rcu: Dump number of callbacks in stall warning messages
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59
60 #include "rcu.h"
61
62 /* Data structures. */
63
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67 #define RCU_STATE_INITIALIZER(sname, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = -300, \
72 .completed = -300, \
73 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 .name = #sname, \
79 }
80
81 struct rcu_state rcu_sched_state =
82 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89 LIST_HEAD(rcu_struct_flavors);
90
91 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
92 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
93 module_param(rcu_fanout_leaf, int, 0444);
94 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
95 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
96 NUM_RCU_LVL_0,
97 NUM_RCU_LVL_1,
98 NUM_RCU_LVL_2,
99 NUM_RCU_LVL_3,
100 NUM_RCU_LVL_4,
101 };
102 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
103
104 /*
105 * The rcu_scheduler_active variable transitions from zero to one just
106 * before the first task is spawned. So when this variable is zero, RCU
107 * can assume that there is but one task, allowing RCU to (for example)
108 * optimized synchronize_sched() to a simple barrier(). When this variable
109 * is one, RCU must actually do all the hard work required to detect real
110 * grace periods. This variable is also used to suppress boot-time false
111 * positives from lockdep-RCU error checking.
112 */
113 int rcu_scheduler_active __read_mostly;
114 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
115
116 /*
117 * The rcu_scheduler_fully_active variable transitions from zero to one
118 * during the early_initcall() processing, which is after the scheduler
119 * is capable of creating new tasks. So RCU processing (for example,
120 * creating tasks for RCU priority boosting) must be delayed until after
121 * rcu_scheduler_fully_active transitions from zero to one. We also
122 * currently delay invocation of any RCU callbacks until after this point.
123 *
124 * It might later prove better for people registering RCU callbacks during
125 * early boot to take responsibility for these callbacks, but one step at
126 * a time.
127 */
128 static int rcu_scheduler_fully_active __read_mostly;
129
130 #ifdef CONFIG_RCU_BOOST
131
132 /*
133 * Control variables for per-CPU and per-rcu_node kthreads. These
134 * handle all flavors of RCU.
135 */
136 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
137 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139 DEFINE_PER_CPU(char, rcu_cpu_has_work);
140
141 #endif /* #ifdef CONFIG_RCU_BOOST */
142
143 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 static void invoke_rcu_core(void);
145 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146
147 /*
148 * Track the rcutorture test sequence number and the update version
149 * number within a given test. The rcutorture_testseq is incremented
150 * on every rcutorture module load and unload, so has an odd value
151 * when a test is running. The rcutorture_vernum is set to zero
152 * when rcutorture starts and is incremented on each rcutorture update.
153 * These variables enable correlating rcutorture output with the
154 * RCU tracing information.
155 */
156 unsigned long rcutorture_testseq;
157 unsigned long rcutorture_vernum;
158
159 /*
160 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161 * permit this function to be invoked without holding the root rcu_node
162 * structure's ->lock, but of course results can be subject to change.
163 */
164 static int rcu_gp_in_progress(struct rcu_state *rsp)
165 {
166 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167 }
168
169 /*
170 * Note a quiescent state. Because we do not need to know
171 * how many quiescent states passed, just if there was at least
172 * one since the start of the grace period, this just sets a flag.
173 * The caller must have disabled preemption.
174 */
175 void rcu_sched_qs(int cpu)
176 {
177 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 void rcu_bh_qs(int cpu)
185 {
186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187
188 if (rdp->passed_quiesce == 0)
189 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190 rdp->passed_quiesce = 1;
191 }
192
193 /*
194 * Note a context switch. This is a quiescent state for RCU-sched,
195 * and requires special handling for preemptible RCU.
196 * The caller must have disabled preemption.
197 */
198 void rcu_note_context_switch(int cpu)
199 {
200 trace_rcu_utilization("Start context switch");
201 rcu_sched_qs(cpu);
202 rcu_preempt_note_context_switch(cpu);
203 trace_rcu_utilization("End context switch");
204 }
205 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206
207 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209 .dynticks = ATOMIC_INIT(1),
210 #if defined(CONFIG_RCU_USER_QS) && !defined(CONFIG_RCU_USER_QS_FORCE)
211 .ignore_user_qs = true,
212 #endif
213 };
214
215 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
216 static int qhimark = 10000; /* If this many pending, ignore blimit. */
217 static int qlowmark = 100; /* Once only this many pending, use blimit. */
218
219 module_param(blimit, int, 0444);
220 module_param(qhimark, int, 0444);
221 module_param(qlowmark, int, 0444);
222
223 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
226 module_param(rcu_cpu_stall_suppress, int, 0644);
227 module_param(rcu_cpu_stall_timeout, int, 0644);
228
229 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
230 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
231
232 module_param(jiffies_till_first_fqs, ulong, 0644);
233 module_param(jiffies_till_next_fqs, ulong, 0644);
234
235 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
236 static void force_quiescent_state(struct rcu_state *rsp);
237 static int rcu_pending(int cpu);
238
239 /*
240 * Return the number of RCU-sched batches processed thus far for debug & stats.
241 */
242 long rcu_batches_completed_sched(void)
243 {
244 return rcu_sched_state.completed;
245 }
246 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
247
248 /*
249 * Return the number of RCU BH batches processed thus far for debug & stats.
250 */
251 long rcu_batches_completed_bh(void)
252 {
253 return rcu_bh_state.completed;
254 }
255 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
256
257 /*
258 * Force a quiescent state for RCU BH.
259 */
260 void rcu_bh_force_quiescent_state(void)
261 {
262 force_quiescent_state(&rcu_bh_state);
263 }
264 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
265
266 /*
267 * Record the number of times rcutorture tests have been initiated and
268 * terminated. This information allows the debugfs tracing stats to be
269 * correlated to the rcutorture messages, even when the rcutorture module
270 * is being repeatedly loaded and unloaded. In other words, we cannot
271 * store this state in rcutorture itself.
272 */
273 void rcutorture_record_test_transition(void)
274 {
275 rcutorture_testseq++;
276 rcutorture_vernum = 0;
277 }
278 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
279
280 /*
281 * Record the number of writer passes through the current rcutorture test.
282 * This is also used to correlate debugfs tracing stats with the rcutorture
283 * messages.
284 */
285 void rcutorture_record_progress(unsigned long vernum)
286 {
287 rcutorture_vernum++;
288 }
289 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
290
291 /*
292 * Force a quiescent state for RCU-sched.
293 */
294 void rcu_sched_force_quiescent_state(void)
295 {
296 force_quiescent_state(&rcu_sched_state);
297 }
298 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
299
300 /*
301 * Does the CPU have callbacks ready to be invoked?
302 */
303 static int
304 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
305 {
306 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
307 }
308
309 /*
310 * Does the current CPU require a yet-as-unscheduled grace period?
311 */
312 static int
313 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
314 {
315 return *rdp->nxttail[RCU_DONE_TAIL +
316 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
317 !rcu_gp_in_progress(rsp);
318 }
319
320 /*
321 * Return the root node of the specified rcu_state structure.
322 */
323 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
324 {
325 return &rsp->node[0];
326 }
327
328 /*
329 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
330 *
331 * If the new value of the ->dynticks_nesting counter now is zero,
332 * we really have entered idle, and must do the appropriate accounting.
333 * The caller must have disabled interrupts.
334 */
335 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
336 bool user)
337 {
338 trace_rcu_dyntick("Start", oldval, 0);
339 if (!user && !is_idle_task(current)) {
340 struct task_struct *idle = idle_task(smp_processor_id());
341
342 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
343 ftrace_dump(DUMP_ORIG);
344 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
345 current->pid, current->comm,
346 idle->pid, idle->comm); /* must be idle task! */
347 }
348 rcu_prepare_for_idle(smp_processor_id());
349 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
350 smp_mb__before_atomic_inc(); /* See above. */
351 atomic_inc(&rdtp->dynticks);
352 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
353 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
354
355 /*
356 * It is illegal to enter an extended quiescent state while
357 * in an RCU read-side critical section.
358 */
359 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
360 "Illegal idle entry in RCU read-side critical section.");
361 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
362 "Illegal idle entry in RCU-bh read-side critical section.");
363 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
364 "Illegal idle entry in RCU-sched read-side critical section.");
365 }
366
367 /*
368 * Enter an RCU extended quiescent state, which can be either the
369 * idle loop or adaptive-tickless usermode execution.
370 */
371 static void rcu_eqs_enter(bool user)
372 {
373 long long oldval;
374 struct rcu_dynticks *rdtp;
375
376 rdtp = &__get_cpu_var(rcu_dynticks);
377 oldval = rdtp->dynticks_nesting;
378 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
379 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
380 rdtp->dynticks_nesting = 0;
381 else
382 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
383 rcu_eqs_enter_common(rdtp, oldval, user);
384 }
385
386 /**
387 * rcu_idle_enter - inform RCU that current CPU is entering idle
388 *
389 * Enter idle mode, in other words, -leave- the mode in which RCU
390 * read-side critical sections can occur. (Though RCU read-side
391 * critical sections can occur in irq handlers in idle, a possibility
392 * handled by irq_enter() and irq_exit().)
393 *
394 * We crowbar the ->dynticks_nesting field to zero to allow for
395 * the possibility of usermode upcalls having messed up our count
396 * of interrupt nesting level during the prior busy period.
397 */
398 void rcu_idle_enter(void)
399 {
400 unsigned long flags;
401
402 local_irq_save(flags);
403 rcu_eqs_enter(false);
404 local_irq_restore(flags);
405 }
406 EXPORT_SYMBOL_GPL(rcu_idle_enter);
407
408 #ifdef CONFIG_RCU_USER_QS
409 /**
410 * rcu_user_enter - inform RCU that we are resuming userspace.
411 *
412 * Enter RCU idle mode right before resuming userspace. No use of RCU
413 * is permitted between this call and rcu_user_exit(). This way the
414 * CPU doesn't need to maintain the tick for RCU maintenance purposes
415 * when the CPU runs in userspace.
416 */
417 void rcu_user_enter(void)
418 {
419 unsigned long flags;
420 struct rcu_dynticks *rdtp;
421
422 /*
423 * Some contexts may involve an exception occuring in an irq,
424 * leading to that nesting:
425 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
426 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
427 * helpers are enough to protect RCU uses inside the exception. So
428 * just return immediately if we detect we are in an IRQ.
429 */
430 if (in_interrupt())
431 return;
432
433 WARN_ON_ONCE(!current->mm);
434
435 local_irq_save(flags);
436 rdtp = &__get_cpu_var(rcu_dynticks);
437 if (!rdtp->ignore_user_qs && !rdtp->in_user) {
438 rdtp->in_user = true;
439 rcu_eqs_enter(true);
440 }
441 local_irq_restore(flags);
442 }
443
444 /**
445 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
446 * after the current irq returns.
447 *
448 * This is similar to rcu_user_enter() but in the context of a non-nesting
449 * irq. After this call, RCU enters into idle mode when the interrupt
450 * returns.
451 */
452 void rcu_user_enter_after_irq(void)
453 {
454 unsigned long flags;
455 struct rcu_dynticks *rdtp;
456
457 local_irq_save(flags);
458 rdtp = &__get_cpu_var(rcu_dynticks);
459 /* Ensure this irq is interrupting a non-idle RCU state. */
460 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
461 rdtp->dynticks_nesting = 1;
462 local_irq_restore(flags);
463 }
464 #endif /* CONFIG_RCU_USER_QS */
465
466 /**
467 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
468 *
469 * Exit from an interrupt handler, which might possibly result in entering
470 * idle mode, in other words, leaving the mode in which read-side critical
471 * sections can occur.
