rcu: Remove #ifdef CONFIG_SMP from TREE_RCU
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53
54 #include "rcutree.h"
55 #include <trace/events/rcu.h>
56
57 #include "rcu.h"
58
59 /* Data structures. */
60
61 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .fqs_state = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
80 }
81
82 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89
90 /*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
99 int rcu_scheduler_active __read_mostly;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
102 /*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114 static int rcu_scheduler_fully_active __read_mostly;
115
116 #ifdef CONFIG_RCU_BOOST
117
118 /*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work);
127
128 #endif /* #ifdef CONFIG_RCU_BOOST */
129
130 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133
134 /*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143 unsigned long rcutorture_testseq;
144 unsigned long rcutorture_vernum;
145
146 /*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151 static int rcu_gp_in_progress(struct rcu_state *rsp)
152 {
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154 }
155
156 /*
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
161 */
162 void rcu_sched_qs(int cpu)
163 {
164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165
166 rdp->passed_quiesce_gpnum = rdp->gpnum;
167 barrier();
168 if (rdp->passed_quiesce == 0)
169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 rdp->passed_quiesce = 1;
171 }
172
173 void rcu_bh_qs(int cpu)
174 {
175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 /*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
188 */
189 void rcu_note_context_switch(int cpu)
190 {
191 trace_rcu_utilization("Start context switch");
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
194 trace_rcu_utilization("End context switch");
195 }
196 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197
198 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199 .dynticks_nesting = DYNTICK_TASK_NESTING,
200 .dynticks = ATOMIC_INIT(1),
201 };
202
203 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
204 static int qhimark = 10000; /* If this many pending, ignore blimit. */
205 static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
207 module_param(blimit, int, 0);
208 module_param(qhimark, int, 0);
209 module_param(qlowmark, int, 0);
210
211 int rcu_cpu_stall_suppress __read_mostly;
212 module_param(rcu_cpu_stall_suppress, int, 0644);
213
214 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
215 static int rcu_pending(int cpu);
216
217 /*
218 * Return the number of RCU-sched batches processed thus far for debug & stats.
219 */
220 long rcu_batches_completed_sched(void)
221 {
222 return rcu_sched_state.completed;
223 }
224 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
225
226 /*
227 * Return the number of RCU BH batches processed thus far for debug & stats.
228 */
229 long rcu_batches_completed_bh(void)
230 {
231 return rcu_bh_state.completed;
232 }
233 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
234
235 /*
236 * Force a quiescent state for RCU BH.
237 */
238 void rcu_bh_force_quiescent_state(void)
239 {
240 force_quiescent_state(&rcu_bh_state, 0);
241 }
242 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
243
244 /*
245 * Record the number of times rcutorture tests have been initiated and
246 * terminated. This information allows the debugfs tracing stats to be
247 * correlated to the rcutorture messages, even when the rcutorture module
248 * is being repeatedly loaded and unloaded. In other words, we cannot
249 * store this state in rcutorture itself.
250 */
251 void rcutorture_record_test_transition(void)
252 {
253 rcutorture_testseq++;
254 rcutorture_vernum = 0;
255 }
256 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
257
258 /*
259 * Record the number of writer passes through the current rcutorture test.
260 * This is also used to correlate debugfs tracing stats with the rcutorture
261 * messages.
262 */
263 void rcutorture_record_progress(unsigned long vernum)
264 {
265 rcutorture_vernum++;
266 }
267 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
268
269 /*
270 * Force a quiescent state for RCU-sched.
271 */
272 void rcu_sched_force_quiescent_state(void)
273 {
274 force_quiescent_state(&rcu_sched_state, 0);
275 }
276 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
277
278 /*
279 * Does the CPU have callbacks ready to be invoked?
280 */
281 static int
282 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
283 {
284 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
285 }
286
287 /*
288 * Does the current CPU require a yet-as-unscheduled grace period?
289 */
290 static int
291 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
292 {
293 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
294 }
295
296 /*
297 * Return the root node of the specified rcu_state structure.
298 */
299 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
300 {
301 return &rsp->node[0];
302 }
303
304 /*
305 * If the specified CPU is offline, tell the caller that it is in
306 * a quiescent state. Otherwise, whack it with a reschedule IPI.
307 * Grace periods can end up waiting on an offline CPU when that
308 * CPU is in the process of coming online -- it will be added to the
309 * rcu_node bitmasks before it actually makes it online. The same thing
310 * can happen while a CPU is in the process of coming online. Because this
311 * race is quite rare, we check for it after detecting that the grace
312 * period has been delayed rather than checking each and every CPU
313 * each and every time we start a new grace period.
314 */
315 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
316 {
317 /*
318 * If the CPU is offline, it is in a quiescent state. We can
319 * trust its state not to change because interrupts are disabled.
320 */
321 if (cpu_is_offline(rdp->cpu)) {
322 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
323 rdp->offline_fqs++;
324 return 1;
325 }
326
327 /*
328 * The CPU is online, so send it a reschedule IPI. This forces
329 * it through the scheduler, and (inefficiently) also handles cases
330 * where idle loops fail to inform RCU about the CPU being idle.
331 */
332 if (rdp->cpu != smp_processor_id())
333 smp_send_reschedule(rdp->cpu);
334 else
335 set_need_resched();
336 rdp->resched_ipi++;
337 return 0;
338 }
339
340 /*
341 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
342 *
343 * If the new value of the ->dynticks_nesting counter now is zero,
344 * we really have entered idle, and must do the appropriate accounting.
345 * The caller must have disabled interrupts.
346 */
347 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
348 {
349 trace_rcu_dyntick("Start", oldval, 0);
350 if (!is_idle_task(current)) {
351 struct task_struct *idle = idle_task(smp_processor_id());
352
353 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
354 ftrace_dump(DUMP_ALL);
355 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
356 current->pid, current->comm,
357 idle->pid, idle->comm); /* must be idle task! */
358 }
359 rcu_prepare_for_idle(smp_processor_id());
360 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
361 smp_mb__before_atomic_inc(); /* See above. */
362 atomic_inc(&rdtp->dynticks);
363 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
364 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
365
366 /*
367 * The idle task is not permitted to enter the idle loop while
368 * in an RCU read-side critical section.
369 */
370 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
371 "Illegal idle entry in RCU read-side critical section.");
372 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
373 "Illegal idle entry in RCU-bh read-side critical section.");
374 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
375 "Illegal idle entry in RCU-sched read-side critical section.");
376 }
377
378 /**
379 * rcu_idle_enter - inform RCU that current CPU is entering idle
380 *
381 * Enter idle mode, in other words, -leave- the mode in which RCU
382 * read-side critical sections can occur. (Though RCU read-side
383 * critical sections can occur in irq handlers in idle, a possibility
384 * handled by irq_enter() and irq_exit().)
385 *
386 * We crowbar the ->dynticks_nesting field to zero to allow for
387 * the possibility of usermode upcalls having messed up our count
388 * of interrupt nesting level during the prior busy period.
389 */
390 void rcu_idle_enter(void)
391 {
392 unsigned long flags;
393 long long oldval;
394 struct rcu_dynticks *rdtp;
395
396 local_irq_save(flags);
397 rdtp = &__get_cpu_var(rcu_dynticks);
398 oldval = rdtp->dynticks_nesting;
399 rdtp->dynticks_nesting = 0;
400 rcu_idle_enter_common(rdtp, oldval);
401 local_irq_restore(flags);
402 }
403
404 /**
405 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
406 *
407 * Exit from an interrupt handler, which might possibly result in entering
408 * idle mode, in other words, leaving the mode in which read-side critical
409 * sections can occur.
410 *
411 * This code assumes that the idle loop never does anything that might
412 * result in unbalanced calls to irq_enter() and irq_exit(). If your
413 * architecture violates this assumption, RCU will give you what you
414 * deserve, good and hard. But very infrequently and irreproducibly.
415 *
416 * Use things like work queues to work around this limitation.
417 *
418 * You have been warned.
419 */
420 void rcu_irq_exit(void)
421 {
422 unsigned long flags;
423 long long oldval;
424 struct rcu_dynticks *rdtp;
425
426 local_irq_save(flags);
427 rdtp = &__get_cpu_var(rcu_dynticks);
428 oldval = rdtp->dynticks_nesting;
429 rdtp->dynticks_nesting--;
430 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
431 if (rdtp->dynticks_nesting)
432 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
433 else
434 rcu_idle_enter_common(rdtp, oldval);
435 local_irq_restore(flags);
436 }
437
438 /*
439 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
440 *
441 * If the new value of the ->dynticks_nesting counter was previously zero,
442 * we really have exited idle, and must do the appropriate accounting.
