rcu: Adjust debugfs tracing for kthread-based quiescent-state forcing
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55
56 #include "rcutree.h"
57 #include <trace/events/rcu.h>
58
59 #include "rcu.h"
60
61 /* Data structures. */
62
63 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
64
65 #define RCU_STATE_INITIALIZER(sname, cr) { \
66 .level = { &sname##_state.node[0] }, \
67 .call = cr, \
68 .fqs_state = RCU_GP_IDLE, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
72 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
73 .orphan_donetail = &sname##_state.orphan_donelist, \
74 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
75 .name = #sname, \
76 }
77
78 struct rcu_state rcu_sched_state =
79 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
80 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81
82 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
83 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84
85 static struct rcu_state *rcu_state;
86 LIST_HEAD(rcu_struct_flavors);
87
88 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
89 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
90 module_param(rcu_fanout_leaf, int, 0);
91 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
92 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
93 NUM_RCU_LVL_0,
94 NUM_RCU_LVL_1,
95 NUM_RCU_LVL_2,
96 NUM_RCU_LVL_3,
97 NUM_RCU_LVL_4,
98 };
99 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
100
101 /*
102 * The rcu_scheduler_active variable transitions from zero to one just
103 * before the first task is spawned. So when this variable is zero, RCU
104 * can assume that there is but one task, allowing RCU to (for example)
105 * optimized synchronize_sched() to a simple barrier(). When this variable
106 * is one, RCU must actually do all the hard work required to detect real
107 * grace periods. This variable is also used to suppress boot-time false
108 * positives from lockdep-RCU error checking.
109 */
110 int rcu_scheduler_active __read_mostly;
111 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
112
113 /*
114 * The rcu_scheduler_fully_active variable transitions from zero to one
115 * during the early_initcall() processing, which is after the scheduler
116 * is capable of creating new tasks. So RCU processing (for example,
117 * creating tasks for RCU priority boosting) must be delayed until after
118 * rcu_scheduler_fully_active transitions from zero to one. We also
119 * currently delay invocation of any RCU callbacks until after this point.
120 *
121 * It might later prove better for people registering RCU callbacks during
122 * early boot to take responsibility for these callbacks, but one step at
123 * a time.
124 */
125 static int rcu_scheduler_fully_active __read_mostly;
126
127 #ifdef CONFIG_RCU_BOOST
128
129 /*
130 * Control variables for per-CPU and per-rcu_node kthreads. These
131 * handle all flavors of RCU.
132 */
133 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
134 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
135 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
136 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
137 DEFINE_PER_CPU(char, rcu_cpu_has_work);
138
139 #endif /* #ifdef CONFIG_RCU_BOOST */
140
141 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
142 static void invoke_rcu_core(void);
143 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
144
145 /*
146 * Track the rcutorture test sequence number and the update version
147 * number within a given test. The rcutorture_testseq is incremented
148 * on every rcutorture module load and unload, so has an odd value
149 * when a test is running. The rcutorture_vernum is set to zero
150 * when rcutorture starts and is incremented on each rcutorture update.
151 * These variables enable correlating rcutorture output with the
152 * RCU tracing information.
153 */
154 unsigned long rcutorture_testseq;
155 unsigned long rcutorture_vernum;
156
157 /*
158 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
159 * permit this function to be invoked without holding the root rcu_node
160 * structure's ->lock, but of course results can be subject to change.
161 */
162 static int rcu_gp_in_progress(struct rcu_state *rsp)
163 {
164 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
165 }
166
167 /*
168 * Note a quiescent state. Because we do not need to know
169 * how many quiescent states passed, just if there was at least
170 * one since the start of the grace period, this just sets a flag.
171 * The caller must have disabled preemption.
172 */
173 void rcu_sched_qs(int cpu)
174 {
175 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 void rcu_bh_qs(int cpu)
185 {
186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187
188 rdp->passed_quiesce_gpnum = rdp->gpnum;
189 barrier();
190 if (rdp->passed_quiesce == 0)
191 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
192 rdp->passed_quiesce = 1;
193 }
194
195 /*
196 * Note a context switch. This is a quiescent state for RCU-sched,
197 * and requires special handling for preemptible RCU.
198 * The caller must have disabled preemption.
199 */
200 void rcu_note_context_switch(int cpu)
201 {
202 trace_rcu_utilization("Start context switch");
203 rcu_sched_qs(cpu);
204 rcu_preempt_note_context_switch(cpu);
205 trace_rcu_utilization("End context switch");
206 }
207 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
208
209 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
210 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
211 .dynticks = ATOMIC_INIT(1),
212 };
213
214 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
215 static int qhimark = 10000; /* If this many pending, ignore blimit. */
216 static int qlowmark = 100; /* Once only this many pending, use blimit. */
217
218 module_param(blimit, int, 0);
219 module_param(qhimark, int, 0);
220 module_param(qlowmark, int, 0);
221
222 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
223 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
224
225 module_param(rcu_cpu_stall_suppress, int, 0644);
226 module_param(rcu_cpu_stall_timeout, int, 0644);
227
228 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
229 static void force_quiescent_state(struct rcu_state *rsp);
230 static int rcu_pending(int cpu);
231
232 /*
233 * Return the number of RCU-sched batches processed thus far for debug & stats.
234 */
235 long rcu_batches_completed_sched(void)
236 {
237 return rcu_sched_state.completed;
238 }
239 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
240
241 /*
242 * Return the number of RCU BH batches processed thus far for debug & stats.
243 */
244 long rcu_batches_completed_bh(void)
245 {
246 return rcu_bh_state.completed;
247 }
248 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
249
250 /*
251 * Force a quiescent state for RCU BH.
252 */
253 void rcu_bh_force_quiescent_state(void)
254 {
255 force_quiescent_state(&rcu_bh_state);
256 }
257 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
258
259 /*
260 * Record the number of times rcutorture tests have been initiated and
261 * terminated. This information allows the debugfs tracing stats to be
262 * correlated to the rcutorture messages, even when the rcutorture module
263 * is being repeatedly loaded and unloaded. In other words, we cannot
264 * store this state in rcutorture itself.
265 */
266 void rcutorture_record_test_transition(void)
267 {
268 rcutorture_testseq++;
269 rcutorture_vernum = 0;
270 }
271 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
272
273 /*
274 * Record the number of writer passes through the current rcutorture test.
275 * This is also used to correlate debugfs tracing stats with the rcutorture
276 * messages.
277 */
278 void rcutorture_record_progress(unsigned long vernum)
279 {
280 rcutorture_vernum++;
281 }
282 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
283
284 /*
285 * Force a quiescent state for RCU-sched.
286 */
287 void rcu_sched_force_quiescent_state(void)
288 {
289 force_quiescent_state(&rcu_sched_state);
290 }
291 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
292
293 /*
294 * Does the CPU have callbacks ready to be invoked?
295 */
296 static int
297 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
298 {
299 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
300 }
301
302 /*
303 * Does the current CPU require a yet-as-unscheduled grace period?
304 */
305 static int
306 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
307 {
308 return *rdp->nxttail[RCU_DONE_TAIL +
309 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
310 !rcu_gp_in_progress(rsp);
311 }
312
313 /*
314 * Return the root node of the specified rcu_state structure.
315 */
316 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
317 {
318 return &rsp->node[0];
319 }
320
321 /*
322 * If the specified CPU is offline, tell the caller that it is in
323 * a quiescent state. Otherwise, whack it with a reschedule IPI.
324 * Grace periods can end up waiting on an offline CPU when that
325 * CPU is in the process of coming online -- it will be added to the
326 * rcu_node bitmasks before it actually makes it online. The same thing
327 * can happen while a CPU is in the process of coming online. Because this
328 * race is quite rare, we check for it after detecting that the grace
329 * period has been delayed rather than checking each and every CPU
330 * each and every time we start a new grace period.
331 */
332 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
333 {
334 /*
335 * If the CPU is offline for more than a jiffy, it is in a quiescent
336 * state. We can trust its state not to change because interrupts
337 * are disabled. The reason for the jiffy's worth of slack is to
338 * handle CPUs initializing on the way up and finding their way
339 * to the idle loop on the way down.
340 */
341 if (cpu_is_offline(rdp->cpu) &&
342 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
343 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
344 rdp->offline_fqs++;
345 return 1;
346 }
347 return 0;
348 }
349
350 /*
351 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
352 *
353 * If the new value of the ->dynticks_nesting counter now is zero,
354 * we really have entered idle, and must do the appropriate accounting.
355 * The caller must have disabled interrupts.
356 */
357 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
358 {
359 trace_rcu_dyntick("Start", oldval, 0);
360 if (!is_idle_task(current)) {
361 struct task_struct *idle = idle_task(smp_processor_id());
362
363 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
364 ftrace_dump(DUMP_ORIG);
365 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
366 current->pid, current->comm,
367 idle->pid, idle->comm); /* must be idle task! */
368 }
369 rcu_prepare_for_idle(smp_processor_id());
370 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
371 smp_mb__before_atomic_inc(); /* See above. */
372 atomic_inc(&rdtp->dynticks);
373 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
374 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
375
376 /*
377 * The idle task is not permitted to enter the idle loop while
378 * in an RCU read-side critical section.
379 */
380 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
381 "Illegal idle entry in RCU read-side critical section.");
382 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
383 "Illegal idle entry in RCU-bh read-side critical section.");
384 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
385 "Illegal idle entry in RCU-sched read-side critical section.");
386 }
387
388 /**
389 * rcu_idle_enter - inform RCU that current CPU is entering idle
390 *
391 * Enter idle mode, in other words, -leave- the mode in which RCU
392 * read-side critical sections can occur. (Though RCU read-side
393 * critical sections can occur in irq handlers in idle, a possibility
394 * handled by irq_enter() and irq_exit().)
395 *
396 * We crowbar the ->dynticks_nesting field to zero to allow for
397 * the possibility of usermode upcalls having messed up our count
398 * of interrupt nesting level during the prior busy period.
399 */
400 void rcu_idle_enter(void)
401 {
402 unsigned long flags;
403 long long oldval;
404 struct rcu_dynticks *rdtp;
405
406 local_irq_save(flags);
407 rdtp = &__get_cpu_var(rcu_dynticks);
408 oldval = rdtp->dynticks_nesting;
409 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
410 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
411 rdtp->dynticks_nesting = 0;
412 else
413 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
414 rcu_idle_enter_common(rdtp, oldval);
415 local_irq_restore(flags);
416 }
417 EXPORT_SYMBOL_GPL(rcu_idle_enter);
418
419 /**
420 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
421 *
422 * Exit from an interrupt handler, which might possibly result in entering
423 * idle mode, in other words, leaving the mode in which read-side critical
424 * sections can occur.
425 *
426 * This code assumes that the idle loop never does anything that might
427 * result in unbalanced calls to irq_enter() and irq_exit(). If your
428 * architecture violates this assumption, RCU will give you what you
429 * deserve, good and hard. But very infrequently and irreproducibly.
430 *
431 * Use things like work queues to work around this limitation.
432 *
433 * You have been warned.