472 *
473 * This code assumes that the idle loop never does anything that might
474 * result in unbalanced calls to irq_enter() and irq_exit(). If your
475 * architecture violates this assumption, RCU will give you what you
476 * deserve, good and hard. But very infrequently and irreproducibly.
477 *
478 * Use things like work queues to work around this limitation.
479 *
480 * You have been warned.
481 */
482 void rcu_irq_exit(void)
483 {
484 unsigned long flags;
485 long long oldval;
486 struct rcu_dynticks *rdtp;
487
488 local_irq_save(flags);
489 rdtp = &__get_cpu_var(rcu_dynticks);
490 oldval = rdtp->dynticks_nesting;
491 rdtp->dynticks_nesting--;
492 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
493 if (rdtp->dynticks_nesting)
494 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
495 else
496 rcu_eqs_enter_common(rdtp, oldval, true);
497 local_irq_restore(flags);
498 }
499
500 /*
501 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
502 *
503 * If the new value of the ->dynticks_nesting counter was previously zero,
504 * we really have exited idle, and must do the appropriate accounting.
505 * The caller must have disabled interrupts.
506 */
507 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
508 int user)
509 {
510 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
511 atomic_inc(&rdtp->dynticks);
512 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
513 smp_mb__after_atomic_inc(); /* See above. */
514 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
515 rcu_cleanup_after_idle(smp_processor_id());
516 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
517 if (!user && !is_idle_task(current)) {
518 struct task_struct *idle = idle_task(smp_processor_id());
519
520 trace_rcu_dyntick("Error on exit: not idle task",
521 oldval, rdtp->dynticks_nesting);
522 ftrace_dump(DUMP_ORIG);
523 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
524 current->pid, current->comm,
525 idle->pid, idle->comm); /* must be idle task! */
526 }
527 }
528
529 /*
530 * Exit an RCU extended quiescent state, which can be either the
531 * idle loop or adaptive-tickless usermode execution.
532 */
533 static void rcu_eqs_exit(bool user)
534 {
535 struct rcu_dynticks *rdtp;
536 long long oldval;
537
538 rdtp = &__get_cpu_var(rcu_dynticks);
539 oldval = rdtp->dynticks_nesting;
540 WARN_ON_ONCE(oldval < 0);
541 if (oldval & DYNTICK_TASK_NEST_MASK)
542 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
543 else
544 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
545 rcu_eqs_exit_common(rdtp, oldval, user);
546 }
547
548 /**
549 * rcu_idle_exit - inform RCU that current CPU is leaving idle
550 *
551 * Exit idle mode, in other words, -enter- the mode in which RCU
552 * read-side critical sections can occur.
553 *
554 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
555 * allow for the possibility of usermode upcalls messing up our count
556 * of interrupt nesting level during the busy period that is just
557 * now starting.
558 */
559 void rcu_idle_exit(void)
560 {
561 unsigned long flags;
562
563 local_irq_save(flags);
564 rcu_eqs_exit(false);
565 local_irq_restore(flags);
566 }
567 EXPORT_SYMBOL_GPL(rcu_idle_exit);
568
569 #ifdef CONFIG_RCU_USER_QS
570 /**
571 * rcu_user_exit - inform RCU that we are exiting userspace.
572 *
573 * Exit RCU idle mode while entering the kernel because it can
574 * run a RCU read side critical section anytime.
575 */
576 void rcu_user_exit(void)
577 {
578 unsigned long flags;
579 struct rcu_dynticks *rdtp;
580
581 /*
582 * Some contexts may involve an exception occuring in an irq,
583 * leading to that nesting:
584 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
585 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
586 * helpers are enough to protect RCU uses inside the exception. So
587 * just return immediately if we detect we are in an IRQ.
588 */
589 if (in_interrupt())
590 return;
591
592 local_irq_save(flags);
593 rdtp = &__get_cpu_var(rcu_dynticks);
594 if (rdtp->in_user) {
595 rdtp->in_user = false;
596 rcu_eqs_exit(true);
597 }
598 local_irq_restore(flags);
599 }
600
601 /**
602 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
603 * idle mode after the current non-nesting irq returns.
604 *
605 * This is similar to rcu_user_exit() but in the context of an irq.
606 * This is called when the irq has interrupted a userspace RCU idle mode
607 * context. When the current non-nesting interrupt returns after this call,
608 * the CPU won't restore the RCU idle mode.
609 */
610 void rcu_user_exit_after_irq(void)
611 {
612 unsigned long flags;
613 struct rcu_dynticks *rdtp;
614
615 local_irq_save(flags);
616 rdtp = &__get_cpu_var(rcu_dynticks);
617 /* Ensure we are interrupting an RCU idle mode. */
618 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
619 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
620 local_irq_restore(flags);
621 }
622 #endif /* CONFIG_RCU_USER_QS */
623
624 /**
625 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
626 *
627 * Enter an interrupt handler, which might possibly result in exiting
628 * idle mode, in other words, entering the mode in which read-side critical
629 * sections can occur.
630 *
631 * Note that the Linux kernel is fully capable of entering an interrupt
632 * handler that it never exits, for example when doing upcalls to
633 * user mode! This code assumes that the idle loop never does upcalls to
634 * user mode. If your architecture does do upcalls from the idle loop (or
635 * does anything else that results in unbalanced calls to the irq_enter()
636 * and irq_exit() functions), RCU will give you what you deserve, good
637 * and hard. But very infrequently and irreproducibly.
638 *
639 * Use things like work queues to work around this limitation.
640 *
641 * You have been warned.
642 */
643 void rcu_irq_enter(void)
644 {
645 unsigned long flags;
646 struct rcu_dynticks *rdtp;
647 long long oldval;
648
649 local_irq_save(flags);
650 rdtp = &__get_cpu_var(rcu_dynticks);
651 oldval = rdtp->dynticks_nesting;
652 rdtp->dynticks_nesting++;
653 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
654 if (oldval)
655 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
656 else
657 rcu_eqs_exit_common(rdtp, oldval, true);
658 local_irq_restore(flags);
659 }
660
661 /**
662 * rcu_nmi_enter - inform RCU of entry to NMI context
663 *
664 * If the CPU was idle with dynamic ticks active, and there is no
665 * irq handler running, this updates rdtp->dynticks_nmi to let the
666 * RCU grace-period handling know that the CPU is active.
667 */
668 void rcu_nmi_enter(void)
669 {
670 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
671
672 if (rdtp->dynticks_nmi_nesting == 0 &&
673 (atomic_read(&rdtp->dynticks) & 0x1))
674 return;
675 rdtp->dynticks_nmi_nesting++;
676 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
677 atomic_inc(&rdtp->dynticks);
678 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
679 smp_mb__after_atomic_inc(); /* See above. */
680 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
681 }
682
683 /**
684 * rcu_nmi_exit - inform RCU of exit from NMI context
685 *
686 * If the CPU was idle with dynamic ticks active, and there is no
687 * irq handler running, this updates rdtp->dynticks_nmi to let the
688 * RCU grace-period handling know that the CPU is no longer active.
689 */
690 void rcu_nmi_exit(void)
691 {
692 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
693
694 if (rdtp->dynticks_nmi_nesting == 0 ||
695 --rdtp->dynticks_nmi_nesting != 0)
696 return;
697 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
698 smp_mb__before_atomic_inc(); /* See above. */
699 atomic_inc(&rdtp->dynticks);
700 smp_mb__after_atomic_inc(); /* Force delay to next write. */
701 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
702 }
703
704 /**
705 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
706 *
707 * If the current CPU is in its idle loop and is neither in an interrupt
708 * or NMI handler, return true.
709 */
710 int rcu_is_cpu_idle(void)
711 {
712 int ret;
713
714 preempt_disable();
715 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
716 preempt_enable();
717 return ret;
718 }
719 EXPORT_SYMBOL(rcu_is_cpu_idle);
720
721 #ifdef CONFIG_RCU_USER_QS
722 void rcu_user_hooks_switch(struct task_struct *prev,
723 struct task_struct *next)
724 {
725 struct rcu_dynticks *rdtp;
726
727 /* Interrupts are disabled in context switch */
728 rdtp = &__get_cpu_var(rcu_dynticks);
729 if (!rdtp->ignore_user_qs) {
730 clear_tsk_thread_flag(prev, TIF_NOHZ);
731 set_tsk_thread_flag(next, TIF_NOHZ);
732 }
733 }
734 #endif /* #ifdef CONFIG_RCU_USER_QS */
735
736 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
737
738 /*
739 * Is the current CPU online? Disable preemption to avoid false positives
740 * that could otherwise happen due to the current CPU number being sampled,
741 * this task being preempted, its old CPU being taken offline, resuming
742 * on some other CPU, then determining that its old CPU is now offline.
743 * It is OK to use RCU on an offline processor during initial boot, hence
744 * the check for rcu_scheduler_fully_active. Note also that it is OK
745 * for a CPU coming online to use RCU for one jiffy prior to marking itself
746 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
747 * offline to continue to use RCU for one jiffy after marking itself
748 * offline in the cpu_online_mask. This leniency is necessary given the
749 * non-atomic nature of the online and offline processing, for example,
750 * the fact that a CPU enters the scheduler after completing the CPU_DYING
751 * notifiers.
752 *
753 * This is also why RCU internally marks CPUs online during the
754 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
755 *
756 * Disable checking if in an NMI handler because we cannot safely report
757 * errors from NMI handlers anyway.
758 */
759 bool rcu_lockdep_current_cpu_online(void)
760 {
761 struct rcu_data *rdp;
762 struct rcu_node *rnp;
763 bool ret;
764
765 if (in_nmi())
766 return 1;
767 preempt_disable();
768 rdp = &__get_cpu_var(rcu_sched_data);
769 rnp = rdp->mynode;
770 ret = (rdp->grpmask & rnp->qsmaskinit) ||
771 !rcu_scheduler_fully_active;
772 preempt_enable();
773 return ret;
774 }
775 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
776
777 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
778
779 /**
780 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
781 *
782 * If the current CPU is idle or running at a first-level (not nested)
783 * interrupt from idle, return true. The caller must have at least
784 * disabled preemption.
785 */
786 int rcu_is_cpu_rrupt_from_idle(void)
787 {
788 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
789 }
790
791 /*
792 * Snapshot the specified CPU's dynticks counter so that we can later
793 * credit them with an implicit quiescent state. Return 1 if this CPU
794 * is in dynticks idle mode, which is an extended quiescent state.
795 */
796 static int dyntick_save_progress_counter(struct rcu_data *rdp)
797 {
798 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
799 return (rdp->dynticks_snap & 0x1) == 0;
800 }
801
802 /*
803 * Return true if the specified CPU has passed through a quiescent
804 * state by virtue of being in or having passed through an dynticks
805 * idle state since the last call to dyntick_save_progress_counter()
806 * for this same CPU, or by virtue of having been offline.
807 */
808 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
809 {
810 unsigned int curr;
811 unsigned int snap;
812
813 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
814 snap = (unsigned int)rdp->dynticks_snap;
815
816 /*
817 * If the CPU passed through or entered a dynticks idle phase with
818 * no active irq/NMI handlers, then we can safely pretend that the CPU
819 * already acknowledged the request to pass through a quiescent
820 * state. Either way, that CPU cannot possibly be in an RCU
821 * read-side critical section that started before the beginning
822 * of the current RCU grace period.
823 */
824 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
825 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
826 rdp->dynticks_fqs++;
827 return 1;
828 }
829
830 /*
831 * Check for the CPU being offline, but only if the grace period
832 * is old enough. We don't need to worry about the CPU changing
833 * state: If we see it offline even once, it has been through a
834 * quiescent state.
835 *
836 * The reason for insisting that the grace period be at least
837 * one jiffy old is that CPUs that are not quite online and that
838 * have just gone offline can still execute RCU read-side critical
839 * sections.
