Merge branch 'rcu/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck...
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53
54 #include "rcutree.h"
55
56 /* Data structures. */
57
58 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
59
60 #define RCU_STATE_INITIALIZER(structname) { \
61 .level = { &structname.node[0] }, \
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
66 NUM_RCU_LVL_3, \
67 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_GP_IDLE, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
77 }
78
79 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81
82 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84
85 static struct rcu_state *rcu_state;
86
87 int rcu_scheduler_active __read_mostly;
88 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
89
90 /*
91 * Control variables for per-CPU and per-rcu_node kthreads. These
92 * handle all flavors of RCU.
93 */
94 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
95 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
96 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
97 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
98 static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
99 DEFINE_PER_CPU(char, rcu_cpu_has_work);
100 static char rcu_kthreads_spawnable;
101
102 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
103 static void invoke_rcu_cpu_kthread(void);
104
105 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
106
107 /*
108 * Track the rcutorture test sequence number and the update version
109 * number within a given test. The rcutorture_testseq is incremented
110 * on every rcutorture module load and unload, so has an odd value
111 * when a test is running. The rcutorture_vernum is set to zero
112 * when rcutorture starts and is incremented on each rcutorture update.
113 * These variables enable correlating rcutorture output with the
114 * RCU tracing information.
115 */
116 unsigned long rcutorture_testseq;
117 unsigned long rcutorture_vernum;
118
119 /*
120 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
121 * permit this function to be invoked without holding the root rcu_node
122 * structure's ->lock, but of course results can be subject to change.
123 */
124 static int rcu_gp_in_progress(struct rcu_state *rsp)
125 {
126 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
127 }
128
129 /*
130 * Note a quiescent state. Because we do not need to know
131 * how many quiescent states passed, just if there was at least
132 * one since the start of the grace period, this just sets a flag.
133 */
134 void rcu_sched_qs(int cpu)
135 {
136 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
137
138 rdp->passed_quiesc_completed = rdp->gpnum - 1;
139 barrier();
140 rdp->passed_quiesc = 1;
141 }
142
143 void rcu_bh_qs(int cpu)
144 {
145 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
146
147 rdp->passed_quiesc_completed = rdp->gpnum - 1;
148 barrier();
149 rdp->passed_quiesc = 1;
150 }
151
152 /*
153 * Note a context switch. This is a quiescent state for RCU-sched,
154 * and requires special handling for preemptible RCU.
155 */
156 void rcu_note_context_switch(int cpu)
157 {
158 rcu_sched_qs(cpu);
159 rcu_preempt_note_context_switch(cpu);
160 }
161 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
162
163 #ifdef CONFIG_NO_HZ
164 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
165 .dynticks_nesting = 1,
166 .dynticks = ATOMIC_INIT(1),
167 };
168 #endif /* #ifdef CONFIG_NO_HZ */
169
170 static int blimit = 10; /* Maximum callbacks per softirq. */
171 static int qhimark = 10000; /* If this many pending, ignore blimit. */
172 static int qlowmark = 100; /* Once only this many pending, use blimit. */
173
174 module_param(blimit, int, 0);
175 module_param(qhimark, int, 0);
176 module_param(qlowmark, int, 0);
177
178 int rcu_cpu_stall_suppress __read_mostly;
179 module_param(rcu_cpu_stall_suppress, int, 0644);
180
181 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
182 static int rcu_pending(int cpu);
183
184 /*
185 * Return the number of RCU-sched batches processed thus far for debug & stats.
186 */
187 long rcu_batches_completed_sched(void)
188 {
189 return rcu_sched_state.completed;
190 }
191 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
192
193 /*
194 * Return the number of RCU BH batches processed thus far for debug & stats.
195 */
196 long rcu_batches_completed_bh(void)
197 {
198 return rcu_bh_state.completed;
199 }
200 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
201
202 /*
203 * Force a quiescent state for RCU BH.
204 */
205 void rcu_bh_force_quiescent_state(void)
206 {
207 force_quiescent_state(&rcu_bh_state, 0);
208 }
209 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
210
211 /*
212 * Record the number of times rcutorture tests have been initiated and
213 * terminated. This information allows the debugfs tracing stats to be
214 * correlated to the rcutorture messages, even when the rcutorture module
215 * is being repeatedly loaded and unloaded. In other words, we cannot
216 * store this state in rcutorture itself.
217 */
218 void rcutorture_record_test_transition(void)
219 {
220 rcutorture_testseq++;
221 rcutorture_vernum = 0;
222 }
223 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
224
225 /*
226 * Record the number of writer passes through the current rcutorture test.
227 * This is also used to correlate debugfs tracing stats with the rcutorture
228 * messages.
229 */
230 void rcutorture_record_progress(unsigned long vernum)
231 {
232 rcutorture_vernum++;
233 }
234 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
235
236 /*
237 * Force a quiescent state for RCU-sched.
238 */
239 void rcu_sched_force_quiescent_state(void)
240 {
241 force_quiescent_state(&rcu_sched_state, 0);
242 }
243 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
244
245 /*
246 * Does the CPU have callbacks ready to be invoked?
247 */
248 static int
249 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
250 {
251 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
252 }
253
254 /*
255 * Does the current CPU require a yet-as-unscheduled grace period?
256 */
257 static int
258 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
259 {
260 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
261 }
262
263 /*
264 * Return the root node of the specified rcu_state structure.
265 */
266 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
267 {
268 return &rsp->node[0];
269 }
270
271 #ifdef CONFIG_SMP
272
273 /*
274 * If the specified CPU is offline, tell the caller that it is in
275 * a quiescent state. Otherwise, whack it with a reschedule IPI.
276 * Grace periods can end up waiting on an offline CPU when that
277 * CPU is in the process of coming online -- it will be added to the
278 * rcu_node bitmasks before it actually makes it online. The same thing
279 * can happen while a CPU is in the process of coming online. Because this
280 * race is quite rare, we check for it after detecting that the grace
281 * period has been delayed rather than checking each and every CPU
282 * each and every time we start a new grace period.
283 */
284 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
285 {
286 /*
287 * If the CPU is offline, it is in a quiescent state. We can
288 * trust its state not to change because interrupts are disabled.
289 */
290 if (cpu_is_offline(rdp->cpu)) {
291 rdp->offline_fqs++;
292 return 1;
293 }
294
295 /* If preemptible RCU, no point in sending reschedule IPI. */
296 if (rdp->preemptible)
297 return 0;
298
299 /* The CPU is online, so send it a reschedule IPI. */
300 if (rdp->cpu != smp_processor_id())
301 smp_send_reschedule(rdp->cpu);
302 else
303 set_need_resched();
304 rdp->resched_ipi++;
305 return 0;
306 }
307
308 #endif /* #ifdef CONFIG_SMP */
309
310 #ifdef CONFIG_NO_HZ
311
312 /**
313 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
314 *
315 * Enter nohz mode, in other words, -leave- the mode in which RCU
316 * read-side critical sections can occur. (Though RCU read-side
317 * critical sections can occur in irq handlers in nohz mode, a possibility
318 * handled by rcu_irq_enter() and rcu_irq_exit()).
319 */
320 void rcu_enter_nohz(void)
321 {
322 unsigned long flags;
323 struct rcu_dynticks *rdtp;
324
325 local_irq_save(flags);
326 rdtp = &__get_cpu_var(rcu_dynticks);
327 if (--rdtp->dynticks_nesting) {
328 local_irq_restore(flags);
329 return;
330 }
331 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
332 smp_mb__before_atomic_inc(); /* See above. */
333 atomic_inc(&rdtp->dynticks);
334 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
335 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
336 local_irq_restore(flags);
337
338 /* If the interrupt queued a callback, get out of dyntick mode. */
339 if (in_irq() &&
340 (__get_cpu_var(rcu_sched_data).nxtlist ||
341 __get_cpu_var(rcu_bh_data).nxtlist ||
342 rcu_preempt_needs_cpu(smp_processor_id())))
343 set_need_resched();
344 }
345
346 /*
347 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
348 *
349 * Exit nohz mode, in other words, -enter- the mode in which RCU
350 * read-side critical sections normally occur.
351 */
352 void rcu_exit_nohz(void)
353 {
354 unsigned long flags;
355 struct rcu_dynticks *rdtp;
356
357 local_irq_save(flags);
358 rdtp = &__get_cpu_var(rcu_dynticks);
359 if (rdtp->dynticks_nesting++) {
360 local_irq_restore(flags);
361 return;
362 }
363 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
364 atomic_inc(&rdtp->dynticks);
365 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
366 smp_mb__after_atomic_inc(); /* See above. */
367 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
368 local_irq_restore(flags);
369 }
370
371 /**
372 * rcu_nmi_enter - inform RCU of entry to NMI context
373 *
374 * If the CPU was idle with dynamic ticks active, and there is no
375 * irq handler running, this updates rdtp->dynticks_nmi to let the
376 * RCU grace-period handling know that the CPU is active.