443 * The caller must have disabled interrupts.
444 */
445 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
446 {
447 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
448 atomic_inc(&rdtp->dynticks);
449 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
450 smp_mb__after_atomic_inc(); /* See above. */
451 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
452 rcu_cleanup_after_idle(smp_processor_id());
453 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
454 if (!is_idle_task(current)) {
455 struct task_struct *idle = idle_task(smp_processor_id());
456
457 trace_rcu_dyntick("Error on exit: not idle task",
458 oldval, rdtp->dynticks_nesting);
459 ftrace_dump(DUMP_ALL);
460 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
461 current->pid, current->comm,
462 idle->pid, idle->comm); /* must be idle task! */
463 }
464 }
465
466 /**
467 * rcu_idle_exit - inform RCU that current CPU is leaving idle
468 *
469 * Exit idle mode, in other words, -enter- the mode in which RCU
470 * read-side critical sections can occur.
471 *
472 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
473 * allow for the possibility of usermode upcalls messing up our count
474 * of interrupt nesting level during the busy period that is just
475 * now starting.
476 */
477 void rcu_idle_exit(void)
478 {
479 unsigned long flags;
480 struct rcu_dynticks *rdtp;
481 long long oldval;
482
483 local_irq_save(flags);
484 rdtp = &__get_cpu_var(rcu_dynticks);
485 oldval = rdtp->dynticks_nesting;
486 WARN_ON_ONCE(oldval != 0);
487 rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
488 rcu_idle_exit_common(rdtp, oldval);
489 local_irq_restore(flags);
490 }
491
492 /**
493 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
494 *
495 * Enter an interrupt handler, which might possibly result in exiting
496 * idle mode, in other words, entering the mode in which read-side critical
497 * sections can occur.
498 *
499 * Note that the Linux kernel is fully capable of entering an interrupt
500 * handler that it never exits, for example when doing upcalls to
501 * user mode! This code assumes that the idle loop never does upcalls to
502 * user mode. If your architecture does do upcalls from the idle loop (or
503 * does anything else that results in unbalanced calls to the irq_enter()
504 * and irq_exit() functions), RCU will give you what you deserve, good
505 * and hard. But very infrequently and irreproducibly.
506 *
507 * Use things like work queues to work around this limitation.
508 *
509 * You have been warned.
510 */
511 void rcu_irq_enter(void)
512 {
513 unsigned long flags;
514 struct rcu_dynticks *rdtp;
515 long long oldval;
516
517 local_irq_save(flags);
518 rdtp = &__get_cpu_var(rcu_dynticks);
519 oldval = rdtp->dynticks_nesting;
520 rdtp->dynticks_nesting++;
521 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
522 if (oldval)
523 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
524 else
525 rcu_idle_exit_common(rdtp, oldval);
526 local_irq_restore(flags);
527 }
528
529 /**
530 * rcu_nmi_enter - inform RCU of entry to NMI context
531 *
532 * If the CPU was idle with dynamic ticks active, and there is no
533 * irq handler running, this updates rdtp->dynticks_nmi to let the
534 * RCU grace-period handling know that the CPU is active.
535 */
536 void rcu_nmi_enter(void)
537 {
538 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
539
540 if (rdtp->dynticks_nmi_nesting == 0 &&
541 (atomic_read(&rdtp->dynticks) & 0x1))
542 return;
543 rdtp->dynticks_nmi_nesting++;
544 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
545 atomic_inc(&rdtp->dynticks);
546 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
547 smp_mb__after_atomic_inc(); /* See above. */
548 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
549 }
550
551 /**
552 * rcu_nmi_exit - inform RCU of exit from NMI context
553 *
554 * If the CPU was idle with dynamic ticks active, and there is no
555 * irq handler running, this updates rdtp->dynticks_nmi to let the
556 * RCU grace-period handling know that the CPU is no longer active.
557 */
558 void rcu_nmi_exit(void)
559 {
560 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
561
562 if (rdtp->dynticks_nmi_nesting == 0 ||
563 --rdtp->dynticks_nmi_nesting != 0)
564 return;
565 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
566 smp_mb__before_atomic_inc(); /* See above. */
567 atomic_inc(&rdtp->dynticks);
568 smp_mb__after_atomic_inc(); /* Force delay to next write. */
569 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
570 }
571
572 #ifdef CONFIG_PROVE_RCU
573
574 /**
575 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
576 *
577 * If the current CPU is in its idle loop and is neither in an interrupt
578 * or NMI handler, return true.
579 */
580 int rcu_is_cpu_idle(void)
581 {
582 int ret;
583
584 preempt_disable();
585 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
586 preempt_enable();
587 return ret;
588 }
589 EXPORT_SYMBOL(rcu_is_cpu_idle);
590
591 #endif /* #ifdef CONFIG_PROVE_RCU */
592
593 /**
594 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
595 *
596 * If the current CPU is idle or running at a first-level (not nested)
597 * interrupt from idle, return true. The caller must have at least
598 * disabled preemption.
599 */
600 int rcu_is_cpu_rrupt_from_idle(void)
601 {
602 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
603 }
604
605 /*
606 * Snapshot the specified CPU's dynticks counter so that we can later
607 * credit them with an implicit quiescent state. Return 1 if this CPU
608 * is in dynticks idle mode, which is an extended quiescent state.
609 */
610 static int dyntick_save_progress_counter(struct rcu_data *rdp)
611 {
612 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
613 return (rdp->dynticks_snap & 0x1) == 0;
614 }
615
616 /*
617 * Return true if the specified CPU has passed through a quiescent
618 * state by virtue of being in or having passed through an dynticks
619 * idle state since the last call to dyntick_save_progress_counter()
620 * for this same CPU.
621 */
622 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
623 {
624 unsigned int curr;
625 unsigned int snap;
626
627 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
628 snap = (unsigned int)rdp->dynticks_snap;
629
630 /*
631 * If the CPU passed through or entered a dynticks idle phase with
632 * no active irq/NMI handlers, then we can safely pretend that the CPU
633 * already acknowledged the request to pass through a quiescent
634 * state. Either way, that CPU cannot possibly be in an RCU
635 * read-side critical section that started before the beginning
636 * of the current RCU grace period.
637 */
638 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
639 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
640 rdp->dynticks_fqs++;
641 return 1;
642 }
643
644 /* Go check for the CPU being offline. */
645 return rcu_implicit_offline_qs(rdp);
646 }
647
648 static void record_gp_stall_check_time(struct rcu_state *rsp)
649 {
650 rsp->gp_start = jiffies;
651 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
652 }
653
654 static void print_other_cpu_stall(struct rcu_state *rsp)
655 {
656 int cpu;
657 long delta;
658 unsigned long flags;
659 int ndetected;
660 struct rcu_node *rnp = rcu_get_root(rsp);
661
662 /* Only let one CPU complain about others per time interval. */
663
664 raw_spin_lock_irqsave(&rnp->lock, flags);
665 delta = jiffies - rsp->jiffies_stall;
666 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
667 raw_spin_unlock_irqrestore(&rnp->lock, flags);
668 return;
669 }
670 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
671
672 /*
673 * Now rat on any tasks that got kicked up to the root rcu_node
674 * due to CPU offlining.
675 */
676 ndetected = rcu_print_task_stall(rnp);
677 raw_spin_unlock_irqrestore(&rnp->lock, flags);
678
679 /*
680 * OK, time to rat on our buddy...
681 * See Documentation/RCU/stallwarn.txt for info on how to debug
682 * RCU CPU stall warnings.
683 */
684 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
685 rsp->name);
686 rcu_for_each_leaf_node(rsp, rnp) {
687 raw_spin_lock_irqsave(&rnp->lock, flags);
688 ndetected += rcu_print_task_stall(rnp);
689 raw_spin_unlock_irqrestore(&rnp->lock, flags);
690 if (rnp->qsmask == 0)
691 continue;
692 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
693 if (rnp->qsmask & (1UL << cpu)) {
694 printk(" %d", rnp->grplo + cpu);
695 ndetected++;
696 }
697 }
698 printk("} (detected by %d, t=%ld jiffies)\n",
699 smp_processor_id(), (long)(jiffies - rsp->gp_start));
700 if (ndetected == 0)
701 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
702 else if (!trigger_all_cpu_backtrace())
703 dump_stack();
704
705 /* If so configured, complain about tasks blocking the grace period. */
706
707 rcu_print_detail_task_stall(rsp);
708
709 force_quiescent_state(rsp, 0); /* Kick them all. */
710 }
711
712 static void print_cpu_stall(struct rcu_state *rsp)
713 {
714 unsigned long flags;
715 struct rcu_node *rnp = rcu_get_root(rsp);
716
717 /*
718 * OK, time to rat on ourselves...