434 */
435 void rcu_irq_exit(void)
436 {
437 unsigned long flags;
438 long long oldval;
439 struct rcu_dynticks *rdtp;
440
441 local_irq_save(flags);
442 rdtp = &__get_cpu_var(rcu_dynticks);
443 oldval = rdtp->dynticks_nesting;
444 rdtp->dynticks_nesting--;
445 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
446 if (rdtp->dynticks_nesting)
447 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
448 else
449 rcu_idle_enter_common(rdtp, oldval);
450 local_irq_restore(flags);
451 }
452
453 /*
454 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
455 *
456 * If the new value of the ->dynticks_nesting counter was previously zero,
457 * we really have exited idle, and must do the appropriate accounting.
458 * The caller must have disabled interrupts.
459 */
460 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
461 {
462 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
463 atomic_inc(&rdtp->dynticks);
464 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
465 smp_mb__after_atomic_inc(); /* See above. */
466 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
467 rcu_cleanup_after_idle(smp_processor_id());
468 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
469 if (!is_idle_task(current)) {
470 struct task_struct *idle = idle_task(smp_processor_id());
471
472 trace_rcu_dyntick("Error on exit: not idle task",
473 oldval, rdtp->dynticks_nesting);
474 ftrace_dump(DUMP_ORIG);
475 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
476 current->pid, current->comm,
477 idle->pid, idle->comm); /* must be idle task! */
478 }
479 }
480
481 /**
482 * rcu_idle_exit - inform RCU that current CPU is leaving idle
483 *
484 * Exit idle mode, in other words, -enter- the mode in which RCU
485 * read-side critical sections can occur.
486 *
487 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
488 * allow for the possibility of usermode upcalls messing up our count
489 * of interrupt nesting level during the busy period that is just
490 * now starting.
491 */
492 void rcu_idle_exit(void)
493 {
494 unsigned long flags;
495 struct rcu_dynticks *rdtp;
496 long long oldval;
497
498 local_irq_save(flags);
499 rdtp = &__get_cpu_var(rcu_dynticks);
500 oldval = rdtp->dynticks_nesting;
501 WARN_ON_ONCE(oldval < 0);
502 if (oldval & DYNTICK_TASK_NEST_MASK)
503 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
504 else
505 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
506 rcu_idle_exit_common(rdtp, oldval);
507 local_irq_restore(flags);
508 }
509 EXPORT_SYMBOL_GPL(rcu_idle_exit);
510
511 /**
512 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
513 *
514 * Enter an interrupt handler, which might possibly result in exiting
515 * idle mode, in other words, entering the mode in which read-side critical
516 * sections can occur.
517 *
518 * Note that the Linux kernel is fully capable of entering an interrupt
519 * handler that it never exits, for example when doing upcalls to
520 * user mode! This code assumes that the idle loop never does upcalls to
521 * user mode. If your architecture does do upcalls from the idle loop (or
522 * does anything else that results in unbalanced calls to the irq_enter()
523 * and irq_exit() functions), RCU will give you what you deserve, good
524 * and hard. But very infrequently and irreproducibly.
525 *
526 * Use things like work queues to work around this limitation.
527 *
528 * You have been warned.
529 */
530 void rcu_irq_enter(void)
531 {
532 unsigned long flags;
533 struct rcu_dynticks *rdtp;
534 long long oldval;
535
536 local_irq_save(flags);
537 rdtp = &__get_cpu_var(rcu_dynticks);
538 oldval = rdtp->dynticks_nesting;
539 rdtp->dynticks_nesting++;
540 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
541 if (oldval)
542 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
543 else
544 rcu_idle_exit_common(rdtp, oldval);
545 local_irq_restore(flags);
546 }
547
548 /**
549 * rcu_nmi_enter - inform RCU of entry to NMI context
550 *
551 * If the CPU was idle with dynamic ticks active, and there is no
552 * irq handler running, this updates rdtp->dynticks_nmi to let the
553 * RCU grace-period handling know that the CPU is active.
554 */
555 void rcu_nmi_enter(void)
556 {
557 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
558
559 if (rdtp->dynticks_nmi_nesting == 0 &&
560 (atomic_read(&rdtp->dynticks) & 0x1))
561 return;
562 rdtp->dynticks_nmi_nesting++;
563 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
564 atomic_inc(&rdtp->dynticks);
565 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
566 smp_mb__after_atomic_inc(); /* See above. */
567 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
568 }
569
570 /**
571 * rcu_nmi_exit - inform RCU of exit from NMI context
572 *
573 * If the CPU was idle with dynamic ticks active, and there is no
574 * irq handler running, this updates rdtp->dynticks_nmi to let the
575 * RCU grace-period handling know that the CPU is no longer active.
576 */
577 void rcu_nmi_exit(void)
578 {
579 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
580
581 if (rdtp->dynticks_nmi_nesting == 0 ||
582 --rdtp->dynticks_nmi_nesting != 0)
583 return;
584 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
585 smp_mb__before_atomic_inc(); /* See above. */
586 atomic_inc(&rdtp->dynticks);
587 smp_mb__after_atomic_inc(); /* Force delay to next write. */
588 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
589 }
590
591 /**
592 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
593 *
594 * If the current CPU is in its idle loop and is neither in an interrupt
595 * or NMI handler, return true.
596 */
597 int rcu_is_cpu_idle(void)
598 {
599 int ret;
600
601 preempt_disable();
602 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
603 preempt_enable();
604 return ret;
605 }
606 EXPORT_SYMBOL(rcu_is_cpu_idle);
607
608 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
609
610 /*
611 * Is the current CPU online? Disable preemption to avoid false positives
612 * that could otherwise happen due to the current CPU number being sampled,
613 * this task being preempted, its old CPU being taken offline, resuming
614 * on some other CPU, then determining that its old CPU is now offline.
615 * It is OK to use RCU on an offline processor during initial boot, hence
616 * the check for rcu_scheduler_fully_active. Note also that it is OK
617 * for a CPU coming online to use RCU for one jiffy prior to marking itself
618 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
619 * offline to continue to use RCU for one jiffy after marking itself
620 * offline in the cpu_online_mask. This leniency is necessary given the
621 * non-atomic nature of the online and offline processing, for example,
622 * the fact that a CPU enters the scheduler after completing the CPU_DYING
623 * notifiers.
624 *
625 * This is also why RCU internally marks CPUs online during the
626 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
627 *
628 * Disable checking if in an NMI handler because we cannot safely report
629 * errors from NMI handlers anyway.
630 */
631 bool rcu_lockdep_current_cpu_online(void)
632 {
633 struct rcu_data *rdp;
634 struct rcu_node *rnp;
635 bool ret;
636
637 if (in_nmi())
638 return 1;
639 preempt_disable();
640 rdp = &__get_cpu_var(rcu_sched_data);
641 rnp = rdp->mynode;
642 ret = (rdp->grpmask & rnp->qsmaskinit) ||
643 !rcu_scheduler_fully_active;
644 preempt_enable();
645 return ret;
646 }
647 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
648
649 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
650
651 /**
652 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
653 *
654 * If the current CPU is idle or running at a first-level (not nested)
655 * interrupt from idle, return true. The caller must have at least
656 * disabled preemption.
657 */
658 int rcu_is_cpu_rrupt_from_idle(void)
659 {
660 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
661 }
662
663 /*
664 * Snapshot the specified CPU's dynticks counter so that we can later
665 * credit them with an implicit quiescent state. Return 1 if this CPU
666 * is in dynticks idle mode, which is an extended quiescent state.
667 */
668 static int dyntick_save_progress_counter(struct rcu_data *rdp)
669 {
670 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
671 return (rdp->dynticks_snap & 0x1) == 0;
672 }
673
674 /*
675 * Return true if the specified CPU has passed through a quiescent
676 * state by virtue of being in or having passed through an dynticks
677 * idle state since the last call to dyntick_save_progress_counter()
678 * for this same CPU.
679 */
680 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
681 {
682 unsigned int curr;
683 unsigned int snap;
684
685 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
686 snap = (unsigned int)rdp->dynticks_snap;
687
688 /*
689 * If the CPU passed through or entered a dynticks idle phase with
690 * no active irq/NMI handlers, then we can safely pretend that the CPU
691 * already acknowledged the request to pass through a quiescent
692 * state. Either way, that CPU cannot possibly be in an RCU
693 * read-side critical section that started before the beginning
694 * of the current RCU grace period.
695 */
696 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
697 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
698 rdp->dynticks_fqs++;
699 return 1;
700 }
701
702 /* Go check for the CPU being offline. */
703 return rcu_implicit_offline_qs(rdp);
704 }
705
706 static int jiffies_till_stall_check(void)
707 {
708 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
709
710 /*
711 * Limit check must be consistent with the Kconfig limits
712 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
713 */
714 if (till_stall_check < 3) {
715 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
716 till_stall_check = 3;
717 } else if (till_stall_check > 300) {
718 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
719 till_stall_check = 300;
720 }
721 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
722 }
723
724 static void record_gp_stall_check_time(struct rcu_state *rsp)
725 {
726 rsp->gp_start = jiffies;
727 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
728 }
729
730 static void print_other_cpu_stall(struct rcu_state *rsp)
731 {
732 int cpu;
733 long delta;
734 unsigned long flags;
735 int ndetected = 0;
736 struct rcu_node *rnp = rcu_get_root(rsp);
737
738 /* Only let one CPU complain about others per time interval. */
739
740 raw_spin_lock_irqsave(&rnp->lock, flags);
741 delta = jiffies - rsp->jiffies_stall;
742 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
743 raw_spin_unlock_irqrestore(&rnp->lock, flags);
744 return;
745 }
746 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
747 raw_spin_unlock_irqrestore(&rnp->lock, flags);
748
749 /*
750 * OK, time to rat on our buddy...
751 * See Documentation/RCU/stallwarn.txt for info on how to debug
752 * RCU CPU stall warnings.
753 */
754 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
755 rsp->name);
756 print_cpu_stall_info_begin();
757 rcu_for_each_leaf_node(rsp, rnp) {
758 raw_spin_lock_irqsave(&rnp->lock, flags);
759 ndetected += rcu_print_task_stall(rnp);
760 raw_spin_unlock_irqrestore(&rnp->lock, flags);
761 if (rnp->qsmask == 0)
762 continue;
763 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
764 if (rnp->qsmask & (1UL << cpu)) {
765 print_cpu_stall_info(rsp, rnp->grplo + cpu);
766 ndetected++;
767 }
768 }
769
770 /*
771 * Now rat on any tasks that got kicked up to the root rcu_node
772 * due to CPU offlining.
773 */
774 rnp = rcu_get_root(rsp);
775 raw_spin_lock_irqsave(&rnp->lock, flags);
776 ndetected += rcu_print_task_stall(rnp);
777 raw_spin_unlock_irqrestore(&rnp->lock, flags);
778
779 print_cpu_stall_info_end();
780 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
781 smp_processor_id(), (long)(jiffies - rsp->gp_start));
782 if (ndetected == 0)
783 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
784 else if (!trigger_all_cpu_backtrace())
785 dump_stack();
786
787 /* Complain about tasks blocking the grace period. */
788
789 rcu_print_detail_task_stall(rsp);
790
791 force_quiescent_state(rsp); /* Kick them all. */
792 }
793
794 static void print_cpu_stall(struct rcu_state *rsp)
795 {
796 unsigned long flags;
797 struct rcu_node *rnp = rcu_get_root(rsp);
798
799 /*
800 * OK, time to rat on ourselves...