377 */
378 void rcu_nmi_enter(void)
379 {
380 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
381
382 if (rdtp->dynticks_nmi_nesting == 0 &&
383 (atomic_read(&rdtp->dynticks) & 0x1))
384 return;
385 rdtp->dynticks_nmi_nesting++;
386 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
387 atomic_inc(&rdtp->dynticks);
388 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
389 smp_mb__after_atomic_inc(); /* See above. */
390 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
391 }
392
393 /**
394 * rcu_nmi_exit - inform RCU of exit from NMI context
395 *
396 * If the CPU was idle with dynamic ticks active, and there is no
397 * irq handler running, this updates rdtp->dynticks_nmi to let the
398 * RCU grace-period handling know that the CPU is no longer active.
399 */
400 void rcu_nmi_exit(void)
401 {
402 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
403
404 if (rdtp->dynticks_nmi_nesting == 0 ||
405 --rdtp->dynticks_nmi_nesting != 0)
406 return;
407 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
408 smp_mb__before_atomic_inc(); /* See above. */
409 atomic_inc(&rdtp->dynticks);
410 smp_mb__after_atomic_inc(); /* Force delay to next write. */
411 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
412 }
413
414 /**
415 * rcu_irq_enter - inform RCU of entry to hard irq context
416 *
417 * If the CPU was idle with dynamic ticks active, this updates the
418 * rdtp->dynticks to let the RCU handling know that the CPU is active.
419 */
420 void rcu_irq_enter(void)
421 {
422 rcu_exit_nohz();
423 }
424
425 /**
426 * rcu_irq_exit - inform RCU of exit from hard irq context
427 *
428 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
429 * to put let the RCU handling be aware that the CPU is going back to idle
430 * with no ticks.
431 */
432 void rcu_irq_exit(void)
433 {
434 rcu_enter_nohz();
435 }
436
437 #ifdef CONFIG_SMP
438
439 /*
440 * Snapshot the specified CPU's dynticks counter so that we can later
441 * credit them with an implicit quiescent state. Return 1 if this CPU
442 * is in dynticks idle mode, which is an extended quiescent state.
443 */
444 static int dyntick_save_progress_counter(struct rcu_data *rdp)
445 {
446 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
447 return 0;
448 }
449
450 /*
451 * Return true if the specified CPU has passed through a quiescent
452 * state by virtue of being in or having passed through an dynticks
453 * idle state since the last call to dyntick_save_progress_counter()
454 * for this same CPU.
455 */
456 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
457 {
458 unsigned long curr;
459 unsigned long snap;
460
461 curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
462 snap = (unsigned long)rdp->dynticks_snap;
463
464 /*
465 * If the CPU passed through or entered a dynticks idle phase with
466 * no active irq/NMI handlers, then we can safely pretend that the CPU
467 * already acknowledged the request to pass through a quiescent
468 * state. Either way, that CPU cannot possibly be in an RCU
469 * read-side critical section that started before the beginning
470 * of the current RCU grace period.
471 */
472 if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
473 rdp->dynticks_fqs++;
474 return 1;
475 }
476
477 /* Go check for the CPU being offline. */
478 return rcu_implicit_offline_qs(rdp);
479 }
480
481 #endif /* #ifdef CONFIG_SMP */
482
483 #else /* #ifdef CONFIG_NO_HZ */
484
485 #ifdef CONFIG_SMP
486
487 static int dyntick_save_progress_counter(struct rcu_data *rdp)
488 {
489 return 0;
490 }
491
492 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
493 {
494 return rcu_implicit_offline_qs(rdp);
495 }
496
497 #endif /* #ifdef CONFIG_SMP */
498
499 #endif /* #else #ifdef CONFIG_NO_HZ */
500
501 int rcu_cpu_stall_suppress __read_mostly;
502
503 static void record_gp_stall_check_time(struct rcu_state *rsp)
504 {
505 rsp->gp_start = jiffies;
506 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
507 }
508
509 static void print_other_cpu_stall(struct rcu_state *rsp)
510 {
511 int cpu;
512 long delta;
513 unsigned long flags;
514 struct rcu_node *rnp = rcu_get_root(rsp);
515
516 /* Only let one CPU complain about others per time interval. */
517
518 raw_spin_lock_irqsave(&rnp->lock, flags);
519 delta = jiffies - rsp->jiffies_stall;
520 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
521 raw_spin_unlock_irqrestore(&rnp->lock, flags);
522 return;
523 }
524 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
525
526 /*
527 * Now rat on any tasks that got kicked up to the root rcu_node
528 * due to CPU offlining.
529 */
530 rcu_print_task_stall(rnp);
531 raw_spin_unlock_irqrestore(&rnp->lock, flags);
532
533 /*
534 * OK, time to rat on our buddy...
535 * See Documentation/RCU/stallwarn.txt for info on how to debug
536 * RCU CPU stall warnings.
537 */
538 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
539 rsp->name);
540 rcu_for_each_leaf_node(rsp, rnp) {
541 raw_spin_lock_irqsave(&rnp->lock, flags);
542 rcu_print_task_stall(rnp);
543 raw_spin_unlock_irqrestore(&rnp->lock, flags);
544 if (rnp->qsmask == 0)
545 continue;
546 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
547 if (rnp->qsmask & (1UL << cpu))
548 printk(" %d", rnp->grplo + cpu);
549 }
550 printk("} (detected by %d, t=%ld jiffies)\n",
551 smp_processor_id(), (long)(jiffies - rsp->gp_start));
552 trigger_all_cpu_backtrace();
553
554 /* If so configured, complain about tasks blocking the grace period. */
555
556 rcu_print_detail_task_stall(rsp);
557
558 force_quiescent_state(rsp, 0); /* Kick them all. */
559 }
560
561 static void print_cpu_stall(struct rcu_state *rsp)
562 {
563 unsigned long flags;
564 struct rcu_node *rnp = rcu_get_root(rsp);
565
566 /*
567 * OK, time to rat on ourselves...
568 * See Documentation/RCU/stallwarn.txt for info on how to debug
569 * RCU CPU stall warnings.
570 */
571 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
572 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
573 trigger_all_cpu_backtrace();
574
575 raw_spin_lock_irqsave(&rnp->lock, flags);
576 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
577 rsp->jiffies_stall =
578 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
579 raw_spin_unlock_irqrestore(&rnp->lock, flags);
580
581 set_need_resched(); /* kick ourselves to get things going. */
582 }
583
584 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
585 {
586 unsigned long j;
587 unsigned long js;
588 struct rcu_node *rnp;
589
590 if (rcu_cpu_stall_suppress)
591 return;
592 j = ACCESS_ONCE(jiffies);
593 js = ACCESS_ONCE(rsp->jiffies_stall);
594 rnp = rdp->mynode;
595 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
596
597 /* We haven't checked in, so go dump stack. */
598 print_cpu_stall(rsp);
599
600 } else if (rcu_gp_in_progress(rsp) &&
601 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
602
603 /* They had a few time units to dump stack, so complain. */
604 print_other_cpu_stall(rsp);
605 }
606 }
607
608 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
609 {
610 rcu_cpu_stall_suppress = 1;
611 return NOTIFY_DONE;
612 }
613
614 /**
615 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
616 *
617 * Set the stall-warning timeout way off into the future, thus preventing
618 * any RCU CPU stall-warning messages from appearing in the current set of
619 * RCU grace periods.
620 *
621 * The caller must disable hard irqs.
622 */
623 void rcu_cpu_stall_reset(void)
624 {
625 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
626 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
627 rcu_preempt_stall_reset();
628 }
629
630 static struct notifier_block rcu_panic_block = {
631 .notifier_call = rcu_panic,
632 };
633
634 static void __init check_cpu_stall_init(void)
635 {
636 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
637 }
638
639 /*
640 * Update CPU-local rcu_data state to record the newly noticed grace period.
641 * This is used both when we started the grace period and when we notice
642 * that someone else started the grace period. The caller must hold the
643 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
644 * and must have irqs disabled.
645 */
646 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
647 {
648 if (rdp->gpnum != rnp->gpnum) {
649 /*
650 * If the current grace period is waiting for this CPU,
651 * set up to detect a quiescent state, otherwise don't
652 * go looking for one.
653 */
654 rdp->gpnum = rnp->gpnum;
655 if (rnp->qsmask & rdp->grpmask) {
656 rdp->qs_pending = 1;
657 rdp->passed_quiesc = 0;
658 } else
659 rdp->qs_pending = 0;
660 }
661 }
662
663 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
664 {
665 unsigned long flags;
666 struct rcu_node *rnp;
667
668 local_irq_save(flags);
669 rnp = rdp->mynode;
670 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
671 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
672 local_irq_restore(flags);
673 return;
674 }
675 __note_new_gpnum(rsp, rnp, rdp);
676 raw_spin_unlock_irqrestore(&rnp->lock, flags);
677 }
678
679 /*
680 * Did someone else start a new RCU grace period start since we last
681 * checked? Update local state appropriately if so. Must be called
682 * on the CPU corresponding to rdp.
