_rcu_future_gp(rnp, rdp, c, "Startleaf");
1110 if (rnp->need_future_gp[c & 0x1]) {
1111 trace_rcu_future_gp(rnp, rdp, c, "Prestartleaf");
1112 return c;
1113 }
1114
1115 /*
1116 * If either this rcu_node structure or the root rcu_node structure
1117 * believe that a grace period is in progress, then we must wait
1118 * for the one following, which is in "c". Because our request
1119 * will be noticed at the end of the current grace period, we don't
1120 * need to explicitly start one.
1121 */
1122 if (rnp->gpnum != rnp->completed ||
1123 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1124 rnp->need_future_gp[c & 0x1]++;
1125 trace_rcu_future_gp(rnp, rdp, c, "Startedleaf");
1126 return c;
1127 }
1128
1129 /*
1130 * There might be no grace period in progress. If we don't already
1131 * hold it, acquire the root rcu_node structure's lock in order to
1132 * start one (if needed).
1133 */
1134 if (rnp != rnp_root)
1135 raw_spin_lock(&rnp_root->lock);
1136
1137 /*
1138 * Get a new grace-period number. If there really is no grace
1139 * period in progress, it will be smaller than the one we obtained
1140 * earlier. Adjust callbacks as needed. Note that even no-CBs
1141 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1142 */
1143 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1144 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1145 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1146 rdp->nxtcompleted[i] = c;
1147
1148 /*
1149 * If the needed for the required grace period is already
1150 * recorded, trace and leave.
1151 */
1152 if (rnp_root->need_future_gp[c & 0x1]) {
1153 trace_rcu_future_gp(rnp, rdp, c, "Prestartedroot");
1154 goto unlock_out;
1155 }
1156
1157 /* Record the need for the future grace period. */
1158 rnp_root->need_future_gp[c & 0x1]++;
1159
1160 /* If a grace period is not already in progress, start one. */
1161 if (rnp_root->gpnum != rnp_root->completed) {
1162 trace_rcu_future_gp(rnp, rdp, c, "Startedleafroot");
1163 } else {
1164 trace_rcu_future_gp(rnp, rdp, c, "Startedroot");
1165 rcu_start_gp(rdp->rsp);
1166 }
1167 unlock_out:
1168 if (rnp != rnp_root)
1169 raw_spin_unlock(&rnp_root->lock);
1170 return c;
1171 }
1172
1173 /*
1174 * Clean up any old requests for the just-ended grace period. Also return
1175 * whether any additional grace periods have been requested. Also invoke
1176 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1177 * waiting for this grace period to complete.
1178 */
1179 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1180 {
1181 int c = rnp->completed;
1182 int needmore;
1183 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1184
1185 rcu_nocb_gp_cleanup(rsp, rnp);
1186 rnp->need_future_gp[c & 0x1] = 0;
1187 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1188 trace_rcu_future_gp(rnp, rdp, c, needmore ? "CleanupMore" : "Cleanup");
1189 return needmore;
1190 }
1191
1192 /*
1193 * If there is room, assign a ->completed number to any callbacks on
1194 * this CPU that have not already been assigned. Also accelerate any
1195 * callbacks that were previously assigned a ->completed number that has
1196 * since proven to be too conservative, which can happen if callbacks get
1197 * assigned a ->completed number while RCU is idle, but with reference to
1198 * a non-root rcu_node structure. This function is idempotent, so it does
1199 * not hurt to call it repeatedly.
1200 *
1201 * The caller must hold rnp->lock with interrupts disabled.
1202 */
1203 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1204 struct rcu_data *rdp)
1205 {
1206 unsigned long c;
1207 int i;
1208
1209 /* If the CPU has no callbacks, nothing to do. */
1210 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1211 return;
1212
1213 /*
1214 * Starting from the sublist containing the callbacks most
1215 * recently assigned a ->completed number and working down, find the
1216 * first sublist that is not assignable to an upcoming grace period.
1217 * Such a sublist has something in it (first two tests) and has
1218 * a ->completed number assigned that will complete sooner than
1219 * the ->completed number for newly arrived callbacks (last test).
1220 *
1221 * The key point is that any later sublist can be assigned the
1222 * same ->completed number as the newly arrived callbacks, which
1223 * means that the callbacks in any of these later sublist can be
1224 * grouped into a single sublist, whether or not they have already
1225 * been assigned a ->completed number.
1226 */
1227 c = rcu_cbs_completed(rsp, rnp);
1228 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1229 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1230 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1231 break;
1232
1233 /*
1234 * If there are no sublist for unassigned callbacks, leave.
1235 * At the same time, advance "i" one sublist, so that "i" will
1236 * index into the sublist where all the remaining callbacks should
1237 * be grouped into.
1238 */
1239 if (++i >= RCU_NEXT_TAIL)
1240 return;
1241
1242 /*
1243 * Assign all subsequent callbacks' ->completed number to the next
1244 * full grace period and group them all in the sublist initially
1245 * indexed by "i".
1246 */
1247 for (; i <= RCU_NEXT_TAIL; i++) {
1248 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1249 rdp->nxtcompleted[i] = c;
1250 }
1251
1252 /* Trace depending on how much we were able to accelerate. */
1253 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1254 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccWaitCB");
1255 else
1256 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccReadyCB");
1257 }
1258
1259 /*
1260 * Move any callbacks whose grace period has completed to the
1261 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1262 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1263 * sublist. This function is idempotent, so it does not hurt to
1264 * invoke it repeatedly. As long as it is not invoked -too- often...
1265 *
1266 * The caller must hold rnp->lock with interrupts disabled.
1267 */
1268 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1269 struct rcu_data *rdp)
1270 {
1271 int i, j;
1272
1273 /* If the CPU has no callbacks, nothing to do. */
1274 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1275 return;
1276
1277 /*
1278 * Find all callbacks whose ->completed numbers indicate that they
1279 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1280 */
1281 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1282 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1283 break;
1284 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1285 }
1286 /* Clean up any sublist tail pointers that were misordered above. */
1287 for (j = RCU_WAIT_TAIL; j < i; j++)
1288 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1289
1290 /* Copy down callbacks to fill in empty sublists. */
1291 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1292 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1293 break;
1294 rdp->nxttail[j] = rdp->nxttail[i];
1295 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1296 }
1297
1298 /* Classify any remaining callbacks. */
1299 rcu_accelerate_cbs(rsp, rnp, rdp);
1300 }
1301
1302 /*
1303 * Advance this CPU's callbacks, but only if the current grace period
1304 * has ended. This may be called only from the CPU to whom the rdp
1305 * belongs. In addition, the corresponding leaf rcu_node structure's
1306 * ->lock must be held by the caller, with irqs disabled.
1307 */
1308 static void
1309 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1310 {
1311 /* Did another grace period end? */
1312 if (rdp->completed == rnp->completed) {
1313
1314 /* No, so just accelerate recent callbacks. */
1315 rcu_accelerate_cbs(rsp, rnp, rdp);
1316
1317 } else {
1318
1319 /* Advance callbacks. */
1320 rcu_advance_cbs(rsp, rnp, rdp);
1321
1322 /* Remember that we saw this grace-period completion. */
1323 rdp->completed = rnp->completed;
1324 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1325
1326 /*
1327 * If we were in an extended quiescent state, we may have
1328 * missed some grace periods that others CPUs handled on
1329 * our behalf. Catch up with this state to avoid noting
1330 * spurious new grace periods. If another grace period
1331 * has started, then rnp->gpnum will have advanced, so
1332 * we will detect this later on. Of course, any quiescent
1333 * states we found for the old GP are now invalid.
1334 */
1335 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1336 rdp->gpnum = rdp->completed;
1337 rdp->passed_quiesce = 0;
1338 }
1339
1340 /*
1341 * If RCU does not need a quiescent state from this CPU,
1342 * then make sure that this CPU doesn't go looking for one.
1343 */
1344 if ((rnp->qsmask & rdp->grpmask) == 0)
1345 rdp->qs_pending = 0;
1346 }
1347 }
1348
1349 /*
1350 * Advance this CPU's callbacks, but only if the current grace period
1351 * has ended. This may be called only from the CPU to whom the rdp
1352 * belongs.
1353 */
1354 static void
1355 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1356 {
1357 unsigned long flags;
1358 struct rcu_node *rnp;
1359
1360 local_irq_save(flags);
1361 rnp = rdp->mynode;
1362 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1363 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1364 local_irq_restore(flags);
1365 return;
1366 }
1367 __rcu_process_gp_end(rsp, rnp, rdp);
1368 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1369 }
1370
1371 /*
1372 * Do per-CPU grace-period initialization for running CPU. The caller
1373 * must hold the lock of the leaf rcu_node structure corresponding to
1374 * this CPU.
1375 */
1376 static void
1377 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1378 {
1379 /* Prior grace period ended, so advance callbacks for current CPU. */
1380 __rcu_process_gp_end(rsp, rnp, rdp);
1381
1382 /* Set state so that this CPU will detect the next quiescent state. */
1383 __note_new_gpnum(rsp, rnp, rdp);
1384 }
1385
1386 /*
1387 * Initialize a new grace period.
