rcu: Add new rcutorture module parameters to start/end test messages
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59
60 #include "rcu.h"
61
62 /* Data structures. */
63
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67 #define RCU_STATE_INITIALIZER(sname, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = -300, \
72 .completed = -300, \
73 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 .name = #sname, \
79 }
80
81 struct rcu_state rcu_sched_state =
82 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89 LIST_HEAD(rcu_struct_flavors);
90
91 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
92 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
93 module_param(rcu_fanout_leaf, int, 0444);
94 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
95 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
96 NUM_RCU_LVL_0,
97 NUM_RCU_LVL_1,
98 NUM_RCU_LVL_2,
99 NUM_RCU_LVL_3,
100 NUM_RCU_LVL_4,
101 };
102 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
103
104 /*
105 * The rcu_scheduler_active variable transitions from zero to one just
106 * before the first task is spawned. So when this variable is zero, RCU
107 * can assume that there is but one task, allowing RCU to (for example)
108 * optimized synchronize_sched() to a simple barrier(). When this variable
109 * is one, RCU must actually do all the hard work required to detect real
110 * grace periods. This variable is also used to suppress boot-time false
111 * positives from lockdep-RCU error checking.
112 */
113 int rcu_scheduler_active __read_mostly;
114 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
115
116 /*
117 * The rcu_scheduler_fully_active variable transitions from zero to one
118 * during the early_initcall() processing, which is after the scheduler
119 * is capable of creating new tasks. So RCU processing (for example,
120 * creating tasks for RCU priority boosting) must be delayed until after
121 * rcu_scheduler_fully_active transitions from zero to one. We also
122 * currently delay invocation of any RCU callbacks until after this point.
123 *
124 * It might later prove better for people registering RCU callbacks during
125 * early boot to take responsibility for these callbacks, but one step at
126 * a time.
127 */
128 static int rcu_scheduler_fully_active __read_mostly;
129
130 #ifdef CONFIG_RCU_BOOST
131
132 /*
133 * Control variables for per-CPU and per-rcu_node kthreads. These
134 * handle all flavors of RCU.
135 */
136 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
137 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139 DEFINE_PER_CPU(char, rcu_cpu_has_work);
140
141 #endif /* #ifdef CONFIG_RCU_BOOST */
142
143 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 static void invoke_rcu_core(void);
145 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146
147 /*
148 * Track the rcutorture test sequence number and the update version
149 * number within a given test. The rcutorture_testseq is incremented
150 * on every rcutorture module load and unload, so has an odd value
151 * when a test is running. The rcutorture_vernum is set to zero
152 * when rcutorture starts and is incremented on each rcutorture update.
153 * These variables enable correlating rcutorture output with the
154 * RCU tracing information.
155 */
156 unsigned long rcutorture_testseq;
157 unsigned long rcutorture_vernum;
158
159 /*
160 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161 * permit this function to be invoked without holding the root rcu_node
162 * structure's ->lock, but of course results can be subject to change.
163 */
164 static int rcu_gp_in_progress(struct rcu_state *rsp)
165 {
166 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167 }
168
169 /*
170 * Note a quiescent state. Because we do not need to know
171 * how many quiescent states passed, just if there was at least
172 * one since the start of the grace period, this just sets a flag.
173 * The caller must have disabled preemption.
174 */
175 void rcu_sched_qs(int cpu)
176 {
177 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 void rcu_bh_qs(int cpu)
185 {
186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187
188 if (rdp->passed_quiesce == 0)
189 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190 rdp->passed_quiesce = 1;
191 }
192
193 /*
194 * Note a context switch. This is a quiescent state for RCU-sched,
195 * and requires special handling for preemptible RCU.
196 * The caller must have disabled preemption.