840 */
841 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
842 return 0; /* Grace period is not old enough. */
843 barrier();
844 if (cpu_is_offline(rdp->cpu)) {
845 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
846 rdp->offline_fqs++;
847 return 1;
848 }
849 return 0;
850 }
851
852 static int jiffies_till_stall_check(void)
853 {
854 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
855
856 /*
857 * Limit check must be consistent with the Kconfig limits
858 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
859 */
860 if (till_stall_check < 3) {
861 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
862 till_stall_check = 3;
863 } else if (till_stall_check > 300) {
864 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
865 till_stall_check = 300;
866 }
867 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
868 }
869
870 static void record_gp_stall_check_time(struct rcu_state *rsp)
871 {
872 rsp->gp_start = jiffies;
873 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
874 }
875
876 /*
877 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
878 * for architectures that do not implement trigger_all_cpu_backtrace().
879 * The NMI-triggered stack traces are more accurate because they are
880 * printed by the target CPU.
881 */
882 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
883 {
884 int cpu;
885 unsigned long flags;
886 struct rcu_node *rnp;
887
888 rcu_for_each_leaf_node(rsp, rnp) {
889 raw_spin_lock_irqsave(&rnp->lock, flags);
890 if (rnp->qsmask != 0) {
891 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
892 if (rnp->qsmask & (1UL << cpu))
893 dump_cpu_task(rnp->grplo + cpu);
894 }
895 raw_spin_unlock_irqrestore(&rnp->lock, flags);
896 }
897 }
898
899 static void print_other_cpu_stall(struct rcu_state *rsp)
900 {
901 int cpu;
902 long delta;
903 unsigned long flags;
904 int ndetected = 0;
905 struct rcu_node *rnp = rcu_get_root(rsp);
906 long totqlen = 0;
907
908 /* Only let one CPU complain about others per time interval. */
909
910 raw_spin_lock_irqsave(&rnp->lock, flags);
911 delta = jiffies - rsp->jiffies_stall;
912 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
913 raw_spin_unlock_irqrestore(&rnp->lock, flags);
914 return;
915 }
916 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
917 raw_spin_unlock_irqrestore(&rnp->lock, flags);
918
919 /*
920 * OK, time to rat on our buddy...
921 * See Documentation/RCU/stallwarn.txt for info on how to debug
922 * RCU CPU stall warnings.
923 */
924 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
925 rsp->name);
926 print_cpu_stall_info_begin();
927 rcu_for_each_leaf_node(rsp, rnp) {
928 raw_spin_lock_irqsave(&rnp->lock, flags);
929 ndetected += rcu_print_task_stall(rnp);
930 if (rnp->qsmask != 0) {
931 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
932 if (rnp->qsmask & (1UL << cpu)) {
933 print_cpu_stall_info(rsp,
934 rnp->grplo + cpu);
935 ndetected++;
936 }
937 }
938 raw_spin_unlock_irqrestore(&rnp->lock, flags);
939 }
940
941 /*
942 * Now rat on any tasks that got kicked up to the root rcu_node
943 * due to CPU offlining.
944 */
945 rnp = rcu_get_root(rsp);
946 raw_spin_lock_irqsave(&rnp->lock, flags);
947 ndetected += rcu_print_task_stall(rnp);
948 raw_spin_unlock_irqrestore(&rnp->lock, flags);
949
950 print_cpu_stall_info_end();
951 for_each_possible_cpu(cpu)
952 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
953 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
954 smp_processor_id(), (long)(jiffies - rsp->gp_start),
955 rsp->gpnum, rsp->completed, totqlen);
956 if (ndetected == 0)
957 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
958 else if (!trigger_all_cpu_backtrace())
959 rcu_dump_cpu_stacks(rsp);
960
961 /* Complain about tasks blocking the grace period. */
962
963 rcu_print_detail_task_stall(rsp);
964
965 force_quiescent_state(rsp); /* Kick them all. */
966 }
967
968 static void print_cpu_stall(struct rcu_state *rsp)
969 {
970 int cpu;
971 unsigned long flags;
972 struct rcu_node *rnp = rcu_get_root(rsp);
973 long totqlen = 0;
974
975 /*
976 * OK, time to rat on ourselves...
977 * See Documentation/RCU/stallwarn.txt for info on how to debug
978 * RCU CPU stall warnings.
979 */
980 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
981 print_cpu_stall_info_begin();
982 print_cpu_stall_info(rsp, smp_processor_id());
983 print_cpu_stall_info_end();
984 for_each_possible_cpu(cpu)
985 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
986 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
987 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
988 if (!trigger_all_cpu_backtrace())
989 dump_stack();
990
991 raw_spin_lock_irqsave(&rnp->lock, flags);
992 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
993 rsp->jiffies_stall = jiffies +
994 3 * jiffies_till_stall_check() + 3;
995 raw_spin_unlock_irqrestore(&rnp->lock, flags);
996
997 set_need_resched(); /* kick ourselves to get things going. */
998 }
999
1000 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1001 {
1002 unsigned long j;
1003 unsigned long js;
1004 struct rcu_node *rnp;
1005
1006 if (rcu_cpu_stall_suppress)
1007 return;
1008 j = ACCESS_ONCE(jiffies);
1009 js = ACCESS_ONCE(rsp->jiffies_stall);
1010 rnp = rdp->mynode;
1011 if (rcu_gp_in_progress(rsp) &&
1012 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
1013
1014 /* We haven't checked in, so go dump stack. */
1015 print_cpu_stall(rsp);
1016
1017 } else if (rcu_gp_in_progress(rsp) &&
1018 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1019
1020 /* They had a few time units to dump stack, so complain. */
1021 print_other_cpu_stall(rsp);
1022 }
1023 }
1024
1025 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
1026 {
1027 rcu_cpu_stall_suppress = 1;
1028 return NOTIFY_DONE;
1029 }
1030
1031 /**
1032 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1033 *
1034 * Set the stall-warning timeout way off into the future, thus preventing
1035 * any RCU CPU stall-warning messages from appearing in the current set of
1036 * RCU grace periods.
1037 *
1038 * The caller must disable hard irqs.
1039 */
1040 void rcu_cpu_stall_reset(void)
1041 {
1042 struct rcu_state *rsp;
1043
1044 for_each_rcu_flavor(rsp)
1045 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1046 }
1047
1048 static struct notifier_block rcu_panic_block = {
1049 .notifier_call = rcu_panic,
1050 };
1051
1052 static void __init check_cpu_stall_init(void)
1053 {
1054 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
1055 }
1056
1057 /*
1058 * Update CPU-local rcu_data state to record the newly noticed grace period.
1059 * This is used both when we started the grace period and when we notice
1060 * that someone else started the grace period. The caller must hold the
1061 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
1062 * and must have irqs disabled.
1063 */
1064 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1065 {
1066 if (rdp->gpnum != rnp->gpnum) {
1067 /*
1068 * If the current grace period is waiting for this CPU,
1069 * set up to detect a quiescent state, otherwise don't
1070 * go looking for one.
1071 */
1072 rdp->gpnum = rnp->gpnum;
1073 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
1074 rdp->passed_quiesce = 0;
1075 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1076 zero_cpu_stall_ticks(rdp);
1077 }
1078 }
1079
1080 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1081 {
1082 unsigned long flags;
1083 struct rcu_node *rnp;
1084
1085 local_irq_save(flags);
1086 rnp = rdp->mynode;
1087 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1088 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1089 local_irq_restore(flags);
1090 return;
1091 }
1092 __note_new_gpnum(rsp, rnp, rdp);
1093 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1094 }
1095
1096 /*
1097 * Did someone else start a new RCU grace period start since we last
1098 * checked? Update local state appropriately if so. Must be called
1099 * on the CPU corresponding to rdp.
1100 */
1101 static int
1102 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1103 {
1104 unsigned long flags;
1105 int ret = 0;
1106
1107 local_irq_save(flags);
1108 if (rdp->gpnum != rsp->gpnum) {
1109 note_new_gpnum(rsp, rdp);
1110 ret = 1;
1111 }
1112 local_irq_restore(flags);
1113 return ret;
1114 }
1115
1116 /*
1117 * Initialize the specified rcu_data structure's callback list to empty.
1118 */
1119 static void init_callback_list(struct rcu_data *rdp)
1120 {
1121 int i;
1122
1123 rdp->nxtlist = NULL;
1124 for (i = 0; i < RCU_NEXT_SIZE; i++)
1125 rdp->nxttail[i] = &rdp->nxtlist;
1126 }
1127
1128 /*
1129 * Advance this CPU's callbacks, but only if the current grace period
1130 * has ended. This may be called only from the CPU to whom the rdp
1131 * belongs. In addition, the corresponding leaf rcu_node structure's
1132 * ->lock must be held by the caller, with irqs disabled.
1133 */
1134 static void
1135 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1136 {
1137 /* Did another grace period end? */
1138 if (rdp->completed != rnp->completed) {
1139
1140 /* Advance callbacks. No harm if list empty. */
1141 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
1142 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
1143 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1144
1145 /* Remember that we saw this grace-period completion. */
1146 rdp->completed = rnp->completed;
1147 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1148
1149 /*
1150 * If we were in an extended quiescent state, we may have
1151 * missed some grace periods that others CPUs handled on
1152 * our behalf. Catch up with this state to avoid noting
1153 * spurious new grace periods. If another grace period
1154 * has started, then rnp->gpnum will have advanced, so
1155 * we will detect this later on. Of course, any quiescent
1156 * states we found for the old GP are now invalid.
1157 */
1158 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1159 rdp->gpnum = rdp->completed;
1160 rdp->passed_quiesce = 0;
1161 }
1162
1163 /*
1164 * If RCU does not need a quiescent state from this CPU,
1165 * then make sure that this CPU doesn't go looking for one.
1166 */
1167 if ((rnp->qsmask & rdp->grpmask) == 0)
1168 rdp->qs_pending = 0;
1169 }
1170 }
1171
1172 /*
1173 * Advance this CPU's callbacks, but only if the current grace period
1174 * has ended. This may be called only from the CPU to whom the rdp
1175 * belongs.
1176 */
1177 static void
1178 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1179 {
1180 unsigned long flags;
1181 struct rcu_node *rnp;
1182
1183 local_irq_save(flags);
1184 rnp = rdp->mynode;
1185 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1186 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1187 local_irq_restore(flags);
1188 return;
1189 }
1190 __rcu_process_gp_end(rsp, rnp, rdp);
1191 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1192 }
1193
1194 /*
1195 * Do per-CPU grace-period initialization for running CPU. The caller
1196 * must hold the lock of the leaf rcu_node structure corresponding to
1197 * this CPU.
1198 */
1199 static void
1200 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1201 {
1202 /* Prior grace period ended, so advance callbacks for current CPU. */
1203 __rcu_process_gp_end(rsp, rnp, rdp);
1204
1205 /* Set state so that this CPU will detect the next quiescent state. */
1206 __note_new_gpnum(rsp, rnp, rdp);
1207 }
1208
1209 /*
1210 * Initialize a new grace period.