1388 */
1389 static int rcu_gp_init(struct rcu_state *rsp)
1390 {
1391 struct rcu_data *rdp;
1392 struct rcu_node *rnp = rcu_get_root(rsp);
1393
1394 raw_spin_lock_irq(&rnp->lock);
1395 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1396
1397 if (rcu_gp_in_progress(rsp)) {
1398 /* Grace period already in progress, don't start another. */
1399 raw_spin_unlock_irq(&rnp->lock);
1400 return 0;
1401 }
1402
1403 /* Advance to a new grace period and initialize state. */
1404 rsp->gpnum++;
1405 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1406 record_gp_stall_check_time(rsp);
1407 raw_spin_unlock_irq(&rnp->lock);
1408
1409 /* Exclude any concurrent CPU-hotplug operations. */
1410 mutex_lock(&rsp->onoff_mutex);
1411
1412 /*
1413 * Set the quiescent-state-needed bits in all the rcu_node
1414 * structures for all currently online CPUs in breadth-first order,
1415 * starting from the root rcu_node structure, relying on the layout
1416 * of the tree within the rsp->node[] array. Note that other CPUs
1417 * will access only the leaves of the hierarchy, thus seeing that no
1418 * grace period is in progress, at least until the corresponding
1419 * leaf node has been initialized. In addition, we have excluded
1420 * CPU-hotplug operations.
1421 *
1422 * The grace period cannot complete until the initialization
1423 * process finishes, because this kthread handles both.
1424 */
1425 rcu_for_each_node_breadth_first(rsp, rnp) {
1426 raw_spin_lock_irq(&rnp->lock);
1427 rdp = this_cpu_ptr(rsp->rda);
1428 rcu_preempt_check_blocked_tasks(rnp);
1429 rnp->qsmask = rnp->qsmaskinit;
1430 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1431 WARN_ON_ONCE(rnp->completed != rsp->completed);
1432 ACCESS_ONCE(rnp->completed) = rsp->completed;
1433 if (rnp == rdp->mynode)
1434 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1435 rcu_preempt_boost_start_gp(rnp);
1436 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1437 rnp->level, rnp->grplo,
1438 rnp->grphi, rnp->qsmask);
1439 raw_spin_unlock_irq(&rnp->lock);
1440 #ifdef CONFIG_PROVE_RCU_DELAY
1441 if ((random32() % (rcu_num_nodes * 8)) == 0)
1442 schedule_timeout_uninterruptible(2);
1443 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1444 cond_resched();
1445 }
1446
1447 mutex_unlock(&rsp->onoff_mutex);
1448 return 1;
1449 }
1450
1451 /*
1452 * Do one round of quiescent-state forcing.
1453 */
1454 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1455 {
1456 int fqs_state = fqs_state_in;
1457 struct rcu_node *rnp = rcu_get_root(rsp);
1458
1459 rsp->n_force_qs++;
1460 if (fqs_state == RCU_SAVE_DYNTICK) {
1461 /* Collect dyntick-idle snapshots. */
1462 force_qs_rnp(rsp, dyntick_save_progress_counter);
1463 fqs_state = RCU_FORCE_QS;
1464 } else {
1465 /* Handle dyntick-idle and offline CPUs. */
1466 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1467 }
1468 /* Clear flag to prevent immediate re-entry. */
1469 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1470 raw_spin_lock_irq(&rnp->lock);
1471 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1472 raw_spin_unlock_irq(&rnp->lock);
1473 }
1474 return fqs_state;
1475 }
1476
1477 /*
1478 * Clean up after the old grace period.
1479 */
1480 static void rcu_gp_cleanup(struct rcu_state *rsp)
1481 {
1482 unsigned long gp_duration;
1483 int nocb = 0;
1484 struct rcu_data *rdp;
1485 struct rcu_node *rnp = rcu_get_root(rsp);
1486
1487 raw_spin_lock_irq(&rnp->lock);
1488 gp_duration = jiffies - rsp->gp_start;
1489 if (gp_duration > rsp->gp_max)
1490 rsp->gp_max = gp_duration;
1491
1492 /*
1493 * We know the grace period is complete, but to everyone else
1494 * it appears to still be ongoing. But it is also the case
1495 * that to everyone else it looks like there is nothing that
1496 * they can do to advance the grace period. It is therefore
1497 * safe for us to drop the lock in order to mark the grace
1498 * period as completed in all of the rcu_node structures.
1499 */
1500 raw_spin_unlock_irq(&rnp->lock);
1501
1502 /*
1503 * Propagate new ->completed value to rcu_node structures so
1504 * that other CPUs don't have to wait until the start of the next
1505 * grace period to process their callbacks. This also avoids
1506 * some nasty RCU grace-period initialization races by forcing
1507 * the end of the current grace period to be completely recorded in
1508 * all of the rcu_node structures before the beginning of the next
1509 * grace period is recorded in any of the rcu_node structures.
1510 */
1511 rcu_for_each_node_breadth_first(rsp, rnp) {
1512 raw_spin_lock_irq(&rnp->lock);
1513 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1514 rdp = this_cpu_ptr(rsp->rda);
1515 if (rnp == rdp->mynode)
1516 __rcu_process_gp_end(rsp, rnp, rdp);
1517 nocb += rcu_future_gp_cleanup(rsp, rnp);
1518 raw_spin_unlock_irq(&rnp->lock);
1519 cond_resched();
1520 }
1521 rnp = rcu_get_root(rsp);
1522 raw_spin_lock_irq(&rnp->lock);
1523 rcu_nocb_gp_set(rnp, nocb);
1524
1525 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1526 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1527 rsp->fqs_state = RCU_GP_IDLE;
1528 rdp = this_cpu_ptr(rsp->rda);
1529 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
1530 if (cpu_needs_another_gp(rsp, rdp))
1531 rsp->gp_flags = 1;
1532 raw_spin_unlock_irq(&rnp->lock);
1533 }
1534
1535 /*
1536 * Body of kthread that handles grace periods.
1537 */
1538 static int __noreturn rcu_gp_kthread(void *arg)
1539 {
1540 int fqs_state;
1541 unsigned long j;
1542 int ret;
1543 struct rcu_state *rsp = arg;
1544 struct rcu_node *rnp = rcu_get_root(rsp);
1545
1546 for (;;) {
1547
1548 /* Handle grace-period start. */
1549 for (;;) {
1550 wait_event_interruptible(rsp->gp_wq,
1551 rsp->gp_flags &
1552 RCU_GP_FLAG_INIT);
1553 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1554 rcu_gp_init(rsp))
1555 break;
1556 cond_resched();
1557 flush_signals(current);
1558 }
1559
1560 /* Handle quiescent-state forcing. */
1561 fqs_state = RCU_SAVE_DYNTICK;
1562 j = jiffies_till_first_fqs;
1563 if (j > HZ) {
1564 j = HZ;
1565 jiffies_till_first_fqs = HZ;
1566 }
1567 for (;;) {
1568 rsp->jiffies_force_qs = jiffies + j;
1569 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1570 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1571 (!ACCESS_ONCE(rnp->qsmask) &&
1572 !rcu_preempt_blocked_readers_cgp(rnp)),
1573 j);
1574 /* If grace period done, leave loop. */
1575 if (!ACCESS_ONCE(rnp->qsmask) &&
1576 !rcu_preempt_blocked_readers_cgp(rnp))
1577 break;
1578 /* If time for quiescent-state forcing, do it. */
1579 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1580 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1581 cond_resched();
1582 } else {
1583 /* Deal with stray signal. */
1584 cond_resched();
1585 flush_signals(current);
1586 }
1587 j = jiffies_till_next_fqs;
1588 if (j > HZ) {
1589 j = HZ;
1590 jiffies_till_next_fqs = HZ;
1591 } else if (j < 1) {
1592 j = 1;
1593 jiffies_till_next_fqs = 1;
1594 }
1595 }
1596
1597 /* Handle grace-period end. */
1598 rcu_gp_cleanup(rsp);
1599 }
1600 }
1601
1602 /*
1603 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1604 * in preparation for detecting the next grace period. The caller must hold
1605 * the root node's ->lock and hard irqs must be disabled.
1606 *
1607 * Note that it is legal for a dying CPU (which is marked as offline) to
1608 * invoke this function. This can happen when the dying CPU reports its
1609 * quiescent state.
1610 */
1611 static void
1612 rcu_start_gp(struct rcu_state *rsp)
1613 {
1614 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1615 struct rcu_node *rnp = rcu_get_root(rsp);
1616
1617 /*
1618 * If there is no grace period in progress right now, any
1619 * callbacks we have up to this point will be satisfied by the
1620 * next grace period. Also, advancing the callbacks reduces the
1621 * probability of false positives from cpu_needs_another_gp()
1622 * resulting in pointless grace periods. So, advance callbacks!
1623 */
1624 rcu_advance_cbs(rsp, rnp, rdp);
1625
1626 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1627 /*
1628 * Either we have not yet spawned the grace-period
1629 * task, this CPU does not need another grace period,
1630 * or a grace period is already in progress.
1631 * Either way, don't start a new grace period.