197 */
198 void rcu_note_context_switch(int cpu)
199 {
200 trace_rcu_utilization("Start context switch");
201 rcu_sched_qs(cpu);
202 rcu_preempt_note_context_switch(cpu);
203 trace_rcu_utilization("End context switch");
204 }
205 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206
207 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209 .dynticks = ATOMIC_INIT(1),
210 #if defined(CONFIG_RCU_USER_QS) && !defined(CONFIG_RCU_USER_QS_FORCE)
211 .ignore_user_qs = true,
212 #endif
213 };
214
215 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
216 static long qhimark = 10000; /* If this many pending, ignore blimit. */
217 static long qlowmark = 100; /* Once only this many pending, use blimit. */
218
219 module_param(blimit, long, 0444);
220 module_param(qhimark, long, 0444);
221 module_param(qlowmark, long, 0444);
222
223 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
226 module_param(rcu_cpu_stall_suppress, int, 0644);
227 module_param(rcu_cpu_stall_timeout, int, 0644);
228
229 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
230 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
231
232 module_param(jiffies_till_first_fqs, ulong, 0644);
233 module_param(jiffies_till_next_fqs, ulong, 0644);
234
235 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
236 static void force_quiescent_state(struct rcu_state *rsp);
237 static int rcu_pending(int cpu);
238
239 /*
240 * Return the number of RCU-sched batches processed thus far for debug & stats.
241 */
242 long rcu_batches_completed_sched(void)
243 {
244 return rcu_sched_state.completed;
245 }
246 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
247
248 /*
249 * Return the number of RCU BH batches processed thus far for debug & stats.
250 */
251 long rcu_batches_completed_bh(void)
252 {
253 return rcu_bh_state.completed;
254 }
255 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
256
257 /*
258 * Force a quiescent state for RCU BH.
259 */
260 void rcu_bh_force_quiescent_state(void)
261 {
262 force_quiescent_state(&rcu_bh_state);
263 }
264 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
265
266 /*
267 * Record the number of times rcutorture tests have been initiated and
268 * terminated. This information allows the debugfs tracing stats to be
269 * correlated to the rcutorture messages, even when the rcutorture module
270 * is being repeatedly loaded and unloaded. In other words, we cannot
271 * store this state in rcutorture itself.
272 */
273 void rcutorture_record_test_transition(void)
274 {
275 rcutorture_testseq++;
276 rcutorture_vernum = 0;
277 }
278 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
279
280 /*
281 * Record the number of writer passes through the current rcutorture test.
282 * This is also used to correlate debugfs tracing stats with the rcutorture
283 * messages.
284 */
285 void rcutorture_record_progress(unsigned long vernum)
286 {
287 rcutorture_vernum++;
288 }
289 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
290
291 /*
292 * Force a quiescent state for RCU-sched.
293 */
294 void rcu_sched_force_quiescent_state(void)
295 {
296 force_quiescent_state(&rcu_sched_state);
297 }
298 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
299
300 /*
301 * Does the CPU have callbacks ready to be invoked?
302 */
303 static int
304 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
305 {
306 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
307 }
308
309 /*
310 * Does the current CPU require a yet-as-unscheduled grace period?
311 */
312 static int
313 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
314 {
315 return *rdp->nxttail[RCU_DONE_TAIL +
316 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
317 !rcu_gp_in_progress(rsp);
318 }
319
320 /*
321 * Return the root node of the specified rcu_state structure.
322 */
323 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
324 {
325 return &rsp->node[0];
326 }
327
328 /*
329 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
330 *
331 * If the new value of the ->dynticks_nesting counter now is zero,
332 * we really have entered idle, and must do the appropriate accounting.
333 * The caller must have disabled interrupts.
334 */
335 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
336 bool user)
337 {
338 trace_rcu_dyntick("Start", oldval, 0);
339 if (!user && !is_idle_task(current)) {
340 struct task_struct *idle = idle_task(smp_processor_id());
341
342 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
343 ftrace_dump(DUMP_ORIG);
344 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
345 current->pid, current->comm,
346 idle->pid, idle->comm); /* must be idle task! */
347 }
348 rcu_prepare_for_idle(smp_processor_id());
349 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
350 smp_mb__before_atomic_inc(); /* See above. */
351 atomic_inc(&rdtp->dynticks);
352 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
353 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
354
355 /*
356 * It is illegal to enter an extended quiescent state while
357 * in an RCU read-side critical section.