1211 */
1212 static int rcu_gp_init(struct rcu_state *rsp)
1213 {
1214 struct rcu_data *rdp;
1215 struct rcu_node *rnp = rcu_get_root(rsp);
1216
1217 raw_spin_lock_irq(&rnp->lock);
1218 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1219
1220 if (rcu_gp_in_progress(rsp)) {
1221 /* Grace period already in progress, don't start another. */
1222 raw_spin_unlock_irq(&rnp->lock);
1223 return 0;
1224 }
1225
1226 /* Advance to a new grace period and initialize state. */
1227 rsp->gpnum++;
1228 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1229 record_gp_stall_check_time(rsp);
1230 raw_spin_unlock_irq(&rnp->lock);
1231
1232 /* Exclude any concurrent CPU-hotplug operations. */
1233 mutex_lock(&rsp->onoff_mutex);
1234
1235 /*
1236 * Set the quiescent-state-needed bits in all the rcu_node
1237 * structures for all currently online CPUs in breadth-first order,
1238 * starting from the root rcu_node structure, relying on the layout
1239 * of the tree within the rsp->node[] array. Note that other CPUs
1240 * will access only the leaves of the hierarchy, thus seeing that no
1241 * grace period is in progress, at least until the corresponding
1242 * leaf node has been initialized. In addition, we have excluded
1243 * CPU-hotplug operations.
1244 *
1245 * The grace period cannot complete until the initialization
1246 * process finishes, because this kthread handles both.
1247 */
1248 rcu_for_each_node_breadth_first(rsp, rnp) {
1249 raw_spin_lock_irq(&rnp->lock);
1250 rdp = this_cpu_ptr(rsp->rda);
1251 rcu_preempt_check_blocked_tasks(rnp);
1252 rnp->qsmask = rnp->qsmaskinit;
1253 rnp->gpnum = rsp->gpnum;
1254 WARN_ON_ONCE(rnp->completed != rsp->completed);
1255 rnp->completed = rsp->completed;
1256 if (rnp == rdp->mynode)
1257 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1258 rcu_preempt_boost_start_gp(rnp);
1259 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1260 rnp->level, rnp->grplo,
1261 rnp->grphi, rnp->qsmask);
1262 raw_spin_unlock_irq(&rnp->lock);
1263 #ifdef CONFIG_PROVE_RCU_DELAY
1264 if ((random32() % (rcu_num_nodes * 8)) == 0)
1265 schedule_timeout_uninterruptible(2);
1266 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1267 cond_resched();
1268 }
1269
1270 mutex_unlock(&rsp->onoff_mutex);
1271 return 1;
1272 }
1273
1274 /*
1275 * Do one round of quiescent-state forcing.
1276 */
1277 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1278 {
1279 int fqs_state = fqs_state_in;
1280 struct rcu_node *rnp = rcu_get_root(rsp);
1281
1282 rsp->n_force_qs++;
1283 if (fqs_state == RCU_SAVE_DYNTICK) {
1284 /* Collect dyntick-idle snapshots. */
1285 force_qs_rnp(rsp, dyntick_save_progress_counter);
1286 fqs_state = RCU_FORCE_QS;
1287 } else {
1288 /* Handle dyntick-idle and offline CPUs. */
1289 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1290 }
1291 /* Clear flag to prevent immediate re-entry. */
1292 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1293 raw_spin_lock_irq(&rnp->lock);
1294 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1295 raw_spin_unlock_irq(&rnp->lock);
1296 }
1297 return fqs_state;
1298 }
1299
1300 /*
1301 * Clean up after the old grace period.
1302 */
1303 static void rcu_gp_cleanup(struct rcu_state *rsp)
1304 {
1305 unsigned long gp_duration;
1306 struct rcu_data *rdp;
1307 struct rcu_node *rnp = rcu_get_root(rsp);
1308
1309 raw_spin_lock_irq(&rnp->lock);
1310 gp_duration = jiffies - rsp->gp_start;
1311 if (gp_duration > rsp->gp_max)
1312 rsp->gp_max = gp_duration;
1313
1314 /*
1315 * We know the grace period is complete, but to everyone else
1316 * it appears to still be ongoing. But it is also the case
1317 * that to everyone else it looks like there is nothing that
1318 * they can do to advance the grace period. It is therefore
1319 * safe for us to drop the lock in order to mark the grace
1320 * period as completed in all of the rcu_node structures.
1321 */
1322 raw_spin_unlock_irq(&rnp->lock);
1323
1324 /*
1325 * Propagate new ->completed value to rcu_node structures so
1326 * that other CPUs don't have to wait until the start of the next
1327 * grace period to process their callbacks. This also avoids
1328 * some nasty RCU grace-period initialization races by forcing
1329 * the end of the current grace period to be completely recorded in
1330 * all of the rcu_node structures before the beginning of the next
1331 * grace period is recorded in any of the rcu_node structures.
1332 */
1333 rcu_for_each_node_breadth_first(rsp, rnp) {
1334 raw_spin_lock_irq(&rnp->lock);
1335 rnp->completed = rsp->gpnum;
1336 raw_spin_unlock_irq(&rnp->lock);
1337 cond_resched();
1338 }
1339 rnp = rcu_get_root(rsp);
1340 raw_spin_lock_irq(&rnp->lock);
1341
1342 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1343 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1344 rsp->fqs_state = RCU_GP_IDLE;
1345 rdp = this_cpu_ptr(rsp->rda);
1346 if (cpu_needs_another_gp(rsp, rdp))
1347 rsp->gp_flags = 1;
1348 raw_spin_unlock_irq(&rnp->lock);
1349 }
1350
1351 /*
1352 * Body of kthread that handles grace periods.
1353 */
1354 static int __noreturn rcu_gp_kthread(void *arg)
1355 {
1356 int fqs_state;
1357 unsigned long j;
1358 int ret;
1359 struct rcu_state *rsp = arg;
1360 struct rcu_node *rnp = rcu_get_root(rsp);
1361
1362 for (;;) {
1363
1364 /* Handle grace-period start. */
1365 for (;;) {
1366 wait_event_interruptible(rsp->gp_wq,
1367 rsp->gp_flags &
1368 RCU_GP_FLAG_INIT);
1369 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1370 rcu_gp_init(rsp))
1371 break;
1372 cond_resched();
1373 flush_signals(current);
1374 }
1375
1376 /* Handle quiescent-state forcing. */
1377 fqs_state = RCU_SAVE_DYNTICK;
1378 j = jiffies_till_first_fqs;
1379 if (j > HZ) {
1380 j = HZ;
1381 jiffies_till_first_fqs = HZ;
1382 }
1383 for (;;) {
1384 rsp->jiffies_force_qs = jiffies + j;
1385 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1386 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1387 (!ACCESS_ONCE(rnp->qsmask) &&
1388 !rcu_preempt_blocked_readers_cgp(rnp)),
1389 j);
1390 /* If grace period done, leave loop. */
1391 if (!ACCESS_ONCE(rnp->qsmask) &&
1392 !rcu_preempt_blocked_readers_cgp(rnp))
1393 break;
1394 /* If time for quiescent-state forcing, do it. */
1395 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1396 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1397 cond_resched();
1398 } else {
1399 /* Deal with stray signal. */
1400 cond_resched();
1401 flush_signals(current);
1402 }
1403 j = jiffies_till_next_fqs;
1404 if (j > HZ) {
1405 j = HZ;
1406 jiffies_till_next_fqs = HZ;
1407 } else if (j < 1) {
1408 j = 1;
1409 jiffies_till_next_fqs = 1;
1410 }
1411 }
1412
1413 /* Handle grace-period end. */
1414 rcu_gp_cleanup(rsp);
1415 }
1416 }
1417
1418 /*
1419 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1420 * in preparation for detecting the next grace period. The caller must hold
1421 * the root node's ->lock, which is released before return. Hard irqs must
1422 * be disabled.
1423 *
1424 * Note that it is legal for a dying CPU (which is marked as offline) to
1425 * invoke this function. This can happen when the dying CPU reports its
1426 * quiescent state.
1427 */
1428 static void
1429 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1430 __releases(rcu_get_root(rsp)->lock)
1431 {
1432 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1433 struct rcu_node *rnp = rcu_get_root(rsp);
1434
1435 if (!rsp->gp_kthread ||
1436 !cpu_needs_another_gp(rsp, rdp)) {
1437 /*
1438 * Either we have not yet spawned the grace-period
1439 * task or this CPU does not need another grace period.
1440 * Either way, don't start a new grace period.
1441 */
1442 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1443 return;
1444 }
1445
1446 rsp->gp_flags = RCU_GP_FLAG_INIT;
1447 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1448 wake_up(&rsp->gp_wq);
1449 }
1450
1451 /*
1452 * Report a full set of quiescent states to the specified rcu_state
1453 * data structure. This involves cleaning up after the prior grace
1454 * period and letting rcu_start_gp() start up the next grace period
1455 * if one is needed. Note that the caller must hold rnp->lock, as
1456 * required by rcu_start_gp(), which will release it.
1457 */
1458 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1459 __releases(rcu_get_root(rsp)->lock)
1460 {
1461 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1462 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1463 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1464 }
1465
1466 /*
1467 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1468 * Allows quiescent states for a group of CPUs to be reported at one go
1469 * to the specified rcu_node structure, though all the CPUs in the group
1470 * must be represented by the same rcu_node structure (which need not be
1471 * a leaf rcu_node structure, though it often will be). That structure's
1472 * lock must be held upon entry, and it is released before return.
1473 */
1474 static void
1475 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1476 struct rcu_node *rnp, unsigned long flags)
1477 __releases(rnp->lock)
1478 {
1479 struct rcu_node *rnp_c;
1480
1481 /* Walk up the rcu_node hierarchy. */
1482 for (;;) {
1483 if (!(rnp->qsmask & mask)) {
1484
1485 /* Our bit has already been cleared, so done. */
1486 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1487 return;
1488 }
1489 rnp->qsmask &= ~mask;
1490 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1491 mask, rnp->qsmask, rnp->level,
1492 rnp->grplo, rnp->grphi,
1493 !!rnp->gp_tasks);
1494 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1495
1496 /* Other bits still set at this level, so done. */
1497 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1498 return;
1499 }
1500 mask = rnp->grpmask;
1501 if (rnp->parent == NULL) {
1502
1503 /* No more levels. Exit loop holding root lock. */
1504
1505 break;
1506 }
1507 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1508 rnp_c = rnp;
1509 rnp = rnp->parent;
1510 raw_spin_lock_irqsave(&rnp->lock, flags);
1511 WARN_ON_ONCE(rnp_c->qsmask);
1512 }
1513
1514 /*
1515 * Get here if we are the last CPU to pass through a quiescent
1516 * state for this grace period. Invoke rcu_report_qs_rsp()
1517 * to clean up and start the next grace period if one is needed.
1518 */
1519 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1520 }
1521
1522 /*
1523 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1524 * structure. This must be either called from the specified CPU, or
1525 * called when the specified CPU is known to be offline (and when it is
1526 * also known that no other CPU is concurrently trying to help the offline
1527 * CPU). The lastcomp argument is used to make sure we are still in the
1528 * grace period of interest. We don't want to end the current grace period
1529 * based on quiescent states detected in an earlier grace period!
1530 */
1531 static void
1532 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1533 {
1534 unsigned long flags;
1535 unsigned long mask;
1536 struct rcu_node *rnp;
1537
1538 rnp = rdp->mynode;
1539 raw_spin_lock_irqsave(&rnp->lock, flags);
1540 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1541 rnp->completed == rnp->gpnum) {
1542
1543 /*
1544 * The grace period in which this quiescent state was
1545 * recorded has ended, so don't report it upwards.
1546 * We will instead need a new quiescent state that lies
1547 * within the current grace period.
1548 */
1549 rdp->passed_quiesce = 0; /* need qs for new gp. */
1550 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1551 return;
1552 }
1553 mask = rdp->grpmask;
1554 if ((rnp->qsmask & mask) == 0) {
1555 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1556 } else {
1557 rdp->qs_pending = 0;
1558
1559 /*
1560 * This GP can't end until cpu checks in, so all of our
1561 * callbacks can be processed during the next GP.
1562 */
1563 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1564
1565 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1566 }
1567 }
1568
1569 /*
1570 * Check to see if there is a new grace period of which this CPU
1571 * is not yet aware, and if so, set up local rcu_data state for it.