1632 */
1633 return;
1634 }
1635 rsp->gp_flags = RCU_GP_FLAG_INIT;
1636
1637 /* Ensure that CPU is aware of completion of last grace period. */
1638 __rcu_process_gp_end(rsp, rdp->mynode, rdp);
1639
1640 /* Wake up rcu_gp_kthread() to start the grace period. */
1641 wake_up(&rsp->gp_wq);
1642 }
1643
1644 /*
1645 * Report a full set of quiescent states to the specified rcu_state
1646 * data structure. This involves cleaning up after the prior grace
1647 * period and letting rcu_start_gp() start up the next grace period
1648 * if one is needed. Note that the caller must hold rnp->lock, which
1649 * is released before return.
1650 */
1651 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1652 __releases(rcu_get_root(rsp)->lock)
1653 {
1654 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1655 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1656 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1657 }
1658
1659 /*
1660 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1661 * Allows quiescent states for a group of CPUs to be reported at one go
1662 * to the specified rcu_node structure, though all the CPUs in the group
1663 * must be represented by the same rcu_node structure (which need not be
1664 * a leaf rcu_node structure, though it often will be). That structure's
1665 * lock must be held upon entry, and it is released before return.
1666 */
1667 static void
1668 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1669 struct rcu_node *rnp, unsigned long flags)
1670 __releases(rnp->lock)
1671 {
1672 struct rcu_node *rnp_c;
1673
1674 /* Walk up the rcu_node hierarchy. */
1675 for (;;) {
1676 if (!(rnp->qsmask & mask)) {
1677
1678 /* Our bit has already been cleared, so done. */
1679 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1680 return;
1681 }
1682 rnp->qsmask &= ~mask;
1683 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1684 mask, rnp->qsmask, rnp->level,
1685 rnp->grplo, rnp->grphi,
1686 !!rnp->gp_tasks);
1687 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1688
1689 /* Other bits still set at this level, so done. */
1690 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1691 return;
1692 }
1693 mask = rnp->grpmask;
1694 if (rnp->parent == NULL) {
1695
1696 /* No more levels. Exit loop holding root lock. */
1697
1698 break;
1699 }
1700 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1701 rnp_c = rnp;
1702 rnp = rnp->parent;
1703 raw_spin_lock_irqsave(&rnp->lock, flags);
1704 WARN_ON_ONCE(rnp_c->qsmask);
1705 }
1706
1707 /*
1708 * Get here if we are the last CPU to pass through a quiescent
1709 * state for this grace period. Invoke rcu_report_qs_rsp()
1710 * to clean up and start the next grace period if one is needed.
1711 */
1712 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1713 }
1714
1715 /*
1716 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1717 * structure. This must be either called from the specified CPU, or
1718 * called when the specified CPU is known to be offline (and when it is
1719 * also known that no other CPU is concurrently trying to help the offline
1720 * CPU). The lastcomp argument is used to make sure we are still in the
1721 * grace period of interest. We don't want to end the current grace period
1722 * based on quiescent states detected in an earlier grace period!
1723 */
1724 static void
1725 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1726 {
1727 unsigned long flags;
1728 unsigned long mask;
1729 struct rcu_node *rnp;
1730
1731 rnp = rdp->mynode;
1732 raw_spin_lock_irqsave(&rnp->lock, flags);
1733 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1734 rnp->completed == rnp->gpnum) {
1735
1736 /*
1737 * The grace period in which this quiescent state was
1738 * recorded has ended, so don't report it upwards.
1739 * We will instead need a new quiescent state that lies
1740 * within the current grace period.
1741 */
1742 rdp->passed_quiesce = 0; /* need qs for new gp. */
1743 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1744 return;
1745 }
1746 mask = rdp->grpmask;
1747 if ((rnp->qsmask & mask) == 0) {
1748 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1749 } else {
1750 rdp->qs_pending = 0;
1751
1752 /*
1753 * This GP can't end until cpu checks in, so all of our
1754 * callbacks can be processed during the next GP.
1755 */
1756 rcu_accelerate_cbs(rsp, rnp, rdp);
1757
1758 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1759 }
1760 }
1761
1762 /*
1763 * Check to see if there is a new grace period of which this CPU
1764 * is not yet aware, and if so, set up local rcu_data state for it.
1765 * Otherwise, see if this CPU has just passed through its first
1766 * quiescent state for this grace period, and record that fact if so.
1767 */
1768 static void
1769 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1770 {
1771 /* If there is now a new grace period, record and return. */
1772 if (check_for_new_grace_period(rsp, rdp))
1773 return;
1774
1775 /*
1776 * Does this CPU still need to do its part for current grace period?
1777 * If no, return and let the other CPUs do their part as well.
1778 */
1779 if (!rdp->qs_pending)
1780 return;
1781
1782 /*
1783 * Was there a quiescent state since the beginning of the grace
1784 * period? If no, then exit and wait for the next call.
1785 */
1786 if (!rdp->passed_quiesce)
1787 return;
1788
1789 /*
1790 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1791 * judge of that).
1792 */
1793 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1794 }
1795
1796 #ifdef CONFIG_HOTPLUG_CPU
1797
1798 /*
1799 * Send the specified CPU's RCU callbacks to the orphanage. The
1800 * specified CPU must be offline, and the caller must hold the
1801 * ->orphan_lock.
1802 */
1803 static void
1804 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1805 struct rcu_node *rnp, struct rcu_data *rdp)
1806 {
1807 /* No-CBs CPUs do not have orphanable callbacks. */
1808 if (is_nocb_cpu(rdp->cpu))
1809 return;
1810
1811 /*
1812 * Orphan the callbacks. First adjust the counts. This is safe
1813 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1814 * cannot be running now. Thus no memory barrier is required.
1815 */
1816 if (rdp->nxtlist != NULL) {
1817 rsp->qlen_lazy += rdp->qlen_lazy;
1818 rsp->qlen += rdp->qlen;
1819 rdp->n_cbs_orphaned += rdp->qlen;
1820 rdp->qlen_lazy = 0;
1821 ACCESS_ONCE(rdp->qlen) = 0;
1822 }
1823
1824 /*
1825 * Next, move those callbacks still needing a grace period to
1826 * the orphanage, where some other CPU will pick them up.
1827 * Some of the callbacks might have gone partway through a grace
1828 * period, but that is too bad. They get to start over because we
1829 * cannot assume that grace periods are synchronized across CPUs.
1830 * We don't bother updating the ->nxttail[] array yet, instead
1831 * we just reset the whole thing later on.
1832 */
1833 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1834 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1835 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1836 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1837 }
1838
1839 /*
1840 * Then move the ready-to-invoke callbacks to the orphanage,
1841 * where some other CPU will pick them up. These will not be
1842 * required to pass though another grace period: They are done.
1843 */
1844 if (rdp->nxtlist != NULL) {
1845 *rsp->orphan_donetail = rdp->nxtlist;
1846 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1847 }
1848
1849 /* Finally, initialize the rcu_data structure's list to empty. */
1850 init_callback_list(rdp);
1851 }
1852
1853 /*
1854 * Adopt the RCU callbacks from the specified rcu_state structure's
1855 * orphanage. The caller must hold the ->orphan_lock.
1856 */
1857 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1858 {
1859 int i;
1860 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1861
1862 /* No-CBs CPUs are handled specially. */
1863 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1864 return;
1865
1866 /* Do the accounting first. */
1867 rdp->qlen_lazy += rsp->qlen_lazy;
1868 rdp->qlen += rsp->qlen;
1869 rdp->n_cbs_adopted += rsp->qlen;
1870 if (rsp->qlen_lazy != rsp->qlen)
1871 rcu_idle_count_callbacks_posted();
1872 rsp->qlen_lazy = 0;
1873 rsp->qlen = 0;
1874
1875 /*
1876 * We do not need a memory barrier here because the only way we
1877 * can get here if there is an rcu_barrier() in flight is if
1878 * we are the task doing the rcu_barrier().
1879 */
1880
1881 /* First adopt the ready-to-invoke callbacks. */
1882 if (rsp->orphan_donelist != NULL) {
1883 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1884 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1885 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1886 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1887 rdp->nxttail[i] = rsp->orphan_donetail;
1888 rsp->orphan_donelist = NULL;
1889 rsp->orphan_donetail = &rsp->orphan_donelist;
1890 }
1891
1892 /* And then adopt the callbacks that still need a grace period. */
1893 if (rsp->orphan_nxtlist != NULL) {
1894 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1895 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1896 rsp->orphan_nxtlist = NULL;
1897 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1898 }
1899 }
1900
1901 /*
1902 * Trace the fact that this CPU is going offline.