358 */
359 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
360 "Illegal idle entry in RCU read-side critical section.");
361 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
362 "Illegal idle entry in RCU-bh read-side critical section.");
363 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
364 "Illegal idle entry in RCU-sched read-side critical section.");
365 }
366
367 /*
368 * Enter an RCU extended quiescent state, which can be either the
369 * idle loop or adaptive-tickless usermode execution.
370 */
371 static void rcu_eqs_enter(bool user)
372 {
373 long long oldval;
374 struct rcu_dynticks *rdtp;
375
376 rdtp = &__get_cpu_var(rcu_dynticks);
377 oldval = rdtp->dynticks_nesting;
378 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
379 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
380 rdtp->dynticks_nesting = 0;
381 else
382 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
383 rcu_eqs_enter_common(rdtp, oldval, user);
384 }
385
386 /**
387 * rcu_idle_enter - inform RCU that current CPU is entering idle
388 *
389 * Enter idle mode, in other words, -leave- the mode in which RCU
390 * read-side critical sections can occur. (Though RCU read-side
391 * critical sections can occur in irq handlers in idle, a possibility
392 * handled by irq_enter() and irq_exit().)
393 *
394 * We crowbar the ->dynticks_nesting field to zero to allow for
395 * the possibility of usermode upcalls having messed up our count
396 * of interrupt nesting level during the prior busy period.
397 */
398 void rcu_idle_enter(void)
399 {
400 unsigned long flags;
401
402 local_irq_save(flags);
403 rcu_eqs_enter(false);
404 local_irq_restore(flags);
405 }
406 EXPORT_SYMBOL_GPL(rcu_idle_enter);
407
408 #ifdef CONFIG_RCU_USER_QS
409 /**
410 * rcu_user_enter - inform RCU that we are resuming userspace.
411 *
412 * Enter RCU idle mode right before resuming userspace. No use of RCU
413 * is permitted between this call and rcu_user_exit(). This way the
414 * CPU doesn't need to maintain the tick for RCU maintenance purposes
415 * when the CPU runs in userspace.
416 */
417 void rcu_user_enter(void)
418 {
419 unsigned long flags;
420 struct rcu_dynticks *rdtp;
421
422 /*
423 * Some contexts may involve an exception occuring in an irq,
424 * leading to that nesting:
425 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
426 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
427 * helpers are enough to protect RCU uses inside the exception. So
428 * just return immediately if we detect we are in an IRQ.
429 */
430 if (in_interrupt())
431 return;
432
433 WARN_ON_ONCE(!current->mm);
434
435 local_irq_save(flags);
436 rdtp = &__get_cpu_var(rcu_dynticks);
437 if (!rdtp->ignore_user_qs && !rdtp->in_user) {
438 rdtp->in_user = true;
439 rcu_eqs_enter(true);
440 }
441 local_irq_restore(flags);
442 }
443
444 /**
445 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
446 * after the current irq returns.
447 *
448 * This is similar to rcu_user_enter() but in the context of a non-nesting
449 * irq. After this call, RCU enters into idle mode when the interrupt
450 * returns.
451 */
452 void rcu_user_enter_after_irq(void)
453 {
454 unsigned long flags;
455 struct rcu_dynticks *rdtp;
456
457 local_irq_save(flags);
458 rdtp = &__get_cpu_var(rcu_dynticks);
459 /* Ensure this irq is interrupting a non-idle RCU state. */
460 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
461 rdtp->dynticks_nesting = 1;
462 local_irq_restore(flags);
463 }
464 #endif /* CONFIG_RCU_USER_QS */
465
466 /**
467 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
468 *
469 * Exit from an interrupt handler, which might possibly result in entering
470 * idle mode, in other words, leaving the mode in which read-side critical
471 * sections can occur.
472 *
473 * This code assumes that the idle loop never does anything that might
474 * result in unbalanced calls to irq_enter() and irq_exit(). If your
475 * architecture violates this assumption, RCU will give you what you
476 * deserve, good and hard. But very infrequently and irreproducibly.