1572 * Otherwise, see if this CPU has just passed through its first
1573 * quiescent state for this grace period, and record that fact if so.
1574 */
1575 static void
1576 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1577 {
1578 /* If there is now a new grace period, record and return. */
1579 if (check_for_new_grace_period(rsp, rdp))
1580 return;
1581
1582 /*
1583 * Does this CPU still need to do its part for current grace period?
1584 * If no, return and let the other CPUs do their part as well.
1585 */
1586 if (!rdp->qs_pending)
1587 return;
1588
1589 /*
1590 * Was there a quiescent state since the beginning of the grace
1591 * period? If no, then exit and wait for the next call.
1592 */
1593 if (!rdp->passed_quiesce)
1594 return;
1595
1596 /*
1597 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1598 * judge of that).
1599 */
1600 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1601 }
1602
1603 #ifdef CONFIG_HOTPLUG_CPU
1604
1605 /*
1606 * Send the specified CPU's RCU callbacks to the orphanage. The
1607 * specified CPU must be offline, and the caller must hold the
1608 * ->onofflock.
1609 */
1610 static void
1611 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1612 struct rcu_node *rnp, struct rcu_data *rdp)
1613 {
1614 /*
1615 * Orphan the callbacks. First adjust the counts. This is safe
1616 * because ->onofflock excludes _rcu_barrier()'s adoption of
1617 * the callbacks, thus no memory barrier is required.
1618 */
1619 if (rdp->nxtlist != NULL) {
1620 rsp->qlen_lazy += rdp->qlen_lazy;
1621 rsp->qlen += rdp->qlen;
1622 rdp->n_cbs_orphaned += rdp->qlen;
1623 rdp->qlen_lazy = 0;
1624 ACCESS_ONCE(rdp->qlen) = 0;
1625 }
1626
1627 /*
1628 * Next, move those callbacks still needing a grace period to
1629 * the orphanage, where some other CPU will pick them up.
1630 * Some of the callbacks might have gone partway through a grace
1631 * period, but that is too bad. They get to start over because we
1632 * cannot assume that grace periods are synchronized across CPUs.
1633 * We don't bother updating the ->nxttail[] array yet, instead
1634 * we just reset the whole thing later on.
1635 */
1636 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1637 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1638 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1639 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1640 }
1641
1642 /*
1643 * Then move the ready-to-invoke callbacks to the orphanage,
1644 * where some other CPU will pick them up. These will not be
1645 * required to pass though another grace period: They are done.
1646 */
1647 if (rdp->nxtlist != NULL) {
1648 *rsp->orphan_donetail = rdp->nxtlist;
1649 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1650 }
1651
1652 /* Finally, initialize the rcu_data structure's list to empty. */
1653 init_callback_list(rdp);
1654 }
1655
1656 /*
1657 * Adopt the RCU callbacks from the specified rcu_state structure's
1658 * orphanage. The caller must hold the ->onofflock.
1659 */
1660 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1661 {
1662 int i;
1663 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1664
1665 /* Do the accounting first. */
1666 rdp->qlen_lazy += rsp->qlen_lazy;
1667 rdp->qlen += rsp->qlen;
1668 rdp->n_cbs_adopted += rsp->qlen;
1669 if (rsp->qlen_lazy != rsp->qlen)
1670 rcu_idle_count_callbacks_posted();
1671 rsp->qlen_lazy = 0;
1672 rsp->qlen = 0;
1673
1674 /*
1675 * We do not need a memory barrier here because the only way we
1676 * can get here if there is an rcu_barrier() in flight is if
1677 * we are the task doing the rcu_barrier().
1678 */
1679
1680 /* First adopt the ready-to-invoke callbacks. */
1681 if (rsp->orphan_donelist != NULL) {
1682 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1683 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1684 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1685 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1686 rdp->nxttail[i] = rsp->orphan_donetail;
1687 rsp->orphan_donelist = NULL;
1688 rsp->orphan_donetail = &rsp->orphan_donelist;
1689 }
1690
1691 /* And then adopt the callbacks that still need a grace period. */
1692 if (rsp->orphan_nxtlist != NULL) {
1693 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1694 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1695 rsp->orphan_nxtlist = NULL;
1696 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1697 }
1698 }
1699
1700 /*
1701 * Trace the fact that this CPU is going offline.
1702 */
1703 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1704 {
1705 RCU_TRACE(unsigned long mask);
1706 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1707 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1708
1709 RCU_TRACE(mask = rdp->grpmask);
1710 trace_rcu_grace_period(rsp->name,
1711 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1712 "cpuofl");
1713 }
1714
1715 /*
1716 * The CPU has been completely removed, and some other CPU is reporting
1717 * this fact from process context. Do the remainder of the cleanup,
1718 * including orphaning the outgoing CPU's RCU callbacks, and also
1719 * adopting them. There can only be one CPU hotplug operation at a time,
1720 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1721 */
1722 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1723 {
1724 unsigned long flags;
1725 unsigned long mask;
1726 int need_report = 0;
1727 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1728 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1729
1730 /* Adjust any no-longer-needed kthreads. */
1731 rcu_boost_kthread_setaffinity(rnp, -1);
1732
1733 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1734
1735 /* Exclude any attempts to start a new grace period. */
1736 mutex_lock(&rsp->onoff_mutex);
1737 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1738
1739 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1740 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1741 rcu_adopt_orphan_cbs(rsp);
1742
1743 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1744 mask = rdp->grpmask; /* rnp->grplo is constant. */
1745 do {
1746 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1747 rnp->qsmaskinit &= ~mask;
1748 if (rnp->qsmaskinit != 0) {
1749 if (rnp != rdp->mynode)
1750 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1751 break;
1752 }
1753 if (rnp == rdp->mynode)
1754 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1755 else
1756 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1757 mask = rnp->grpmask;
1758 rnp = rnp->parent;
1759 } while (rnp != NULL);
1760
1761 /*
1762 * We still hold the leaf rcu_node structure lock here, and
1763 * irqs are still disabled. The reason for this subterfuge is
1764 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1765 * held leads to deadlock.
1766 */
1767 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1768 rnp = rdp->mynode;
1769 if (need_report & RCU_OFL_TASKS_NORM_GP)
1770 rcu_report_unblock_qs_rnp(rnp, flags);
1771 else
1772 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1773 if (need_report & RCU_OFL_TASKS_EXP_GP)
1774 rcu_report_exp_rnp(rsp, rnp, true);
1775 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1776 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1777 cpu, rdp->qlen, rdp->nxtlist);
1778 init_callback_list(rdp);
1779 /* Disallow further callbacks on this CPU. */
1780 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1781 mutex_unlock(&rsp->onoff_mutex);
1782 }
1783
1784 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1785
1786 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1787 {
1788 }
1789
1790 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1791 {
1792 }
1793
1794 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1795
1796 /*
1797 * Invoke any RCU callbacks that have made it to the end of their grace
1798 * period. Thottle as specified by rdp->blimit.
1799 */
1800 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1801 {
1802 unsigned long flags;
1803 struct rcu_head *next, *list, **tail;
1804 int bl, count, count_lazy, i;
1805
1806 /* If no callbacks are ready, just return.*/
1807 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1808 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1809 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1810 need_resched(), is_idle_task(current),
1811 rcu_is_callbacks_kthread());
1812 return;
1813 }
1814
1815 /*
1816 * Extract the list of ready callbacks, disabling to prevent
1817 * races with call_rcu() from interrupt handlers.
1818 */
1819 local_irq_save(flags);
1820 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1821 bl = rdp->blimit;
1822 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1823 list = rdp->nxtlist;
1824 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1825 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1826 tail = rdp->nxttail[RCU_DONE_TAIL];
1827 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1828 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1829 rdp->nxttail[i] = &rdp->nxtlist;
1830 local_irq_restore(flags);
1831
1832 /* Invoke callbacks. */
1833 count = count_lazy = 0;
1834 while (list) {
1835 next = list->next;
1836 prefetch(next);
1837 debug_rcu_head_unqueue(list);
1838 if (__rcu_reclaim(rsp->name, list))
1839 count_lazy++;
1840 list = next;
1841 /* Stop only if limit reached and CPU has something to do. */
1842 if (++count >= bl &&
1843 (need_resched() ||
1844 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1845 break;
1846 }
1847
1848 local_irq_save(flags);
1849 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1850 is_idle_task(current),
1851 rcu_is_callbacks_kthread());
1852
1853 /* Update count, and requeue any remaining callbacks. */
1854 if (list != NULL) {
1855 *tail = rdp->nxtlist;
1856 rdp->nxtlist = list;
1857 for (i = 0; i < RCU_NEXT_SIZE; i++)
1858 if (&rdp->nxtlist == rdp->nxttail[i])
1859 rdp->nxttail[i] = tail;
1860 else
1861 break;
1862 }
1863 smp_mb(); /* List handling before counting for rcu_barrier(). */
1864 rdp->qlen_lazy -= count_lazy;
1865 ACCESS_ONCE(rdp->qlen) -= count;
1866 rdp->n_cbs_invoked += count;
1867
1868 /* Reinstate batch limit if we have worked down the excess. */
1869 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1870 rdp->blimit = blimit;
1871
1872 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1873 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1874 rdp->qlen_last_fqs_check = 0;
1875 rdp->n_force_qs_snap = rsp->n_force_qs;
1876 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1877 rdp->qlen_last_fqs_check = rdp->qlen;
1878 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1879
1880 local_irq_restore(flags);
1881
1882 /* Re-invoke RCU core processing if there are callbacks remaining. */
1883 if (cpu_has_callbacks_ready_to_invoke(rdp))
1884 invoke_rcu_core();
1885 }
1886
1887 /*
1888 * Check to see if this CPU is in a non-context-switch quiescent state
1889 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1890 * Also schedule RCU core processing.
1891 *
1892 * This function must be called from hardirq context. It is normally
1893 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1894 * false, there is no point in invoking rcu_check_callbacks().
1895 */
1896 void rcu_check_callbacks(int cpu, int user)
1897 {
1898 trace_rcu_utilization("Start scheduler-tick");
1899 increment_cpu_stall_ticks();
1900 if (user || rcu_is_cpu_rrupt_from_idle()) {
1901
1902 /*
1903 * Get here if this CPU took its interrupt from user
1904 * mode or from the idle loop, and if this is not a
1905 * nested interrupt. In this case, the CPU is in
1906 * a quiescent state, so note it.
1907 *
1908 * No memory barrier is required here because both
1909 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1910 * variables that other CPUs neither access nor modify,
1911 * at least not while the corresponding CPU is online.
1912 */
1913
1914 rcu_sched_qs(cpu);
1915 rcu_bh_qs(cpu);
1916
1917 } else if (!in_softirq()) {
1918
1919 /*
1920 * Get here if this CPU did not take its interrupt from
1921 * softirq, in other words, if it is not interrupting
1922 * a rcu_bh read-side critical section. This is an _bh
1923 * critical section, so note it.
1924 */
1925
1926 rcu_bh_qs(cpu);
1927 }
1928 rcu_preempt_check_callbacks(cpu);
1929 if (rcu_pending(cpu))
1930 invoke_rcu_core();
1931 trace_rcu_utilization("End scheduler-tick");
1932 }
1933
1934 /*
1935 * Scan the leaf rcu_node structures, processing dyntick state for any that
1936 * have not yet encountered a quiescent state, using the function specified.
1937 * Also initiate boosting for any threads blocked on the root rcu_node.
1938 *
1939 * The caller must have suppressed start of new grace periods.