1903 */
1904 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1905 {
1906 RCU_TRACE(unsigned long mask);
1907 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1908 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1909
1910 RCU_TRACE(mask = rdp->grpmask);
1911 trace_rcu_grace_period(rsp->name,
1912 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1913 "cpuofl");
1914 }
1915
1916 /*
1917 * The CPU has been completely removed, and some other CPU is reporting
1918 * this fact from process context. Do the remainder of the cleanup,
1919 * including orphaning the outgoing CPU's RCU callbacks, and also
1920 * adopting them. There can only be one CPU hotplug operation at a time,
1921 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1922 */
1923 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1924 {
1925 unsigned long flags;
1926 unsigned long mask;
1927 int need_report = 0;
1928 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1929 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1930
1931 /* Adjust any no-longer-needed kthreads. */
1932 rcu_boost_kthread_setaffinity(rnp, -1);
1933
1934 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1935
1936 /* Exclude any attempts to start a new grace period. */
1937 mutex_lock(&rsp->onoff_mutex);
1938 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1939
1940 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1941 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1942 rcu_adopt_orphan_cbs(rsp);
1943
1944 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1945 mask = rdp->grpmask; /* rnp->grplo is constant. */
1946 do {
1947 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1948 rnp->qsmaskinit &= ~mask;
1949 if (rnp->qsmaskinit != 0) {
1950 if (rnp != rdp->mynode)
1951 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1952 break;
1953 }
1954 if (rnp == rdp->mynode)
1955 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1956 else
1957 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1958 mask = rnp->grpmask;
1959 rnp = rnp->parent;
1960 } while (rnp != NULL);
1961
1962 /*
1963 * We still hold the leaf rcu_node structure lock here, and
1964 * irqs are still disabled. The reason for this subterfuge is
1965 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1966 * held leads to deadlock.
1967 */
1968 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1969 rnp = rdp->mynode;
1970 if (need_report & RCU_OFL_TASKS_NORM_GP)
1971 rcu_report_unblock_qs_rnp(rnp, flags);
1972 else
1973 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1974 if (need_report & RCU_OFL_TASKS_EXP_GP)
1975 rcu_report_exp_rnp(rsp, rnp, true);
1976 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1977 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1978 cpu, rdp->qlen, rdp->nxtlist);
1979 init_callback_list(rdp);
1980 /* Disallow further callbacks on this CPU. */
1981 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1982 mutex_unlock(&rsp->onoff_mutex);
1983 }
1984
1985 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1986
1987 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1988 {
1989 }
1990
1991 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1992 {
1993 }
1994
1995 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1996
1997 /*
1998 * Invoke any RCU callbacks that have made it to the end of their grace
1999 * period. Thottle as specified by rdp->blimit.
2000 */
2001 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2002 {
2003 unsigned long flags;
2004 struct rcu_head *next, *list, **tail;
2005 long bl, count, count_lazy;
2006 int i;
2007
2008 /* If no callbacks are ready, just return. */
2009 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2010 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2011 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2012 need_resched(), is_idle_task(current),
2013 rcu_is_callbacks_kthread());
2014 return;
2015 }
2016
2017 /*
2018 * Extract the list of ready callbacks, disabling to prevent
2019 * races with call_rcu() from interrupt handlers.
2020 */
2021 local_irq_save(flags);
2022 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2023 bl = rdp->blimit;
2024 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2025 list = rdp->nxtlist;
2026 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2027 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2028 tail = rdp->nxttail[RCU_DONE_TAIL];
2029 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2030 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2031 rdp->nxttail[i] = &rdp->nxtlist;
2032 local_irq_restore(flags);
2033
2034 /* Invoke callbacks. */
2035 count = count_lazy = 0;
2036 while (list) {
2037 next = list->next;
2038 prefetch(next);
2039 debug_rcu_head_unqueue(list);
2040 if (__rcu_reclaim(rsp->name, list))
2041 count_lazy++;
2042 list = next;
2043 /* Stop only if limit reached and CPU has something to do. */
2044 if (++count >= bl &&
2045 (need_resched() ||
2046 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2047 break;
2048 }
2049
2050 local_irq_save(flags);
2051 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2052 is_idle_task(current),
2053 rcu_is_callbacks_kthread());
2054
2055 /* Update count, and requeue any remaining callbacks. */
2056 if (list != NULL) {
2057 *tail = rdp->nxtlist;
2058 rdp->nxtlist = list;
2059 for (i = 0; i < RCU_NEXT_SIZE; i++)
2060 if (&rdp->nxtlist == rdp->nxttail[i])
2061 rdp->nxttail[i] = tail;
2062 else
2063 break;
2064 }
2065 smp_mb(); /* List handling before counting for rcu_barrier(). */
2066 rdp->qlen_lazy -= count_lazy;
2067 ACCESS_ONCE(rdp->qlen) -= count;
2068 rdp->n_cbs_invoked += count;
2069
2070 /* Reinstate batch limit if we have worked down the excess. */
2071 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2072 rdp->blimit = blimit;
2073
2074 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2075 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2076 rdp->qlen_last_fqs_check = 0;
2077 rdp->n_force_qs_snap = rsp->n_force_qs;
2078 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2079 rdp->qlen_last_fqs_check = rdp->qlen;
2080 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2081
2082 local_irq_restore(flags);
2083
2084 /* Re-invoke RCU core processing if there are callbacks remaining. */
2085 if (cpu_has_callbacks_ready_to_invoke(rdp))
2086 invoke_rcu_core();
2087 }
2088
2089 /*
2090 * Check to see if this CPU is in a non-context-switch quiescent state
2091 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2092 * Also schedule RCU core processing.
2093 *
2094 * This function must be called from hardirq context. It is normally
2095 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2096 * false, there is no point in invoking rcu_check_callbacks().
2097 */
2098 void rcu_check_callbacks(int cpu, int user)
2099 {
2100 trace_rcu_utilization("Start scheduler-tick");
2101 increment_cpu_stall_ticks();
2102 if (user || rcu_is_cpu_rrupt_from_idle()) {
2103
2104 /*
2105 * Get here if this CPU took its interrupt from user
2106 * mode or from the idle loop, and if this is not a
2107 * nested interrupt. In this case, the CPU is in
2108 * a quiescent state, so note it.
2109 *
2110 * No memory barrier is required here because both
2111 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2112 * variables that other CPUs neither access nor modify,
2113 * at least not while the corresponding CPU is online.
2114 */
2115
2116 rcu_sched_qs(cpu);
2117 rcu_bh_qs(cpu);
2118
2119 } else if (!in_softirq()) {
2120
2121 /*
2122 * Get here if this CPU did not take its interrupt from
2123 * softirq, in other words, if it is not interrupting
2124 * a rcu_bh read-side critical section. This is an _bh
2125 * critical section, so note it.
2126 */
2127
2128 rcu_bh_qs(cpu);
2129 }
2130 rcu_preempt_check_callbacks(cpu);
2131 if (rcu_pending(cpu))
2132 invoke_rcu_core();
2133 trace_rcu_utilization("End scheduler-tick");
2134 }
2135
2136 /*
2137 * Scan the leaf rcu_node structures, processing dyntick state for any that
2138 * have not yet encountered a quiescent state, using the function specified.
2139 * Also initiate boosting for any threads blocked on the root rcu_node.
2140 *
2141 * The caller must have suppressed start of new grace periods.
2142 */
2143 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
2144 {
2145 unsigned long bit;
2146 int cpu;
2147 unsigned long flags;
2148 unsigned long mask;
2149 struct rcu_node *rnp;
2150
2151 rcu_for_each_leaf_node(rsp, rnp) {
2152 cond_resched();
2153 mask = 0;
2154 raw_spin_lock_irqsave(&rnp->lock, flags);
2155 if (!rcu_gp_in_progress(rsp)) {
2156 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2157 return;
2158 }
2159 if (rnp->qsmask == 0) {
2160 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2161 continue;
2162 }
2163 cpu = rnp->grplo;
2164 bit = 1;
2165 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2166 if ((rnp->qsmask & bit) != 0 &&
2167 f(per_cpu_ptr(rsp->rda, cpu)))
2168 mask |= bit;
2169 }
2170 if (mask != 0) {
2171
2172 /* rcu_report_qs_rnp() releases rnp->lock. */
2173 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2174 continue;
2175 }
2176 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2177 }
2178 rnp = rcu_get_root(rsp);
2179 if (rnp->qsmask == 0) {
2180 raw_spin_lock_irqsave(&rnp->lock, flags);
2181 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2182 }
2183 }
2184
2185 /*
2186 * Force quiescent states on reluctant CPUs, and also detect which
2187 * CPUs are in dyntick-idle mode.
2188 */
2189 static void force_quiescent_state(struct rcu_state *rsp)
2190 {
2191 unsigned long flags;
2192 bool ret;
2193 struct rcu_node *rnp;
2194 struct rcu_node *rnp_old = NULL;
2195
2196 /* Funnel through hierarchy to reduce memory contention. */
2197 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2198 for (; rnp != NULL; rnp = rnp->parent) {
2199 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2200 !raw_spin_trylock(&rnp->fqslock);
2201 if (rnp_old != NULL)
2202 raw_spin_unlock(&rnp_old->fqslock);
2203 if (ret) {
2204 rsp->n_force_qs_lh++;
2205 return;
2206 }
2207 rnp_old = rnp;
2208 }
2209 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2210
2211 /* Reached the root of the rcu_node tree, acquire lock. */
2212 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2213 raw_spin_unlock(&rnp_old->fqslock);
2214 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2215 rsp->n_force_qs_lh++;
2216 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2217 return; /* Someone beat us to it. */
2218 }
2219 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2220 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2221 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2222 }
2223
2224 /*
2225 * This does the RCU core processing work for the specified rcu_state
2226 * and rcu_data structures. This may be called only from the CPU to
2227 * whom the rdp belongs.