477 *
478 * Use things like work queues to work around this limitation.
479 *
480 * You have been warned.
481 */
482 void rcu_irq_exit(void)
483 {
484 unsigned long flags;
485 long long oldval;
486 struct rcu_dynticks *rdtp;
487
488 local_irq_save(flags);
489 rdtp = &__get_cpu_var(rcu_dynticks);
490 oldval = rdtp->dynticks_nesting;
491 rdtp->dynticks_nesting--;
492 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
493 if (rdtp->dynticks_nesting)
494 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
495 else
496 rcu_eqs_enter_common(rdtp, oldval, true);
497 local_irq_restore(flags);
498 }
499
500 /*
501 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
502 *
503 * If the new value of the ->dynticks_nesting counter was previously zero,
504 * we really have exited idle, and must do the appropriate accounting.
505 * The caller must have disabled interrupts.
506 */
507 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
508 int user)
509 {
510 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
511 atomic_inc(&rdtp->dynticks);
512 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
513 smp_mb__after_atomic_inc(); /* See above. */
514 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
515 rcu_cleanup_after_idle(smp_processor_id());
516 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
517 if (!user && !is_idle_task(current)) {
518 struct task_struct *idle = idle_task(smp_processor_id());
519
520 trace_rcu_dyntick("Error on exit: not idle task",
521 oldval, rdtp->dynticks_nesting);
522 ftrace_dump(DUMP_ORIG);
523 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
524 current->pid, current->comm,
525 idle->pid, idle->comm); /* must be idle task! */
526 }
527 }
528
529 /*
530 * Exit an RCU extended quiescent state, which can be either the
531 * idle loop or adaptive-tickless usermode execution.
532 */
533 static void rcu_eqs_exit(bool user)
534 {
535 struct rcu_dynticks *rdtp;
536 long long oldval;
537
538 rdtp = &__get_cpu_var(rcu_dynticks);
539 oldval = rdtp->dynticks_nesting;
540 WARN_ON_ONCE(oldval < 0);
541 if (oldval & DYNTICK_TASK_NEST_MASK)
542 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
543 else
544 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
545 rcu_eqs_exit_common(rdtp, oldval, user);
546 }
547
548 /**
549 * rcu_idle_exit - inform RCU that current CPU is leaving idle
550 *
551 * Exit idle mode, in other words, -enter- the mode in which RCU
552 * read-side critical sections can occur.
553 *
554 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
555 * allow for the possibility of usermode upcalls messing up our count
556 * of interrupt nesting level during the busy period that is just
557 * now starting.
558 */
559 void rcu_idle_exit(void)
560 {
561 unsigned long flags;
562
563 local_irq_save(flags);
564 rcu_eqs_exit(false);
565 local_irq_restore(flags);
566 }
567 EXPORT_SYMBOL_GPL(rcu_idle_exit);
568
569 #ifdef CONFIG_RCU_USER_QS
570 /**
571 * rcu_user_exit - inform RCU that we are exiting userspace.
572 *
573 * Exit RCU idle mode while entering the kernel because it can
574 * run a RCU read side critical section anytime.
575 */
576 void rcu_user_exit(void)
577 {
578 unsigned long flags;
579 struct rcu_dynticks *rdtp;
580
581 /*
582 * Some contexts may involve an exception occuring in an irq,
583 * leading to that nesting:
584 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
585 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
586 * helpers are enough to protect RCU uses inside the exception. So
587 * just return immediately if we detect we are in an IRQ.
588 */
589 if (in_interrupt())
590 return;
591
592 local_irq_save(flags);
593 rdtp = &__get_cpu_var(rcu_dynticks);
594 if (rdtp->in_user) {
595 rdtp->in_user = false;
596 rcu_eqs_exit(true);
597 }
598 local_irq_restore(flags);
599 }
600
601 /**
602 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
603 * idle mode after the current non-nesting irq returns.
604 *
605 * This is similar to rcu_user_exit() but in the context of an irq.