683 */
684 static int
685 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
686 {
687 unsigned long flags;
688 int ret = 0;
689
690 local_irq_save(flags);
691 if (rdp->gpnum != rsp->gpnum) {
692 note_new_gpnum(rsp, rdp);
693 ret = 1;
694 }
695 local_irq_restore(flags);
696 return ret;
697 }
698
699 /*
700 * Advance this CPU's callbacks, but only if the current grace period
701 * has ended. This may be called only from the CPU to whom the rdp
702 * belongs. In addition, the corresponding leaf rcu_node structure's
703 * ->lock must be held by the caller, with irqs disabled.
704 */
705 static void
706 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
707 {
708 /* Did another grace period end? */
709 if (rdp->completed != rnp->completed) {
710
711 /* Advance callbacks. No harm if list empty. */
712 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
713 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
714 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
715
716 /* Remember that we saw this grace-period completion. */
717 rdp->completed = rnp->completed;
718
719 /*
720 * If we were in an extended quiescent state, we may have
721 * missed some grace periods that others CPUs handled on
722 * our behalf. Catch up with this state to avoid noting
723 * spurious new grace periods. If another grace period
724 * has started, then rnp->gpnum will have advanced, so
725 * we will detect this later on.
726 */
727 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
728 rdp->gpnum = rdp->completed;
729
730 /*
731 * If RCU does not need a quiescent state from this CPU,
732 * then make sure that this CPU doesn't go looking for one.
733 */
734 if ((rnp->qsmask & rdp->grpmask) == 0)
735 rdp->qs_pending = 0;
736 }
737 }
738
739 /*
740 * Advance this CPU's callbacks, but only if the current grace period
741 * has ended. This may be called only from the CPU to whom the rdp
742 * belongs.
743 */
744 static void
745 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
746 {
747 unsigned long flags;
748 struct rcu_node *rnp;
749
750 local_irq_save(flags);
751 rnp = rdp->mynode;
752 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
753 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
754 local_irq_restore(flags);
755 return;
756 }
757 __rcu_process_gp_end(rsp, rnp, rdp);
758 raw_spin_unlock_irqrestore(&rnp->lock, flags);
759 }
760
761 /*
762 * Do per-CPU grace-period initialization for running CPU. The caller
763 * must hold the lock of the leaf rcu_node structure corresponding to
764 * this CPU.
765 */
766 static void
767 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
768 {
769 /* Prior grace period ended, so advance callbacks for current CPU. */
770 __rcu_process_gp_end(rsp, rnp, rdp);
771
772 /*
773 * Because this CPU just now started the new grace period, we know
774 * that all of its callbacks will be covered by this upcoming grace
775 * period, even the ones that were registered arbitrarily recently.
776 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
777 *
778 * Other CPUs cannot be sure exactly when the grace period started.
779 * Therefore, their recently registered callbacks must pass through
780 * an additional RCU_NEXT_READY stage, so that they will be handled
781 * by the next RCU grace period.
782 */
783 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
784 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
785
786 /* Set state so that this CPU will detect the next quiescent state. */
787 __note_new_gpnum(rsp, rnp, rdp);
788 }
789
790 /*
791 * Start a new RCU grace period if warranted, re-initializing the hierarchy
792 * in preparation for detecting the next grace period. The caller must hold
793 * the root node's ->lock, which is released before return. Hard irqs must
794 * be disabled.
795 */
796 static void
797 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
798 __releases(rcu_get_root(rsp)->lock)
799 {
800 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
801 struct rcu_node *rnp = rcu_get_root(rsp);
802
803 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
804 if (cpu_needs_another_gp(rsp, rdp))
805 rsp->fqs_need_gp = 1;
806 if (rnp->completed == rsp->completed) {
807 raw_spin_unlock_irqrestore(&rnp->lock, flags);
808 return;
809 }
810 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
811
812 /*
813 * Propagate new ->completed value to rcu_node structures
814 * so that other CPUs don't have to wait until the start
815 * of the next grace period to process their callbacks.
816 */
817 rcu_for_each_node_breadth_first(rsp, rnp) {
818 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
819 rnp->completed = rsp->completed;
820 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
821 }
822 local_irq_restore(flags);
823 return;
824 }
825
826 /* Advance to a new grace period and initialize state. */
827 rsp->gpnum++;
828 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
829 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
830 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
831 record_gp_stall_check_time(rsp);
832
833 /* Special-case the common single-level case. */
834 if (NUM_RCU_NODES == 1) {
835 rcu_preempt_check_blocked_tasks(rnp);
836 rnp->qsmask = rnp->qsmaskinit;
837 rnp->gpnum = rsp->gpnum;
838 rnp->completed = rsp->completed;
839 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
840 rcu_start_gp_per_cpu(rsp, rnp, rdp);
841 rcu_preempt_boost_start_gp(rnp);
842 raw_spin_unlock_irqrestore(&rnp->lock, flags);
843 return;
844 }
845
846 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
847
848
849 /* Exclude any concurrent CPU-hotplug operations. */
850 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
851
852 /*
853 * Set the quiescent-state-needed bits in all the rcu_node
854 * structures for all currently online CPUs in breadth-first
855 * order, starting from the root rcu_node structure. This
856 * operation relies on the layout of the hierarchy within the
857 * rsp->node[] array. Note that other CPUs will access only
858 * the leaves of the hierarchy, which still indicate that no
859 * grace period is in progress, at least until the corresponding
860 * leaf node has been initialized. In addition, we have excluded
861 * CPU-hotplug operations.
862 *
863 * Note that the grace period cannot complete until we finish
864 * the initialization process, as there will be at least one
865 * qsmask bit set in the root node until that time, namely the
866 * one corresponding to this CPU, due to the fact that we have
867 * irqs disabled.
868 */
869 rcu_for_each_node_breadth_first(rsp, rnp) {
870 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
871 rcu_preempt_check_blocked_tasks(rnp);
872 rnp->qsmask = rnp->qsmaskinit;
873 rnp->gpnum = rsp->gpnum;
874 rnp->completed = rsp->completed;
875 if (rnp == rdp->mynode)
876 rcu_start_gp_per_cpu(rsp, rnp, rdp);
877 rcu_preempt_boost_start_gp(rnp);
878 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
879 }
880
881 rnp = rcu_get_root(rsp);
882 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
883 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
884 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
885 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
886 }
887
888 /*
889 * Report a full set of quiescent states to the specified rcu_state
890 * data structure. This involves cleaning up after the prior grace
891 * period and letting rcu_start_gp() start up the next grace period
892 * if one is needed. Note that the caller must hold rnp->lock, as
893 * required by rcu_start_gp(), which will release it.
894 */
895 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
896 __releases(rcu_get_root(rsp)->lock)
897 {
898 unsigned long gp_duration;
899
900 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
901
902 /*
903 * Ensure that all grace-period and pre-grace-period activity
904 * is seen before the assignment to rsp->completed.
905 */
906 smp_mb(); /* See above block comment. */
907 gp_duration = jiffies - rsp->gp_start;
908 if (gp_duration > rsp->gp_max)
909 rsp->gp_max = gp_duration;
910 rsp->completed = rsp->gpnum;
911 rsp->signaled = RCU_GP_IDLE;
912 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
913 }
914
915 /*
916 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
917 * Allows quiescent states for a group of CPUs to be reported at one go
918 * to the specified rcu_node structure, though all the CPUs in the group
919 * must be represented by the same rcu_node structure (which need not be
920 * a leaf rcu_node structure, though it often will be). That structure's
921 * lock must be held upon entry, and it is released before return.
922 */
923 static void
924 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
925 struct rcu_node *rnp, unsigned long flags)
926 __releases(rnp->lock)
927 {
928 struct rcu_node *rnp_c;
929
930 /* Walk up the rcu_node hierarchy. */
931 for (;;) {
932 if (!(rnp->qsmask & mask)) {
933
934 /* Our bit has already been cleared, so done. */
935 raw_spin_unlock_irqrestore(&rnp->lock, flags);
936 return;
937 }
938 rnp->qsmask &= ~mask;
939 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
940
941 /* Other bits still set at this level, so done. */
942 raw_spin_unlock_irqrestore(&rnp->lock, flags);
943 return;
944 }
945 mask = rnp->grpmask;
946 if (rnp->parent == NULL) {
947
948 /* No more levels. Exit loop holding root lock. */
949
950 break;
951 }
952 raw_spin_unlock_irqrestore(&rnp->lock, flags);
953 rnp_c = rnp;
954 rnp = rnp->parent;
955 raw_spin_lock_irqsave(&rnp->lock, flags);
956 WARN_ON_ONCE(rnp_c->qsmask);
957 }
958
959 /*
960 * Get here if we are the last CPU to pass through a quiescent
961 * state for this grace period. Invoke rcu_report_qs_rsp()
962 * to clean up and start the next grace period if one is needed.
963 */
964 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
965 }
966
967 /*
968 * Record a quiescent state for the specified CPU to that CPU's rcu_data
969 * structure. This must be either called from the specified CPU, or
970 * called when the specified CPU is known to be offline (and when it is
971 * also known that no other CPU is concurrently trying to help the offline
972 * CPU). The lastcomp argument is used to make sure we are still in the
973 * grace period of interest. We don't want to end the current grace period
974 * based on quiescent states detected in an earlier grace period!