801 * See Documentation/RCU/stallwarn.txt for info on how to debug
802 * RCU CPU stall warnings.
803 */
804 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
805 print_cpu_stall_info_begin();
806 print_cpu_stall_info(rsp, smp_processor_id());
807 print_cpu_stall_info_end();
808 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
809 if (!trigger_all_cpu_backtrace())
810 dump_stack();
811
812 raw_spin_lock_irqsave(&rnp->lock, flags);
813 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
814 rsp->jiffies_stall = jiffies +
815 3 * jiffies_till_stall_check() + 3;
816 raw_spin_unlock_irqrestore(&rnp->lock, flags);
817
818 set_need_resched(); /* kick ourselves to get things going. */
819 }
820
821 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
822 {
823 unsigned long j;
824 unsigned long js;
825 struct rcu_node *rnp;
826
827 if (rcu_cpu_stall_suppress)
828 return;
829 j = ACCESS_ONCE(jiffies);
830 js = ACCESS_ONCE(rsp->jiffies_stall);
831 rnp = rdp->mynode;
832 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
833
834 /* We haven't checked in, so go dump stack. */
835 print_cpu_stall(rsp);
836
837 } else if (rcu_gp_in_progress(rsp) &&
838 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
839
840 /* They had a few time units to dump stack, so complain. */
841 print_other_cpu_stall(rsp);
842 }
843 }
844
845 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
846 {
847 rcu_cpu_stall_suppress = 1;
848 return NOTIFY_DONE;
849 }
850
851 /**
852 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
853 *
854 * Set the stall-warning timeout way off into the future, thus preventing
855 * any RCU CPU stall-warning messages from appearing in the current set of
856 * RCU grace periods.
857 *
858 * The caller must disable hard irqs.
859 */
860 void rcu_cpu_stall_reset(void)
861 {
862 struct rcu_state *rsp;
863
864 for_each_rcu_flavor(rsp)
865 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
866 }
867
868 static struct notifier_block rcu_panic_block = {
869 .notifier_call = rcu_panic,
870 };
871
872 static void __init check_cpu_stall_init(void)
873 {
874 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
875 }
876
877 /*
878 * Update CPU-local rcu_data state to record the newly noticed grace period.
879 * This is used both when we started the grace period and when we notice
880 * that someone else started the grace period. The caller must hold the
881 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
882 * and must have irqs disabled.
883 */
884 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
885 {
886 if (rdp->gpnum != rnp->gpnum) {
887 /*
888 * If the current grace period is waiting for this CPU,
889 * set up to detect a quiescent state, otherwise don't
890 * go looking for one.
891 */
892 rdp->gpnum = rnp->gpnum;
893 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
894 if (rnp->qsmask & rdp->grpmask) {
895 rdp->qs_pending = 1;
896 rdp->passed_quiesce = 0;
897 } else {
898 rdp->qs_pending = 0;
899 }
900 zero_cpu_stall_ticks(rdp);
901 }
902 }
903
904 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
905 {
906 unsigned long flags;
907 struct rcu_node *rnp;
908
909 local_irq_save(flags);
910 rnp = rdp->mynode;
911 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
912 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
913 local_irq_restore(flags);
914 return;
915 }
916 __note_new_gpnum(rsp, rnp, rdp);
917 raw_spin_unlock_irqrestore(&rnp->lock, flags);
918 }
919
920 /*
921 * Did someone else start a new RCU grace period start since we last
922 * checked? Update local state appropriately if so. Must be called
923 * on the CPU corresponding to rdp.
924 */
925 static int
926 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
927 {
928 unsigned long flags;
929 int ret = 0;
930
931 local_irq_save(flags);
932 if (rdp->gpnum != rsp->gpnum) {
933 note_new_gpnum(rsp, rdp);
934 ret = 1;
935 }
936 local_irq_restore(flags);
937 return ret;
938 }
939
940 /*
941 * Initialize the specified rcu_data structure's callback list to empty.
942 */
943 static void init_callback_list(struct rcu_data *rdp)
944 {
945 int i;
946
947 rdp->nxtlist = NULL;
948 for (i = 0; i < RCU_NEXT_SIZE; i++)
949 rdp->nxttail[i] = &rdp->nxtlist;
950 }
951
952 /*
953 * Advance this CPU's callbacks, but only if the current grace period
954 * has ended. This may be called only from the CPU to whom the rdp
955 * belongs. In addition, the corresponding leaf rcu_node structure's
956 * ->lock must be held by the caller, with irqs disabled.
957 */
958 static void
959 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
960 {
961 /* Did another grace period end? */
962 if (rdp->completed != rnp->completed) {
963
964 /* Advance callbacks. No harm if list empty. */
965 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
966 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
967 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
968
969 /* Remember that we saw this grace-period completion. */
970 rdp->completed = rnp->completed;
971 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
972
973 /*
974 * If we were in an extended quiescent state, we may have
975 * missed some grace periods that others CPUs handled on
976 * our behalf. Catch up with this state to avoid noting
977 * spurious new grace periods. If another grace period
978 * has started, then rnp->gpnum will have advanced, so
979 * we will detect this later on.
980 */
981 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
982 rdp->gpnum = rdp->completed;
983
984 /*
985 * If RCU does not need a quiescent state from this CPU,
986 * then make sure that this CPU doesn't go looking for one.
987 */
988 if ((rnp->qsmask & rdp->grpmask) == 0)
989 rdp->qs_pending = 0;
990 }
991 }
992
993 /*
994 * Advance this CPU's callbacks, but only if the current grace period
995 * has ended. This may be called only from the CPU to whom the rdp
996 * belongs.
997 */
998 static void
999 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1000 {
1001 unsigned long flags;
1002 struct rcu_node *rnp;
1003
1004 local_irq_save(flags);
1005 rnp = rdp->mynode;
1006 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1007 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1008 local_irq_restore(flags);
1009 return;
1010 }
1011 __rcu_process_gp_end(rsp, rnp, rdp);
1012 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1013 }
1014
1015 /*
1016 * Do per-CPU grace-period initialization for running CPU. The caller
1017 * must hold the lock of the leaf rcu_node structure corresponding to
1018 * this CPU.
1019 */
1020 static void
1021 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1022 {
1023 /* Prior grace period ended, so advance callbacks for current CPU. */
1024 __rcu_process_gp_end(rsp, rnp, rdp);
1025
1026 /* Set state so that this CPU will detect the next quiescent state. */
1027 __note_new_gpnum(rsp, rnp, rdp);
1028 }
1029
1030 /*
1031 * Initialize a new grace period.
1032 */
1033 static int rcu_gp_init(struct rcu_state *rsp)
1034 {
1035 struct rcu_data *rdp;
1036 struct rcu_node *rnp = rcu_get_root(rsp);
1037
1038 raw_spin_lock_irq(&rnp->lock);
1039 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1040
1041 if (rcu_gp_in_progress(rsp)) {
1042 /* Grace period already in progress, don't start another. */
1043 raw_spin_unlock_irq(&rnp->lock);
1044 return 0;
1045 }
1046
1047 /* Advance to a new grace period and initialize state. */
1048 rsp->gpnum++;
1049 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1050 record_gp_stall_check_time(rsp);
1051 raw_spin_unlock_irq(&rnp->lock);
1052
1053 /* Exclude any concurrent CPU-hotplug operations. */
1054 get_online_cpus();
1055
1056 /*
1057 * Set the quiescent-state-needed bits in all the rcu_node
1058 * structures for all currently online CPUs in breadth-first order,
1059 * starting from the root rcu_node structure, relying on the layout
1060 * of the tree within the rsp->node[] array. Note that other CPUs
1061 * will access only the leaves of the hierarchy, thus seeing that no
1062 * grace period is in progress, at least until the corresponding
1063 * leaf node has been initialized. In addition, we have excluded
1064 * CPU-hotplug operations.
1065 *
1066 * The grace period cannot complete until the initialization
1067 * process finishes, because this kthread handles both.
1068 */
1069 rcu_for_each_node_breadth_first(rsp, rnp) {
1070 raw_spin_lock_irq(&rnp->lock);
1071 rdp = this_cpu_ptr(rsp->rda);
1072 rcu_preempt_check_blocked_tasks(rnp);
1073 rnp->qsmask = rnp->qsmaskinit;
1074 rnp->gpnum = rsp->gpnum;
1075 rnp->completed = rsp->completed;
1076 if (rnp == rdp->mynode)
1077 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1078 rcu_preempt_boost_start_gp(rnp);
1079 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1080 rnp->level, rnp->grplo,
1081 rnp->grphi, rnp->qsmask);
1082 raw_spin_unlock_irq(&rnp->lock);
1083 cond_resched();
1084 }
1085
1086 put_online_cpus();
1087 return 1;
1088 }
1089
1090 /*
1091 * Do one round of quiescent-state forcing.
1092 */
1093 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1094 {
1095 int fqs_state = fqs_state_in;
1096 struct rcu_node *rnp = rcu_get_root(rsp);
1097
1098 rsp->n_force_qs++;
1099 if (fqs_state == RCU_SAVE_DYNTICK) {
1100 /* Collect dyntick-idle snapshots. */
1101 force_qs_rnp(rsp, dyntick_save_progress_counter);
1102 fqs_state = RCU_FORCE_QS;
1103 } else {
1104 /* Handle dyntick-idle and offline CPUs. */
1105 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1106 }
1107 /* Clear flag to prevent immediate re-entry. */
1108 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1109 raw_spin_lock_irq(&rnp->lock);
1110 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1111 raw_spin_unlock_irq(&rnp->lock);
1112 }
1113 return fqs_state;
1114 }
1115
1116 /*
1117 * Clean up after the old grace period.
1118 */
1119 static void rcu_gp_cleanup(struct rcu_state *rsp)
1120 {
1121 unsigned long gp_duration;
1122 struct rcu_data *rdp;
1123 struct rcu_node *rnp = rcu_get_root(rsp);
1124
1125 raw_spin_lock_irq(&rnp->lock);
1126 gp_duration = jiffies - rsp->gp_start;
1127 if (gp_duration > rsp->gp_max)
1128 rsp->gp_max = gp_duration;
1129
1130 /*
1131 * We know the grace period is complete, but to everyone else
1132 * it appears to still be ongoing. But it is also the case
1133 * that to everyone else it looks like there is nothing that
1134 * they can do to advance the grace period. It is therefore
1135 * safe for us to drop the lock in order to mark the grace
1136 * period as completed in all of the rcu_node structures.
1137 *
1138 * But if this CPU needs another grace period, it will take
1139 * care of this while initializing the next grace period.
1140 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1141 * because the callbacks have not yet been advanced: Those
1142 * callbacks are waiting on the grace period that just now
1143 * completed.