1940 */
1941 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1942 {
1943 unsigned long bit;
1944 int cpu;
1945 unsigned long flags;
1946 unsigned long mask;
1947 struct rcu_node *rnp;
1948
1949 rcu_for_each_leaf_node(rsp, rnp) {
1950 cond_resched();
1951 mask = 0;
1952 raw_spin_lock_irqsave(&rnp->lock, flags);
1953 if (!rcu_gp_in_progress(rsp)) {
1954 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1955 return;
1956 }
1957 if (rnp->qsmask == 0) {
1958 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1959 continue;
1960 }
1961 cpu = rnp->grplo;
1962 bit = 1;
1963 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1964 if ((rnp->qsmask & bit) != 0 &&
1965 f(per_cpu_ptr(rsp->rda, cpu)))
1966 mask |= bit;
1967 }
1968 if (mask != 0) {
1969
1970 /* rcu_report_qs_rnp() releases rnp->lock. */
1971 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1972 continue;
1973 }
1974 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1975 }
1976 rnp = rcu_get_root(rsp);
1977 if (rnp->qsmask == 0) {
1978 raw_spin_lock_irqsave(&rnp->lock, flags);
1979 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1980 }
1981 }
1982
1983 /*
1984 * Force quiescent states on reluctant CPUs, and also detect which
1985 * CPUs are in dyntick-idle mode.
1986 */
1987 static void force_quiescent_state(struct rcu_state *rsp)
1988 {
1989 unsigned long flags;
1990 bool ret;
1991 struct rcu_node *rnp;
1992 struct rcu_node *rnp_old = NULL;
1993
1994 /* Funnel through hierarchy to reduce memory contention. */
1995 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
1996 for (; rnp != NULL; rnp = rnp->parent) {
1997 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
1998 !raw_spin_trylock(&rnp->fqslock);
1999 if (rnp_old != NULL)
2000 raw_spin_unlock(&rnp_old->fqslock);
2001 if (ret) {
2002 rsp->n_force_qs_lh++;
2003 return;
2004 }
2005 rnp_old = rnp;
2006 }
2007 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2008
2009 /* Reached the root of the rcu_node tree, acquire lock. */
2010 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2011 raw_spin_unlock(&rnp_old->fqslock);
2012 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2013 rsp->n_force_qs_lh++;
2014 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2015 return; /* Someone beat us to it. */
2016 }
2017 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2018 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2019 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2020 }
2021
2022 /*
2023 * This does the RCU core processing work for the specified rcu_state
2024 * and rcu_data structures. This may be called only from the CPU to
2025 * whom the rdp belongs.
2026 */
2027 static void
2028 __rcu_process_callbacks(struct rcu_state *rsp)
2029 {
2030 unsigned long flags;
2031 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2032
2033 WARN_ON_ONCE(rdp->beenonline == 0);
2034
2035 /*
2036 * Advance callbacks in response to end of earlier grace
2037 * period that some other CPU ended.
2038 */
2039 rcu_process_gp_end(rsp, rdp);
2040
2041 /* Update RCU state based on any recent quiescent states. */
2042 rcu_check_quiescent_state(rsp, rdp);
2043
2044 /* Does this CPU require a not-yet-started grace period? */
2045 if (cpu_needs_another_gp(rsp, rdp)) {
2046 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
2047 rcu_start_gp(rsp, flags); /* releases above lock */
2048 }
2049
2050 /* If there are callbacks ready, invoke them. */
2051 if (cpu_has_callbacks_ready_to_invoke(rdp))
2052 invoke_rcu_callbacks(rsp, rdp);
2053 }
2054
2055 /*
2056 * Do RCU core processing for the current CPU.
2057 */
2058 static void rcu_process_callbacks(struct softirq_action *unused)
2059 {
2060 struct rcu_state *rsp;
2061
2062 if (cpu_is_offline(smp_processor_id()))
2063 return;
2064 trace_rcu_utilization("Start RCU core");
2065 for_each_rcu_flavor(rsp)
2066 __rcu_process_callbacks(rsp);
2067 trace_rcu_utilization("End RCU core");
2068 }
2069
2070 /*
2071 * Schedule RCU callback invocation. If the specified type of RCU
2072 * does not support RCU priority boosting, just do a direct call,
2073 * otherwise wake up the per-CPU kernel kthread. Note that because we
2074 * are running on the current CPU with interrupts disabled, the
2075 * rcu_cpu_kthread_task cannot disappear out from under us.
2076 */
2077 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2078 {
2079 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2080 return;
2081 if (likely(!rsp->boost)) {
2082 rcu_do_batch(rsp, rdp);
2083 return;
2084 }
2085 invoke_rcu_callbacks_kthread();
2086 }
2087
2088 static void invoke_rcu_core(void)
2089 {
2090 raise_softirq(RCU_SOFTIRQ);
2091 }
2092
2093 /*
2094 * Handle any core-RCU processing required by a call_rcu() invocation.
2095 */
2096 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2097 struct rcu_head *head, unsigned long flags)
2098 {
2099 /*
2100 * If called from an extended quiescent state, invoke the RCU
2101 * core in order to force a re-evaluation of RCU's idleness.
2102 */
2103 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2104 invoke_rcu_core();
2105
2106 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2107 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2108 return;
2109
2110 /*
2111 * Force the grace period if too many callbacks or too long waiting.
2112 * Enforce hysteresis, and don't invoke force_quiescent_state()
2113 * if some other CPU has recently done so. Also, don't bother
2114 * invoking force_quiescent_state() if the newly enqueued callback
2115 * is the only one waiting for a grace period to complete.
2116 */
2117 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2118
2119 /* Are we ignoring a completed grace period? */
2120 rcu_process_gp_end(rsp, rdp);
2121 check_for_new_grace_period(rsp, rdp);
2122
2123 /* Start a new grace period if one not already started. */
2124 if (!rcu_gp_in_progress(rsp)) {
2125 unsigned long nestflag;
2126 struct rcu_node *rnp_root = rcu_get_root(rsp);
2127
2128 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2129 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2130 } else {
2131 /* Give the grace period a kick. */
2132 rdp->blimit = LONG_MAX;
2133 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2134 *rdp->nxttail[RCU_DONE_TAIL] != head)
2135 force_quiescent_state(rsp);
2136 rdp->n_force_qs_snap = rsp->n_force_qs;
2137 rdp->qlen_last_fqs_check = rdp->qlen;
2138 }
2139 }
2140 }
2141
2142 static void
2143 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2144 struct rcu_state *rsp, bool lazy)
2145 {
2146 unsigned long flags;
2147 struct rcu_data *rdp;
2148
2149 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2150 debug_rcu_head_queue(head);
2151 head->func = func;
2152 head->next = NULL;
2153
2154 /*
2155 * Opportunistically note grace-period endings and beginnings.
2156 * Note that we might see a beginning right after we see an
2157 * end, but never vice versa, since this CPU has to pass through
2158 * a quiescent state betweentimes.
2159 */
2160 local_irq_save(flags);
2161 rdp = this_cpu_ptr(rsp->rda);
2162
2163 /* Add the callback to our list. */
2164 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL)) {
2165 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2166 WARN_ON_ONCE(1);
2167 local_irq_restore(flags);
2168 return;
2169 }
2170 ACCESS_ONCE(rdp->qlen)++;
2171 if (lazy)
2172 rdp->qlen_lazy++;
2173 else
2174 rcu_idle_count_callbacks_posted();
2175 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2176 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2177 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2178
2179 if (__is_kfree_rcu_offset((unsigned long)func))
2180 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2181 rdp->qlen_lazy, rdp->qlen);
2182 else
2183 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2184
2185 /* Go handle any RCU core processing required. */
2186 __call_rcu_core(rsp, rdp, head, flags);
2187 local_irq_restore(flags);
2188 }
2189
2190 /*
2191 * Queue an RCU-sched callback for invocation after a grace period.
2192 */
2193 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2194 {
2195 __call_rcu(head, func, &rcu_sched_state, 0);
2196 }
2197 EXPORT_SYMBOL_GPL(call_rcu_sched);
2198
2199 /*
2200 * Queue an RCU callback for invocation after a quicker grace period.
2201 */
2202 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2203 {
2204 __call_rcu(head, func, &rcu_bh_state, 0);
2205 }
2206 EXPORT_SYMBOL_GPL(call_rcu_bh);
2207
2208 /*
2209 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2210 * any blocking grace-period wait automatically implies a grace period
2211 * if there is only one CPU online at any point time during execution
2212 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2213 * occasionally incorrectly indicate that there are multiple CPUs online
2214 * when there was in fact only one the whole time, as this just adds
2215 * some overhead: RCU still operates correctly.
2216 */
2217 static inline int rcu_blocking_is_gp(void)
2218 {
2219 int ret;
2220
2221 might_sleep(); /* Check for RCU read-side critical section. */
2222 preempt_disable();
2223 ret = num_online_cpus() <= 1;
2224 preempt_enable();
2225 return ret;
2226 }
2227
2228 /**
2229 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2230 *
2231 * Control will return to the caller some time after a full rcu-sched
2232 * grace period has elapsed, in other words after all currently executing
2233 * rcu-sched read-side critical sections have completed. These read-side
2234 * critical sections are delimited by rcu_read_lock_sched() and
2235 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2236 * local_irq_disable(), and so on may be used in place of
2237 * rcu_read_lock_sched().
2238 *
2239 * This means that all preempt_disable code sequences, including NMI and
2240 * hardware-interrupt handlers, in progress on entry will have completed
2241 * before this primitive returns. However, this does not guarantee that
2242 * softirq handlers will have completed, since in some kernels, these
2243 * handlers can run in process context, and can block.
2244 *
2245 * This primitive provides the guarantees made by the (now removed)
2246 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2247 * guarantees that rcu_read_lock() sections will have completed.
2248 * In "classic RCU", these two guarantees happen to be one and
2249 * the same, but can differ in realtime RCU implementations.
2250 */
2251 void synchronize_sched(void)
2252 {
2253 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2254 !lock_is_held(&rcu_lock_map) &&
2255 !lock_is_held(&rcu_sched_lock_map),
2256 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2257 if (rcu_blocking_is_gp())
2258 return;
2259 wait_rcu_gp(call_rcu_sched);
2260 }
2261 EXPORT_SYMBOL_GPL(synchronize_sched);
2262
2263 /**
2264 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2265 *
2266 * Control will return to the caller some time after a full rcu_bh grace
2267 * period has elapsed, in other words after all currently executing rcu_bh
2268 * read-side critical sections have completed. RCU read-side critical
2269 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2270 * and may be nested.
2271 */
2272 void synchronize_rcu_bh(void)
2273 {
2274 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2275 !lock_is_held(&rcu_lock_map) &&
2276 !lock_is_held(&rcu_sched_lock_map),
2277 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2278 if (rcu_blocking_is_gp())
2279 return;
2280 wait_rcu_gp(call_rcu_bh);
2281 }
2282 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2283
2284 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2285 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2286
2287 static int synchronize_sched_expedited_cpu_stop(void *data)
2288 {
2289 /*
2290 * There must be a full memory barrier on each affected CPU
2291 * between the time that try_stop_cpus() is called and the
2292 * time that it returns.
2293 *
2294 * In the current initial implementation of cpu_stop, the
2295 * above condition is already met when the control reaches
2296 * this point and the following smp_mb() is not strictly
2297 * necessary. Do smp_mb() anyway for documentation and
2298 * robustness against future implementation changes.
2299 */
2300 smp_mb(); /* See above comment block. */
2301 return 0;
2302 }
2303
2304 /**
2305 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2306 *
2307 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2308 * approach to force the grace period to end quickly. This consumes
2309 * significant time on all CPUs and is unfriendly to real-time workloads,
2310 * so is thus not recommended for any sort of common-case code. In fact,
2311 * if you are using synchronize_sched_expedited() in a loop, please
2312 * restructure your code to batch your updates, and then use a single
2313 * synchronize_sched() instead.