2228 */
2229 static void
2230 __rcu_process_callbacks(struct rcu_state *rsp)
2231 {
2232 unsigned long flags;
2233 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2234
2235 WARN_ON_ONCE(rdp->beenonline == 0);
2236
2237 /* Handle the end of a grace period that some other CPU ended. */
2238 rcu_process_gp_end(rsp, rdp);
2239
2240 /* Update RCU state based on any recent quiescent states. */
2241 rcu_check_quiescent_state(rsp, rdp);
2242
2243 /* Does this CPU require a not-yet-started grace period? */
2244 local_irq_save(flags);
2245 if (cpu_needs_another_gp(rsp, rdp)) {
2246 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2247 rcu_start_gp(rsp);
2248 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2249 } else {
2250 local_irq_restore(flags);
2251 }
2252
2253 /* If there are callbacks ready, invoke them. */
2254 if (cpu_has_callbacks_ready_to_invoke(rdp))
2255 invoke_rcu_callbacks(rsp, rdp);
2256 }
2257
2258 /*
2259 * Do RCU core processing for the current CPU.
2260 */
2261 static void rcu_process_callbacks(struct softirq_action *unused)
2262 {
2263 struct rcu_state *rsp;
2264
2265 if (cpu_is_offline(smp_processor_id()))
2266 return;
2267 trace_rcu_utilization("Start RCU core");
2268 for_each_rcu_flavor(rsp)
2269 __rcu_process_callbacks(rsp);
2270 trace_rcu_utilization("End RCU core");
2271 }
2272
2273 /*
2274 * Schedule RCU callback invocation. If the specified type of RCU
2275 * does not support RCU priority boosting, just do a direct call,
2276 * otherwise wake up the per-CPU kernel kthread. Note that because we
2277 * are running on the current CPU with interrupts disabled, the
2278 * rcu_cpu_kthread_task cannot disappear out from under us.
2279 */
2280 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2281 {
2282 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2283 return;
2284 if (likely(!rsp->boost)) {
2285 rcu_do_batch(rsp, rdp);
2286 return;
2287 }
2288 invoke_rcu_callbacks_kthread();
2289 }
2290
2291 static void invoke_rcu_core(void)
2292 {
2293 raise_softirq(RCU_SOFTIRQ);
2294 }
2295
2296 /*
2297 * Handle any core-RCU processing required by a call_rcu() invocation.
2298 */
2299 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2300 struct rcu_head *head, unsigned long flags)
2301 {
2302 /*
2303 * If called from an extended quiescent state, invoke the RCU
2304 * core in order to force a re-evaluation of RCU's idleness.
2305 */
2306 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2307 invoke_rcu_core();
2308
2309 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2310 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2311 return;
2312
2313 /*
2314 * Force the grace period if too many callbacks or too long waiting.
2315 * Enforce hysteresis, and don't invoke force_quiescent_state()
2316 * if some other CPU has recently done so. Also, don't bother
2317 * invoking force_quiescent_state() if the newly enqueued callback
2318 * is the only one waiting for a grace period to complete.
2319 */
2320 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2321
2322 /* Are we ignoring a completed grace period? */
2323 rcu_process_gp_end(rsp, rdp);
2324 check_for_new_grace_period(rsp, rdp);
2325
2326 /* Start a new grace period if one not already started. */
2327 if (!rcu_gp_in_progress(rsp)) {
2328 struct rcu_node *rnp_root = rcu_get_root(rsp);
2329
2330 raw_spin_lock(&rnp_root->lock);
2331 rcu_start_gp(rsp);
2332 raw_spin_unlock(&rnp_root->lock);
2333 } else {
2334 /* Give the grace period a kick. */
2335 rdp->blimit = LONG_MAX;
2336 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2337 *rdp->nxttail[RCU_DONE_TAIL] != head)
2338 force_quiescent_state(rsp);
2339 rdp->n_force_qs_snap = rsp->n_force_qs;
2340 rdp->qlen_last_fqs_check = rdp->qlen;
2341 }
2342 }
2343 }
2344
2345 /*
2346 * Helper function for call_rcu() and friends. The cpu argument will
2347 * normally be -1, indicating "currently running CPU". It may specify
2348 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2349 * is expected to specify a CPU.
2350 */
2351 static void
2352 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2353 struct rcu_state *rsp, int cpu, bool lazy)
2354 {
2355 unsigned long flags;
2356 struct rcu_data *rdp;
2357
2358 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2359 debug_rcu_head_queue(head);
2360 head->func = func;
2361 head->next = NULL;
2362
2363 /*
2364 * Opportunistically note grace-period endings and beginnings.
2365 * Note that we might see a beginning right after we see an
2366 * end, but never vice versa, since this CPU has to pass through
2367 * a quiescent state betweentimes.
2368 */
2369 local_irq_save(flags);
2370 rdp = this_cpu_ptr(rsp->rda);
2371
2372 /* Add the callback to our list. */
2373 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2374 int offline;
2375
2376 if (cpu != -1)
2377 rdp = per_cpu_ptr(rsp->rda, cpu);
2378 offline = !__call_rcu_nocb(rdp, head, lazy);
2379 WARN_ON_ONCE(offline);
2380 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2381 local_irq_restore(flags);
2382 return;
2383 }
2384 ACCESS_ONCE(rdp->qlen)++;
2385 if (lazy)
2386 rdp->qlen_lazy++;
2387 else
2388 rcu_idle_count_callbacks_posted();
2389 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2390 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2391 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2392
2393 if (__is_kfree_rcu_offset((unsigned long)func))
2394 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2395 rdp->qlen_lazy, rdp->qlen);
2396 else
2397 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2398
2399 /* Go handle any RCU core processing required. */
2400 __call_rcu_core(rsp, rdp, head, flags);
2401 local_irq_restore(flags);
2402 }
2403
2404 /*
2405 * Queue an RCU-sched callback for invocation after a grace period.
2406 */
2407 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2408 {
2409 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2410 }
2411 EXPORT_SYMBOL_GPL(call_rcu_sched);
2412
2413 /*
2414 * Queue an RCU callback for invocation after a quicker grace period.
2415 */
2416 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2417 {
2418 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2419 }
2420 EXPORT_SYMBOL_GPL(call_rcu_bh);
2421
2422 /*
2423 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2424 * any blocking grace-period wait automatically implies a grace period
2425 * if there is only one CPU online at any point time during execution
2426 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2427 * occasionally incorrectly indicate that there are multiple CPUs online
2428 * when there was in fact only one the whole time, as this just adds
2429 * some overhead: RCU still operates correctly.
2430 */
2431 static inline int rcu_blocking_is_gp(void)
2432 {
2433 int ret;
2434
2435 might_sleep(); /* Check for RCU read-side critical section. */
2436 preempt_disable();
2437 ret = num_online_cpus() <= 1;
2438 preempt_enable();
2439 return ret;
2440 }
2441
2442 /**
2443 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2444 *
2445 * Control will return to the caller some time after a full rcu-sched
2446 * grace period has elapsed, in other words after all currently executing
2447 * rcu-sched read-side critical sections have completed. These read-side
2448 * critical sections are delimited by rcu_read_lock_sched() and
2449 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2450 * local_irq_disable(), and so on may be used in place of
2451 * rcu_read_lock_sched().
2452 *
2453 * This means that all preempt_disable code sequences, including NMI and
2454 * non-threaded hardware-interrupt handlers, in progress on entry will
2455 * have completed before this primitive returns. However, this does not
2456 * guarantee that softirq handlers will have completed, since in some
2457 * kernels, these handlers can run in process context, and can block.
2458 *
2459 * Note that this guarantee implies further memory-ordering guarantees.
2460 * On systems with more than one CPU, when synchronize_sched() returns,
2461 * each CPU is guaranteed to have executed a full memory barrier since the
2462 * end of its last RCU-sched read-side critical section whose beginning
2463 * preceded the call to synchronize_sched(). In addition, each CPU having
2464 * an RCU read-side critical section that extends beyond the return from
2465 * synchronize_sched() is guaranteed to have executed a full memory barrier
2466 * after the beginning of synchronize_sched() and before the beginning of
2467 * that RCU read-side critical section. Note that these guarantees include
2468 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2469 * that are executing in the kernel.
2470 *
2471 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2472 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2473 * to have executed a full memory barrier during the execution of
2474 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2475 * again only if the system has more than one CPU).
2476 *
2477 * This primitive provides the guarantees made by the (now removed)
2478 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2479 * guarantees that rcu_read_lock() sections will have completed.
2480 * In "classic RCU", these two guarantees happen to be one and
2481 * the same, but can differ in realtime RCU implementations.
2482 */
2483 void synchronize_sched(void)
2484 {
2485 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2486 !lock_is_held(&rcu_lock_map) &&
2487 !lock_is_held(&rcu_sched_lock_map),
2488 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2489 if (rcu_blocking_is_gp())
2490 return;
2491 if (rcu_expedited)
2492 synchronize_sched_expedited();
2493 else
2494 wait_rcu_gp(call_rcu_sched);
2495 }
2496 EXPORT_SYMBOL_GPL(synchronize_sched);
2497
2498 /**
2499 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2500 *
2501 * Control will return to the caller some time after a full rcu_bh grace
2502 * period has elapsed, in other words after all currently executing rcu_bh
2503 * read-side critical sections have completed. RCU read-side critical
2504 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2505 * and may be nested.