719 * See Documentation/RCU/stallwarn.txt for info on how to debug
720 * RCU CPU stall warnings.
721 */
722 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
723 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
724 if (!trigger_all_cpu_backtrace())
725 dump_stack();
726
727 raw_spin_lock_irqsave(&rnp->lock, flags);
728 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
729 rsp->jiffies_stall =
730 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
731 raw_spin_unlock_irqrestore(&rnp->lock, flags);
732
733 set_need_resched(); /* kick ourselves to get things going. */
734 }
735
736 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
737 {
738 unsigned long j;
739 unsigned long js;
740 struct rcu_node *rnp;
741
742 if (rcu_cpu_stall_suppress)
743 return;
744 j = ACCESS_ONCE(jiffies);
745 js = ACCESS_ONCE(rsp->jiffies_stall);
746 rnp = rdp->mynode;
747 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
748
749 /* We haven't checked in, so go dump stack. */
750 print_cpu_stall(rsp);
751
752 } else if (rcu_gp_in_progress(rsp) &&
753 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
754
755 /* They had a few time units to dump stack, so complain. */
756 print_other_cpu_stall(rsp);
757 }
758 }
759
760 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
761 {
762 rcu_cpu_stall_suppress = 1;
763 return NOTIFY_DONE;
764 }
765
766 /**
767 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
768 *
769 * Set the stall-warning timeout way off into the future, thus preventing
770 * any RCU CPU stall-warning messages from appearing in the current set of
771 * RCU grace periods.
772 *
773 * The caller must disable hard irqs.
774 */
775 void rcu_cpu_stall_reset(void)
776 {
777 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
778 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
779 rcu_preempt_stall_reset();
780 }
781
782 static struct notifier_block rcu_panic_block = {
783 .notifier_call = rcu_panic,
784 };
785
786 static void __init check_cpu_stall_init(void)
787 {
788 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
789 }
790
791 /*
792 * Update CPU-local rcu_data state to record the newly noticed grace period.
793 * This is used both when we started the grace period and when we notice
794 * that someone else started the grace period. The caller must hold the
795 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
796 * and must have irqs disabled.
797 */
798 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
799 {
800 if (rdp->gpnum != rnp->gpnum) {
801 /*
802 * If the current grace period is waiting for this CPU,
803 * set up to detect a quiescent state, otherwise don't
804 * go looking for one.
805 */
806 rdp->gpnum = rnp->gpnum;
807 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
808 if (rnp->qsmask & rdp->grpmask) {
809 rdp->qs_pending = 1;
810 rdp->passed_quiesce = 0;
811 } else
812 rdp->qs_pending = 0;
813 }
814 }
815
816 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
817 {
818 unsigned long flags;
819 struct rcu_node *rnp;
820
821 local_irq_save(flags);
822 rnp = rdp->mynode;
823 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
824 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
825 local_irq_restore(flags);
826 return;
827 }
828 __note_new_gpnum(rsp, rnp, rdp);
829 raw_spin_unlock_irqrestore(&rnp->lock, flags);
830 }
831
832 /*
833 * Did someone else start a new RCU grace period start since we last
834 * checked? Update local state appropriately if so. Must be called
835 * on the CPU corresponding to rdp.
836 */
837 static int
838 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
839 {
840 unsigned long flags;
841 int ret = 0;
842
843 local_irq_save(flags);
844 if (rdp->gpnum != rsp->gpnum) {
845 note_new_gpnum(rsp, rdp);
846 ret = 1;
847 }
848 local_irq_restore(flags);
849 return ret;
850 }
851
852 /*
853 * Advance this CPU's callbacks, but only if the current grace period
854 * has ended. This may be called only from the CPU to whom the rdp
855 * belongs. In addition, the corresponding leaf rcu_node structure's
856 * ->lock must be held by the caller, with irqs disabled.
857 */
858 static void
859 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
860 {
861 /* Did another grace period end? */
862 if (rdp->completed != rnp->completed) {
863
864 /* Advance callbacks. No harm if list empty. */
865 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
866 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
867 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
868
869 /* Remember that we saw this grace-period completion. */
870 rdp->completed = rnp->completed;
871 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
872
873 /*
874 * If we were in an extended quiescent state, we may have
875 * missed some grace periods that others CPUs handled on
876 * our behalf. Catch up with this state to avoid noting
877 * spurious new grace periods. If another grace period
878 * has started, then rnp->gpnum will have advanced, so
879 * we will detect this later on.
880 */
881 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
882 rdp->gpnum = rdp->completed;
883
884 /*
885 * If RCU does not need a quiescent state from this CPU,
886 * then make sure that this CPU doesn't go looking for one.
887 */
888 if ((rnp->qsmask & rdp->grpmask) == 0)
889 rdp->qs_pending = 0;
890 }
891 }
892
893 /*
894 * Advance this CPU's callbacks, but only if the current grace period
895 * has ended. This may be called only from the CPU to whom the rdp
896 * belongs.
897 */
898 static void
899 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
900 {
901 unsigned long flags;
902 struct rcu_node *rnp;
903
904 local_irq_save(flags);
905 rnp = rdp->mynode;
906 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
907 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
908 local_irq_restore(flags);
909 return;
910 }
911 __rcu_process_gp_end(rsp, rnp, rdp);
912 raw_spin_unlock_irqrestore(&rnp->lock, flags);
913 }
914
915 /*
916 * Do per-CPU grace-period initialization for running CPU. The caller
917 * must hold the lock of the leaf rcu_node structure corresponding to
918 * this CPU.
919 */
920 static void
921 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
922 {
923 /* Prior grace period ended, so advance callbacks for current CPU. */
924 __rcu_process_gp_end(rsp, rnp, rdp);
925
926 /*
927 * Because this CPU just now started the new grace period, we know
928 * that all of its callbacks will be covered by this upcoming grace
929 * period, even the ones that were registered arbitrarily recently.
930 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
931 *
932 * Other CPUs cannot be sure exactly when the grace period started.
933 * Therefore, their recently registered callbacks must pass through
934 * an additional RCU_NEXT_READY stage, so that they will be handled
935 * by the next RCU grace period.
936 */
937 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
938 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
939
940 /* Set state so that this CPU will detect the next quiescent state. */
941 __note_new_gpnum(rsp, rnp, rdp);
942 }
943
944 /*
945 * Start a new RCU grace period if warranted, re-initializing the hierarchy
946 * in preparation for detecting the next grace period. The caller must hold
947 * the root node's ->lock, which is released before return. Hard irqs must
948 * be disabled.
949 *
950 * Note that it is legal for a dying CPU (which is marked as offline) to
951 * invoke this function. This can happen when the dying CPU reports its
952 * quiescent state.
953 */
954 static void
955 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
956 __releases(rcu_get_root(rsp)->lock)
957 {
958 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
959 struct rcu_node *rnp = rcu_get_root(rsp);
960
961 if (!rcu_scheduler_fully_active ||
962 !cpu_needs_another_gp(rsp, rdp)) {
963 /*
964 * Either the scheduler hasn't yet spawned the first
965 * non-idle task or this CPU does not need another
966 * grace period. Either way, don't start a new grace
967 * period.
968 */
969 raw_spin_unlock_irqrestore(&rnp->lock, flags);
970 return;
971 }
972
973 if (rsp->fqs_active) {
974 /*
975 * This CPU needs a grace period, but force_quiescent_state()
976 * is running. Tell it to start one on this CPU's behalf.
977 */
978 rsp->fqs_need_gp = 1;
979 raw_spin_unlock_irqrestore(&rnp->lock, flags);
980 return;
981 }
982
983 /* Advance to a new grace period and initialize state. */
984 rsp->gpnum++;
985 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
986 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
987 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
988 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
989 record_gp_stall_check_time(rsp);
990 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
991
992 /* Exclude any concurrent CPU-hotplug operations. */
993 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
994
995 /*
996 * Set the quiescent-state-needed bits in all the rcu_node
997 * structures for all currently online CPUs in breadth-first
998 * order, starting from the root rcu_node structure. This
999 * operation relies on the layout of the hierarchy within the
1000 * rsp->node[] array. Note that other CPUs will access only
1001 * the leaves of the hierarchy, which still indicate that no
1002 * grace period is in progress, at least until the corresponding
1003 * leaf node has been initialized. In addition, we have excluded
1004 * CPU-hotplug operations.