606 * This is called when the irq has interrupted a userspace RCU idle mode
607 * context. When the current non-nesting interrupt returns after this call,
608 * the CPU won't restore the RCU idle mode.
609 */
610 void rcu_user_exit_after_irq(void)
611 {
612 unsigned long flags;
613 struct rcu_dynticks *rdtp;
614
615 local_irq_save(flags);
616 rdtp = &__get_cpu_var(rcu_dynticks);
617 /* Ensure we are interrupting an RCU idle mode. */
618 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
619 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
620 local_irq_restore(flags);
621 }
622 #endif /* CONFIG_RCU_USER_QS */
623
624 /**
625 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
626 *
627 * Enter an interrupt handler, which might possibly result in exiting
628 * idle mode, in other words, entering the mode in which read-side critical
629 * sections can occur.
630 *
631 * Note that the Linux kernel is fully capable of entering an interrupt
632 * handler that it never exits, for example when doing upcalls to
633 * user mode! This code assumes that the idle loop never does upcalls to
634 * user mode. If your architecture does do upcalls from the idle loop (or
635 * does anything else that results in unbalanced calls to the irq_enter()
636 * and irq_exit() functions), RCU will give you what you deserve, good
637 * and hard. But very infrequently and irreproducibly.
638 *
639 * Use things like work queues to work around this limitation.
640 *
641 * You have been warned.
642 */
643 void rcu_irq_enter(void)
644 {
645 unsigned long flags;
646 struct rcu_dynticks *rdtp;
647 long long oldval;
648
649 local_irq_save(flags);
650 rdtp = &__get_cpu_var(rcu_dynticks);
651 oldval = rdtp->dynticks_nesting;
652 rdtp->dynticks_nesting++;
653 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
654 if (oldval)
655 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
656 else
657 rcu_eqs_exit_common(rdtp, oldval, true);
658 local_irq_restore(flags);
659 }
660
661 /**
662 * rcu_nmi_enter - inform RCU of entry to NMI context
663 *
664 * If the CPU was idle with dynamic ticks active, and there is no
665 * irq handler running, this updates rdtp->dynticks_nmi to let the
666 * RCU grace-period handling know that the CPU is active.
667 */
668 void rcu_nmi_enter(void)
669 {
670 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
671
672 if (rdtp->dynticks_nmi_nesting == 0 &&
673 (atomic_read(&rdtp->dynticks) & 0x1))
674 return;
675 rdtp->dynticks_nmi_nesting++;
676 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
677 atomic_inc(&rdtp->dynticks);
678 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
679 smp_mb__after_atomic_inc(); /* See above. */
680 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
681 }
682
683 /**
684 * rcu_nmi_exit - inform RCU of exit from NMI context
685 *
686 * If the CPU was idle with dynamic ticks active, and there is no
687 * irq handler running, this updates rdtp->dynticks_nmi to let the
688 * RCU grace-period handling know that the CPU is no longer active.
689 */
690 void rcu_nmi_exit(void)
691 {
692 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
693
694 if (rdtp->dynticks_nmi_nesting == 0 ||
695 --rdtp->dynticks_nmi_nesting != 0)
696 return;
697 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
698 smp_mb__before_atomic_inc(); /* See above. */
699 atomic_inc(&rdtp->dynticks);
700 smp_mb__after_atomic_inc(); /* Force delay to next write. */
701 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
702 }
703
704 /**
705 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
706 *
707 * If the current CPU is in its idle loop and is neither in an interrupt
708 * or NMI handler, return true.