1144 */
1145 rdp = this_cpu_ptr(rsp->rda);
1146 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1147 raw_spin_unlock_irq(&rnp->lock);
1148
1149 /*
1150 * Propagate new ->completed value to rcu_node
1151 * structures so that other CPUs don't have to
1152 * wait until the start of the next grace period
1153 * to process their callbacks.
1154 */
1155 rcu_for_each_node_breadth_first(rsp, rnp) {
1156 raw_spin_lock_irq(&rnp->lock);
1157 rnp->completed = rsp->gpnum;
1158 raw_spin_unlock_irq(&rnp->lock);
1159 cond_resched();
1160 }
1161 rnp = rcu_get_root(rsp);
1162 raw_spin_lock_irq(&rnp->lock);
1163 }
1164
1165 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1166 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1167 rsp->fqs_state = RCU_GP_IDLE;
1168 if (cpu_needs_another_gp(rsp, rdp))
1169 rsp->gp_flags = 1;
1170 raw_spin_unlock_irq(&rnp->lock);
1171 }
1172
1173 /*
1174 * Body of kthread that handles grace periods.
1175 */
1176 static int __noreturn rcu_gp_kthread(void *arg)
1177 {
1178 int fqs_state;
1179 int ret;
1180 struct rcu_state *rsp = arg;
1181 struct rcu_node *rnp = rcu_get_root(rsp);
1182
1183 for (;;) {
1184
1185 /* Handle grace-period start. */
1186 for (;;) {
1187 wait_event_interruptible(rsp->gp_wq,
1188 rsp->gp_flags &
1189 RCU_GP_FLAG_INIT);
1190 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1191 rcu_gp_init(rsp))
1192 break;
1193 cond_resched();
1194 flush_signals(current);
1195 }
1196
1197 /* Handle quiescent-state forcing. */
1198 fqs_state = RCU_SAVE_DYNTICK;
1199 for (;;) {
1200 rsp->jiffies_force_qs = jiffies +
1201 RCU_JIFFIES_TILL_FORCE_QS;
1202 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1203 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1204 (!ACCESS_ONCE(rnp->qsmask) &&
1205 !rcu_preempt_blocked_readers_cgp(rnp)),
1206 RCU_JIFFIES_TILL_FORCE_QS);
1207 /* If grace period done, leave loop. */
1208 if (!ACCESS_ONCE(rnp->qsmask) &&
1209 !rcu_preempt_blocked_readers_cgp(rnp))
1210 break;
1211 /* If time for quiescent-state forcing, do it. */
1212 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1213 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1214 cond_resched();
1215 } else {
1216 /* Deal with stray signal. */
1217 cond_resched();
1218 flush_signals(current);
1219 }
1220 }
1221
1222 /* Handle grace-period end. */
1223 rcu_gp_cleanup(rsp);
1224 }
1225 }
1226
1227 /*
1228 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1229 * in preparation for detecting the next grace period. The caller must hold
1230 * the root node's ->lock, which is released before return. Hard irqs must
1231 * be disabled.
1232 *
1233 * Note that it is legal for a dying CPU (which is marked as offline) to
1234 * invoke this function. This can happen when the dying CPU reports its
1235 * quiescent state.
1236 */
1237 static void
1238 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1239 __releases(rcu_get_root(rsp)->lock)
1240 {
1241 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1242 struct rcu_node *rnp = rcu_get_root(rsp);
1243
1244 if (!rsp->gp_kthread ||
1245 !cpu_needs_another_gp(rsp, rdp)) {
1246 /*
1247 * Either we have not yet spawned the grace-period
1248 * task or this CPU does not need another grace period.
1249 * Either way, don't start a new grace period.
1250 */
1251 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1252 return;
1253 }
1254
1255 rsp->gp_flags = RCU_GP_FLAG_INIT;
1256 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1257 wake_up(&rsp->gp_wq);
1258 }
1259
1260 /*
1261 * Report a full set of quiescent states to the specified rcu_state
1262 * data structure. This involves cleaning up after the prior grace
1263 * period and letting rcu_start_gp() start up the next grace period
1264 * if one is needed. Note that the caller must hold rnp->lock, as
1265 * required by rcu_start_gp(), which will release it.
1266 */
1267 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1268 __releases(rcu_get_root(rsp)->lock)
1269 {
1270 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1271 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1272 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1273 }
1274
1275 /*
1276 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1277 * Allows quiescent states for a group of CPUs to be reported at one go
1278 * to the specified rcu_node structure, though all the CPUs in the group
1279 * must be represented by the same rcu_node structure (which need not be
1280 * a leaf rcu_node structure, though it often will be). That structure's
1281 * lock must be held upon entry, and it is released before return.
1282 */
1283 static void
1284 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1285 struct rcu_node *rnp, unsigned long flags)
1286 __releases(rnp->lock)
1287 {
1288 struct rcu_node *rnp_c;
1289
1290 /* Walk up the rcu_node hierarchy. */
1291 for (;;) {
1292 if (!(rnp->qsmask & mask)) {
1293
1294 /* Our bit has already been cleared, so done. */
1295 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1296 return;
1297 }
1298 rnp->qsmask &= ~mask;
1299 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1300 mask, rnp->qsmask, rnp->level,
1301 rnp->grplo, rnp->grphi,
1302 !!rnp->gp_tasks);
1303 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304
1305 /* Other bits still set at this level, so done. */
1306 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1307 return;
1308 }
1309 mask = rnp->grpmask;
1310 if (rnp->parent == NULL) {
1311
1312 /* No more levels. Exit loop holding root lock. */
1313
1314 break;
1315 }
1316 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1317 rnp_c = rnp;
1318 rnp = rnp->parent;
1319 raw_spin_lock_irqsave(&rnp->lock, flags);
1320 WARN_ON_ONCE(rnp_c->qsmask);
1321 }
1322
1323 /*
1324 * Get here if we are the last CPU to pass through a quiescent
1325 * state for this grace period. Invoke rcu_report_qs_rsp()
1326 * to clean up and start the next grace period if one is needed.
1327 */
1328 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1329 }
1330
1331 /*
1332 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1333 * structure. This must be either called from the specified CPU, or
1334 * called when the specified CPU is known to be offline (and when it is
1335 * also known that no other CPU is concurrently trying to help the offline
1336 * CPU). The lastcomp argument is used to make sure we are still in the
1337 * grace period of interest. We don't want to end the current grace period
1338 * based on quiescent states detected in an earlier grace period!
1339 */
1340 static void
1341 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1342 {
1343 unsigned long flags;
1344 unsigned long mask;
1345 struct rcu_node *rnp;
1346
1347 rnp = rdp->mynode;
1348 raw_spin_lock_irqsave(&rnp->lock, flags);
1349 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1350
1351 /*
1352 * The grace period in which this quiescent state was
1353 * recorded has ended, so don't report it upwards.
1354 * We will instead need a new quiescent state that lies
1355 * within the current grace period.
1356 */
1357 rdp->passed_quiesce = 0; /* need qs for new gp. */
1358 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1359 return;
1360 }
1361 mask = rdp->grpmask;
1362 if ((rnp->qsmask & mask) == 0) {
1363 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1364 } else {
1365 rdp->qs_pending = 0;
1366
1367 /*
1368 * This GP can't end until cpu checks in, so all of our
1369 * callbacks can be processed during the next GP.
1370 */
1371 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1372
1373 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1374 }
1375 }
1376
1377 /*
1378 * Check to see if there is a new grace period of which this CPU
1379 * is not yet aware, and if so, set up local rcu_data state for it.
1380 * Otherwise, see if this CPU has just passed through its first
1381 * quiescent state for this grace period, and record that fact if so.
1382 */
1383 static void
1384 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1385 {
1386 /* If there is now a new grace period, record and return. */
1387 if (check_for_new_grace_period(rsp, rdp))
1388 return;
1389
1390 /*
1391 * Does this CPU still need to do its part for current grace period?
1392 * If no, return and let the other CPUs do their part as well.
1393 */
1394 if (!rdp->qs_pending)
1395 return;
1396
1397 /*
1398 * Was there a quiescent state since the beginning of the grace
1399 * period? If no, then exit and wait for the next call.
1400 */
1401 if (!rdp->passed_quiesce)
1402 return;
1403
1404 /*
1405 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1406 * judge of that).
1407 */
1408 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1409 }
1410
1411 #ifdef CONFIG_HOTPLUG_CPU
1412
1413 /*
1414 * Send the specified CPU's RCU callbacks to the orphanage. The
1415 * specified CPU must be offline, and the caller must hold the
1416 * ->onofflock.
1417 */
1418 static void
1419 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1420 struct rcu_node *rnp, struct rcu_data *rdp)
1421 {
1422 /*
1423 * Orphan the callbacks. First adjust the counts. This is safe
1424 * because ->onofflock excludes _rcu_barrier()'s adoption of
1425 * the callbacks, thus no memory barrier is required.
1426 */
1427 if (rdp->nxtlist != NULL) {
1428 rsp->qlen_lazy += rdp->qlen_lazy;
1429 rsp->qlen += rdp->qlen;
1430 rdp->n_cbs_orphaned += rdp->qlen;
1431 rdp->qlen_lazy = 0;
1432 ACCESS_ONCE(rdp->qlen) = 0;
1433 }
1434
1435 /*
1436 * Next, move those callbacks still needing a grace period to
1437 * the orphanage, where some other CPU will pick them up.
1438 * Some of the callbacks might have gone partway through a grace
1439 * period, but that is too bad. They get to start over because we
1440 * cannot assume that grace periods are synchronized across CPUs.
1441 * We don't bother updating the ->nxttail[] array yet, instead
1442 * we just reset the whole thing later on.
1443 */
1444 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1445 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1446 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1447 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1448 }
1449
1450 /*
1451 * Then move the ready-to-invoke callbacks to the orphanage,
1452 * where some other CPU will pick them up. These will not be
1453 * required to pass though another grace period: They are done.
1454 */
1455 if (rdp->nxtlist != NULL) {
1456 *rsp->orphan_donetail = rdp->nxtlist;
1457 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1458 }
1459
1460 /* Finally, initialize the rcu_data structure's list to empty. */
1461 init_callback_list(rdp);
1462 }
1463
1464 /*
1465 * Adopt the RCU callbacks from the specified rcu_state structure's
1466 * orphanage. The caller must hold the ->onofflock.
1467 */
1468 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1469 {
1470 int i;
1471 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1472
1473 /*
1474 * If there is an rcu_barrier() operation in progress, then
1475 * only the task doing that operation is permitted to adopt
1476 * callbacks. To do otherwise breaks rcu_barrier() and friends
1477 * by causing them to fail to wait for the callbacks in the
1478 * orphanage.