2506 *
2507 * See the description of synchronize_sched() for more detailed information
2508 * on memory ordering guarantees.
2509 */
2510 void synchronize_rcu_bh(void)
2511 {
2512 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2513 !lock_is_held(&rcu_lock_map) &&
2514 !lock_is_held(&rcu_sched_lock_map),
2515 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2516 if (rcu_blocking_is_gp())
2517 return;
2518 if (rcu_expedited)
2519 synchronize_rcu_bh_expedited();
2520 else
2521 wait_rcu_gp(call_rcu_bh);
2522 }
2523 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2524
2525 static int synchronize_sched_expedited_cpu_stop(void *data)
2526 {
2527 /*
2528 * There must be a full memory barrier on each affected CPU
2529 * between the time that try_stop_cpus() is called and the
2530 * time that it returns.
2531 *
2532 * In the current initial implementation of cpu_stop, the
2533 * above condition is already met when the control reaches
2534 * this point and the following smp_mb() is not strictly
2535 * necessary. Do smp_mb() anyway for documentation and
2536 * robustness against future implementation changes.
2537 */
2538 smp_mb(); /* See above comment block. */
2539 return 0;
2540 }
2541
2542 /**
2543 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2544 *
2545 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2546 * approach to force the grace period to end quickly. This consumes
2547 * significant time on all CPUs and is unfriendly to real-time workloads,
2548 * so is thus not recommended for any sort of common-case code. In fact,
2549 * if you are using synchronize_sched_expedited() in a loop, please
2550 * restructure your code to batch your updates, and then use a single
2551 * synchronize_sched() instead.
2552 *
2553 * Note that it is illegal to call this function while holding any lock
2554 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2555 * to call this function from a CPU-hotplug notifier. Failing to observe
2556 * these restriction will result in deadlock.
2557 *
2558 * This implementation can be thought of as an application of ticket
2559 * locking to RCU, with sync_sched_expedited_started and
2560 * sync_sched_expedited_done taking on the roles of the halves
2561 * of the ticket-lock word. Each task atomically increments
2562 * sync_sched_expedited_started upon entry, snapshotting the old value,
2563 * then attempts to stop all the CPUs. If this succeeds, then each
2564 * CPU will have executed a context switch, resulting in an RCU-sched
2565 * grace period. We are then done, so we use atomic_cmpxchg() to
2566 * update sync_sched_expedited_done to match our snapshot -- but
2567 * only if someone else has not already advanced past our snapshot.
2568 *
2569 * On the other hand, if try_stop_cpus() fails, we check the value
2570 * of sync_sched_expedited_done. If it has advanced past our
2571 * initial snapshot, then someone else must have forced a grace period
2572 * some time after we took our snapshot. In this case, our work is
2573 * done for us, and we can simply return. Otherwise, we try again,
2574 * but keep our initial snapshot for purposes of checking for someone
2575 * doing our work for us.
2576 *
2577 * If we fail too many times in a row, we fall back to synchronize_sched().
2578 */
2579 void synchronize_sched_expedited(void)
2580 {
2581 long firstsnap, s, snap;
2582 int trycount = 0;
2583 struct rcu_state *rsp = &rcu_sched_state;
2584
2585 /*
2586 * If we are in danger of counter wrap, just do synchronize_sched().
2587 * By allowing sync_sched_expedited_started to advance no more than
2588 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2589 * that more than 3.5 billion CPUs would be required to force a
2590 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2591 * course be required on a 64-bit system.
2592 */
2593 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2594 (ulong)atomic_long_read(&rsp->expedited_done) +
2595 ULONG_MAX / 8)) {
2596 synchronize_sched();
2597 atomic_long_inc(&rsp->expedited_wrap);
2598 return;
2599 }
2600
2601 /*
2602 * Take a ticket. Note that atomic_inc_return() implies a
2603 * full memory barrier.
2604 */
2605 snap = atomic_long_inc_return(&rsp->expedited_start);
2606 firstsnap = snap;
2607 get_online_cpus();
2608 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2609
2610 /*
2611 * Each pass through the following loop attempts to force a
2612 * context switch on each CPU.
2613 */
2614 while (try_stop_cpus(cpu_online_mask,
2615 synchronize_sched_expedited_cpu_stop,
2616 NULL) == -EAGAIN) {
2617 put_online_cpus();
2618 atomic_long_inc(&rsp->expedited_tryfail);
2619
2620 /* Check to see if someone else did our work for us. */
2621 s = atomic_long_read(&rsp->expedited_done);
2622 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2623 /* ensure test happens before caller kfree */
2624 smp_mb__before_atomic_inc(); /* ^^^ */
2625 atomic_long_inc(&rsp->expedited_workdone1);
2626 return;
2627 }
2628
2629 /* No joy, try again later. Or just synchronize_sched(). */
2630 if (trycount++ < 10) {
2631 udelay(trycount * num_online_cpus());
2632 } else {
2633 wait_rcu_gp(call_rcu_sched);
2634 atomic_long_inc(&rsp->expedited_normal);
2635 return;
2636 }
2637
2638 /* Recheck to see if someone else did our work for us. */
2639 s = atomic_long_read(&rsp->expedited_done);
2640 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2641 /* ensure test happens before caller kfree */
2642 smp_mb__before_atomic_inc(); /* ^^^ */
2643 atomic_long_inc(&rsp->expedited_workdone2);
2644 return;
2645 }
2646
2647 /*
2648 * Refetching sync_sched_expedited_started allows later
2649 * callers to piggyback on our grace period. We retry
2650 * after they started, so our grace period works for them,
2651 * and they started after our first try, so their grace
2652 * period works for us.
2653 */
2654 get_online_cpus();
2655 snap = atomic_long_read(&rsp->expedited_start);
2656 smp_mb(); /* ensure read is before try_stop_cpus(). */
2657 }
2658 atomic_long_inc(&rsp->expedited_stoppedcpus);
2659
2660 /*
2661 * Everyone up to our most recent fetch is covered by our grace
2662 * period. Update the counter, but only if our work is still
2663 * relevant -- which it won't be if someone who started later
2664 * than we did already did their update.
2665 */
2666 do {
2667 atomic_long_inc(&rsp->expedited_done_tries);
2668 s = atomic_long_read(&rsp->expedited_done);
2669 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2670 /* ensure test happens before caller kfree */
2671 smp_mb__before_atomic_inc(); /* ^^^ */
2672 atomic_long_inc(&rsp->expedited_done_lost);
2673 break;
2674 }
2675 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2676 atomic_long_inc(&rsp->expedited_done_exit);
2677
2678 put_online_cpus();
2679 }
2680 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2681
2682 /*
2683 * Check to see if there is any immediate RCU-related work to be done
2684 * by the current CPU, for the specified type of RCU, returning 1 if so.
2685 * The checks are in order of increasing expense: checks that can be
2686 * carried out against CPU-local state are performed first. However,
2687 * we must check for CPU stalls first, else we might not get a chance.
2688 */
2689 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2690 {
2691 struct rcu_node *rnp = rdp->mynode;
2692
2693 rdp->n_rcu_pending++;
2694
2695 /* Check for CPU stalls, if enabled. */
2696 check_cpu_stall(rsp, rdp);
2697
2698 /* Is the RCU core waiting for a quiescent state from this CPU? */
2699 if (rcu_scheduler_fully_active &&
2700 rdp->qs_pending && !rdp->passed_quiesce) {
2701 rdp->n_rp_qs_pending++;
2702 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2703 rdp->n_rp_report_qs++;
2704 return 1;
2705 }
2706
2707 /* Does this CPU have callbacks ready to invoke? */
2708 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2709 rdp->n_rp_cb_ready++;
2710 return 1;
2711 }
2712
2713 /* Has RCU gone idle with this CPU needing another grace period? */
2714 if (cpu_needs_another_gp(rsp, rdp)) {
2715 rdp->n_rp_cpu_needs_gp++;
2716 return 1;
2717 }
2718
2719 /* Has another RCU grace period completed? */
2720 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2721 rdp->n_rp_gp_completed++;
2722 return 1;
2723 }
2724
2725 /* Has a new RCU grace period started? */
2726 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2727 rdp->n_rp_gp_started++;
2728 return 1;
2729 }
2730
2731 /* nothing to do */
2732 rdp->n_rp_need_nothing++;
2733 return 0;
2734 }
2735
2736 /*
2737 * Check to see if there is any immediate RCU-related work to be done
2738 * by the current CPU, returning 1 if so. This function is part of the
2739 * RCU implementation; it is -not- an exported member of the RCU API.
2740 */
2741 static int rcu_pending(int cpu)
2742 {
2743 struct rcu_state *rsp;
2744
2745 for_each_rcu_flavor(rsp)
2746 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2747 return 1;
2748 return 0;
2749 }
2750
2751 /*
2752 * Return true if the specified CPU has any callback. If all_lazy is
2753 * non-NULL, store an indication of whether all callbacks are lazy.
2754 * (If there are no callbacks, all of them are deemed to be lazy.)