2314 *
2315 * Note that it is illegal to call this function while holding any lock
2316 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2317 * to call this function from a CPU-hotplug notifier. Failing to observe
2318 * these restriction will result in deadlock.
2319 *
2320 * This implementation can be thought of as an application of ticket
2321 * locking to RCU, with sync_sched_expedited_started and
2322 * sync_sched_expedited_done taking on the roles of the halves
2323 * of the ticket-lock word. Each task atomically increments
2324 * sync_sched_expedited_started upon entry, snapshotting the old value,
2325 * then attempts to stop all the CPUs. If this succeeds, then each
2326 * CPU will have executed a context switch, resulting in an RCU-sched
2327 * grace period. We are then done, so we use atomic_cmpxchg() to
2328 * update sync_sched_expedited_done to match our snapshot -- but
2329 * only if someone else has not already advanced past our snapshot.
2330 *
2331 * On the other hand, if try_stop_cpus() fails, we check the value
2332 * of sync_sched_expedited_done. If it has advanced past our
2333 * initial snapshot, then someone else must have forced a grace period
2334 * some time after we took our snapshot. In this case, our work is
2335 * done for us, and we can simply return. Otherwise, we try again,
2336 * but keep our initial snapshot for purposes of checking for someone
2337 * doing our work for us.
2338 *
2339 * If we fail too many times in a row, we fall back to synchronize_sched().
2340 */
2341 void synchronize_sched_expedited(void)
2342 {
2343 int firstsnap, s, snap, trycount = 0;
2344
2345 /* Note that atomic_inc_return() implies full memory barrier. */
2346 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2347 get_online_cpus();
2348 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2349
2350 /*
2351 * Each pass through the following loop attempts to force a
2352 * context switch on each CPU.
2353 */
2354 while (try_stop_cpus(cpu_online_mask,
2355 synchronize_sched_expedited_cpu_stop,
2356 NULL) == -EAGAIN) {
2357 put_online_cpus();
2358
2359 /* No joy, try again later. Or just synchronize_sched(). */
2360 if (trycount++ < 10) {
2361 udelay(trycount * num_online_cpus());
2362 } else {
2363 synchronize_sched();
2364 return;
2365 }
2366
2367 /* Check to see if someone else did our work for us. */
2368 s = atomic_read(&sync_sched_expedited_done);
2369 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2370 smp_mb(); /* ensure test happens before caller kfree */
2371 return;
2372 }
2373
2374 /*
2375 * Refetching sync_sched_expedited_started allows later
2376 * callers to piggyback on our grace period. We subtract
2377 * 1 to get the same token that the last incrementer got.
2378 * We retry after they started, so our grace period works
2379 * for them, and they started after our first try, so their
2380 * grace period works for us.
2381 */
2382 get_online_cpus();
2383 snap = atomic_read(&sync_sched_expedited_started);
2384 smp_mb(); /* ensure read is before try_stop_cpus(). */
2385 }
2386
2387 /*
2388 * Everyone up to our most recent fetch is covered by our grace
2389 * period. Update the counter, but only if our work is still
2390 * relevant -- which it won't be if someone who started later
2391 * than we did beat us to the punch.
2392 */
2393 do {
2394 s = atomic_read(&sync_sched_expedited_done);
2395 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2396 smp_mb(); /* ensure test happens before caller kfree */
2397 break;
2398 }
2399 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2400
2401 put_online_cpus();
2402 }
2403 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2404
2405 /*
2406 * Check to see if there is any immediate RCU-related work to be done
2407 * by the current CPU, for the specified type of RCU, returning 1 if so.
2408 * The checks are in order of increasing expense: checks that can be
2409 * carried out against CPU-local state are performed first. However,
2410 * we must check for CPU stalls first, else we might not get a chance.
2411 */
2412 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2413 {
2414 struct rcu_node *rnp = rdp->mynode;
2415
2416 rdp->n_rcu_pending++;
2417
2418 /* Check for CPU stalls, if enabled. */
2419 check_cpu_stall(rsp, rdp);
2420
2421 /* Is the RCU core waiting for a quiescent state from this CPU? */
2422 if (rcu_scheduler_fully_active &&
2423 rdp->qs_pending && !rdp->passed_quiesce) {
2424 rdp->n_rp_qs_pending++;
2425 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2426 rdp->n_rp_report_qs++;
2427 return 1;
2428 }
2429
2430 /* Does this CPU have callbacks ready to invoke? */
2431 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2432 rdp->n_rp_cb_ready++;
2433 return 1;
2434 }
2435
2436 /* Has RCU gone idle with this CPU needing another grace period? */
2437 if (cpu_needs_another_gp(rsp, rdp)) {
2438 rdp->n_rp_cpu_needs_gp++;
2439 return 1;
2440 }
2441
2442 /* Has another RCU grace period completed? */
2443 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2444 rdp->n_rp_gp_completed++;
2445 return 1;
2446 }
2447
2448 /* Has a new RCU grace period started? */
2449 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2450 rdp->n_rp_gp_started++;
2451 return 1;
2452 }
2453
2454 /* nothing to do */
2455 rdp->n_rp_need_nothing++;
2456 return 0;
2457 }
2458
2459 /*
2460 * Check to see if there is any immediate RCU-related work to be done
2461 * by the current CPU, returning 1 if so. This function is part of the
2462 * RCU implementation; it is -not- an exported member of the RCU API.
2463 */
2464 static int rcu_pending(int cpu)
2465 {
2466 struct rcu_state *rsp;
2467
2468 for_each_rcu_flavor(rsp)
2469 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2470 return 1;
2471 return 0;
2472 }
2473
2474 /*
2475 * Check to see if any future RCU-related work will need to be done
2476 * by the current CPU, even if none need be done immediately, returning
2477 * 1 if so.
2478 */
2479 static int rcu_cpu_has_callbacks(int cpu)
2480 {
2481 struct rcu_state *rsp;
2482
2483 /* RCU callbacks either ready or pending? */
2484 for_each_rcu_flavor(rsp)
2485 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2486 return 1;
2487 return 0;
2488 }
2489
2490 /*
2491 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2492 * the compiler is expected to optimize this away.
2493 */
2494 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2495 int cpu, unsigned long done)
2496 {
2497 trace_rcu_barrier(rsp->name, s, cpu,
2498 atomic_read(&rsp->barrier_cpu_count), done);
2499 }
2500
2501 /*
2502 * RCU callback function for _rcu_barrier(). If we are last, wake
2503 * up the task executing _rcu_barrier().
2504 */
2505 static void rcu_barrier_callback(struct rcu_head *rhp)
2506 {
2507 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2508 struct rcu_state *rsp = rdp->rsp;
2509
2510 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2511 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2512 complete(&rsp->barrier_completion);
2513 } else {
2514 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2515 }
2516 }
2517
2518 /*
2519 * Called with preemption disabled, and from cross-cpu IRQ context.
2520 */
2521 static void rcu_barrier_func(void *type)
2522 {
2523 struct rcu_state *rsp = type;
2524 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2525
2526 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2527 atomic_inc(&rsp->barrier_cpu_count);
2528 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2529 }
2530
2531 /*
2532 * Orchestrate the specified type of RCU barrier, waiting for all
2533 * RCU callbacks of the specified type to complete.
2534 */
2535 static void _rcu_barrier(struct rcu_state *rsp)
2536 {
2537 int cpu;
2538 struct rcu_data *rdp;
2539 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2540 unsigned long snap_done;
2541
2542 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2543
2544 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2545 mutex_lock(&rsp->barrier_mutex);
2546
2547 /*
2548 * Ensure that all prior references, including to ->n_barrier_done,
2549 * are ordered before the _rcu_barrier() machinery.
2550 */
2551 smp_mb(); /* See above block comment. */
2552
2553 /*
2554 * Recheck ->n_barrier_done to see if others did our work for us.
2555 * This means checking ->n_barrier_done for an even-to-odd-to-even
2556 * transition. The "if" expression below therefore rounds the old
2557 * value up to the next even number and adds two before comparing.
2558 */
2559 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2560 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2561 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2562 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2563 smp_mb(); /* caller's subsequent code after above check. */
2564 mutex_unlock(&rsp->barrier_mutex);
2565 return;
2566 }
2567
2568 /*
2569 * Increment ->n_barrier_done to avoid duplicate work. Use
2570 * ACCESS_ONCE() to prevent the compiler from speculating
2571 * the increment to precede the early-exit check.
2572 */
2573 ACCESS_ONCE(rsp->n_barrier_done)++;
2574 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2575 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2576 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2577
2578 /*
2579 * Initialize the count to one rather than to zero in order to
2580 * avoid a too-soon return to zero in case of a short grace period
2581 * (or preemption of this task). Exclude CPU-hotplug operations
2582 * to ensure that no offline CPU has callbacks queued.
2583 */
2584 init_completion(&rsp->barrier_completion);
2585 atomic_set(&rsp->barrier_cpu_count, 1);
2586 get_online_cpus();
2587
2588 /*
2589 * Force each CPU with callbacks to register a new callback.
2590 * When that callback is invoked, we will know that all of the
2591 * corresponding CPU's preceding callbacks have been invoked.
2592 */
2593 for_each_online_cpu(cpu) {
2594 rdp = per_cpu_ptr(rsp->rda, cpu);
2595 if (ACCESS_ONCE(rdp->qlen)) {
2596 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2597 rsp->n_barrier_done);
2598 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2599 } else {
2600 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2601 rsp->n_barrier_done);
2602 }
2603 }
2604 put_online_cpus();
2605
2606 /*
2607 * Now that we have an rcu_barrier_callback() callback on each
2608 * CPU, and thus each counted, remove the initial count.
2609 */
2610 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2611 complete(&rsp->barrier_completion);
2612
2613 /* Increment ->n_barrier_done to prevent duplicate work. */
2614 smp_mb(); /* Keep increment after above mechanism. */
2615 ACCESS_ONCE(rsp->n_barrier_done)++;
2616 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2617 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2618 smp_mb(); /* Keep increment before caller's subsequent code. */
2619
2620 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2621 wait_for_completion(&rsp->barrier_completion);
2622
2623 /* Other rcu_barrier() invocations can now safely proceed. */
2624 mutex_unlock(&rsp->barrier_mutex);
2625 }
2626
2627 /**
2628 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2629 */
2630 void rcu_barrier_bh(void)
2631 {
2632 _rcu_barrier(&rcu_bh_state);
2633 }
2634 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2635
2636 /**
2637 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2638 */
2639 void rcu_barrier_sched(void)
2640 {
2641 _rcu_barrier(&rcu_sched_state);
2642 }
2643 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2644
2645 /*
2646 * Do boot-time initialization of a CPU's per-CPU RCU data.