975 */
976 static void
977 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
978 {
979 unsigned long flags;
980 unsigned long mask;
981 struct rcu_node *rnp;
982
983 rnp = rdp->mynode;
984 raw_spin_lock_irqsave(&rnp->lock, flags);
985 if (lastcomp != rnp->completed) {
986
987 /*
988 * Someone beat us to it for this grace period, so leave.
989 * The race with GP start is resolved by the fact that we
990 * hold the leaf rcu_node lock, so that the per-CPU bits
991 * cannot yet be initialized -- so we would simply find our
992 * CPU's bit already cleared in rcu_report_qs_rnp() if this
993 * race occurred.
994 */
995 rdp->passed_quiesc = 0; /* try again later! */
996 raw_spin_unlock_irqrestore(&rnp->lock, flags);
997 return;
998 }
999 mask = rdp->grpmask;
1000 if ((rnp->qsmask & mask) == 0) {
1001 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1002 } else {
1003 rdp->qs_pending = 0;
1004
1005 /*
1006 * This GP can't end until cpu checks in, so all of our
1007 * callbacks can be processed during the next GP.
1008 */
1009 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1010
1011 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1012 }
1013 }
1014
1015 /*
1016 * Check to see if there is a new grace period of which this CPU
1017 * is not yet aware, and if so, set up local rcu_data state for it.
1018 * Otherwise, see if this CPU has just passed through its first
1019 * quiescent state for this grace period, and record that fact if so.
1020 */
1021 static void
1022 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1023 {
1024 /* If there is now a new grace period, record and return. */
1025 if (check_for_new_grace_period(rsp, rdp))
1026 return;
1027
1028 /*
1029 * Does this CPU still need to do its part for current grace period?
1030 * If no, return and let the other CPUs do their part as well.
1031 */
1032 if (!rdp->qs_pending)
1033 return;
1034
1035 /*
1036 * Was there a quiescent state since the beginning of the grace
1037 * period? If no, then exit and wait for the next call.
1038 */
1039 if (!rdp->passed_quiesc)
1040 return;
1041
1042 /*
1043 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1044 * judge of that).
1045 */
1046 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1047 }
1048
1049 #ifdef CONFIG_HOTPLUG_CPU
1050
1051 /*
1052 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1053 * Synchronization is not required because this function executes
1054 * in stop_machine() context.
1055 */
1056 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1057 {
1058 int i;
1059 /* current DYING CPU is cleared in the cpu_online_mask */
1060 int receive_cpu = cpumask_any(cpu_online_mask);
1061 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1062 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1063
1064 if (rdp->nxtlist == NULL)
1065 return; /* irqs disabled, so comparison is stable. */
1066
1067 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1068 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1069 receive_rdp->qlen += rdp->qlen;
1070 receive_rdp->n_cbs_adopted += rdp->qlen;
1071 rdp->n_cbs_orphaned += rdp->qlen;
1072
1073 rdp->nxtlist = NULL;
1074 for (i = 0; i < RCU_NEXT_SIZE; i++)
1075 rdp->nxttail[i] = &rdp->nxtlist;
1076 rdp->qlen = 0;
1077 }
1078
1079 /*
1080 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1081 * and move all callbacks from the outgoing CPU to the current one.
1082 * There can only be one CPU hotplug operation at a time, so no other
1083 * CPU can be attempting to update rcu_cpu_kthread_task.
1084 */
1085 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1086 {
1087 unsigned long flags;
1088 unsigned long mask;
1089 int need_report = 0;
1090 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1091 struct rcu_node *rnp;
1092 struct task_struct *t;
1093
1094 /* Stop the CPU's kthread. */
1095 t = per_cpu(rcu_cpu_kthread_task, cpu);
1096 if (t != NULL) {
1097 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1098 kthread_stop(t);
1099 }
1100
1101 /* Exclude any attempts to start a new grace period. */
1102 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1103
1104 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1105 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1106 mask = rdp->grpmask; /* rnp->grplo is constant. */
1107 do {
1108 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1109 rnp->qsmaskinit &= ~mask;
1110 if (rnp->qsmaskinit != 0) {
1111 if (rnp != rdp->mynode)
1112 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1113 break;
1114 }
1115 if (rnp == rdp->mynode)
1116 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1117 else
1118 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1119 mask = rnp->grpmask;
1120 rnp = rnp->parent;
1121 } while (rnp != NULL);
1122
1123 /*
1124 * We still hold the leaf rcu_node structure lock here, and
1125 * irqs are still disabled. The reason for this subterfuge is
1126 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1127 * held leads to deadlock.
1128 */
1129 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1130 rnp = rdp->mynode;
1131 if (need_report & RCU_OFL_TASKS_NORM_GP)
1132 rcu_report_unblock_qs_rnp(rnp, flags);
1133 else
1134 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1135 if (need_report & RCU_OFL_TASKS_EXP_GP)
1136 rcu_report_exp_rnp(rsp, rnp);
1137 rcu_node_kthread_setaffinity(rnp, -1);
1138 }
1139
1140 /*
1141 * Remove the specified CPU from the RCU hierarchy and move any pending
1142 * callbacks that it might have to the current CPU. This code assumes
1143 * that at least one CPU in the system will remain running at all times.
1144 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1145 */
1146 static void rcu_offline_cpu(int cpu)
1147 {
1148 __rcu_offline_cpu(cpu, &rcu_sched_state);
1149 __rcu_offline_cpu(cpu, &rcu_bh_state);
1150 rcu_preempt_offline_cpu(cpu);
1151 }
1152
1153 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1154
1155 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1156 {
1157 }
1158
1159 static void rcu_offline_cpu(int cpu)
1160 {
1161 }
1162
1163 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1164
1165 /*
1166 * Invoke any RCU callbacks that have made it to the end of their grace
1167 * period. Thottle as specified by rdp->blimit.
1168 */
1169 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1170 {
1171 unsigned long flags;
1172 struct rcu_head *next, *list, **tail;
1173 int count;
1174
1175 /* If no callbacks are ready, just return.*/
1176 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1177 return;
1178
1179 /*
1180 * Extract the list of ready callbacks, disabling to prevent
1181 * races with call_rcu() from interrupt handlers.
1182 */
1183 local_irq_save(flags);
1184 list = rdp->nxtlist;
1185 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1186 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1187 tail = rdp->nxttail[RCU_DONE_TAIL];
1188 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1189 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1190 rdp->nxttail[count] = &rdp->nxtlist;
1191 local_irq_restore(flags);
1192
1193 /* Invoke callbacks. */
1194 count = 0;
1195 while (list) {
1196 next = list->next;
1197 prefetch(next);
1198 debug_rcu_head_unqueue(list);
1199 __rcu_reclaim(list);
1200 list = next;
1201 if (++count >= rdp->blimit)
1202 break;
1203 }
1204
1205 local_irq_save(flags);
1206
1207 /* Update count, and requeue any remaining callbacks. */
1208 rdp->qlen -= count;
1209 rdp->n_cbs_invoked += count;
1210 if (list != NULL) {
1211 *tail = rdp->nxtlist;
1212 rdp->nxtlist = list;
1213 for (count = 0; count < RCU_NEXT_SIZE; count++)
1214 if (&rdp->nxtlist == rdp->nxttail[count])
1215 rdp->nxttail[count] = tail;
1216 else
1217 break;
1218 }
1219
1220 /* Reinstate batch limit if we have worked down the excess. */
1221 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1222 rdp->blimit = blimit;
1223
1224 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1225 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1226 rdp->qlen_last_fqs_check = 0;
1227 rdp->n_force_qs_snap = rsp->n_force_qs;
1228 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1229 rdp->qlen_last_fqs_check = rdp->qlen;
1230
1231 local_irq_restore(flags);
1232
1233 /* Re-raise the RCU softirq if there are callbacks remaining. */
1234 if (cpu_has_callbacks_ready_to_invoke(rdp))
1235 invoke_rcu_cpu_kthread();
1236 }
1237
1238 /*
1239 * Check to see if this CPU is in a non-context-switch quiescent state
1240 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1241 * Also schedule the RCU softirq handler.
1242 *
1243 * This function must be called with hardirqs disabled. It is normally
1244 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1245 * false, there is no point in invoking rcu_check_callbacks().
1246 */
1247 void rcu_check_callbacks(int cpu, int user)
1248 {
1249 if (user ||
1250 (idle_cpu(cpu) && rcu_scheduler_active &&
1251 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1252
1253 /*
1254 * Get here if this CPU took its interrupt from user
1255 * mode or from the idle loop, and if this is not a
1256 * nested interrupt. In this case, the CPU is in
1257 * a quiescent state, so note it.
1258 *
1259 * No memory barrier is required here because both
1260 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1261 * variables that other CPUs neither access nor modify,
1262 * at least not while the corresponding CPU is online.