2755 */
2756 static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2757 {
2758 bool al = true;
2759 bool hc = false;
2760 struct rcu_data *rdp;
2761 struct rcu_state *rsp;
2762
2763 for_each_rcu_flavor(rsp) {
2764 rdp = per_cpu_ptr(rsp->rda, cpu);
2765 if (rdp->qlen != rdp->qlen_lazy)
2766 al = false;
2767 if (rdp->nxtlist)
2768 hc = true;
2769 }
2770 if (all_lazy)
2771 *all_lazy = al;
2772 return hc;
2773 }
2774
2775 /*
2776 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2777 * the compiler is expected to optimize this away.
2778 */
2779 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2780 int cpu, unsigned long done)
2781 {
2782 trace_rcu_barrier(rsp->name, s, cpu,
2783 atomic_read(&rsp->barrier_cpu_count), done);
2784 }
2785
2786 /*
2787 * RCU callback function for _rcu_barrier(). If we are last, wake
2788 * up the task executing _rcu_barrier().
2789 */
2790 static void rcu_barrier_callback(struct rcu_head *rhp)
2791 {
2792 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2793 struct rcu_state *rsp = rdp->rsp;
2794
2795 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2796 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2797 complete(&rsp->barrier_completion);
2798 } else {
2799 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2800 }
2801 }
2802
2803 /*
2804 * Called with preemption disabled, and from cross-cpu IRQ context.
2805 */
2806 static void rcu_barrier_func(void *type)
2807 {
2808 struct rcu_state *rsp = type;
2809 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2810
2811 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2812 atomic_inc(&rsp->barrier_cpu_count);
2813 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2814 }
2815
2816 /*
2817 * Orchestrate the specified type of RCU barrier, waiting for all
2818 * RCU callbacks of the specified type to complete.
2819 */
2820 static void _rcu_barrier(struct rcu_state *rsp)
2821 {
2822 int cpu;
2823 struct rcu_data *rdp;
2824 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2825 unsigned long snap_done;
2826
2827 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2828
2829 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2830 mutex_lock(&rsp->barrier_mutex);
2831
2832 /*
2833 * Ensure that all prior references, including to ->n_barrier_done,
2834 * are ordered before the _rcu_barrier() machinery.
2835 */
2836 smp_mb(); /* See above block comment. */
2837
2838 /*
2839 * Recheck ->n_barrier_done to see if others did our work for us.
2840 * This means checking ->n_barrier_done for an even-to-odd-to-even
2841 * transition. The "if" expression below therefore rounds the old
2842 * value up to the next even number and adds two before comparing.
2843 */
2844 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2845 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2846 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2847 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2848 smp_mb(); /* caller's subsequent code after above check. */
2849 mutex_unlock(&rsp->barrier_mutex);
2850 return;
2851 }
2852
2853 /*
2854 * Increment ->n_barrier_done to avoid duplicate work. Use
2855 * ACCESS_ONCE() to prevent the compiler from speculating
2856 * the increment to precede the early-exit check.
2857 */
2858 ACCESS_ONCE(rsp->n_barrier_done)++;
2859 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2860 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2861 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2862
2863 /*
2864 * Initialize the count to one rather than to zero in order to
2865 * avoid a too-soon return to zero in case of a short grace period
2866 * (or preemption of this task). Exclude CPU-hotplug operations
2867 * to ensure that no offline CPU has callbacks queued.
2868 */
2869 init_completion(&rsp->barrier_completion);
2870 atomic_set(&rsp->barrier_cpu_count, 1);
2871 get_online_cpus();
2872
2873 /*
2874 * Force each CPU with callbacks to register a new callback.
2875 * When that callback is invoked, we will know that all of the
2876 * corresponding CPU's preceding callbacks have been invoked.
2877 */
2878 for_each_possible_cpu(cpu) {
2879 if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
2880 continue;
2881 rdp = per_cpu_ptr(rsp->rda, cpu);
2882 if (is_nocb_cpu(cpu)) {
2883 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2884 rsp->n_barrier_done);
2885 atomic_inc(&rsp->barrier_cpu_count);
2886 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2887 rsp, cpu, 0);
2888 } else if (ACCESS_ONCE(rdp->qlen)) {
2889 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2890 rsp->n_barrier_done);
2891 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2892 } else {
2893 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2894 rsp->n_barrier_done);
2895 }
2896 }
2897 put_online_cpus();
2898
2899 /*
2900 * Now that we have an rcu_barrier_callback() callback on each
2901 * CPU, and thus each counted, remove the initial count.
2902 */
2903 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2904 complete(&rsp->barrier_completion);
2905
2906 /* Increment ->n_barrier_done to prevent duplicate work. */
2907 smp_mb(); /* Keep increment after above mechanism. */
2908 ACCESS_ONCE(rsp->n_barrier_done)++;
2909 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2910 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2911 smp_mb(); /* Keep increment before caller's subsequent code. */
2912
2913 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2914 wait_for_completion(&rsp->barrier_completion);
2915
2916 /* Other rcu_barrier() invocations can now safely proceed. */
2917 mutex_unlock(&rsp->barrier_mutex);
2918 }
2919
2920 /**
2921 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2922 */
2923 void rcu_barrier_bh(void)
2924 {
2925 _rcu_barrier(&rcu_bh_state);
2926 }
2927 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2928
2929 /**
2930 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2931 */
2932 void rcu_barrier_sched(void)
2933 {
2934 _rcu_barrier(&rcu_sched_state);
2935 }
2936 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2937
2938 /*
2939 * Do boot-time initialization of a CPU's per-CPU RCU data.
2940 */
2941 static void __init
2942 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2943 {
2944 unsigned long flags;
2945 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2946 struct rcu_node *rnp = rcu_get_root(rsp);
2947
2948 /* Set up local state, ensuring consistent view of global state. */
2949 raw_spin_lock_irqsave(&rnp->lock, flags);
2950 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2951 init_callback_list(rdp);
2952 rdp->qlen_lazy = 0;
2953 ACCESS_ONCE(rdp->qlen) = 0;
2954 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2955 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2956 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2957 rdp->cpu = cpu;
2958 rdp->rsp = rsp;
2959 rcu_boot_init_nocb_percpu_data(rdp);
2960 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2961 }
2962
2963 /*
2964 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2965 * offline event can be happening at a given time. Note also that we
2966 * can accept some slop in the rsp->completed access due to the fact
2967 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2968 */
2969 static void __cpuinit
2970 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2971 {
2972 unsigned long flags;
2973 unsigned long mask;
2974 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2975 struct rcu_node *rnp = rcu_get_root(rsp);
2976
2977 /* Exclude new grace periods. */
2978 mutex_lock(&rsp->onoff_mutex);
2979
2980 /* Set up local state, ensuring consistent view of global state. */
2981 raw_spin_lock_irqsave(&rnp->lock, flags);
2982 rdp->beenonline = 1; /* We have now been online. */
2983 rdp->preemptible = preemptible;
2984 rdp->qlen_last_fqs_check = 0;
2985 rdp->n_force_qs_snap = rsp->n_force_qs;
2986 rdp->blimit = blimit;
2987 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2988 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2989 atomic_set(&rdp->dynticks->dynticks,
2990 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2991 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2992
2993 /* Add CPU to rcu_node bitmasks. */
2994 rnp = rdp->mynode;
2995 mask = rdp->grpmask;
2996 do {
2997 /* Exclude any attempts to start a new GP on small systems. */
2998 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2999 rnp->qsmaskinit |= mask;
3000 mask = rnp->grpmask;
3001 if (rnp == rdp->mynode) {
3002 /*
3003 * If there is a grace period in progress, we will
3004 * set up to wait for it next time we run the
3005 * RCU core code.
3006 */
3007 rdp->gpnum = rnp->completed;
3008 rdp->completed = rnp->completed;
3009 rdp->passed_quiesce = 0;
3010 rdp->qs_pending = 0;
3011 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
3012 }
3013 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3014 rnp = rnp->parent;
3015 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3016 local_irq_restore(flags);
3017
3018 mutex_unlock(&rsp->onoff_mutex);
3019 }
3020
3021 static void __cpuinit rcu_prepare_cpu(int cpu)
3022 {
3023 struct rcu_state *rsp;
3024
3025 for_each_rcu_flavor(rsp)
3026 rcu_init_percpu_data(cpu, rsp,
3027 strcmp(rsp->name, "rcu_preempt") == 0);
3028 }
3029
3030 /*
3031 * Handle CPU online/offline notification events.
3032 */
3033 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
3034 unsigned long action, void *hcpu)
3035 {
3036 long cpu = (long)hcpu;
3037 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3038 struct rcu_node *rnp = rdp->mynode;
3039 struct rcu_state *rsp;
3040
3041 trace_rcu_utilization("Start CPU hotplug");
3042 switch (action) {
3043 case CPU_UP_PREPARE:
3044 case CPU_UP_PREPARE_FROZEN:
3045 rcu_prepare_cpu(cpu);
3046 rcu_prepare_kthreads(cpu);
3047 break;
3048 case CPU_ONLINE:
3049 case CPU_DOWN_FAILED:
3050 rcu_boost_kthread_setaffinity(rnp, -1);
3051 break;
3052 case CPU_DOWN_PREPARE:
3053 rcu_boost_kthread_setaffinity(rnp, cpu);
3054 break;
3055 case CPU_DYING:
3056 case CPU_DYING_FROZEN:
3057 /*
3058 * The whole machine is "stopped" except this CPU, so we can
3059 * touch any data without introducing corruption. We send the
3060 * dying CPU's callbacks to an arbitrarily chosen online CPU.