2647 */
2648 static void __init
2649 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2650 {
2651 unsigned long flags;
2652 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2653 struct rcu_node *rnp = rcu_get_root(rsp);
2654
2655 /* Set up local state, ensuring consistent view of global state. */
2656 raw_spin_lock_irqsave(&rnp->lock, flags);
2657 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2658 init_callback_list(rdp);
2659 rdp->qlen_lazy = 0;
2660 ACCESS_ONCE(rdp->qlen) = 0;
2661 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2662 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2663 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2664 #ifdef CONFIG_RCU_USER_QS
2665 WARN_ON_ONCE(rdp->dynticks->in_user);
2666 #endif
2667 rdp->cpu = cpu;
2668 rdp->rsp = rsp;
2669 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2670 }
2671
2672 /*
2673 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2674 * offline event can be happening at a given time. Note also that we
2675 * can accept some slop in the rsp->completed access due to the fact
2676 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2677 */
2678 static void __cpuinit
2679 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2680 {
2681 unsigned long flags;
2682 unsigned long mask;
2683 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2684 struct rcu_node *rnp = rcu_get_root(rsp);
2685
2686 /* Exclude new grace periods. */
2687 mutex_lock(&rsp->onoff_mutex);
2688
2689 /* Set up local state, ensuring consistent view of global state. */
2690 raw_spin_lock_irqsave(&rnp->lock, flags);
2691 rdp->beenonline = 1; /* We have now been online. */
2692 rdp->preemptible = preemptible;
2693 rdp->qlen_last_fqs_check = 0;
2694 rdp->n_force_qs_snap = rsp->n_force_qs;
2695 rdp->blimit = blimit;
2696 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2697 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2698 atomic_set(&rdp->dynticks->dynticks,
2699 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2700 rcu_prepare_for_idle_init(cpu);
2701 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2702
2703 /* Add CPU to rcu_node bitmasks. */
2704 rnp = rdp->mynode;
2705 mask = rdp->grpmask;
2706 do {
2707 /* Exclude any attempts to start a new GP on small systems. */
2708 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2709 rnp->qsmaskinit |= mask;
2710 mask = rnp->grpmask;
2711 if (rnp == rdp->mynode) {
2712 /*
2713 * If there is a grace period in progress, we will
2714 * set up to wait for it next time we run the
2715 * RCU core code.
2716 */
2717 rdp->gpnum = rnp->completed;
2718 rdp->completed = rnp->completed;
2719 rdp->passed_quiesce = 0;
2720 rdp->qs_pending = 0;
2721 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2722 }
2723 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2724 rnp = rnp->parent;
2725 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2726 local_irq_restore(flags);
2727
2728 mutex_unlock(&rsp->onoff_mutex);
2729 }
2730
2731 static void __cpuinit rcu_prepare_cpu(int cpu)
2732 {
2733 struct rcu_state *rsp;
2734
2735 for_each_rcu_flavor(rsp)
2736 rcu_init_percpu_data(cpu, rsp,
2737 strcmp(rsp->name, "rcu_preempt") == 0);
2738 }
2739
2740 /*
2741 * Handle CPU online/offline notification events.
2742 */
2743 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2744 unsigned long action, void *hcpu)
2745 {
2746 long cpu = (long)hcpu;
2747 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2748 struct rcu_node *rnp = rdp->mynode;
2749 struct rcu_state *rsp;
2750
2751 trace_rcu_utilization("Start CPU hotplug");
2752 switch (action) {
2753 case CPU_UP_PREPARE:
2754 case CPU_UP_PREPARE_FROZEN:
2755 rcu_prepare_cpu(cpu);
2756 rcu_prepare_kthreads(cpu);
2757 break;
2758 case CPU_ONLINE:
2759 case CPU_DOWN_FAILED:
2760 rcu_boost_kthread_setaffinity(rnp, -1);
2761 break;
2762 case CPU_DOWN_PREPARE:
2763 rcu_boost_kthread_setaffinity(rnp, cpu);
2764 break;
2765 case CPU_DYING:
2766 case CPU_DYING_FROZEN:
2767 /*
2768 * The whole machine is "stopped" except this CPU, so we can
2769 * touch any data without introducing corruption. We send the
2770 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2771 */
2772 for_each_rcu_flavor(rsp)
2773 rcu_cleanup_dying_cpu(rsp);
2774 rcu_cleanup_after_idle(cpu);
2775 break;
2776 case CPU_DEAD:
2777 case CPU_DEAD_FROZEN:
2778 case CPU_UP_CANCELED:
2779 case CPU_UP_CANCELED_FROZEN:
2780 for_each_rcu_flavor(rsp)
2781 rcu_cleanup_dead_cpu(cpu, rsp);
2782 break;
2783 default:
2784 break;
2785 }
2786 trace_rcu_utilization("End CPU hotplug");
2787 return NOTIFY_OK;
2788 }
2789
2790 /*
2791 * Spawn the kthread that handles this RCU flavor's grace periods.
2792 */
2793 static int __init rcu_spawn_gp_kthread(void)
2794 {
2795 unsigned long flags;
2796 struct rcu_node *rnp;
2797 struct rcu_state *rsp;
2798 struct task_struct *t;
2799
2800 for_each_rcu_flavor(rsp) {
2801 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2802 BUG_ON(IS_ERR(t));
2803 rnp = rcu_get_root(rsp);
2804 raw_spin_lock_irqsave(&rnp->lock, flags);
2805 rsp->gp_kthread = t;
2806 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2807 }
2808 return 0;
2809 }
2810 early_initcall(rcu_spawn_gp_kthread);
2811
2812 /*
2813 * This function is invoked towards the end of the scheduler's initialization
2814 * process. Before this is called, the idle task might contain
2815 * RCU read-side critical sections (during which time, this idle
2816 * task is booting the system). After this function is called, the
2817 * idle tasks are prohibited from containing RCU read-side critical
2818 * sections. This function also enables RCU lockdep checking.
2819 */
2820 void rcu_scheduler_starting(void)
2821 {
2822 WARN_ON(num_online_cpus() != 1);
2823 WARN_ON(nr_context_switches() > 0);
2824 rcu_scheduler_active = 1;
2825 }
2826
2827 /*
2828 * Compute the per-level fanout, either using the exact fanout specified
2829 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2830 */
2831 #ifdef CONFIG_RCU_FANOUT_EXACT
2832 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2833 {
2834 int i;
2835
2836 for (i = rcu_num_lvls - 1; i > 0; i--)
2837 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2838 rsp->levelspread[0] = rcu_fanout_leaf;
2839 }
2840 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2841 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2842 {
2843 int ccur;
2844 int cprv;
2845 int i;
2846
2847 cprv = nr_cpu_ids;
2848 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2849 ccur = rsp->levelcnt[i];
2850 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2851 cprv = ccur;
2852 }
2853 }
2854 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2855
2856 /*
2857 * Helper function for rcu_init() that initializes one rcu_state structure.
2858 */
2859 static void __init rcu_init_one(struct rcu_state *rsp,
2860 struct rcu_data __percpu *rda)
2861 {
2862 static char *buf[] = { "rcu_node_0",
2863 "rcu_node_1",
2864 "rcu_node_2",
2865 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2866 static char *fqs[] = { "rcu_node_fqs_0",
2867 "rcu_node_fqs_1",
2868 "rcu_node_fqs_2",
2869 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
2870 int cpustride = 1;
2871 int i;
2872 int j;
2873 struct rcu_node *rnp;
2874
2875 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2876
2877 /* Initialize the level-tracking arrays. */
2878
2879 for (i = 0; i < rcu_num_lvls; i++)
2880 rsp->levelcnt[i] = num_rcu_lvl[i];
2881 for (i = 1; i < rcu_num_lvls; i++)
2882 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2883 rcu_init_levelspread(rsp);
2884
2885 /* Initialize the elements themselves, starting from the leaves. */
2886
2887 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2888 cpustride *= rsp->levelspread[i];
2889 rnp = rsp->level[i];
2890 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2891 raw_spin_lock_init(&rnp->lock);
2892 lockdep_set_class_and_name(&rnp->lock,
2893 &rcu_node_class[i], buf[i]);
2894 raw_spin_lock_init(&rnp->fqslock);
2895 lockdep_set_class_and_name(&rnp->fqslock,
2896 &rcu_fqs_class[i], fqs[i]);
2897 rnp->gpnum = rsp->gpnum;
2898 rnp->completed = rsp->completed;
2899 rnp->qsmask = 0;
2900 rnp->qsmaskinit = 0;
2901 rnp->grplo = j * cpustride;
2902 rnp->grphi = (j + 1) * cpustride - 1;
2903 if (rnp->grphi >= NR_CPUS)
2904 rnp->grphi = NR_CPUS - 1;
2905 if (i == 0) {
2906 rnp->grpnum = 0;
2907 rnp->grpmask = 0;
2908 rnp->parent = NULL;
2909 } else {
2910 rnp->grpnum = j % rsp->levelspread[i - 1];
2911 rnp->grpmask = 1UL << rnp->grpnum;
2912 rnp->parent = rsp->level[i - 1] +
2913 j / rsp->levelspread[i - 1];
2914 }
2915 rnp->level = i;
2916 INIT_LIST_HEAD(&rnp->blkd_tasks);
2917 }
2918 }
2919
2920 rsp->rda = rda;
2921 init_waitqueue_head(&rsp->gp_wq);
2922 rnp = rsp->level[rcu_num_lvls - 1];
2923 for_each_possible_cpu(i) {
2924 while (i > rnp->grphi)
2925 rnp++;
2926 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2927 rcu_boot_init_percpu_data(i, rsp);
2928 }
2929 list_add(&rsp->flavors, &rcu_struct_flavors);
2930 }
2931
2932 /*
2933 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2934 * replace the definitions in rcutree.h because those are needed to size
2935 * the ->node array in the rcu_state structure.
2936 */
2937 static void __init rcu_init_geometry(void)
2938 {
2939 int i;
2940 int j;
2941 int n = nr_cpu_ids;
2942 int rcu_capacity[MAX_RCU_LVLS + 1];
2943
2944 /* If the compile-time values are accurate, just leave. */
2945 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
2946 nr_cpu_ids == NR_CPUS)
2947 return;
2948
2949 /*
2950 * Compute number of nodes that can be handled an rcu_node tree
2951 * with the given number of levels. Setting rcu_capacity[0] makes
2952 * some of the arithmetic easier.
2953 */
2954 rcu_capacity[0] = 1;
2955 rcu_capacity[1] = rcu_fanout_leaf;
2956 for (i = 2; i <= MAX_RCU_LVLS; i++)
2957 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2958
2959 /*
2960 * The boot-time rcu_fanout_leaf parameter is only permitted
2961 * to increase the leaf-level fanout, not decrease it. Of course,
2962 * the leaf-level fanout cannot exceed the number of bits in
2963 * the rcu_node masks. Finally, the tree must be able to accommodate
2964 * the configured number of CPUs. Complain and fall back to the
2965 * compile-time values if these limits are exceeded.
2966 */
2967 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2968 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2969 n > rcu_capacity[MAX_RCU_LVLS]) {
2970 WARN_ON(1);
2971 return;
2972 }
2973
2974 /* Calculate the number of rcu_nodes at each level of the tree. */
2975 for (i = 1; i <= MAX_RCU_LVLS; i++)
2976 if (n <= rcu_capacity[i]) {
2977 for (j = 0; j <= i; j++)
2978 num_rcu_lvl[j] =
2979 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2980 rcu_num_lvls = i;
2981 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2982 num_rcu_lvl[j] = 0;
2983 break;
2984 }
2985
2986 /* Calculate the total number of rcu_node structures. */
2987 rcu_num_nodes = 0;
2988 for (i = 0; i <= MAX_RCU_LVLS; i++)
2989 rcu_num_nodes += num_rcu_lvl[i];
2990 rcu_num_nodes -= n;
2991 }
2992
2993 void __init rcu_init(void)
2994 {
2995 int cpu;
2996
2997 rcu_bootup_announce();
2998 rcu_init_geometry();
2999 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3000 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3001 __rcu_init_preempt();
3002 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3003
3004 /*
3005 * We don't need protection against CPU-hotplug here because
3006 * this is called early in boot, before either interrupts
3007 * or the scheduler are operational.
3008 */
3009 cpu_notifier(rcu_cpu_notify, 0);
3010 for_each_online_cpu(cpu)
3011 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3012 check_cpu_stall_init();
3013 }
3014
3015 #include "rcutree_plugin.h"
This page took 0.094375 seconds and 6 git commands to generate.