1005 *
1006 * Note that the grace period cannot complete until we finish
1007 * the initialization process, as there will be at least one
1008 * qsmask bit set in the root node until that time, namely the
1009 * one corresponding to this CPU, due to the fact that we have
1010 * irqs disabled.
1011 */
1012 rcu_for_each_node_breadth_first(rsp, rnp) {
1013 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1014 rcu_preempt_check_blocked_tasks(rnp);
1015 rnp->qsmask = rnp->qsmaskinit;
1016 rnp->gpnum = rsp->gpnum;
1017 rnp->completed = rsp->completed;
1018 if (rnp == rdp->mynode)
1019 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1020 rcu_preempt_boost_start_gp(rnp);
1021 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1022 rnp->level, rnp->grplo,
1023 rnp->grphi, rnp->qsmask);
1024 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1025 }
1026
1027 rnp = rcu_get_root(rsp);
1028 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1029 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1030 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1031 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1032 }
1033
1034 /*
1035 * Report a full set of quiescent states to the specified rcu_state
1036 * data structure. This involves cleaning up after the prior grace
1037 * period and letting rcu_start_gp() start up the next grace period
1038 * if one is needed. Note that the caller must hold rnp->lock, as
1039 * required by rcu_start_gp(), which will release it.
1040 */
1041 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1042 __releases(rcu_get_root(rsp)->lock)
1043 {
1044 unsigned long gp_duration;
1045 struct rcu_node *rnp = rcu_get_root(rsp);
1046 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1047
1048 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1049
1050 /*
1051 * Ensure that all grace-period and pre-grace-period activity
1052 * is seen before the assignment to rsp->completed.
1053 */
1054 smp_mb(); /* See above block comment. */
1055 gp_duration = jiffies - rsp->gp_start;
1056 if (gp_duration > rsp->gp_max)
1057 rsp->gp_max = gp_duration;
1058
1059 /*
1060 * We know the grace period is complete, but to everyone else
1061 * it appears to still be ongoing. But it is also the case
1062 * that to everyone else it looks like there is nothing that
1063 * they can do to advance the grace period. It is therefore
1064 * safe for us to drop the lock in order to mark the grace
1065 * period as completed in all of the rcu_node structures.
1066 *
1067 * But if this CPU needs another grace period, it will take
1068 * care of this while initializing the next grace period.
1069 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1070 * because the callbacks have not yet been advanced: Those
1071 * callbacks are waiting on the grace period that just now
1072 * completed.
1073 */
1074 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1075 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1076
1077 /*
1078 * Propagate new ->completed value to rcu_node structures
1079 * so that other CPUs don't have to wait until the start
1080 * of the next grace period to process their callbacks.
1081 */
1082 rcu_for_each_node_breadth_first(rsp, rnp) {
1083 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1084 rnp->completed = rsp->gpnum;
1085 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1086 }
1087 rnp = rcu_get_root(rsp);
1088 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1089 }
1090
1091 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1092 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1093 rsp->fqs_state = RCU_GP_IDLE;
1094 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1095 }
1096
1097 /*
1098 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1099 * Allows quiescent states for a group of CPUs to be reported at one go
1100 * to the specified rcu_node structure, though all the CPUs in the group
1101 * must be represented by the same rcu_node structure (which need not be
1102 * a leaf rcu_node structure, though it often will be). That structure's
1103 * lock must be held upon entry, and it is released before return.
1104 */
1105 static void
1106 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1107 struct rcu_node *rnp, unsigned long flags)
1108 __releases(rnp->lock)
1109 {
1110 struct rcu_node *rnp_c;
1111
1112 /* Walk up the rcu_node hierarchy. */
1113 for (;;) {
1114 if (!(rnp->qsmask & mask)) {
1115
1116 /* Our bit has already been cleared, so done. */
1117 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1118 return;
1119 }
1120 rnp->qsmask &= ~mask;
1121 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1122 mask, rnp->qsmask, rnp->level,
1123 rnp->grplo, rnp->grphi,
1124 !!rnp->gp_tasks);
1125 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1126
1127 /* Other bits still set at this level, so done. */
1128 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1129 return;
1130 }
1131 mask = rnp->grpmask;
1132 if (rnp->parent == NULL) {
1133
1134 /* No more levels. Exit loop holding root lock. */
1135
1136 break;
1137 }
1138 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1139 rnp_c = rnp;
1140 rnp = rnp->parent;
1141 raw_spin_lock_irqsave(&rnp->lock, flags);
1142 WARN_ON_ONCE(rnp_c->qsmask);
1143 }
1144
1145 /*
1146 * Get here if we are the last CPU to pass through a quiescent
1147 * state for this grace period. Invoke rcu_report_qs_rsp()
1148 * to clean up and start the next grace period if one is needed.
1149 */
1150 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1151 }
1152
1153 /*
1154 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1155 * structure. This must be either called from the specified CPU, or
1156 * called when the specified CPU is known to be offline (and when it is
1157 * also known that no other CPU is concurrently trying to help the offline
1158 * CPU). The lastcomp argument is used to make sure we are still in the
1159 * grace period of interest. We don't want to end the current grace period
1160 * based on quiescent states detected in an earlier grace period!
1161 */
1162 static void
1163 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1164 {
1165 unsigned long flags;
1166 unsigned long mask;
1167 struct rcu_node *rnp;
1168
1169 rnp = rdp->mynode;
1170 raw_spin_lock_irqsave(&rnp->lock, flags);
1171 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1172
1173 /*
1174 * The grace period in which this quiescent state was
1175 * recorded has ended, so don't report it upwards.
1176 * We will instead need a new quiescent state that lies
1177 * within the current grace period.
1178 */
1179 rdp->passed_quiesce = 0; /* need qs for new gp. */
1180 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1181 return;
1182 }
1183 mask = rdp->grpmask;
1184 if ((rnp->qsmask & mask) == 0) {
1185 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1186 } else {
1187 rdp->qs_pending = 0;
1188
1189 /*
1190 * This GP can't end until cpu checks in, so all of our
1191 * callbacks can be processed during the next GP.
1192 */
1193 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1194
1195 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1196 }
1197 }
1198
1199 /*
1200 * Check to see if there is a new grace period of which this CPU
1201 * is not yet aware, and if so, set up local rcu_data state for it.
1202 * Otherwise, see if this CPU has just passed through its first
1203 * quiescent state for this grace period, and record that fact if so.
1204 */
1205 static void
1206 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1207 {
1208 /* If there is now a new grace period, record and return. */
1209 if (check_for_new_grace_period(rsp, rdp))
1210 return;
1211
1212 /*
1213 * Does this CPU still need to do its part for current grace period?
1214 * If no, return and let the other CPUs do their part as well.
1215 */
1216 if (!rdp->qs_pending)
1217 return;
1218
1219 /*
1220 * Was there a quiescent state since the beginning of the grace
1221 * period? If no, then exit and wait for the next call.
1222 */
1223 if (!rdp->passed_quiesce)
1224 return;
1225
1226 /*
1227 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1228 * judge of that).
1229 */
1230 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1231 }
1232
1233 #ifdef CONFIG_HOTPLUG_CPU
1234
1235 /*
1236 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1237 * Also record a quiescent state for this CPU for the current grace period.
1238 * Synchronization and interrupt disabling are not required because
1239 * this function executes in stop_machine() context. Therefore, cleanup
1240 * operations that might block must be done later from the CPU_DEAD
1241 * notifier.
1242 *
1243 * Note that the outgoing CPU's bit has already been cleared in the
1244 * cpu_online_mask. This allows us to randomly pick a callback
1245 * destination from the bits set in that mask.
1246 */
1247 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1248 {
1249 unsigned long flags;
1250 int i;
1251 unsigned long mask;
1252 int need_report;
1253 int receive_cpu = cpumask_any(cpu_online_mask);
1254 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1255 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1256 struct rcu_node *rnp = rdp->mynode; /* For dying CPU. */
1257
1258 /* First, adjust the counts. */
1259 if (rdp->nxtlist != NULL) {
1260 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1261 receive_rdp->qlen += rdp->qlen;
1262 rdp->qlen_lazy = 0;
1263 rdp->qlen = 0;
1264 }
1265
1266 /*
1267 * Next, move ready-to-invoke callbacks to be invoked on some
1268 * other CPU. These will not be required to pass through another
1269 * grace period: They are done, regardless of CPU.