1479 */
1480 if (rsp->rcu_barrier_in_progress &&
1481 rsp->rcu_barrier_in_progress != current)
1482 return;
1483
1484 /* Do the accounting first. */
1485 rdp->qlen_lazy += rsp->qlen_lazy;
1486 rdp->qlen += rsp->qlen;
1487 rdp->n_cbs_adopted += rsp->qlen;
1488 if (rsp->qlen_lazy != rsp->qlen)
1489 rcu_idle_count_callbacks_posted();
1490 rsp->qlen_lazy = 0;
1491 rsp->qlen = 0;
1492
1493 /*
1494 * We do not need a memory barrier here because the only way we
1495 * can get here if there is an rcu_barrier() in flight is if
1496 * we are the task doing the rcu_barrier().
1497 */
1498
1499 /* First adopt the ready-to-invoke callbacks. */
1500 if (rsp->orphan_donelist != NULL) {
1501 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1502 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1503 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1504 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1505 rdp->nxttail[i] = rsp->orphan_donetail;
1506 rsp->orphan_donelist = NULL;
1507 rsp->orphan_donetail = &rsp->orphan_donelist;
1508 }
1509
1510 /* And then adopt the callbacks that still need a grace period. */
1511 if (rsp->orphan_nxtlist != NULL) {
1512 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1513 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1514 rsp->orphan_nxtlist = NULL;
1515 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1516 }
1517 }
1518
1519 /*
1520 * Trace the fact that this CPU is going offline.
1521 */
1522 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1523 {
1524 RCU_TRACE(unsigned long mask);
1525 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1526 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1527
1528 RCU_TRACE(mask = rdp->grpmask);
1529 trace_rcu_grace_period(rsp->name,
1530 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1531 "cpuofl");
1532 }
1533
1534 /*
1535 * The CPU has been completely removed, and some other CPU is reporting
1536 * this fact from process context. Do the remainder of the cleanup,
1537 * including orphaning the outgoing CPU's RCU callbacks, and also
1538 * adopting them, if there is no _rcu_barrier() instance running.
1539 * There can only be one CPU hotplug operation at a time, so no other
1540 * CPU can be attempting to update rcu_cpu_kthread_task.
1541 */
1542 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1543 {
1544 unsigned long flags;
1545 unsigned long mask;
1546 int need_report = 0;
1547 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1548 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1549
1550 /* Adjust any no-longer-needed kthreads. */
1551 rcu_stop_cpu_kthread(cpu);
1552 rcu_node_kthread_setaffinity(rnp, -1);
1553
1554 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1555
1556 /* Exclude any attempts to start a new grace period. */
1557 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1558
1559 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1560 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1561 rcu_adopt_orphan_cbs(rsp);
1562
1563 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1564 mask = rdp->grpmask; /* rnp->grplo is constant. */
1565 do {
1566 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1567 rnp->qsmaskinit &= ~mask;
1568 if (rnp->qsmaskinit != 0) {
1569 if (rnp != rdp->mynode)
1570 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1571 break;
1572 }
1573 if (rnp == rdp->mynode)
1574 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1575 else
1576 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1577 mask = rnp->grpmask;
1578 rnp = rnp->parent;
1579 } while (rnp != NULL);
1580
1581 /*
1582 * We still hold the leaf rcu_node structure lock here, and
1583 * irqs are still disabled. The reason for this subterfuge is
1584 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1585 * held leads to deadlock.
1586 */
1587 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1588 rnp = rdp->mynode;
1589 if (need_report & RCU_OFL_TASKS_NORM_GP)
1590 rcu_report_unblock_qs_rnp(rnp, flags);
1591 else
1592 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1593 if (need_report & RCU_OFL_TASKS_EXP_GP)
1594 rcu_report_exp_rnp(rsp, rnp, true);
1595 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1596 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1597 cpu, rdp->qlen, rdp->nxtlist);
1598 }
1599
1600 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1601
1602 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1603 {
1604 }
1605
1606 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1607 {
1608 }
1609
1610 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1611 {
1612 }
1613
1614 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1615
1616 /*
1617 * Invoke any RCU callbacks that have made it to the end of their grace
1618 * period. Thottle as specified by rdp->blimit.
1619 */
1620 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1621 {
1622 unsigned long flags;
1623 struct rcu_head *next, *list, **tail;
1624 int bl, count, count_lazy, i;
1625
1626 /* If no callbacks are ready, just return.*/
1627 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1628 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1629 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1630 need_resched(), is_idle_task(current),
1631 rcu_is_callbacks_kthread());
1632 return;
1633 }
1634
1635 /*
1636 * Extract the list of ready callbacks, disabling to prevent
1637 * races with call_rcu() from interrupt handlers.
1638 */
1639 local_irq_save(flags);
1640 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1641 bl = rdp->blimit;
1642 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1643 list = rdp->nxtlist;
1644 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1645 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1646 tail = rdp->nxttail[RCU_DONE_TAIL];
1647 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1648 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1649 rdp->nxttail[i] = &rdp->nxtlist;
1650 local_irq_restore(flags);
1651
1652 /* Invoke callbacks. */
1653 count = count_lazy = 0;
1654 while (list) {
1655 next = list->next;
1656 prefetch(next);
1657 debug_rcu_head_unqueue(list);
1658 if (__rcu_reclaim(rsp->name, list))
1659 count_lazy++;
1660 list = next;
1661 /* Stop only if limit reached and CPU has something to do. */
1662 if (++count >= bl &&
1663 (need_resched() ||
1664 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1665 break;
1666 }
1667
1668 local_irq_save(flags);
1669 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1670 is_idle_task(current),
1671 rcu_is_callbacks_kthread());
1672
1673 /* Update count, and requeue any remaining callbacks. */
1674 if (list != NULL) {
1675 *tail = rdp->nxtlist;
1676 rdp->nxtlist = list;
1677 for (i = 0; i < RCU_NEXT_SIZE; i++)
1678 if (&rdp->nxtlist == rdp->nxttail[i])
1679 rdp->nxttail[i] = tail;
1680 else
1681 break;
1682 }
1683 smp_mb(); /* List handling before counting for rcu_barrier(). */
1684 rdp->qlen_lazy -= count_lazy;
1685 ACCESS_ONCE(rdp->qlen) -= count;
1686 rdp->n_cbs_invoked += count;
1687
1688 /* Reinstate batch limit if we have worked down the excess. */
1689 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1690 rdp->blimit = blimit;
1691
1692 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1693 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1694 rdp->qlen_last_fqs_check = 0;
1695 rdp->n_force_qs_snap = rsp->n_force_qs;
1696 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1697 rdp->qlen_last_fqs_check = rdp->qlen;
1698 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1699
1700 local_irq_restore(flags);
1701
1702 /* Re-invoke RCU core processing if there are callbacks remaining. */
1703 if (cpu_has_callbacks_ready_to_invoke(rdp))
1704 invoke_rcu_core();
1705 }
1706
1707 /*
1708 * Check to see if this CPU is in a non-context-switch quiescent state
1709 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1710 * Also schedule RCU core processing.
1711 *
1712 * This function must be called from hardirq context. It is normally
1713 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1714 * false, there is no point in invoking rcu_check_callbacks().
1715 */
1716 void rcu_check_callbacks(int cpu, int user)
1717 {
1718 trace_rcu_utilization("Start scheduler-tick");
1719 increment_cpu_stall_ticks();
1720 if (user || rcu_is_cpu_rrupt_from_idle()) {
1721
1722 /*
1723 * Get here if this CPU took its interrupt from user
1724 * mode or from the idle loop, and if this is not a
1725 * nested interrupt. In this case, the CPU is in
1726 * a quiescent state, so note it.
1727 *
1728 * No memory barrier is required here because both
1729 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1730 * variables that other CPUs neither access nor modify,
1731 * at least not while the corresponding CPU is online.
1732 */
1733
1734 rcu_sched_qs(cpu);
1735 rcu_bh_qs(cpu);
1736
1737 } else if (!in_softirq()) {
1738
1739 /*
1740 * Get here if this CPU did not take its interrupt from
1741 * softirq, in other words, if it is not interrupting
1742 * a rcu_bh read-side critical section. This is an _bh
1743 * critical section, so note it.
1744 */
1745
1746 rcu_bh_qs(cpu);
1747 }
1748 rcu_preempt_check_callbacks(cpu);
1749 if (rcu_pending(cpu))
1750 invoke_rcu_core();
1751 trace_rcu_utilization("End scheduler-tick");
1752 }
1753
1754 /*
1755 * Scan the leaf rcu_node structures, processing dyntick state for any that
1756 * have not yet encountered a quiescent state, using the function specified.
1757 * Also initiate boosting for any threads blocked on the root rcu_node.
1758 *
1759 * The caller must have suppressed start of new grace periods.
1760 */
1761 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1762 {
1763 unsigned long bit;
1764 int cpu;
1765 unsigned long flags;
1766 unsigned long mask;
1767 struct rcu_node *rnp;
1768
1769 rcu_for_each_leaf_node(rsp, rnp) {
1770 cond_resched();
1771 mask = 0;
1772 raw_spin_lock_irqsave(&rnp->lock, flags);
1773 if (!rcu_gp_in_progress(rsp)) {
1774 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1775 return;
1776 }
1777 if (rnp->qsmask == 0) {
1778 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1779 continue;
1780 }
1781 cpu = rnp->grplo;
1782 bit = 1;
1783 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1784 if ((rnp->qsmask & bit) != 0 &&
1785 f(per_cpu_ptr(rsp->rda, cpu)))
1786 mask |= bit;
1787 }
1788 if (mask != 0) {
1789
1790 /* rcu_report_qs_rnp() releases rnp->lock. */
1791 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1792 continue;
1793 }
1794 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1795 }
1796 rnp = rcu_get_root(rsp);
1797 if (rnp->qsmask == 0) {
1798 raw_spin_lock_irqsave(&rnp->lock, flags);
1799 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1800 }
1801 }
1802
1803 /*
1804 * Force quiescent states on reluctant CPUs, and also detect which
1805 * CPUs are in dyntick-idle mode.
1806 */
1807 static void force_quiescent_state(struct rcu_state *rsp)
1808 {
1809 unsigned long flags;
1810 struct rcu_node *rnp = rcu_get_root(rsp);
1811
1812 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS)
1813 return; /* Someone beat us to it. */
1814 if (!raw_spin_trylock_irqsave(&rnp->lock, flags)) {
1815 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1816 return;
1817 }
1818 rsp->gp_flags |= RCU_GP_FLAG_FQS;
1819 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1820 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1821 }
1822
1823 /*
1824 * This does the RCU core processing work for the specified rcu_state
1825 * and rcu_data structures. This may be called only from the CPU to
1826 * whom the rdp belongs.
1827 */
1828 static void
1829 __rcu_process_callbacks(struct rcu_state *rsp)
1830 {
1831 unsigned long flags;
1832 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1833
1834 WARN_ON_ONCE(rdp->beenonline == 0);
1835
1836 /*
1837 * Advance callbacks in response to end of earlier grace
1838 * period that some other CPU ended.
1839 */
1840 rcu_process_gp_end(rsp, rdp);
1841
1842 /* Update RCU state based on any recent quiescent states. */
1843 rcu_check_quiescent_state(rsp, rdp);
1844
1845 /* Does this CPU require a not-yet-started grace period? */
1846 if (cpu_needs_another_gp(rsp, rdp)) {
1847 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1848 rcu_start_gp(rsp, flags); /* releases above lock */
1849 }
1850
1851 /* If there are callbacks ready, invoke them. */
1852 if (cpu_has_callbacks_ready_to_invoke(rdp))
1853 invoke_rcu_callbacks(rsp, rdp);
1854 }
1855
1856 /*
1857 * Do RCU core processing for the current CPU.