709 */
710 int rcu_is_cpu_idle(void)
711 {
712 int ret;
713
714 preempt_disable();
715 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
716 preempt_enable();
717 return ret;
718 }
719 EXPORT_SYMBOL(rcu_is_cpu_idle);
720
721 #ifdef CONFIG_RCU_USER_QS
722 void rcu_user_hooks_switch(struct task_struct *prev,
723 struct task_struct *next)
724 {
725 struct rcu_dynticks *rdtp;
726
727 /* Interrupts are disabled in context switch */
728 rdtp = &__get_cpu_var(rcu_dynticks);
729 if (!rdtp->ignore_user_qs) {
730 clear_tsk_thread_flag(prev, TIF_NOHZ);
731 set_tsk_thread_flag(next, TIF_NOHZ);
732 }
733 }
734 #endif /* #ifdef CONFIG_RCU_USER_QS */
735
736 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
737
738 /*
739 * Is the current CPU online? Disable preemption to avoid false positives
740 * that could otherwise happen due to the current CPU number being sampled,
741 * this task being preempted, its old CPU being taken offline, resuming
742 * on some other CPU, then determining that its old CPU is now offline.
743 * It is OK to use RCU on an offline processor during initial boot, hence
744 * the check for rcu_scheduler_fully_active. Note also that it is OK
745 * for a CPU coming online to use RCU for one jiffy prior to marking itself
746 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
747 * offline to continue to use RCU for one jiffy after marking itself
748 * offline in the cpu_online_mask. This leniency is necessary given the
749 * non-atomic nature of the online and offline processing, for example,
750 * the fact that a CPU enters the scheduler after completing the CPU_DYING
751 * notifiers.
752 *
753 * This is also why RCU internally marks CPUs online during the
754 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
755 *
756 * Disable checking if in an NMI handler because we cannot safely report
757 * errors from NMI handlers anyway.
758 */
759 bool rcu_lockdep_current_cpu_online(void)
760 {
761 struct rcu_data *rdp;
762 struct rcu_node *rnp;
763 bool ret;
764
765 if (in_nmi())
766 return 1;
767 preempt_disable();
768 rdp = &__get_cpu_var(rcu_sched_data);
769 rnp = rdp->mynode;
770 ret = (rdp->grpmask & rnp->qsmaskinit) ||
771 !rcu_scheduler_fully_active;
772 preempt_enable();
773 return ret;
774 }
775 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
776
777 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
778
779 /**
780 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
781 *
782 * If the current CPU is idle or running at a first-level (not nested)
783 * interrupt from idle, return true. The caller must have at least
784 * disabled preemption.
785 */
786 int rcu_is_cpu_rrupt_from_idle(void)
787 {
788 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
789 }
790
791 /*
792 * Snapshot the specified CPU's dynticks counter so that we can later
793 * credit them with an implicit quiescent state. Return 1 if this CPU
794 * is in dynticks idle mode, which is an extended quiescent state.
795 */
796 static int dyntick_save_progress_counter(struct rcu_data *rdp)
797 {
798 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
799 return (rdp->dynticks_snap & 0x1) == 0;
800 }
801
802 /*
803 * Return true if the specified CPU has passed through a quiescent
804 * state by virtue of being in or having passed through an dynticks
805 * idle state since the last call to dyntick_save_progress_counter()
806 * for this same CPU, or by virtue of having been offline.
807 */
808 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
809 {
810 unsigned int curr;
811 unsigned int snap;
812
813 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
814 snap = (unsigned int)rdp->dynticks_snap;
815
816 /*
817 * If the CPU passed through or entered a dynticks idle phase with
818 * no active irq/NMI handlers, then we can safely pretend that the CPU
819 * already acknowledged the request to pass through a quiescent
820 * state. Either way, that CPU cannot possibly be in an RCU
821 * read-side critical section that started before the beginning
822 * of the current RCU grace period.
823 */
824 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
825 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
826 rdp->dynticks_fqs++;
827 return 1;
828 }
829
830 /*
831 * Check for the CPU being offline, but only if the grace period
832 * is old enough. We don't need to worry about the CPU changing
833 * state: If we see it offline even once, it has been through a
834 * quiescent state.
835 *
836 * The reason for insisting that the grace period be at least
837 * one jiffy old is that CPUs that are not quite online and that
838 * have just gone offline can still execute RCU read-side critical
839 * sections.