1270 */
1271 if (rdp->nxtlist != NULL &&
1272 rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
1273 struct rcu_head *oldhead;
1274 struct rcu_head **oldtail;
1275 struct rcu_head **newtail;
1276
1277 oldhead = rdp->nxtlist;
1278 oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
1279 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1280 *rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
1281 *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
1282 newtail = rdp->nxttail[RCU_DONE_TAIL];
1283 for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
1284 if (receive_rdp->nxttail[i] == oldtail)
1285 receive_rdp->nxttail[i] = newtail;
1286 if (rdp->nxttail[i] == newtail)
1287 rdp->nxttail[i] = &rdp->nxtlist;
1288 }
1289 }
1290
1291 /*
1292 * Finally, put the rest of the callbacks at the end of the list.
1293 * The ones that made it partway through get to start over: We
1294 * cannot assume that grace periods are synchronized across CPUs.
1295 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1296 * this does not seem compelling. Not yet, anyway.)
1297 */
1298 if (rdp->nxtlist != NULL) {
1299 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1300 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1301 rdp->nxttail[RCU_NEXT_TAIL];
1302 receive_rdp->n_cbs_adopted += rdp->qlen;
1303 rdp->n_cbs_orphaned += rdp->qlen;
1304
1305 rdp->nxtlist = NULL;
1306 for (i = 0; i < RCU_NEXT_SIZE; i++)
1307 rdp->nxttail[i] = &rdp->nxtlist;
1308 }
1309
1310 /*
1311 * Record a quiescent state for the dying CPU. This is safe
1312 * only because we have already cleared out the callbacks.
1313 * (Otherwise, the RCU core might try to schedule the invocation
1314 * of callbacks on this now-offline CPU, which would be bad.)
1315 */
1316 mask = rdp->grpmask; /* rnp->grplo is constant. */
1317 trace_rcu_grace_period(rsp->name,
1318 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1319 "cpuofl");
1320 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1321 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1322
1323 /*
1324 * Remove the dying CPU from the bitmasks in the rcu_node
1325 * hierarchy. Because we are in stop_machine() context, we
1326 * automatically exclude ->onofflock critical sections.
1327 */
1328 do {
1329 raw_spin_lock_irqsave(&rnp->lock, flags);
1330 rnp->qsmaskinit &= ~mask;
1331 if (rnp->qsmaskinit != 0) {
1332 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1333 break;
1334 }
1335 if (rnp == rdp->mynode) {
1336 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1337 if (need_report & RCU_OFL_TASKS_NORM_GP)
1338 rcu_report_unblock_qs_rnp(rnp, flags);
1339 else
1340 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1341 if (need_report & RCU_OFL_TASKS_EXP_GP)
1342 rcu_report_exp_rnp(rsp, rnp, true);
1343 } else
1344 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1345 mask = rnp->grpmask;
1346 rnp = rnp->parent;
1347 } while (rnp != NULL);
1348 }
1349
1350 /*
1351 * The CPU has been completely removed, and some other CPU is reporting
1352 * this fact from process context. Do the remainder of the cleanup.
1353 * There can only be one CPU hotplug operation at a time, so no other
1354 * CPU can be attempting to update rcu_cpu_kthread_task.
1355 */
1356 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1357 {
1358 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1359 struct rcu_node *rnp = rdp->mynode;
1360
1361 rcu_stop_cpu_kthread(cpu);
1362 rcu_node_kthread_setaffinity(rnp, -1);
1363 }
1364
1365 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1366
1367 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1368 {
1369 }
1370
1371 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1372 {
1373 }
1374
1375 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1376
1377 /*
1378 * Invoke any RCU callbacks that have made it to the end of their grace
1379 * period. Thottle as specified by rdp->blimit.
1380 */
1381 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1382 {
1383 unsigned long flags;
1384 struct rcu_head *next, *list, **tail;
1385 int bl, count, count_lazy;
1386
1387 /* If no callbacks are ready, just return.*/
1388 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1389 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1390 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1391 need_resched(), is_idle_task(current),
1392 rcu_is_callbacks_kthread());
1393 return;
1394 }
1395
1396 /*
1397 * Extract the list of ready callbacks, disabling to prevent
1398 * races with call_rcu() from interrupt handlers.
1399 */
1400 local_irq_save(flags);
1401 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1402 bl = rdp->blimit;
1403 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1404 list = rdp->nxtlist;
1405 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1406 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1407 tail = rdp->nxttail[RCU_DONE_TAIL];
1408 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1409 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1410 rdp->nxttail[count] = &rdp->nxtlist;
1411 local_irq_restore(flags);
1412
1413 /* Invoke callbacks. */
1414 count = count_lazy = 0;
1415 while (list) {
1416 next = list->next;
1417 prefetch(next);
1418 debug_rcu_head_unqueue(list);
1419 if (__rcu_reclaim(rsp->name, list))
1420 count_lazy++;
1421 list = next;
1422 /* Stop only if limit reached and CPU has something to do. */
1423 if (++count >= bl &&
1424 (need_resched() ||
1425 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1426 break;
1427 }
1428
1429 local_irq_save(flags);
1430 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1431 is_idle_task(current),
1432 rcu_is_callbacks_kthread());
1433
1434 /* Update count, and requeue any remaining callbacks. */
1435 rdp->qlen_lazy -= count_lazy;
1436 rdp->qlen -= count;
1437 rdp->n_cbs_invoked += count;
1438 if (list != NULL) {
1439 *tail = rdp->nxtlist;
1440 rdp->nxtlist = list;
1441 for (count = 0; count < RCU_NEXT_SIZE; count++)
1442 if (&rdp->nxtlist == rdp->nxttail[count])
1443 rdp->nxttail[count] = tail;
1444 else
1445 break;
1446 }
1447
1448 /* Reinstate batch limit if we have worked down the excess. */
1449 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1450 rdp->blimit = blimit;
1451
1452 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1453 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1454 rdp->qlen_last_fqs_check = 0;
1455 rdp->n_force_qs_snap = rsp->n_force_qs;
1456 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1457 rdp->qlen_last_fqs_check = rdp->qlen;
1458
1459 local_irq_restore(flags);
1460
1461 /* Re-invoke RCU core processing if there are callbacks remaining. */
1462 if (cpu_has_callbacks_ready_to_invoke(rdp))
1463 invoke_rcu_core();
1464 }
1465
1466 /*
1467 * Check to see if this CPU is in a non-context-switch quiescent state
1468 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1469 * Also schedule RCU core processing.
1470 *
1471 * This function must be called from hardirq context. It is normally
1472 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1473 * false, there is no point in invoking rcu_check_callbacks().
1474 */
1475 void rcu_check_callbacks(int cpu, int user)
1476 {
1477 trace_rcu_utilization("Start scheduler-tick");
1478 if (user || rcu_is_cpu_rrupt_from_idle()) {
1479
1480 /*
1481 * Get here if this CPU took its interrupt from user
1482 * mode or from the idle loop, and if this is not a
1483 * nested interrupt. In this case, the CPU is in
1484 * a quiescent state, so note it.
1485 *
1486 * No memory barrier is required here because both
1487 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1488 * variables that other CPUs neither access nor modify,
1489 * at least not while the corresponding CPU is online.
1490 */
1491
1492 rcu_sched_qs(cpu);
1493 rcu_bh_qs(cpu);
1494
1495 } else if (!in_softirq()) {
1496
1497 /*
1498 * Get here if this CPU did not take its interrupt from
1499 * softirq, in other words, if it is not interrupting
1500 * a rcu_bh read-side critical section. This is an _bh
1501 * critical section, so note it.
1502 */
1503
1504 rcu_bh_qs(cpu);
1505 }
1506 rcu_preempt_check_callbacks(cpu);
1507 if (rcu_pending(cpu))
1508 invoke_rcu_core();
1509 trace_rcu_utilization("End scheduler-tick");
1510 }
1511
1512 /*
1513 * Scan the leaf rcu_node structures, processing dyntick state for any that
1514 * have not yet encountered a quiescent state, using the function specified.
1515 * Also initiate boosting for any threads blocked on the root rcu_node.
1516 *
1517 * The caller must have suppressed start of new grace periods.