1858 */
1859 static void rcu_process_callbacks(struct softirq_action *unused)
1860 {
1861 struct rcu_state *rsp;
1862
1863 if (cpu_is_offline(smp_processor_id()))
1864 return;
1865 trace_rcu_utilization("Start RCU core");
1866 for_each_rcu_flavor(rsp)
1867 __rcu_process_callbacks(rsp);
1868 trace_rcu_utilization("End RCU core");
1869 }
1870
1871 /*
1872 * Schedule RCU callback invocation. If the specified type of RCU
1873 * does not support RCU priority boosting, just do a direct call,
1874 * otherwise wake up the per-CPU kernel kthread. Note that because we
1875 * are running on the current CPU with interrupts disabled, the
1876 * rcu_cpu_kthread_task cannot disappear out from under us.
1877 */
1878 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1879 {
1880 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1881 return;
1882 if (likely(!rsp->boost)) {
1883 rcu_do_batch(rsp, rdp);
1884 return;
1885 }
1886 invoke_rcu_callbacks_kthread();
1887 }
1888
1889 static void invoke_rcu_core(void)
1890 {
1891 raise_softirq(RCU_SOFTIRQ);
1892 }
1893
1894 /*
1895 * Handle any core-RCU processing required by a call_rcu() invocation.
1896 */
1897 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1898 struct rcu_head *head, unsigned long flags)
1899 {
1900 /*
1901 * If called from an extended quiescent state, invoke the RCU
1902 * core in order to force a re-evaluation of RCU's idleness.
1903 */
1904 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1905 invoke_rcu_core();
1906
1907 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
1908 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
1909 return;
1910
1911 /*
1912 * Force the grace period if too many callbacks or too long waiting.
1913 * Enforce hysteresis, and don't invoke force_quiescent_state()
1914 * if some other CPU has recently done so. Also, don't bother
1915 * invoking force_quiescent_state() if the newly enqueued callback
1916 * is the only one waiting for a grace period to complete.
1917 */
1918 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1919
1920 /* Are we ignoring a completed grace period? */
1921 rcu_process_gp_end(rsp, rdp);
1922 check_for_new_grace_period(rsp, rdp);
1923
1924 /* Start a new grace period if one not already started. */
1925 if (!rcu_gp_in_progress(rsp)) {
1926 unsigned long nestflag;
1927 struct rcu_node *rnp_root = rcu_get_root(rsp);
1928
1929 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1930 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1931 } else {
1932 /* Give the grace period a kick. */
1933 rdp->blimit = LONG_MAX;
1934 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1935 *rdp->nxttail[RCU_DONE_TAIL] != head)
1936 force_quiescent_state(rsp);
1937 rdp->n_force_qs_snap = rsp->n_force_qs;
1938 rdp->qlen_last_fqs_check = rdp->qlen;
1939 }
1940 }
1941 }
1942
1943 static void
1944 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1945 struct rcu_state *rsp, bool lazy)
1946 {
1947 unsigned long flags;
1948 struct rcu_data *rdp;
1949
1950 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1951 debug_rcu_head_queue(head);
1952 head->func = func;
1953 head->next = NULL;
1954
1955 smp_mb(); /* Ensure RCU update seen before callback registry. */
1956
1957 /*
1958 * Opportunistically note grace-period endings and beginnings.
1959 * Note that we might see a beginning right after we see an
1960 * end, but never vice versa, since this CPU has to pass through
1961 * a quiescent state betweentimes.
1962 */
1963 local_irq_save(flags);
1964 rdp = this_cpu_ptr(rsp->rda);
1965
1966 /* Add the callback to our list. */
1967 ACCESS_ONCE(rdp->qlen)++;
1968 if (lazy)
1969 rdp->qlen_lazy++;
1970 else
1971 rcu_idle_count_callbacks_posted();
1972 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1973 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1974 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1975
1976 if (__is_kfree_rcu_offset((unsigned long)func))
1977 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1978 rdp->qlen_lazy, rdp->qlen);
1979 else
1980 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1981
1982 /* Go handle any RCU core processing required. */
1983 __call_rcu_core(rsp, rdp, head, flags);
1984 local_irq_restore(flags);
1985 }
1986
1987 /*
1988 * Queue an RCU-sched callback for invocation after a grace period.
1989 */
1990 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1991 {
1992 __call_rcu(head, func, &rcu_sched_state, 0);
1993 }
1994 EXPORT_SYMBOL_GPL(call_rcu_sched);
1995
1996 /*
1997 * Queue an RCU callback for invocation after a quicker grace period.
1998 */
1999 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2000 {
2001 __call_rcu(head, func, &rcu_bh_state, 0);
2002 }
2003 EXPORT_SYMBOL_GPL(call_rcu_bh);
2004
2005 /*
2006 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2007 * any blocking grace-period wait automatically implies a grace period
2008 * if there is only one CPU online at any point time during execution
2009 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2010 * occasionally incorrectly indicate that there are multiple CPUs online
2011 * when there was in fact only one the whole time, as this just adds
2012 * some overhead: RCU still operates correctly.
2013 */
2014 static inline int rcu_blocking_is_gp(void)
2015 {
2016 int ret;
2017
2018 might_sleep(); /* Check for RCU read-side critical section. */
2019 preempt_disable();
2020 ret = num_online_cpus() <= 1;
2021 preempt_enable();
2022 return ret;
2023 }
2024
2025 /**
2026 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2027 *
2028 * Control will return to the caller some time after a full rcu-sched
2029 * grace period has elapsed, in other words after all currently executing
2030 * rcu-sched read-side critical sections have completed. These read-side
2031 * critical sections are delimited by rcu_read_lock_sched() and
2032 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2033 * local_irq_disable(), and so on may be used in place of
2034 * rcu_read_lock_sched().
2035 *
2036 * This means that all preempt_disable code sequences, including NMI and
2037 * hardware-interrupt handlers, in progress on entry will have completed
2038 * before this primitive returns. However, this does not guarantee that
2039 * softirq handlers will have completed, since in some kernels, these
2040 * handlers can run in process context, and can block.
2041 *
2042 * This primitive provides the guarantees made by the (now removed)
2043 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2044 * guarantees that rcu_read_lock() sections will have completed.
2045 * In "classic RCU", these two guarantees happen to be one and
2046 * the same, but can differ in realtime RCU implementations.
2047 */
2048 void synchronize_sched(void)
2049 {
2050 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2051 !lock_is_held(&rcu_lock_map) &&
2052 !lock_is_held(&rcu_sched_lock_map),
2053 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2054 if (rcu_blocking_is_gp())
2055 return;
2056 wait_rcu_gp(call_rcu_sched);
2057 }
2058 EXPORT_SYMBOL_GPL(synchronize_sched);
2059
2060 /**
2061 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2062 *
2063 * Control will return to the caller some time after a full rcu_bh grace
2064 * period has elapsed, in other words after all currently executing rcu_bh
2065 * read-side critical sections have completed. RCU read-side critical
2066 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2067 * and may be nested.
2068 */
2069 void synchronize_rcu_bh(void)
2070 {
2071 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2072 !lock_is_held(&rcu_lock_map) &&
2073 !lock_is_held(&rcu_sched_lock_map),
2074 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2075 if (rcu_blocking_is_gp())
2076 return;
2077 wait_rcu_gp(call_rcu_bh);
2078 }
2079 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2080
2081 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2082 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2083
2084 static int synchronize_sched_expedited_cpu_stop(void *data)
2085 {
2086 /*
2087 * There must be a full memory barrier on each affected CPU
2088 * between the time that try_stop_cpus() is called and the
2089 * time that it returns.
2090 *
2091 * In the current initial implementation of cpu_stop, the
2092 * above condition is already met when the control reaches
2093 * this point and the following smp_mb() is not strictly
2094 * necessary. Do smp_mb() anyway for documentation and
2095 * robustness against future implementation changes.
2096 */
2097 smp_mb(); /* See above comment block. */
2098 return 0;
2099 }
2100
2101 /**
2102 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2103 *
2104 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2105 * approach to force the grace period to end quickly. This consumes
2106 * significant time on all CPUs and is unfriendly to real-time workloads,
2107 * so is thus not recommended for any sort of common-case code. In fact,
2108 * if you are using synchronize_sched_expedited() in a loop, please
2109 * restructure your code to batch your updates, and then use a single
2110 * synchronize_sched() instead.
2111 *
2112 * Note that it is illegal to call this function while holding any lock
2113 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2114 * to call this function from a CPU-hotplug notifier. Failing to observe
2115 * these restriction will result in deadlock.
2116 *
2117 * This implementation can be thought of as an application of ticket
2118 * locking to RCU, with sync_sched_expedited_started and
2119 * sync_sched_expedited_done taking on the roles of the halves
2120 * of the ticket-lock word. Each task atomically increments
2121 * sync_sched_expedited_started upon entry, snapshotting the old value,
2122 * then attempts to stop all the CPUs. If this succeeds, then each
2123 * CPU will have executed a context switch, resulting in an RCU-sched
2124 * grace period. We are then done, so we use atomic_cmpxchg() to
2125 * update sync_sched_expedited_done to match our snapshot -- but
2126 * only if someone else has not already advanced past our snapshot.
2127 *
2128 * On the other hand, if try_stop_cpus() fails, we check the value
2129 * of sync_sched_expedited_done. If it has advanced past our
2130 * initial snapshot, then someone else must have forced a grace period
2131 * some time after we took our snapshot. In this case, our work is
2132 * done for us, and we can simply return. Otherwise, we try again,
2133 * but keep our initial snapshot for purposes of checking for someone
2134 * doing our work for us.
2135 *
2136 * If we fail too many times in a row, we fall back to synchronize_sched().
2137 */
2138 void synchronize_sched_expedited(void)
2139 {
2140 int firstsnap, s, snap, trycount = 0;
2141
2142 /* Note that atomic_inc_return() implies full memory barrier. */
2143 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2144 get_online_cpus();
2145 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2146
2147 /*
2148 * Each pass through the following loop attempts to force a
2149 * context switch on each CPU.
2150 */
2151 while (try_stop_cpus(cpu_online_mask,
2152 synchronize_sched_expedited_cpu_stop,
2153 NULL) == -EAGAIN) {
2154 put_online_cpus();
2155
2156 /* No joy, try again later. Or just synchronize_sched(). */
2157 if (trycount++ < 10) {
2158 udelay(trycount * num_online_cpus());
2159 } else {
2160 synchronize_sched();
2161 return;
2162 }
2163
2164 /* Check to see if someone else did our work for us. */
2165 s = atomic_read(&sync_sched_expedited_done);
2166 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2167 smp_mb(); /* ensure test happens before caller kfree */
2168 return;
2169 }
2170
2171 /*
2172 * Refetching sync_sched_expedited_started allows later
2173 * callers to piggyback on our grace period. We subtract
2174 * 1 to get the same token that the last incrementer got.