3061 */
3062 for_each_rcu_flavor(rsp)
3063 rcu_cleanup_dying_cpu(rsp);
3064 break;
3065 case CPU_DEAD:
3066 case CPU_DEAD_FROZEN:
3067 case CPU_UP_CANCELED:
3068 case CPU_UP_CANCELED_FROZEN:
3069 for_each_rcu_flavor(rsp)
3070 rcu_cleanup_dead_cpu(cpu, rsp);
3071 break;
3072 default:
3073 break;
3074 }
3075 trace_rcu_utilization("End CPU hotplug");
3076 return NOTIFY_OK;
3077 }
3078
3079 /*
3080 * Spawn the kthread that handles this RCU flavor's grace periods.
3081 */
3082 static int __init rcu_spawn_gp_kthread(void)
3083 {
3084 unsigned long flags;
3085 struct rcu_node *rnp;
3086 struct rcu_state *rsp;
3087 struct task_struct *t;
3088
3089 for_each_rcu_flavor(rsp) {
3090 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
3091 BUG_ON(IS_ERR(t));
3092 rnp = rcu_get_root(rsp);
3093 raw_spin_lock_irqsave(&rnp->lock, flags);
3094 rsp->gp_kthread = t;
3095 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3096 rcu_spawn_nocb_kthreads(rsp);
3097 }
3098 return 0;
3099 }
3100 early_initcall(rcu_spawn_gp_kthread);
3101
3102 /*
3103 * This function is invoked towards the end of the scheduler's initialization
3104 * process. Before this is called, the idle task might contain
3105 * RCU read-side critical sections (during which time, this idle
3106 * task is booting the system). After this function is called, the
3107 * idle tasks are prohibited from containing RCU read-side critical
3108 * sections. This function also enables RCU lockdep checking.
3109 */
3110 void rcu_scheduler_starting(void)
3111 {
3112 WARN_ON(num_online_cpus() != 1);
3113 WARN_ON(nr_context_switches() > 0);
3114 rcu_scheduler_active = 1;
3115 }
3116
3117 /*
3118 * Compute the per-level fanout, either using the exact fanout specified
3119 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3120 */
3121 #ifdef CONFIG_RCU_FANOUT_EXACT
3122 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3123 {
3124 int i;
3125
3126 for (i = rcu_num_lvls - 1; i > 0; i--)
3127 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3128 rsp->levelspread[0] = rcu_fanout_leaf;
3129 }
3130 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3131 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3132 {
3133 int ccur;
3134 int cprv;
3135 int i;
3136
3137 cprv = nr_cpu_ids;
3138 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3139 ccur = rsp->levelcnt[i];
3140 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3141 cprv = ccur;
3142 }
3143 }
3144 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3145
3146 /*
3147 * Helper function for rcu_init() that initializes one rcu_state structure.
3148 */
3149 static void __init rcu_init_one(struct rcu_state *rsp,
3150 struct rcu_data __percpu *rda)
3151 {
3152 static char *buf[] = { "rcu_node_0",
3153 "rcu_node_1",
3154 "rcu_node_2",
3155 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3156 static char *fqs[] = { "rcu_node_fqs_0",
3157 "rcu_node_fqs_1",
3158 "rcu_node_fqs_2",
3159 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3160 int cpustride = 1;
3161 int i;
3162 int j;
3163 struct rcu_node *rnp;
3164
3165 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3166
3167 /* Silence gcc 4.8 warning about array index out of range. */
3168 if (rcu_num_lvls > RCU_NUM_LVLS)
3169 panic("rcu_init_one: rcu_num_lvls overflow");
3170
3171 /* Initialize the level-tracking arrays. */
3172
3173 for (i = 0; i < rcu_num_lvls; i++)
3174 rsp->levelcnt[i] = num_rcu_lvl[i];
3175 for (i = 1; i < rcu_num_lvls; i++)
3176 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3177 rcu_init_levelspread(rsp);
3178
3179 /* Initialize the elements themselves, starting from the leaves. */
3180
3181 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3182 cpustride *= rsp->levelspread[i];
3183 rnp = rsp->level[i];
3184 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3185 raw_spin_lock_init(&rnp->lock);
3186 lockdep_set_class_and_name(&rnp->lock,
3187 &rcu_node_class[i], buf[i]);
3188 raw_spin_lock_init(&rnp->fqslock);
3189 lockdep_set_class_and_name(&rnp->fqslock,
3190 &rcu_fqs_class[i], fqs[i]);
3191 rnp->gpnum = rsp->gpnum;
3192 rnp->completed = rsp->completed;
3193 rnp->qsmask = 0;
3194 rnp->qsmaskinit = 0;
3195 rnp->grplo = j * cpustride;
3196 rnp->grphi = (j + 1) * cpustride - 1;
3197 if (rnp->grphi >= NR_CPUS)
3198 rnp->grphi = NR_CPUS - 1;
3199 if (i == 0) {
3200 rnp->grpnum = 0;
3201 rnp->grpmask = 0;
3202 rnp->parent = NULL;
3203 } else {
3204 rnp->grpnum = j % rsp->levelspread[i - 1];
3205 rnp->grpmask = 1UL << rnp->grpnum;
3206 rnp->parent = rsp->level[i - 1] +
3207 j / rsp->levelspread[i - 1];
3208 }
3209 rnp->level = i;
3210 INIT_LIST_HEAD(&rnp->blkd_tasks);
3211 rcu_init_one_nocb(rnp);
3212 }
3213 }
3214
3215 rsp->rda = rda;
3216 init_waitqueue_head(&rsp->gp_wq);
3217 rnp = rsp->level[rcu_num_lvls - 1];
3218 for_each_possible_cpu(i) {
3219 while (i > rnp->grphi)
3220 rnp++;
3221 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3222 rcu_boot_init_percpu_data(i, rsp);
3223 }
3224 list_add(&rsp->flavors, &rcu_struct_flavors);
3225 }
3226
3227 /*
3228 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3229 * replace the definitions in rcutree.h because those are needed to size
3230 * the ->node array in the rcu_state structure.
3231 */
3232 static void __init rcu_init_geometry(void)
3233 {
3234 int i;
3235 int j;
3236 int n = nr_cpu_ids;
3237 int rcu_capacity[MAX_RCU_LVLS + 1];
3238
3239 /* If the compile-time values are accurate, just leave. */
3240 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3241 nr_cpu_ids == NR_CPUS)
3242 return;
3243
3244 /*
3245 * Compute number of nodes that can be handled an rcu_node tree
3246 * with the given number of levels. Setting rcu_capacity[0] makes
3247 * some of the arithmetic easier.
3248 */
3249 rcu_capacity[0] = 1;
3250 rcu_capacity[1] = rcu_fanout_leaf;
3251 for (i = 2; i <= MAX_RCU_LVLS; i++)
3252 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3253
3254 /*
3255 * The boot-time rcu_fanout_leaf parameter is only permitted
3256 * to increase the leaf-level fanout, not decrease it. Of course,
3257 * the leaf-level fanout cannot exceed the number of bits in
3258 * the rcu_node masks. Finally, the tree must be able to accommodate
3259 * the configured number of CPUs. Complain and fall back to the
3260 * compile-time values if these limits are exceeded.
3261 */
3262 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3263 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3264 n > rcu_capacity[MAX_RCU_LVLS]) {
3265 WARN_ON(1);
3266 return;
3267 }
3268
3269 /* Calculate the number of rcu_nodes at each level of the tree. */
3270 for (i = 1; i <= MAX_RCU_LVLS; i++)
3271 if (n <= rcu_capacity[i]) {
3272 for (j = 0; j <= i; j++)
3273 num_rcu_lvl[j] =
3274 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3275 rcu_num_lvls = i;
3276 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3277 num_rcu_lvl[j] = 0;
3278 break;
3279 }
3280
3281 /* Calculate the total number of rcu_node structures. */
3282 rcu_num_nodes = 0;
3283 for (i = 0; i <= MAX_RCU_LVLS; i++)
3284 rcu_num_nodes += num_rcu_lvl[i];
3285 rcu_num_nodes -= n;
3286 }
3287
3288 void __init rcu_init(void)
3289 {
3290 int cpu;
3291
3292 rcu_bootup_announce();
3293 rcu_init_geometry();
3294 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3295 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3296 __rcu_init_preempt();
3297 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3298
3299 /*
3300 * We don't need protection against CPU-hotplug here because
3301 * this is called early in boot, before either interrupts
3302 * or the scheduler are operational.
3303 */
3304 cpu_notifier(rcu_cpu_notify, 0);
3305 for_each_online_cpu(cpu)
3306 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3307 }
3308
3309 #include "rcutree_plugin.h"
This page took 0.096028 seconds and 6 git commands to generate.