1518 */
1519 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1520 {
1521 unsigned long bit;
1522 int cpu;
1523 unsigned long flags;
1524 unsigned long mask;
1525 struct rcu_node *rnp;
1526
1527 rcu_for_each_leaf_node(rsp, rnp) {
1528 mask = 0;
1529 raw_spin_lock_irqsave(&rnp->lock, flags);
1530 if (!rcu_gp_in_progress(rsp)) {
1531 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1532 return;
1533 }
1534 if (rnp->qsmask == 0) {
1535 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1536 continue;
1537 }
1538 cpu = rnp->grplo;
1539 bit = 1;
1540 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1541 if ((rnp->qsmask & bit) != 0 &&
1542 f(per_cpu_ptr(rsp->rda, cpu)))
1543 mask |= bit;
1544 }
1545 if (mask != 0) {
1546
1547 /* rcu_report_qs_rnp() releases rnp->lock. */
1548 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1549 continue;
1550 }
1551 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1552 }
1553 rnp = rcu_get_root(rsp);
1554 if (rnp->qsmask == 0) {
1555 raw_spin_lock_irqsave(&rnp->lock, flags);
1556 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1557 }
1558 }
1559
1560 /*
1561 * Force quiescent states on reluctant CPUs, and also detect which
1562 * CPUs are in dyntick-idle mode.
1563 */
1564 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1565 {
1566 unsigned long flags;
1567 struct rcu_node *rnp = rcu_get_root(rsp);
1568
1569 trace_rcu_utilization("Start fqs");
1570 if (!rcu_gp_in_progress(rsp)) {
1571 trace_rcu_utilization("End fqs");
1572 return; /* No grace period in progress, nothing to force. */
1573 }
1574 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1575 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1576 trace_rcu_utilization("End fqs");
1577 return; /* Someone else is already on the job. */
1578 }
1579 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1580 goto unlock_fqs_ret; /* no emergency and done recently. */
1581 rsp->n_force_qs++;
1582 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1583 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1584 if(!rcu_gp_in_progress(rsp)) {
1585 rsp->n_force_qs_ngp++;
1586 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1587 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1588 }
1589 rsp->fqs_active = 1;
1590 switch (rsp->fqs_state) {
1591 case RCU_GP_IDLE:
1592 case RCU_GP_INIT:
1593
1594 break; /* grace period idle or initializing, ignore. */
1595
1596 case RCU_SAVE_DYNTICK:
1597 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1598 break; /* So gcc recognizes the dead code. */
1599
1600 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1601
1602 /* Record dyntick-idle state. */
1603 force_qs_rnp(rsp, dyntick_save_progress_counter);
1604 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1605 if (rcu_gp_in_progress(rsp))
1606 rsp->fqs_state = RCU_FORCE_QS;
1607 break;
1608
1609 case RCU_FORCE_QS:
1610
1611 /* Check dyntick-idle state, send IPI to laggarts. */
1612 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1613 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1614
1615 /* Leave state in case more forcing is required. */
1616
1617 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1618 break;
1619 }
1620 rsp->fqs_active = 0;
1621 if (rsp->fqs_need_gp) {
1622 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1623 rsp->fqs_need_gp = 0;
1624 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1625 trace_rcu_utilization("End fqs");
1626 return;
1627 }
1628 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1629 unlock_fqs_ret:
1630 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1631 trace_rcu_utilization("End fqs");
1632 }
1633
1634 /*
1635 * This does the RCU core processing work for the specified rcu_state
1636 * and rcu_data structures. This may be called only from the CPU to
1637 * whom the rdp belongs.
1638 */
1639 static void
1640 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1641 {
1642 unsigned long flags;
1643
1644 WARN_ON_ONCE(rdp->beenonline == 0);
1645
1646 /*
1647 * If an RCU GP has gone long enough, go check for dyntick
1648 * idle CPUs and, if needed, send resched IPIs.
1649 */
1650 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1651 force_quiescent_state(rsp, 1);
1652
1653 /*
1654 * Advance callbacks in response to end of earlier grace
1655 * period that some other CPU ended.
1656 */
1657 rcu_process_gp_end(rsp, rdp);
1658
1659 /* Update RCU state based on any recent quiescent states. */
1660 rcu_check_quiescent_state(rsp, rdp);
1661
1662 /* Does this CPU require a not-yet-started grace period? */
1663 if (cpu_needs_another_gp(rsp, rdp)) {
1664 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1665 rcu_start_gp(rsp, flags); /* releases above lock */
1666 }
1667
1668 /* If there are callbacks ready, invoke them. */
1669 if (cpu_has_callbacks_ready_to_invoke(rdp))
1670 invoke_rcu_callbacks(rsp, rdp);
1671 }
1672
1673 /*
1674 * Do RCU core processing for the current CPU.
1675 */
1676 static void rcu_process_callbacks(struct softirq_action *unused)
1677 {
1678 trace_rcu_utilization("Start RCU core");
1679 __rcu_process_callbacks(&rcu_sched_state,
1680 &__get_cpu_var(rcu_sched_data));
1681 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1682 rcu_preempt_process_callbacks();
1683 trace_rcu_utilization("End RCU core");
1684 }
1685
1686 /*
1687 * Schedule RCU callback invocation. If the specified type of RCU
1688 * does not support RCU priority boosting, just do a direct call,
1689 * otherwise wake up the per-CPU kernel kthread. Note that because we
1690 * are running on the current CPU with interrupts disabled, the
1691 * rcu_cpu_kthread_task cannot disappear out from under us.
1692 */
1693 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1694 {
1695 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1696 return;
1697 if (likely(!rsp->boost)) {
1698 rcu_do_batch(rsp, rdp);
1699 return;
1700 }
1701 invoke_rcu_callbacks_kthread();
1702 }
1703
1704 static void invoke_rcu_core(void)
1705 {
1706 raise_softirq(RCU_SOFTIRQ);
1707 }
1708
1709 static void
1710 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1711 struct rcu_state *rsp, bool lazy)
1712 {
1713 unsigned long flags;
1714 struct rcu_data *rdp;
1715
1716 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1717 debug_rcu_head_queue(head);
1718 head->func = func;
1719 head->next = NULL;
1720
1721 smp_mb(); /* Ensure RCU update seen before callback registry. */
1722
1723 /*
1724 * Opportunistically note grace-period endings and beginnings.
1725 * Note that we might see a beginning right after we see an
1726 * end, but never vice versa, since this CPU has to pass through
1727 * a quiescent state betweentimes.
1728 */
1729 local_irq_save(flags);
1730 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1731 rdp = this_cpu_ptr(rsp->rda);
1732
1733 /* Add the callback to our list. */
1734 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1735 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1736 rdp->qlen++;
1737 if (lazy)
1738 rdp->qlen_lazy++;
1739
1740 if (__is_kfree_rcu_offset((unsigned long)func))
1741 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1742 rdp->qlen_lazy, rdp->qlen);
1743 else
1744 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1745
1746 /* If interrupts were disabled, don't dive into RCU core. */
1747 if (irqs_disabled_flags(flags)) {
1748 local_irq_restore(flags);
1749 return;
1750 }
1751
1752 /*
1753 * Force the grace period if too many callbacks or too long waiting.
1754 * Enforce hysteresis, and don't invoke force_quiescent_state()
1755 * if some other CPU has recently done so. Also, don't bother
1756 * invoking force_quiescent_state() if the newly enqueued callback
1757 * is the only one waiting for a grace period to complete.
1758 */
1759 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1760
1761 /* Are we ignoring a completed grace period? */
1762 rcu_process_gp_end(rsp, rdp);
1763 check_for_new_grace_period(rsp, rdp);
1764
1765 /* Start a new grace period if one not already started. */
1766 if (!rcu_gp_in_progress(rsp)) {
1767 unsigned long nestflag;
1768 struct rcu_node *rnp_root = rcu_get_root(rsp);
1769
1770 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1771 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1772 } else {
1773 /* Give the grace period a kick. */
1774 rdp->blimit = LONG_MAX;
1775 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1776 *rdp->nxttail[RCU_DONE_TAIL] != head)
1777 force_quiescent_state(rsp, 0);
1778 rdp->n_force_qs_snap = rsp->n_force_qs;
1779 rdp->qlen_last_fqs_check = rdp->qlen;
1780 }
1781 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1782 force_quiescent_state(rsp, 1);
1783 local_irq_restore(flags);
1784 }
1785
1786 /*
1787 * Queue an RCU-sched callback for invocation after a grace period.