2175 * We retry after they started, so our grace period works
2176 * for them, and they started after our first try, so their
2177 * grace period works for us.
2178 */
2179 get_online_cpus();
2180 snap = atomic_read(&sync_sched_expedited_started);
2181 smp_mb(); /* ensure read is before try_stop_cpus(). */
2182 }
2183
2184 /*
2185 * Everyone up to our most recent fetch is covered by our grace
2186 * period. Update the counter, but only if our work is still
2187 * relevant -- which it won't be if someone who started later
2188 * than we did beat us to the punch.
2189 */
2190 do {
2191 s = atomic_read(&sync_sched_expedited_done);
2192 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2193 smp_mb(); /* ensure test happens before caller kfree */
2194 break;
2195 }
2196 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2197
2198 put_online_cpus();
2199 }
2200 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2201
2202 /*
2203 * Check to see if there is any immediate RCU-related work to be done
2204 * by the current CPU, for the specified type of RCU, returning 1 if so.
2205 * The checks are in order of increasing expense: checks that can be
2206 * carried out against CPU-local state are performed first. However,
2207 * we must check for CPU stalls first, else we might not get a chance.
2208 */
2209 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2210 {
2211 struct rcu_node *rnp = rdp->mynode;
2212
2213 rdp->n_rcu_pending++;
2214
2215 /* Check for CPU stalls, if enabled. */
2216 check_cpu_stall(rsp, rdp);
2217
2218 /* Is the RCU core waiting for a quiescent state from this CPU? */
2219 if (rcu_scheduler_fully_active &&
2220 rdp->qs_pending && !rdp->passed_quiesce) {
2221 rdp->n_rp_qs_pending++;
2222 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2223 rdp->n_rp_report_qs++;
2224 return 1;
2225 }
2226
2227 /* Does this CPU have callbacks ready to invoke? */
2228 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2229 rdp->n_rp_cb_ready++;
2230 return 1;
2231 }
2232
2233 /* Has RCU gone idle with this CPU needing another grace period? */
2234 if (cpu_needs_another_gp(rsp, rdp)) {
2235 rdp->n_rp_cpu_needs_gp++;
2236 return 1;
2237 }
2238
2239 /* Has another RCU grace period completed? */
2240 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2241 rdp->n_rp_gp_completed++;
2242 return 1;
2243 }
2244
2245 /* Has a new RCU grace period started? */
2246 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2247 rdp->n_rp_gp_started++;
2248 return 1;
2249 }
2250
2251 /* nothing to do */
2252 rdp->n_rp_need_nothing++;
2253 return 0;
2254 }
2255
2256 /*
2257 * Check to see if there is any immediate RCU-related work to be done
2258 * by the current CPU, returning 1 if so. This function is part of the
2259 * RCU implementation; it is -not- an exported member of the RCU API.
2260 */
2261 static int rcu_pending(int cpu)
2262 {
2263 struct rcu_state *rsp;
2264
2265 for_each_rcu_flavor(rsp)
2266 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2267 return 1;
2268 return 0;
2269 }
2270
2271 /*
2272 * Check to see if any future RCU-related work will need to be done
2273 * by the current CPU, even if none need be done immediately, returning
2274 * 1 if so.
2275 */
2276 static int rcu_cpu_has_callbacks(int cpu)
2277 {
2278 struct rcu_state *rsp;
2279
2280 /* RCU callbacks either ready or pending? */
2281 for_each_rcu_flavor(rsp)
2282 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2283 return 1;
2284 return 0;
2285 }
2286
2287 /*
2288 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2289 * the compiler is expected to optimize this away.
2290 */
2291 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2292 int cpu, unsigned long done)
2293 {
2294 trace_rcu_barrier(rsp->name, s, cpu,
2295 atomic_read(&rsp->barrier_cpu_count), done);
2296 }
2297
2298 /*
2299 * RCU callback function for _rcu_barrier(). If we are last, wake
2300 * up the task executing _rcu_barrier().
2301 */
2302 static void rcu_barrier_callback(struct rcu_head *rhp)
2303 {
2304 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2305 struct rcu_state *rsp = rdp->rsp;
2306
2307 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2308 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2309 complete(&rsp->barrier_completion);
2310 } else {
2311 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2312 }
2313 }
2314
2315 /*
2316 * Called with preemption disabled, and from cross-cpu IRQ context.
2317 */
2318 static void rcu_barrier_func(void *type)
2319 {
2320 struct rcu_state *rsp = type;
2321 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2322
2323 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2324 atomic_inc(&rsp->barrier_cpu_count);
2325 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2326 }
2327
2328 /*
2329 * Orchestrate the specified type of RCU barrier, waiting for all
2330 * RCU callbacks of the specified type to complete.
2331 */
2332 static void _rcu_barrier(struct rcu_state *rsp)
2333 {
2334 int cpu;
2335 unsigned long flags;
2336 struct rcu_data *rdp;
2337 struct rcu_data rd;
2338 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2339 unsigned long snap_done;
2340
2341 init_rcu_head_on_stack(&rd.barrier_head);
2342 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2343
2344 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2345 mutex_lock(&rsp->barrier_mutex);
2346
2347 /*
2348 * Ensure that all prior references, including to ->n_barrier_done,
2349 * are ordered before the _rcu_barrier() machinery.
2350 */
2351 smp_mb(); /* See above block comment. */
2352
2353 /*
2354 * Recheck ->n_barrier_done to see if others did our work for us.
2355 * This means checking ->n_barrier_done for an even-to-odd-to-even
2356 * transition. The "if" expression below therefore rounds the old
2357 * value up to the next even number and adds two before comparing.
2358 */
2359 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2360 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2361 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2362 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2363 smp_mb(); /* caller's subsequent code after above check. */
2364 mutex_unlock(&rsp->barrier_mutex);
2365 return;
2366 }
2367
2368 /*
2369 * Increment ->n_barrier_done to avoid duplicate work. Use
2370 * ACCESS_ONCE() to prevent the compiler from speculating
2371 * the increment to precede the early-exit check.
2372 */
2373 ACCESS_ONCE(rsp->n_barrier_done)++;
2374 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2375 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2376 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2377
2378 /*
2379 * Initialize the count to one rather than to zero in order to
2380 * avoid a too-soon return to zero in case of a short grace period
2381 * (or preemption of this task). Also flag this task as doing
2382 * an rcu_barrier(). This will prevent anyone else from adopting
2383 * orphaned callbacks, which could cause otherwise failure if a
2384 * CPU went offline and quickly came back online. To see this,
2385 * consider the following sequence of events:
2386 *
2387 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2388 * 2. CPU 1 goes offline, orphaning its callbacks.
2389 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2390 * 4. CPU 1 comes back online.
2391 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2392 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2393 * us -- but before CPU 1's orphaned callbacks are invoked!!!
2394 */
2395 init_completion(&rsp->barrier_completion);
2396 atomic_set(&rsp->barrier_cpu_count, 1);
2397 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2398 rsp->rcu_barrier_in_progress = current;
2399 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2400
2401 /*
2402 * Force every CPU with callbacks to register a new callback
2403 * that will tell us when all the preceding callbacks have
2404 * been invoked. If an offline CPU has callbacks, wait for
2405 * it to either come back online or to finish orphaning those
2406 * callbacks.
2407 */
2408 for_each_possible_cpu(cpu) {
2409 preempt_disable();
2410 rdp = per_cpu_ptr(rsp->rda, cpu);
2411 if (cpu_is_offline(cpu)) {
2412 _rcu_barrier_trace(rsp, "Offline", cpu,
2413 rsp->n_barrier_done);
2414 preempt_enable();
2415 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2416 schedule_timeout_interruptible(1);
2417 } else if (ACCESS_ONCE(rdp->qlen)) {
2418 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2419 rsp->n_barrier_done);
2420 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2421 preempt_enable();
2422 } else {
2423 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2424 rsp->n_barrier_done);
2425 preempt_enable();
2426 }
2427 }
2428
2429 /*
2430 * Now that all online CPUs have rcu_barrier_callback() callbacks
2431 * posted, we can adopt all of the orphaned callbacks and place
2432 * an rcu_barrier_callback() callback after them. When that is done,
2433 * we are guaranteed to have an rcu_barrier_callback() callback
2434 * following every callback that could possibly have been
2435 * registered before _rcu_barrier() was called.
2436 */
2437 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2438 rcu_adopt_orphan_cbs(rsp);
2439 rsp->rcu_barrier_in_progress = NULL;
2440 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2441 atomic_inc(&rsp->barrier_cpu_count);
2442 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2443 rd.rsp = rsp;
2444 rsp->call(&rd.barrier_head, rcu_barrier_callback);
2445
2446 /*
2447 * Now that we have an rcu_barrier_callback() callback on each
2448 * CPU, and thus each counted, remove the initial count.
2449 */
2450 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2451 complete(&rsp->barrier_completion);
2452
2453 /* Increment ->n_barrier_done to prevent duplicate work. */
2454 smp_mb(); /* Keep increment after above mechanism. */
2455 ACCESS_ONCE(rsp->n_barrier_done)++;
2456 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2457 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2458 smp_mb(); /* Keep increment before caller's subsequent code. */
2459
2460 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2461 wait_for_completion(&rsp->barrier_completion);
2462
2463 /* Other rcu_barrier() invocations can now safely proceed. */
2464 mutex_unlock(&rsp->barrier_mutex);
2465
2466 destroy_rcu_head_on_stack(&rd.barrier_head);
2467 }
2468
2469 /**
2470 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2471 */
2472 void rcu_barrier_bh(void)
2473 {
2474 _rcu_barrier(&rcu_bh_state);
2475 }
2476 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2477
2478 /**
2479 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2480 */
2481 void rcu_barrier_sched(void)
2482 {
2483 _rcu_barrier(&rcu_sched_state);
2484 }
2485 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2486
2487 /*
2488 * Do boot-time initialization of a CPU's per-CPU RCU data.
2489 */
2490 static void __init
2491 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2492 {
2493 unsigned long flags;
2494 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2495 struct rcu_node *rnp = rcu_get_root(rsp);
2496
2497 /* Set up local state, ensuring consistent view of global state. */
2498 raw_spin_lock_irqsave(&rnp->lock, flags);
2499 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2500 init_callback_list(rdp);
2501 rdp->qlen_lazy = 0;
2502 ACCESS_ONCE(rdp->qlen) = 0;
2503 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2504 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2505 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2506 rdp->cpu = cpu;
2507 rdp->rsp = rsp;
2508 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2509 }
2510
2511 /*
2512 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2513 * offline event can be happening at a given time. Note also that we
2514 * can accept some slop in the rsp->completed access due to the fact
2515 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2516 */
2517 static void __cpuinit
2518 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2519 {
2520 unsigned long flags;
2521 unsigned long mask;
2522 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2523 struct rcu_node *rnp = rcu_get_root(rsp);
2524
2525 /* Set up local state, ensuring consistent view of global state. */
2526 raw_spin_lock_irqsave(&rnp->lock, flags);
2527 rdp->beenonline = 1; /* We have now been online. */
2528 rdp->preemptible = preemptible;
2529 rdp->qlen_last_fqs_check = 0;
2530 rdp->n_force_qs_snap = rsp->n_force_qs;
2531 rdp->blimit = blimit;
2532 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2533 atomic_set(&rdp->dynticks->dynticks,
2534 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2535 rcu_prepare_for_idle_init(cpu);
2536 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2537
2538 /*
2539 * A new grace period might start here. If so, we won't be part
2540 * of it, but that is OK, as we are currently in a quiescent state.