1263 */
1264
1265 rcu_sched_qs(cpu);
1266 rcu_bh_qs(cpu);
1267
1268 } else if (!in_softirq()) {
1269
1270 /*
1271 * Get here if this CPU did not take its interrupt from
1272 * softirq, in other words, if it is not interrupting
1273 * a rcu_bh read-side critical section. This is an _bh
1274 * critical section, so note it.
1275 */
1276
1277 rcu_bh_qs(cpu);
1278 }
1279 rcu_preempt_check_callbacks(cpu);
1280 if (rcu_pending(cpu))
1281 invoke_rcu_cpu_kthread();
1282 }
1283
1284 #ifdef CONFIG_SMP
1285
1286 /*
1287 * Scan the leaf rcu_node structures, processing dyntick state for any that
1288 * have not yet encountered a quiescent state, using the function specified.
1289 * Also initiate boosting for any threads blocked on the root rcu_node.
1290 *
1291 * The caller must have suppressed start of new grace periods.
1292 */
1293 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1294 {
1295 unsigned long bit;
1296 int cpu;
1297 unsigned long flags;
1298 unsigned long mask;
1299 struct rcu_node *rnp;
1300
1301 rcu_for_each_leaf_node(rsp, rnp) {
1302 mask = 0;
1303 raw_spin_lock_irqsave(&rnp->lock, flags);
1304 if (!rcu_gp_in_progress(rsp)) {
1305 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1306 return;
1307 }
1308 if (rnp->qsmask == 0) {
1309 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1310 continue;
1311 }
1312 cpu = rnp->grplo;
1313 bit = 1;
1314 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1315 if ((rnp->qsmask & bit) != 0 &&
1316 f(per_cpu_ptr(rsp->rda, cpu)))
1317 mask |= bit;
1318 }
1319 if (mask != 0) {
1320
1321 /* rcu_report_qs_rnp() releases rnp->lock. */
1322 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1323 continue;
1324 }
1325 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1326 }
1327 rnp = rcu_get_root(rsp);
1328 if (rnp->qsmask == 0) {
1329 raw_spin_lock_irqsave(&rnp->lock, flags);
1330 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1331 }
1332 }
1333
1334 /*
1335 * Force quiescent states on reluctant CPUs, and also detect which
1336 * CPUs are in dyntick-idle mode.
1337 */
1338 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1339 {
1340 unsigned long flags;
1341 struct rcu_node *rnp = rcu_get_root(rsp);
1342
1343 if (!rcu_gp_in_progress(rsp))
1344 return; /* No grace period in progress, nothing to force. */
1345 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1346 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1347 return; /* Someone else is already on the job. */
1348 }
1349 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1350 goto unlock_fqs_ret; /* no emergency and done recently. */
1351 rsp->n_force_qs++;
1352 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1353 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1354 if(!rcu_gp_in_progress(rsp)) {
1355 rsp->n_force_qs_ngp++;
1356 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1357 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1358 }
1359 rsp->fqs_active = 1;
1360 switch (rsp->signaled) {
1361 case RCU_GP_IDLE:
1362 case RCU_GP_INIT:
1363
1364 break; /* grace period idle or initializing, ignore. */
1365
1366 case RCU_SAVE_DYNTICK:
1367 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1368 break; /* So gcc recognizes the dead code. */
1369
1370 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1371
1372 /* Record dyntick-idle state. */
1373 force_qs_rnp(rsp, dyntick_save_progress_counter);
1374 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1375 if (rcu_gp_in_progress(rsp))
1376 rsp->signaled = RCU_FORCE_QS;
1377 break;
1378
1379 case RCU_FORCE_QS:
1380
1381 /* Check dyntick-idle state, send IPI to laggarts. */
1382 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1383 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1384
1385 /* Leave state in case more forcing is required. */
1386
1387 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1388 break;
1389 }
1390 rsp->fqs_active = 0;
1391 if (rsp->fqs_need_gp) {
1392 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1393 rsp->fqs_need_gp = 0;
1394 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1395 return;
1396 }
1397 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1398 unlock_fqs_ret:
1399 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1400 }
1401
1402 #else /* #ifdef CONFIG_SMP */
1403
1404 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1405 {
1406 set_need_resched();
1407 }
1408
1409 #endif /* #else #ifdef CONFIG_SMP */
1410
1411 /*
1412 * This does the RCU processing work from softirq context for the
1413 * specified rcu_state and rcu_data structures. This may be called
1414 * only from the CPU to whom the rdp belongs.
1415 */
1416 static void
1417 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1418 {
1419 unsigned long flags;
1420
1421 WARN_ON_ONCE(rdp->beenonline == 0);
1422
1423 /*
1424 * If an RCU GP has gone long enough, go check for dyntick
1425 * idle CPUs and, if needed, send resched IPIs.
1426 */
1427 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1428 force_quiescent_state(rsp, 1);
1429
1430 /*
1431 * Advance callbacks in response to end of earlier grace
1432 * period that some other CPU ended.
1433 */
1434 rcu_process_gp_end(rsp, rdp);
1435
1436 /* Update RCU state based on any recent quiescent states. */
1437 rcu_check_quiescent_state(rsp, rdp);
1438
1439 /* Does this CPU require a not-yet-started grace period? */
1440 if (cpu_needs_another_gp(rsp, rdp)) {
1441 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1442 rcu_start_gp(rsp, flags); /* releases above lock */
1443 }
1444
1445 /* If there are callbacks ready, invoke them. */
1446 rcu_do_batch(rsp, rdp);
1447 }
1448
1449 /*
1450 * Do softirq processing for the current CPU.
1451 */
1452 static void rcu_process_callbacks(void)
1453 {
1454 __rcu_process_callbacks(&rcu_sched_state,
1455 &__get_cpu_var(rcu_sched_data));
1456 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1457 rcu_preempt_process_callbacks();
1458
1459 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1460 rcu_needs_cpu_flush();
1461 }
1462
1463 /*
1464 * Wake up the current CPU's kthread. This replaces raise_softirq()
1465 * in earlier versions of RCU. Note that because we are running on
1466 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1467 * cannot disappear out from under us.
1468 */
1469 static void invoke_rcu_cpu_kthread(void)
1470 {
1471 unsigned long flags;
1472
1473 local_irq_save(flags);
1474 __this_cpu_write(rcu_cpu_has_work, 1);
1475 if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
1476 local_irq_restore(flags);
1477 return;
1478 }
1479 wake_up(&__get_cpu_var(rcu_cpu_wq));
1480 local_irq_restore(flags);
1481 }
1482
1483 /*
1484 * Wake up the specified per-rcu_node-structure kthread.
1485 * Because the per-rcu_node kthreads are immortal, we don't need
1486 * to do anything to keep them alive.
1487 */
1488 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1489 {
1490 struct task_struct *t;
1491
1492 t = rnp->node_kthread_task;
1493 if (t != NULL)
1494 wake_up_process(t);
1495 }
1496
1497 /*
1498 * Set the specified CPU's kthread to run RT or not, as specified by
1499 * the to_rt argument. The CPU-hotplug locks are held, so the task
1500 * is not going away.
1501 */
1502 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1503 {
1504 int policy;
1505 struct sched_param sp;
1506 struct task_struct *t;
1507
1508 t = per_cpu(rcu_cpu_kthread_task, cpu);
1509 if (t == NULL)
1510 return;
1511 if (to_rt) {
1512 policy = SCHED_FIFO;
1513 sp.sched_priority = RCU_KTHREAD_PRIO;
1514 } else {
1515 policy = SCHED_NORMAL;
1516 sp.sched_priority = 0;
1517 }
1518 sched_setscheduler_nocheck(t, policy, &sp);
1519 }
1520
1521 /*
1522 * Timer handler to initiate the waking up of per-CPU kthreads that
1523 * have yielded the CPU due to excess numbers of RCU callbacks.
1524 * We wake up the per-rcu_node kthread, which in turn will wake up
1525 * the booster kthread.
1526 */
1527 static void rcu_cpu_kthread_timer(unsigned long arg)
1528 {
1529 unsigned long flags;
1530 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1531 struct rcu_node *rnp = rdp->mynode;
1532
1533 raw_spin_lock_irqsave(&rnp->lock, flags);
1534 rnp->wakemask |= rdp->grpmask;
1535 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1536 invoke_rcu_node_kthread(rnp);
1537 }
1538
1539 /*
1540 * Drop to non-real-time priority and yield, but only after posting a
1541 * timer that will cause us to regain our real-time priority if we
1542 * remain preempted. Either way, we restore our real-time priority
1543 * before returning.
1544 */
1545 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1546 {
1547 struct sched_param sp;
1548 struct timer_list yield_timer;
1549
1550 setup_timer_on_stack(&yield_timer, f, arg);
1551 mod_timer(&yield_timer, jiffies + 2);
1552 sp.sched_priority = 0;
1553 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1554 set_user_nice(current, 19);
1555 schedule();
1556 sp.sched_priority = RCU_KTHREAD_PRIO;
1557 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1558 del_timer(&yield_timer);
1559 }
1560
1561 /*
1562 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1563 * This can happen while the corresponding CPU is either coming online
1564 * or going offline. We cannot wait until the CPU is fully online
1565 * before starting the kthread, because the various notifier functions
1566 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1567 * the corresponding CPU is online.