1788 */
1789 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1790 {
1791 __call_rcu(head, func, &rcu_sched_state, 0);
1792 }
1793 EXPORT_SYMBOL_GPL(call_rcu_sched);
1794
1795 /*
1796 * Queue an RCU callback for invocation after a quicker grace period.
1797 */
1798 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1799 {
1800 __call_rcu(head, func, &rcu_bh_state, 0);
1801 }
1802 EXPORT_SYMBOL_GPL(call_rcu_bh);
1803
1804 /**
1805 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1806 *
1807 * Control will return to the caller some time after a full rcu-sched
1808 * grace period has elapsed, in other words after all currently executing
1809 * rcu-sched read-side critical sections have completed. These read-side
1810 * critical sections are delimited by rcu_read_lock_sched() and
1811 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1812 * local_irq_disable(), and so on may be used in place of
1813 * rcu_read_lock_sched().
1814 *
1815 * This means that all preempt_disable code sequences, including NMI and
1816 * hardware-interrupt handlers, in progress on entry will have completed
1817 * before this primitive returns. However, this does not guarantee that
1818 * softirq handlers will have completed, since in some kernels, these
1819 * handlers can run in process context, and can block.
1820 *
1821 * This primitive provides the guarantees made by the (now removed)
1822 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1823 * guarantees that rcu_read_lock() sections will have completed.
1824 * In "classic RCU", these two guarantees happen to be one and
1825 * the same, but can differ in realtime RCU implementations.
1826 */
1827 void synchronize_sched(void)
1828 {
1829 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1830 !lock_is_held(&rcu_lock_map) &&
1831 !lock_is_held(&rcu_sched_lock_map),
1832 "Illegal synchronize_sched() in RCU-sched read-side critical section");
1833 if (rcu_blocking_is_gp())
1834 return;
1835 wait_rcu_gp(call_rcu_sched);
1836 }
1837 EXPORT_SYMBOL_GPL(synchronize_sched);
1838
1839 /**
1840 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1841 *
1842 * Control will return to the caller some time after a full rcu_bh grace
1843 * period has elapsed, in other words after all currently executing rcu_bh
1844 * read-side critical sections have completed. RCU read-side critical
1845 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1846 * and may be nested.
1847 */
1848 void synchronize_rcu_bh(void)
1849 {
1850 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1851 !lock_is_held(&rcu_lock_map) &&
1852 !lock_is_held(&rcu_sched_lock_map),
1853 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1854 if (rcu_blocking_is_gp())
1855 return;
1856 wait_rcu_gp(call_rcu_bh);
1857 }
1858 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1859
1860 /*
1861 * Check to see if there is any immediate RCU-related work to be done
1862 * by the current CPU, for the specified type of RCU, returning 1 if so.
1863 * The checks are in order of increasing expense: checks that can be
1864 * carried out against CPU-local state are performed first. However,
1865 * we must check for CPU stalls first, else we might not get a chance.
1866 */
1867 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1868 {
1869 struct rcu_node *rnp = rdp->mynode;
1870
1871 rdp->n_rcu_pending++;
1872
1873 /* Check for CPU stalls, if enabled. */
1874 check_cpu_stall(rsp, rdp);
1875
1876 /* Is the RCU core waiting for a quiescent state from this CPU? */
1877 if (rcu_scheduler_fully_active &&
1878 rdp->qs_pending && !rdp->passed_quiesce) {
1879
1880 /*
1881 * If force_quiescent_state() coming soon and this CPU
1882 * needs a quiescent state, and this is either RCU-sched
1883 * or RCU-bh, force a local reschedule.
1884 */
1885 rdp->n_rp_qs_pending++;
1886 if (!rdp->preemptible &&
1887 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1888 jiffies))
1889 set_need_resched();
1890 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1891 rdp->n_rp_report_qs++;
1892 return 1;
1893 }
1894
1895 /* Does this CPU have callbacks ready to invoke? */
1896 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1897 rdp->n_rp_cb_ready++;
1898 return 1;
1899 }
1900
1901 /* Has RCU gone idle with this CPU needing another grace period? */
1902 if (cpu_needs_another_gp(rsp, rdp)) {
1903 rdp->n_rp_cpu_needs_gp++;
1904 return 1;
1905 }
1906
1907 /* Has another RCU grace period completed? */
1908 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1909 rdp->n_rp_gp_completed++;
1910 return 1;
1911 }
1912
1913 /* Has a new RCU grace period started? */
1914 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1915 rdp->n_rp_gp_started++;
1916 return 1;
1917 }
1918
1919 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1920 if (rcu_gp_in_progress(rsp) &&
1921 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1922 rdp->n_rp_need_fqs++;
1923 return 1;
1924 }
1925
1926 /* nothing to do */
1927 rdp->n_rp_need_nothing++;
1928 return 0;
1929 }
1930
1931 /*
1932 * Check to see if there is any immediate RCU-related work to be done
1933 * by the current CPU, returning 1 if so. This function is part of the
1934 * RCU implementation; it is -not- an exported member of the RCU API.
1935 */
1936 static int rcu_pending(int cpu)
1937 {
1938 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1939 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1940 rcu_preempt_pending(cpu);
1941 }
1942
1943 /*
1944 * Check to see if any future RCU-related work will need to be done
1945 * by the current CPU, even if none need be done immediately, returning
1946 * 1 if so.
1947 */
1948 static int rcu_cpu_has_callbacks(int cpu)
1949 {
1950 /* RCU callbacks either ready or pending? */
1951 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1952 per_cpu(rcu_bh_data, cpu).nxtlist ||
1953 rcu_preempt_cpu_has_callbacks(cpu);
1954 }
1955
1956 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1957 static atomic_t rcu_barrier_cpu_count;
1958 static DEFINE_MUTEX(rcu_barrier_mutex);
1959 static struct completion rcu_barrier_completion;
1960
1961 static void rcu_barrier_callback(struct rcu_head *notused)
1962 {
1963 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1964 complete(&rcu_barrier_completion);
1965 }
1966
1967 /*
1968 * Called with preemption disabled, and from cross-cpu IRQ context.
1969 */
1970 static void rcu_barrier_func(void *type)
1971 {
1972 int cpu = smp_processor_id();
1973 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1974 void (*call_rcu_func)(struct rcu_head *head,
1975 void (*func)(struct rcu_head *head));
1976
1977 atomic_inc(&rcu_barrier_cpu_count);
1978 call_rcu_func = type;
1979 call_rcu_func(head, rcu_barrier_callback);
1980 }
1981
1982 /*
1983 * Orchestrate the specified type of RCU barrier, waiting for all
1984 * RCU callbacks of the specified type to complete.
1985 */
1986 static void _rcu_barrier(struct rcu_state *rsp,
1987 void (*call_rcu_func)(struct rcu_head *head,
1988 void (*func)(struct rcu_head *head)))
1989 {
1990 BUG_ON(in_interrupt());
1991 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1992 mutex_lock(&rcu_barrier_mutex);
1993 init_completion(&rcu_barrier_completion);
1994 /*
1995 * Initialize rcu_barrier_cpu_count to 1, then invoke
1996 * rcu_barrier_func() on each CPU, so that each CPU also has
1997 * incremented rcu_barrier_cpu_count. Only then is it safe to
1998 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1999 * might complete its grace period before all of the other CPUs
2000 * did their increment, causing this function to return too
2001 * early. Note that on_each_cpu() disables irqs, which prevents
2002 * any CPUs from coming online or going offline until each online
2003 * CPU has queued its RCU-barrier callback.
2004 */
2005 atomic_set(&rcu_barrier_cpu_count, 1);
2006 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2007 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2008 complete(&rcu_barrier_completion);
2009 wait_for_completion(&rcu_barrier_completion);
2010 mutex_unlock(&rcu_barrier_mutex);
2011 }
2012
2013 /**
2014 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2015 */
2016 void rcu_barrier_bh(void)
2017 {
2018 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2019 }
2020 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2021
2022 /**
2023 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2024 */
2025 void rcu_barrier_sched(void)
2026 {
2027 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2028 }
2029 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2030
2031 /*
2032 * Do boot-time initialization of a CPU's per-CPU RCU data.