2541 */
2542
2543 /* Exclude any attempts to start a new GP on large systems. */
2544 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2545
2546 /* Add CPU to rcu_node bitmasks. */
2547 rnp = rdp->mynode;
2548 mask = rdp->grpmask;
2549 do {
2550 /* Exclude any attempts to start a new GP on small systems. */
2551 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2552 rnp->qsmaskinit |= mask;
2553 mask = rnp->grpmask;
2554 if (rnp == rdp->mynode) {
2555 /*
2556 * If there is a grace period in progress, we will
2557 * set up to wait for it next time we run the
2558 * RCU core code.
2559 */
2560 rdp->gpnum = rnp->completed;
2561 rdp->completed = rnp->completed;
2562 rdp->passed_quiesce = 0;
2563 rdp->qs_pending = 0;
2564 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2565 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2566 }
2567 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2568 rnp = rnp->parent;
2569 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2570
2571 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2572 }
2573
2574 static void __cpuinit rcu_prepare_cpu(int cpu)
2575 {
2576 struct rcu_state *rsp;
2577
2578 for_each_rcu_flavor(rsp)
2579 rcu_init_percpu_data(cpu, rsp,
2580 strcmp(rsp->name, "rcu_preempt") == 0);
2581 }
2582
2583 /*
2584 * Handle CPU online/offline notification events.
2585 */
2586 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2587 unsigned long action, void *hcpu)
2588 {
2589 long cpu = (long)hcpu;
2590 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2591 struct rcu_node *rnp = rdp->mynode;
2592 struct rcu_state *rsp;
2593
2594 trace_rcu_utilization("Start CPU hotplug");
2595 switch (action) {
2596 case CPU_UP_PREPARE:
2597 case CPU_UP_PREPARE_FROZEN:
2598 rcu_prepare_cpu(cpu);
2599 rcu_prepare_kthreads(cpu);
2600 break;
2601 case CPU_ONLINE:
2602 case CPU_DOWN_FAILED:
2603 rcu_node_kthread_setaffinity(rnp, -1);
2604 rcu_cpu_kthread_setrt(cpu, 1);
2605 break;
2606 case CPU_DOWN_PREPARE:
2607 rcu_node_kthread_setaffinity(rnp, cpu);
2608 rcu_cpu_kthread_setrt(cpu, 0);
2609 break;
2610 case CPU_DYING:
2611 case CPU_DYING_FROZEN:
2612 /*
2613 * The whole machine is "stopped" except this CPU, so we can
2614 * touch any data without introducing corruption. We send the
2615 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2616 */
2617 for_each_rcu_flavor(rsp)
2618 rcu_cleanup_dying_cpu(rsp);
2619 rcu_cleanup_after_idle(cpu);
2620 break;
2621 case CPU_DEAD:
2622 case CPU_DEAD_FROZEN:
2623 case CPU_UP_CANCELED:
2624 case CPU_UP_CANCELED_FROZEN:
2625 for_each_rcu_flavor(rsp)
2626 rcu_cleanup_dead_cpu(cpu, rsp);
2627 break;
2628 default:
2629 break;
2630 }
2631 trace_rcu_utilization("End CPU hotplug");
2632 return NOTIFY_OK;
2633 }
2634
2635 /*
2636 * Spawn the kthread that handles this RCU flavor's grace periods.
2637 */
2638 static int __init rcu_spawn_gp_kthread(void)
2639 {
2640 unsigned long flags;
2641 struct rcu_node *rnp;
2642 struct rcu_state *rsp;
2643 struct task_struct *t;
2644
2645 for_each_rcu_flavor(rsp) {
2646 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2647 BUG_ON(IS_ERR(t));
2648 rnp = rcu_get_root(rsp);
2649 raw_spin_lock_irqsave(&rnp->lock, flags);
2650 rsp->gp_kthread = t;
2651 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2652 }
2653 return 0;
2654 }
2655 early_initcall(rcu_spawn_gp_kthread);
2656
2657 /*
2658 * This function is invoked towards the end of the scheduler's initialization
2659 * process. Before this is called, the idle task might contain
2660 * RCU read-side critical sections (during which time, this idle
2661 * task is booting the system). After this function is called, the
2662 * idle tasks are prohibited from containing RCU read-side critical
2663 * sections. This function also enables RCU lockdep checking.
2664 */
2665 void rcu_scheduler_starting(void)
2666 {
2667 WARN_ON(num_online_cpus() != 1);
2668 WARN_ON(nr_context_switches() > 0);
2669 rcu_scheduler_active = 1;
2670 }
2671
2672 /*
2673 * Compute the per-level fanout, either using the exact fanout specified
2674 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2675 */
2676 #ifdef CONFIG_RCU_FANOUT_EXACT
2677 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2678 {
2679 int i;
2680
2681 for (i = rcu_num_lvls - 1; i > 0; i--)
2682 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2683 rsp->levelspread[0] = rcu_fanout_leaf;
2684 }
2685 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2686 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2687 {
2688 int ccur;
2689 int cprv;
2690 int i;
2691
2692 cprv = NR_CPUS;
2693 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2694 ccur = rsp->levelcnt[i];
2695 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2696 cprv = ccur;
2697 }
2698 }
2699 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2700
2701 /*
2702 * Helper function for rcu_init() that initializes one rcu_state structure.
2703 */
2704 static void __init rcu_init_one(struct rcu_state *rsp,
2705 struct rcu_data __percpu *rda)
2706 {
2707 static char *buf[] = { "rcu_node_level_0",
2708 "rcu_node_level_1",
2709 "rcu_node_level_2",
2710 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2711 int cpustride = 1;
2712 int i;
2713 int j;
2714 struct rcu_node *rnp;
2715
2716 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2717
2718 /* Initialize the level-tracking arrays. */
2719
2720 for (i = 0; i < rcu_num_lvls; i++)
2721 rsp->levelcnt[i] = num_rcu_lvl[i];
2722 for (i = 1; i < rcu_num_lvls; i++)
2723 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2724 rcu_init_levelspread(rsp);
2725
2726 /* Initialize the elements themselves, starting from the leaves. */
2727
2728 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2729 cpustride *= rsp->levelspread[i];
2730 rnp = rsp->level[i];
2731 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2732 raw_spin_lock_init(&rnp->lock);
2733 lockdep_set_class_and_name(&rnp->lock,
2734 &rcu_node_class[i], buf[i]);
2735 rnp->gpnum = 0;
2736 rnp->qsmask = 0;
2737 rnp->qsmaskinit = 0;
2738 rnp->grplo = j * cpustride;
2739 rnp->grphi = (j + 1) * cpustride - 1;
2740 if (rnp->grphi >= NR_CPUS)
2741 rnp->grphi = NR_CPUS - 1;
2742 if (i == 0) {
2743 rnp->grpnum = 0;
2744 rnp->grpmask = 0;
2745 rnp->parent = NULL;
2746 } else {
2747 rnp->grpnum = j % rsp->levelspread[i - 1];
2748 rnp->grpmask = 1UL << rnp->grpnum;
2749 rnp->parent = rsp->level[i - 1] +
2750 j / rsp->levelspread[i - 1];
2751 }
2752 rnp->level = i;
2753 INIT_LIST_HEAD(&rnp->blkd_tasks);
2754 }
2755 }
2756
2757 rsp->rda = rda;
2758 init_waitqueue_head(&rsp->gp_wq);
2759 rnp = rsp->level[rcu_num_lvls - 1];
2760 for_each_possible_cpu(i) {
2761 while (i > rnp->grphi)
2762 rnp++;
2763 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2764 rcu_boot_init_percpu_data(i, rsp);
2765 }
2766 list_add(&rsp->flavors, &rcu_struct_flavors);
2767 }
2768
2769 /*
2770 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2771 * replace the definitions in rcutree.h because those are needed to size
2772 * the ->node array in the rcu_state structure.
2773 */
2774 static void __init rcu_init_geometry(void)
2775 {
2776 int i;
2777 int j;
2778 int n = nr_cpu_ids;
2779 int rcu_capacity[MAX_RCU_LVLS + 1];
2780
2781 /* If the compile-time values are accurate, just leave. */
2782 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2783 return;
2784
2785 /*
2786 * Compute number of nodes that can be handled an rcu_node tree
2787 * with the given number of levels. Setting rcu_capacity[0] makes
2788 * some of the arithmetic easier.
2789 */
2790 rcu_capacity[0] = 1;
2791 rcu_capacity[1] = rcu_fanout_leaf;
2792 for (i = 2; i <= MAX_RCU_LVLS; i++)
2793 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2794
2795 /*
2796 * The boot-time rcu_fanout_leaf parameter is only permitted
2797 * to increase the leaf-level fanout, not decrease it. Of course,
2798 * the leaf-level fanout cannot exceed the number of bits in
2799 * the rcu_node masks. Finally, the tree must be able to accommodate
2800 * the configured number of CPUs. Complain and fall back to the
2801 * compile-time values if these limits are exceeded.
2802 */
2803 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2804 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2805 n > rcu_capacity[MAX_RCU_LVLS]) {
2806 WARN_ON(1);
2807 return;
2808 }
2809
2810 /* Calculate the number of rcu_nodes at each level of the tree. */
2811 for (i = 1; i <= MAX_RCU_LVLS; i++)
2812 if (n <= rcu_capacity[i]) {
2813 for (j = 0; j <= i; j++)
2814 num_rcu_lvl[j] =
2815 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2816 rcu_num_lvls = i;
2817 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2818 num_rcu_lvl[j] = 0;
2819 break;
2820 }
2821
2822 /* Calculate the total number of rcu_node structures. */
2823 rcu_num_nodes = 0;
2824 for (i = 0; i <= MAX_RCU_LVLS; i++)
2825 rcu_num_nodes += num_rcu_lvl[i];
2826 rcu_num_nodes -= n;
2827 }
2828
2829 void __init rcu_init(void)
2830 {
2831 int cpu;
2832
2833 rcu_bootup_announce();
2834 rcu_init_geometry();
2835 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2836 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2837 __rcu_init_preempt();
2838 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2839
2840 /*
2841 * We don't need protection against CPU-hotplug here because
2842 * this is called early in boot, before either interrupts
2843 * or the scheduler are operational.
2844 */
2845 cpu_notifier(rcu_cpu_notify, 0);
2846 for_each_online_cpu(cpu)
2847 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2848 check_cpu_stall_init();
2849 }
2850
2851 #include "rcutree_plugin.h"
This page took 0.215211 seconds and 6 git commands to generate.