1568 *
1569 * Return 1 if the kthread needs to stop, 0 otherwise.
1570 *
1571 * Caller must disable bh. This function can momentarily enable it.
1572 */
1573 static int rcu_cpu_kthread_should_stop(int cpu)
1574 {
1575 while (cpu_is_offline(cpu) ||
1576 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1577 smp_processor_id() != cpu) {
1578 if (kthread_should_stop())
1579 return 1;
1580 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1581 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1582 local_bh_enable();
1583 schedule_timeout_uninterruptible(1);
1584 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1585 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1586 local_bh_disable();
1587 }
1588 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1589 return 0;
1590 }
1591
1592 /*
1593 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1594 * earlier RCU softirq.
1595 */
1596 static int rcu_cpu_kthread(void *arg)
1597 {
1598 int cpu = (int)(long)arg;
1599 unsigned long flags;
1600 int spincnt = 0;
1601 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1602 wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
1603 char work;
1604 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1605
1606 for (;;) {
1607 *statusp = RCU_KTHREAD_WAITING;
1608 wait_event_interruptible(*wqp,
1609 *workp != 0 || kthread_should_stop());
1610 local_bh_disable();
1611 if (rcu_cpu_kthread_should_stop(cpu)) {
1612 local_bh_enable();
1613 break;
1614 }
1615 *statusp = RCU_KTHREAD_RUNNING;
1616 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1617 local_irq_save(flags);
1618 work = *workp;
1619 *workp = 0;
1620 local_irq_restore(flags);
1621 if (work)
1622 rcu_process_callbacks();
1623 local_bh_enable();
1624 if (*workp != 0)
1625 spincnt++;
1626 else
1627 spincnt = 0;
1628 if (spincnt > 10) {
1629 *statusp = RCU_KTHREAD_YIELDING;
1630 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1631 spincnt = 0;
1632 }
1633 }
1634 *statusp = RCU_KTHREAD_STOPPED;
1635 return 0;
1636 }
1637
1638 /*
1639 * Spawn a per-CPU kthread, setting up affinity and priority.
1640 * Because the CPU hotplug lock is held, no other CPU will be attempting
1641 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1642 * attempting to access it during boot, but the locking in kthread_bind()
1643 * will enforce sufficient ordering.
1644 */
1645 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1646 {
1647 struct sched_param sp;
1648 struct task_struct *t;
1649
1650 if (!rcu_kthreads_spawnable ||
1651 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1652 return 0;
1653 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1654 if (IS_ERR(t))
1655 return PTR_ERR(t);
1656 kthread_bind(t, cpu);
1657 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1658 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1659 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1660 wake_up_process(t);
1661 sp.sched_priority = RCU_KTHREAD_PRIO;
1662 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1663 return 0;
1664 }
1665
1666 /*
1667 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1668 * kthreads when needed. We ignore requests to wake up kthreads
1669 * for offline CPUs, which is OK because force_quiescent_state()
1670 * takes care of this case.
1671 */
1672 static int rcu_node_kthread(void *arg)
1673 {
1674 int cpu;
1675 unsigned long flags;
1676 unsigned long mask;
1677 struct rcu_node *rnp = (struct rcu_node *)arg;
1678 struct sched_param sp;
1679 struct task_struct *t;
1680
1681 for (;;) {
1682 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1683 wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0);
1684 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1685 raw_spin_lock_irqsave(&rnp->lock, flags);
1686 mask = rnp->wakemask;
1687 rnp->wakemask = 0;
1688 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1689 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1690 if ((mask & 0x1) == 0)
1691 continue;
1692 preempt_disable();
1693 t = per_cpu(rcu_cpu_kthread_task, cpu);
1694 if (!cpu_online(cpu) || t == NULL) {
1695 preempt_enable();
1696 continue;
1697 }
1698 per_cpu(rcu_cpu_has_work, cpu) = 1;
1699 sp.sched_priority = RCU_KTHREAD_PRIO;
1700 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1701 preempt_enable();
1702 }
1703 }
1704 /* NOTREACHED */
1705 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1706 return 0;
1707 }
1708
1709 /*
1710 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1711 * served by the rcu_node in question. The CPU hotplug lock is still
1712 * held, so the value of rnp->qsmaskinit will be stable.
1713 *
1714 * We don't include outgoingcpu in the affinity set, use -1 if there is
1715 * no outgoing CPU. If there are no CPUs left in the affinity set,
1716 * this function allows the kthread to execute on any CPU.
1717 */
1718 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1719 {
1720 cpumask_var_t cm;
1721 int cpu;
1722 unsigned long mask = rnp->qsmaskinit;
1723
1724 if (rnp->node_kthread_task == NULL)
1725 return;
1726 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1727 return;
1728 cpumask_clear(cm);
1729 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1730 if ((mask & 0x1) && cpu != outgoingcpu)
1731 cpumask_set_cpu(cpu, cm);
1732 if (cpumask_weight(cm) == 0) {
1733 cpumask_setall(cm);
1734 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1735 cpumask_clear_cpu(cpu, cm);
1736 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1737 }
1738 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1739 rcu_boost_kthread_setaffinity(rnp, cm);
1740 free_cpumask_var(cm);
1741 }
1742
1743 /*
1744 * Spawn a per-rcu_node kthread, setting priority and affinity.
1745 * Called during boot before online/offline can happen, or, if
1746 * during runtime, with the main CPU-hotplug locks held. So only
1747 * one of these can be executing at a time.
1748 */
1749 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1750 struct rcu_node *rnp)
1751 {
1752 unsigned long flags;
1753 int rnp_index = rnp - &rsp->node[0];
1754 struct sched_param sp;
1755 struct task_struct *t;
1756
1757 if (!rcu_kthreads_spawnable ||
1758 rnp->qsmaskinit == 0)
1759 return 0;
1760 if (rnp->node_kthread_task == NULL) {
1761 t = kthread_create(rcu_node_kthread, (void *)rnp,
1762 "rcun%d", rnp_index);
1763 if (IS_ERR(t))
1764 return PTR_ERR(t);
1765 raw_spin_lock_irqsave(&rnp->lock, flags);
1766 rnp->node_kthread_task = t;
1767 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1768 wake_up_process(t);
1769 sp.sched_priority = 99;
1770 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1771 }
1772 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1773 }
1774
1775 /*
1776 * Spawn all kthreads -- called as soon as the scheduler is running.
1777 */
1778 static int __init rcu_spawn_kthreads(void)
1779 {
1780 int cpu;
1781 struct rcu_node *rnp;
1782
1783 rcu_kthreads_spawnable = 1;
1784 for_each_possible_cpu(cpu) {
1785 init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
1786 per_cpu(rcu_cpu_has_work, cpu) = 0;
1787 if (cpu_online(cpu))
1788 (void)rcu_spawn_one_cpu_kthread(cpu);
1789 }
1790 rnp = rcu_get_root(rcu_state);
1791 init_waitqueue_head(&rnp->node_wq);
1792 rcu_init_boost_waitqueue(rnp);
1793 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1794 if (NUM_RCU_NODES > 1)
1795 rcu_for_each_leaf_node(rcu_state, rnp) {
1796 init_waitqueue_head(&rnp->node_wq);
1797 rcu_init_boost_waitqueue(rnp);
1798 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1799 }
1800 return 0;
1801 }
1802 early_initcall(rcu_spawn_kthreads);
1803
1804 static void
1805 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1806 struct rcu_state *rsp)
1807 {
1808 unsigned long flags;
1809 struct rcu_data *rdp;
1810
1811 debug_rcu_head_queue(head);
1812 head->func = func;
1813 head->next = NULL;
1814
1815 smp_mb(); /* Ensure RCU update seen before callback registry. */
1816
1817 /*
1818 * Opportunistically note grace-period endings and beginnings.
1819 * Note that we might see a beginning right after we see an
1820 * end, but never vice versa, since this CPU has to pass through
1821 * a quiescent state betweentimes.
1822 */
1823 local_irq_save(flags);
1824 rdp = this_cpu_ptr(rsp->rda);
1825
1826 /* Add the callback to our list. */
1827 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1828 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1829 rdp->qlen++;
1830
1831 /* If interrupts were disabled, don't dive into RCU core. */
1832 if (irqs_disabled_flags(flags)) {
1833 local_irq_restore(flags);
1834 return;
1835 }
1836
1837 /*
1838 * Force the grace period if too many callbacks or too long waiting.
1839 * Enforce hysteresis, and don't invoke force_quiescent_state()
1840 * if some other CPU has recently done so. Also, don't bother
1841 * invoking force_quiescent_state() if the newly enqueued callback
1842 * is the only one waiting for a grace period to complete.