2033 */
2034 static void __init
2035 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2036 {
2037 unsigned long flags;
2038 int i;
2039 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2040 struct rcu_node *rnp = rcu_get_root(rsp);
2041
2042 /* Set up local state, ensuring consistent view of global state. */
2043 raw_spin_lock_irqsave(&rnp->lock, flags);
2044 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2045 rdp->nxtlist = NULL;
2046 for (i = 0; i < RCU_NEXT_SIZE; i++)
2047 rdp->nxttail[i] = &rdp->nxtlist;
2048 rdp->qlen_lazy = 0;
2049 rdp->qlen = 0;
2050 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2051 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
2052 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2053 rdp->cpu = cpu;
2054 rdp->rsp = rsp;
2055 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2056 }
2057
2058 /*
2059 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2060 * offline event can be happening at a given time. Note also that we
2061 * can accept some slop in the rsp->completed access due to the fact
2062 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2063 */
2064 static void __cpuinit
2065 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2066 {
2067 unsigned long flags;
2068 unsigned long mask;
2069 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2070 struct rcu_node *rnp = rcu_get_root(rsp);
2071
2072 /* Set up local state, ensuring consistent view of global state. */
2073 raw_spin_lock_irqsave(&rnp->lock, flags);
2074 rdp->beenonline = 1; /* We have now been online. */
2075 rdp->preemptible = preemptible;
2076 rdp->qlen_last_fqs_check = 0;
2077 rdp->n_force_qs_snap = rsp->n_force_qs;
2078 rdp->blimit = blimit;
2079 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2080 atomic_set(&rdp->dynticks->dynticks,
2081 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2082 rcu_prepare_for_idle_init(cpu);
2083 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2084
2085 /*
2086 * A new grace period might start here. If so, we won't be part
2087 * of it, but that is OK, as we are currently in a quiescent state.
2088 */
2089
2090 /* Exclude any attempts to start a new GP on large systems. */
2091 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2092
2093 /* Add CPU to rcu_node bitmasks. */
2094 rnp = rdp->mynode;
2095 mask = rdp->grpmask;
2096 do {
2097 /* Exclude any attempts to start a new GP on small systems. */
2098 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2099 rnp->qsmaskinit |= mask;
2100 mask = rnp->grpmask;
2101 if (rnp == rdp->mynode) {
2102 /*
2103 * If there is a grace period in progress, we will
2104 * set up to wait for it next time we run the
2105 * RCU core code.
2106 */
2107 rdp->gpnum = rnp->completed;
2108 rdp->completed = rnp->completed;
2109 rdp->passed_quiesce = 0;
2110 rdp->qs_pending = 0;
2111 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2112 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2113 }
2114 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2115 rnp = rnp->parent;
2116 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2117
2118 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2119 }
2120
2121 static void __cpuinit rcu_prepare_cpu(int cpu)
2122 {
2123 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2124 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2125 rcu_preempt_init_percpu_data(cpu);
2126 }
2127
2128 /*
2129 * Handle CPU online/offline notification events.
2130 */
2131 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2132 unsigned long action, void *hcpu)
2133 {
2134 long cpu = (long)hcpu;
2135 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2136 struct rcu_node *rnp = rdp->mynode;
2137
2138 trace_rcu_utilization("Start CPU hotplug");
2139 switch (action) {
2140 case CPU_UP_PREPARE:
2141 case CPU_UP_PREPARE_FROZEN:
2142 rcu_prepare_cpu(cpu);
2143 rcu_prepare_kthreads(cpu);
2144 break;
2145 case CPU_ONLINE:
2146 case CPU_DOWN_FAILED:
2147 rcu_node_kthread_setaffinity(rnp, -1);
2148 rcu_cpu_kthread_setrt(cpu, 1);
2149 break;
2150 case CPU_DOWN_PREPARE:
2151 rcu_node_kthread_setaffinity(rnp, cpu);
2152 rcu_cpu_kthread_setrt(cpu, 0);
2153 break;
2154 case CPU_DYING:
2155 case CPU_DYING_FROZEN:
2156 /*
2157 * The whole machine is "stopped" except this CPU, so we can
2158 * touch any data without introducing corruption. We send the
2159 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2160 */
2161 rcu_cleanup_dying_cpu(&rcu_bh_state);
2162 rcu_cleanup_dying_cpu(&rcu_sched_state);
2163 rcu_preempt_cleanup_dying_cpu();
2164 rcu_cleanup_after_idle(cpu);
2165 break;
2166 case CPU_DEAD:
2167 case CPU_DEAD_FROZEN:
2168 case CPU_UP_CANCELED:
2169 case CPU_UP_CANCELED_FROZEN:
2170 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2171 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2172 rcu_preempt_cleanup_dead_cpu(cpu);
2173 break;
2174 default:
2175 break;
2176 }
2177 trace_rcu_utilization("End CPU hotplug");
2178 return NOTIFY_OK;
2179 }
2180
2181 /*
2182 * This function is invoked towards the end of the scheduler's initialization
2183 * process. Before this is called, the idle task might contain
2184 * RCU read-side critical sections (during which time, this idle
2185 * task is booting the system). After this function is called, the
2186 * idle tasks are prohibited from containing RCU read-side critical
2187 * sections. This function also enables RCU lockdep checking.
2188 */
2189 void rcu_scheduler_starting(void)
2190 {
2191 WARN_ON(num_online_cpus() != 1);
2192 WARN_ON(nr_context_switches() > 0);
2193 rcu_scheduler_active = 1;
2194 }
2195
2196 /*
2197 * Compute the per-level fanout, either using the exact fanout specified
2198 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2199 */
2200 #ifdef CONFIG_RCU_FANOUT_EXACT
2201 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2202 {
2203 int i;
2204
2205 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2206 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2207 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2208 }
2209 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2210 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2211 {
2212 int ccur;
2213 int cprv;
2214 int i;
2215
2216 cprv = NR_CPUS;
2217 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2218 ccur = rsp->levelcnt[i];
2219 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2220 cprv = ccur;
2221 }
2222 }
2223 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2224
2225 /*
2226 * Helper function for rcu_init() that initializes one rcu_state structure.
2227 */
2228 static void __init rcu_init_one(struct rcu_state *rsp,
2229 struct rcu_data __percpu *rda)
2230 {
2231 static char *buf[] = { "rcu_node_level_0",
2232 "rcu_node_level_1",
2233 "rcu_node_level_2",
2234 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2235 int cpustride = 1;
2236 int i;
2237 int j;
2238 struct rcu_node *rnp;
2239
2240 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2241
2242 /* Initialize the level-tracking arrays. */
2243
2244 for (i = 1; i < NUM_RCU_LVLS; i++)
2245 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2246 rcu_init_levelspread(rsp);
2247
2248 /* Initialize the elements themselves, starting from the leaves. */
2249
2250 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2251 cpustride *= rsp->levelspread[i];
2252 rnp = rsp->level[i];
2253 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2254 raw_spin_lock_init(&rnp->lock);
2255 lockdep_set_class_and_name(&rnp->lock,
2256 &rcu_node_class[i], buf[i]);
2257 rnp->gpnum = 0;
2258 rnp->qsmask = 0;
2259 rnp->qsmaskinit = 0;
2260 rnp->grplo = j * cpustride;
2261 rnp->grphi = (j + 1) * cpustride - 1;
2262 if (rnp->grphi >= NR_CPUS)
2263 rnp->grphi = NR_CPUS - 1;
2264 if (i == 0) {
2265 rnp->grpnum = 0;
2266 rnp->grpmask = 0;
2267 rnp->parent = NULL;
2268 } else {
2269 rnp->grpnum = j % rsp->levelspread[i - 1];
2270 rnp->grpmask = 1UL << rnp->grpnum;
2271 rnp->parent = rsp->level[i - 1] +
2272 j / rsp->levelspread[i - 1];
2273 }
2274 rnp->level = i;
2275 INIT_LIST_HEAD(&rnp->blkd_tasks);
2276 }
2277 }
2278
2279 rsp->rda = rda;
2280 rnp = rsp->level[NUM_RCU_LVLS - 1];
2281 for_each_possible_cpu(i) {
2282 while (i > rnp->grphi)
2283 rnp++;
2284 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2285 rcu_boot_init_percpu_data(i, rsp);
2286 }
2287 }
2288
2289 void __init rcu_init(void)
2290 {
2291 int cpu;
2292
2293 rcu_bootup_announce();
2294 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2295 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2296 __rcu_init_preempt();
2297 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2298
2299 /*
2300 * We don't need protection against CPU-hotplug here because
2301 * this is called early in boot, before either interrupts
2302 * or the scheduler are operational.
2303 */
2304 cpu_notifier(rcu_cpu_notify, 0);
2305 for_each_online_cpu(cpu)
2306 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2307 check_cpu_stall_init();
2308 }
2309
2310 #include "rcutree_plugin.h"
This page took 0.084721 seconds and 6 git commands to generate.