1843 */
1844 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1845
1846 /* Are we ignoring a completed grace period? */
1847 rcu_process_gp_end(rsp, rdp);
1848 check_for_new_grace_period(rsp, rdp);
1849
1850 /* Start a new grace period if one not already started. */
1851 if (!rcu_gp_in_progress(rsp)) {
1852 unsigned long nestflag;
1853 struct rcu_node *rnp_root = rcu_get_root(rsp);
1854
1855 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1856 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1857 } else {
1858 /* Give the grace period a kick. */
1859 rdp->blimit = LONG_MAX;
1860 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1861 *rdp->nxttail[RCU_DONE_TAIL] != head)
1862 force_quiescent_state(rsp, 0);
1863 rdp->n_force_qs_snap = rsp->n_force_qs;
1864 rdp->qlen_last_fqs_check = rdp->qlen;
1865 }
1866 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1867 force_quiescent_state(rsp, 1);
1868 local_irq_restore(flags);
1869 }
1870
1871 /*
1872 * Queue an RCU-sched callback for invocation after a grace period.
1873 */
1874 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1875 {
1876 __call_rcu(head, func, &rcu_sched_state);
1877 }
1878 EXPORT_SYMBOL_GPL(call_rcu_sched);
1879
1880 /*
1881 * Queue an RCU for invocation after a quicker grace period.
1882 */
1883 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1884 {
1885 __call_rcu(head, func, &rcu_bh_state);
1886 }
1887 EXPORT_SYMBOL_GPL(call_rcu_bh);
1888
1889 /**
1890 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1891 *
1892 * Control will return to the caller some time after a full rcu-sched
1893 * grace period has elapsed, in other words after all currently executing
1894 * rcu-sched read-side critical sections have completed. These read-side
1895 * critical sections are delimited by rcu_read_lock_sched() and
1896 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1897 * local_irq_disable(), and so on may be used in place of
1898 * rcu_read_lock_sched().
1899 *
1900 * This means that all preempt_disable code sequences, including NMI and
1901 * hardware-interrupt handlers, in progress on entry will have completed
1902 * before this primitive returns. However, this does not guarantee that
1903 * softirq handlers will have completed, since in some kernels, these
1904 * handlers can run in process context, and can block.
1905 *
1906 * This primitive provides the guarantees made by the (now removed)
1907 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1908 * guarantees that rcu_read_lock() sections will have completed.
1909 * In "classic RCU", these two guarantees happen to be one and
1910 * the same, but can differ in realtime RCU implementations.
1911 */
1912 void synchronize_sched(void)
1913 {
1914 struct rcu_synchronize rcu;
1915
1916 if (rcu_blocking_is_gp())
1917 return;
1918
1919 init_rcu_head_on_stack(&rcu.head);
1920 init_completion(&rcu.completion);
1921 /* Will wake me after RCU finished. */
1922 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1923 /* Wait for it. */
1924 wait_for_completion(&rcu.completion);
1925 destroy_rcu_head_on_stack(&rcu.head);
1926 }
1927 EXPORT_SYMBOL_GPL(synchronize_sched);
1928
1929 /**
1930 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1931 *
1932 * Control will return to the caller some time after a full rcu_bh grace
1933 * period has elapsed, in other words after all currently executing rcu_bh
1934 * read-side critical sections have completed. RCU read-side critical
1935 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1936 * and may be nested.
1937 */
1938 void synchronize_rcu_bh(void)
1939 {
1940 struct rcu_synchronize rcu;
1941
1942 if (rcu_blocking_is_gp())
1943 return;
1944
1945 init_rcu_head_on_stack(&rcu.head);
1946 init_completion(&rcu.completion);
1947 /* Will wake me after RCU finished. */
1948 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1949 /* Wait for it. */
1950 wait_for_completion(&rcu.completion);
1951 destroy_rcu_head_on_stack(&rcu.head);
1952 }
1953 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1954
1955 /*
1956 * Check to see if there is any immediate RCU-related work to be done
1957 * by the current CPU, for the specified type of RCU, returning 1 if so.
1958 * The checks are in order of increasing expense: checks that can be
1959 * carried out against CPU-local state are performed first. However,
1960 * we must check for CPU stalls first, else we might not get a chance.
1961 */
1962 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1963 {
1964 struct rcu_node *rnp = rdp->mynode;
1965
1966 rdp->n_rcu_pending++;
1967
1968 /* Check for CPU stalls, if enabled. */
1969 check_cpu_stall(rsp, rdp);
1970
1971 /* Is the RCU core waiting for a quiescent state from this CPU? */
1972 if (rdp->qs_pending && !rdp->passed_quiesc) {
1973
1974 /*
1975 * If force_quiescent_state() coming soon and this CPU
1976 * needs a quiescent state, and this is either RCU-sched
1977 * or RCU-bh, force a local reschedule.
1978 */
1979 rdp->n_rp_qs_pending++;
1980 if (!rdp->preemptible &&
1981 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1982 jiffies))
1983 set_need_resched();
1984 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1985 rdp->n_rp_report_qs++;
1986 return 1;
1987 }
1988
1989 /* Does this CPU have callbacks ready to invoke? */
1990 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1991 rdp->n_rp_cb_ready++;
1992 return 1;
1993 }
1994
1995 /* Has RCU gone idle with this CPU needing another grace period? */
1996 if (cpu_needs_another_gp(rsp, rdp)) {
1997 rdp->n_rp_cpu_needs_gp++;
1998 return 1;
1999 }
2000
2001 /* Has another RCU grace period completed? */
2002 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2003 rdp->n_rp_gp_completed++;
2004 return 1;
2005 }
2006
2007 /* Has a new RCU grace period started? */
2008 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2009 rdp->n_rp_gp_started++;
2010 return 1;
2011 }
2012
2013 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2014 if (rcu_gp_in_progress(rsp) &&
2015 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2016 rdp->n_rp_need_fqs++;
2017 return 1;
2018 }
2019
2020 /* nothing to do */
2021 rdp->n_rp_need_nothing++;
2022 return 0;
2023 }
2024
2025 /*
2026 * Check to see if there is any immediate RCU-related work to be done
2027 * by the current CPU, returning 1 if so. This function is part of the
2028 * RCU implementation; it is -not- an exported member of the RCU API.
2029 */
2030 static int rcu_pending(int cpu)
2031 {
2032 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2033 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2034 rcu_preempt_pending(cpu);
2035 }
2036
2037 /*
2038 * Check to see if any future RCU-related work will need to be done
2039 * by the current CPU, even if none need be done immediately, returning
2040 * 1 if so.
2041 */
2042 static int rcu_needs_cpu_quick_check(int cpu)
2043 {
2044 /* RCU callbacks either ready or pending? */
2045 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2046 per_cpu(rcu_bh_data, cpu).nxtlist ||
2047 rcu_preempt_needs_cpu(cpu);
2048 }
2049
2050 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2051 static atomic_t rcu_barrier_cpu_count;
2052 static DEFINE_MUTEX(rcu_barrier_mutex);
2053 static struct completion rcu_barrier_completion;
2054
2055 static void rcu_barrier_callback(struct rcu_head *notused)
2056 {
2057 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2058 complete(&rcu_barrier_completion);
2059 }
2060
2061 /*
2062 * Called with preemption disabled, and from cross-cpu IRQ context.
2063 */
2064 static void rcu_barrier_func(void *type)
2065 {
2066 int cpu = smp_processor_id();
2067 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2068 void (*call_rcu_func)(struct rcu_head *head,
2069 void (*func)(struct rcu_head *head));
2070
2071 atomic_inc(&rcu_barrier_cpu_count);
2072 call_rcu_func = type;
2073 call_rcu_func(head, rcu_barrier_callback);
2074 }
2075
2076 /*
2077 * Orchestrate the specified type of RCU barrier, waiting for all
2078 * RCU callbacks of the specified type to complete.
2079 */
2080 static void _rcu_barrier(struct rcu_state *rsp,
2081 void (*call_rcu_func)(struct rcu_head *head,
2082 void (*func)(struct rcu_head *head)))
2083 {
2084 BUG_ON(in_interrupt());
2085 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2086 mutex_lock(&rcu_barrier_mutex);
2087 init_completion(&rcu_barrier_completion);
2088 /*
2089 * Initialize rcu_barrier_cpu_count to 1, then invoke
2090 * rcu_barrier_func() on each CPU, so that each CPU also has
2091 * incremented rcu_barrier_cpu_count. Only then is it safe to
2092 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2093 * might complete its grace period before all of the other CPUs
2094 * did their increment, causing this function to return too
2095 * early. Note that on_each_cpu() disables irqs, which prevents
2096 * any CPUs from coming online or going offline until each online
2097 * CPU has queued its RCU-barrier callback.
2098 */
2099 atomic_set(&rcu_barrier_cpu_count, 1);
2100 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2101 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2102 complete(&rcu_barrier_completion);
2103 wait_for_completion(&rcu_barrier_completion);
2104 mutex_unlock(&rcu_barrier_mutex);
2105 }
2106
2107 /**
2108 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2109 */
2110 void rcu_barrier_bh(void)
2111 {
2112 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2113 }
2114 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2115
2116 /**
2117 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2118 */
2119 void rcu_barrier_sched(void)
2120 {
2121 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2122 }
2123 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2124
2125 /*
2126 * Do boot-time initialization of a CPU's per-CPU RCU data.
2127 */
2128 static void __init
2129 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2130 {
2131 unsigned long flags;
2132 int i;
2133 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2134 struct rcu_node *rnp = rcu_get_root(rsp);
2135
2136 /* Set up local state, ensuring consistent view of global state. */
2137 raw_spin_lock_irqsave(&rnp->lock, flags);
2138 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2139 rdp->nxtlist = NULL;
2140 for (i = 0; i < RCU_NEXT_SIZE; i++)
2141 rdp->nxttail[i] = &rdp->nxtlist;
2142 rdp->qlen = 0;
2143 #ifdef CONFIG_NO_HZ
2144 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2145 #endif /* #ifdef CONFIG_NO_HZ */
2146 rdp->cpu = cpu;
2147 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2148 }
2149
2150 /*
2151 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2152 * offline event can be happening at a given time. Note also that we
2153 * can accept some slop in the rsp->completed access due to the fact
2154 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2155 */
2156 static void __cpuinit
2157 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2158 {
2159 unsigned long flags;
2160 unsigned long mask;
2161 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2162 struct rcu_node *rnp = rcu_get_root(rsp);
2163
2164 /* Set up local state, ensuring consistent view of global state. */
2165 raw_spin_lock_irqsave(&rnp->lock, flags);
2166 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
2167 rdp->qs_pending = 1; /* so set up to respond to current GP. */
2168 rdp->beenonline = 1; /* We have now been online. */
2169 rdp->preemptible = preemptible;
2170 rdp->qlen_last_fqs_check = 0;
2171 rdp->n_force_qs_snap = rsp->n_force_qs;
2172 rdp->blimit = blimit;
2173 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2174
2175 /*
2176 * A new grace period might start here. If so, we won't be part
2177 * of it, but that is OK, as we are currently in a quiescent state.
2178 */
2179
2180 /* Exclude any attempts to start a new GP on large systems. */
2181 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2182
2183 /* Add CPU to rcu_node bitmasks. */
2184 rnp = rdp->mynode;
2185 mask = rdp->grpmask;
2186 do {
2187 /* Exclude any attempts to start a new GP on small systems. */
2188 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2189 rnp->qsmaskinit |= mask;
2190 mask = rnp->grpmask;
2191 if (rnp == rdp->mynode) {
2192 rdp->gpnum = rnp->completed; /* if GP in progress... */
2193 rdp->completed = rnp->completed;
2194 rdp->passed_quiesc_completed = rnp->completed - 1;
2195 }
2196 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2197 rnp = rnp->parent;
2198 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2199
2200 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2201 }
2202
2203 static void __cpuinit rcu_online_cpu(int cpu)
2204 {
2205 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2206 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2207 rcu_preempt_init_percpu_data(cpu);
2208 }
2209
2210 static void __cpuinit rcu_online_kthreads(int cpu)
2211 {
2212 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2213 struct rcu_node *rnp = rdp->mynode;
2214
2215 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2216 if (rcu_kthreads_spawnable) {
2217 (void)rcu_spawn_one_cpu_kthread(cpu);
2218 if (rnp->node_kthread_task == NULL)
2219 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2220 }
2221 }
2222
2223 /*
2224 * Handle CPU online/offline notification events.
2225 */
2226 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2227 unsigned long action, void *hcpu)
2228 {
2229 long cpu = (long)hcpu;
2230 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2231 struct rcu_node *rnp = rdp->mynode;
2232
2233 switch (action) {
2234 case CPU_UP_PREPARE:
2235 case CPU_UP_PREPARE_FROZEN:
2236 rcu_online_cpu(cpu);
2237 rcu_online_kthreads(cpu);
2238 break;
2239 case CPU_ONLINE:
2240 case CPU_DOWN_FAILED:
2241 rcu_node_kthread_setaffinity(rnp, -1);
2242 rcu_cpu_kthread_setrt(cpu, 1);
2243 break;
2244 case CPU_DOWN_PREPARE:
2245 rcu_node_kthread_setaffinity(rnp, cpu);
2246 rcu_cpu_kthread_setrt(cpu, 0);
2247 break;
2248 case CPU_DYING:
2249 case CPU_DYING_FROZEN:
2250 /*
2251 * The whole machine is "stopped" except this CPU, so we can
2252 * touch any data without introducing corruption. We send the
2253 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2254 */
2255 rcu_send_cbs_to_online(&rcu_bh_state);
2256 rcu_send_cbs_to_online(&rcu_sched_state);
2257 rcu_preempt_send_cbs_to_online();
2258 break;
2259 case CPU_DEAD:
2260 case CPU_DEAD_FROZEN:
2261 case CPU_UP_CANCELED:
2262 case CPU_UP_CANCELED_FROZEN:
2263 rcu_offline_cpu(cpu);
2264 break;
2265 default:
2266 break;
2267 }
2268 return NOTIFY_OK;
2269 }
2270
2271 /*
2272 * This function is invoked towards the end of the scheduler's initialization
2273 * process. Before this is called, the idle task might contain
2274 * RCU read-side critical sections (during which time, this idle
2275 * task is booting the system). After this function is called, the
2276 * idle tasks are prohibited from containing RCU read-side critical
2277 * sections. This function also enables RCU lockdep checking.
2278 */
2279 void rcu_scheduler_starting(void)
2280 {
2281 WARN_ON(num_online_cpus() != 1);
2282 WARN_ON(nr_context_switches() > 0);
2283 rcu_scheduler_active = 1;
2284 }
2285
2286 /*
2287 * Compute the per-level fanout, either using the exact fanout specified
2288 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2289 */
2290 #ifdef CONFIG_RCU_FANOUT_EXACT
2291 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2292 {
2293 int i;
2294
2295 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2296 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2297 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2298 }
2299 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2300 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2301 {
2302 int ccur;
2303 int cprv;
2304 int i;
2305
2306 cprv = NR_CPUS;
2307 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2308 ccur = rsp->levelcnt[i];
2309 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2310 cprv = ccur;
2311 }
2312 }
2313 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2314
2315 /*
2316 * Helper function for rcu_init() that initializes one rcu_state structure.
2317 */
2318 static void __init rcu_init_one(struct rcu_state *rsp,
2319 struct rcu_data __percpu *rda)
2320 {
2321 static char *buf[] = { "rcu_node_level_0",
2322 "rcu_node_level_1",
2323 "rcu_node_level_2",
2324 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2325 int cpustride = 1;
2326 int i;
2327 int j;
2328 struct rcu_node *rnp;
2329
2330 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2331
2332 /* Initialize the level-tracking arrays. */
2333
2334 for (i = 1; i < NUM_RCU_LVLS; i++)
2335 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2336 rcu_init_levelspread(rsp);
2337
2338 /* Initialize the elements themselves, starting from the leaves. */
2339
2340 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2341 cpustride *= rsp->levelspread[i];
2342 rnp = rsp->level[i];
2343 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2344 raw_spin_lock_init(&rnp->lock);
2345 lockdep_set_class_and_name(&rnp->lock,
2346 &rcu_node_class[i], buf[i]);
2347 rnp->gpnum = 0;
2348 rnp->qsmask = 0;
2349 rnp->qsmaskinit = 0;
2350 rnp->grplo = j * cpustride;
2351 rnp->grphi = (j + 1) * cpustride - 1;
2352 if (rnp->grphi >= NR_CPUS)
2353 rnp->grphi = NR_CPUS - 1;
2354 if (i == 0) {
2355 rnp->grpnum = 0;
2356 rnp->grpmask = 0;
2357 rnp->parent = NULL;
2358 } else {
2359 rnp->grpnum = j % rsp->levelspread[i - 1];
2360 rnp->grpmask = 1UL << rnp->grpnum;
2361 rnp->parent = rsp->level[i - 1] +
2362 j / rsp->levelspread[i - 1];
2363 }
2364 rnp->level = i;
2365 INIT_LIST_HEAD(&rnp->blkd_tasks);
2366 }
2367 }
2368
2369 rsp->rda = rda;
2370 rnp = rsp->level[NUM_RCU_LVLS - 1];
2371 for_each_possible_cpu(i) {
2372 while (i > rnp->grphi)
2373 rnp++;
2374 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2375 rcu_boot_init_percpu_data(i, rsp);
2376 }
2377 }
2378
2379 void __init rcu_init(void)
2380 {
2381 int cpu;
2382
2383 rcu_bootup_announce();
2384 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2385 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2386 __rcu_init_preempt();
2387
2388 /*
2389 * We don't need protection against CPU-hotplug here because
2390 * this is called early in boot, before either interrupts
2391 * or the scheduler are operational.
2392 */
2393 cpu_notifier(rcu_cpu_notify, 0);
2394 for_each_online_cpu(cpu)
2395 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2396 check_cpu_stall_init();
2397 }
2398
2399 #include "rcutree_plugin.h"
This page took 0.108036 seconds and 6 git commands to generate.