840 */
841 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
842 return 0; /* Grace period is not old enough. */
843 barrier();
844 if (cpu_is_offline(rdp->cpu)) {
845 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
846 rdp->offline_fqs++;
847 return 1;
848 }
849 return 0;
850 }
851
852 static int jiffies_till_stall_check(void)
853 {
854 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
855
856 /*
857 * Limit check must be consistent with the Kconfig limits
858 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
859 */
860 if (till_stall_check < 3) {
861 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
862 till_stall_check = 3;
863 } else if (till_stall_check > 300) {
864 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
865 till_stall_check = 300;
866 }
867 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
868 }
869
870 static void record_gp_stall_check_time(struct rcu_state *rsp)
871 {
872 rsp->gp_start = jiffies;
873 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
874 }
875
876 static void print_other_cpu_stall(struct rcu_state *rsp)
877 {
878 int cpu;
879 long delta;
880 unsigned long flags;
881 int ndetected = 0;
882 struct rcu_node *rnp = rcu_get_root(rsp);
883
884 /* Only let one CPU complain about others per time interval. */
885
886 raw_spin_lock_irqsave(&rnp->lock, flags);
887 delta = jiffies - rsp->jiffies_stall;
888 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
889 raw_spin_unlock_irqrestore(&rnp->lock, flags);
890 return;
891 }
892 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
893 raw_spin_unlock_irqrestore(&rnp->lock, flags);
894
895 /*
896 * OK, time to rat on our buddy...
897 * See Documentation/RCU/stallwarn.txt for info on how to debug
898 * RCU CPU stall warnings.
899 */
900 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
901 rsp->name);
902 print_cpu_stall_info_begin();
903 rcu_for_each_leaf_node(rsp, rnp) {
904 raw_spin_lock_irqsave(&rnp->lock, flags);
905 ndetected += rcu_print_task_stall(rnp);
906 if (rnp->qsmask != 0) {
907 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
908 if (rnp->qsmask & (1UL << cpu)) {
909 print_cpu_stall_info(rsp,
910 rnp->grplo + cpu);
911 ndetected++;
912 }
913 }
914 raw_spin_unlock_irqrestore(&rnp->lock, flags);
915 }
916
917 /*
918 * Now rat on any tasks that got kicked up to the root rcu_node
919 * due to CPU offlining.
920 */
921 rnp = rcu_get_root(rsp);
922 raw_spin_lock_irqsave(&rnp->lock, flags);
923 ndetected += rcu_print_task_stall(rnp);
924 raw_spin_unlock_irqrestore(&rnp->lock, flags);
925
926 print_cpu_stall_info_end();
927 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
928 smp_processor_id(), (long)(jiffies - rsp->gp_start));
929 if (ndetected == 0)
930 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
931 else if (!trigger_all_cpu_backtrace())
932 dump_stack();
933
934 /* Complain about tasks blocking the grace period. */
935
936 rcu_print_detail_task_stall(rsp);
937
938 force_quiescent_state(rsp); /* Kick them all. */
939 }
940
941 static void print_cpu_stall(struct rcu_state *rsp)
942 {
943 unsigned long flags;
944 struct rcu_node *rnp = rcu_get_root(rsp);
945
946 /*
947 * OK, time to rat on ourselves...
948 * See Documentation/RCU/stallwarn.txt for info on how to debug
949 * RCU CPU stall warnings.
950 */
951 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
952 print_cpu_stall_info_begin();
953 print_cpu_stall_info(rsp, smp_processor_id());
954 print_cpu_stall_info_end();
955 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
956 if (!trigger_all_cpu_backtrace())
957 dump_stack();
958
959 raw_spin_lock_irqsave(&rnp->lock, flags);
960 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
961 rsp->jiffies_stall = jiffies +
962 3 * jiffies_till_stall_check() + 3;
963 raw_spin_unlock_irqrestore(&rnp->lock, flags);
964
965 set_need_resched(); /* kick ourselves to get things going. */
966 }
967
968 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
969 {
970 unsigned long j;
971 unsigned long js;
972 struct rcu_node *rnp;
973
974 if (rcu_cpu_stall_suppress)
975 return;
976 j = ACCESS_ONCE(jiffies);
977 js = ACCESS_ONCE(rsp->jiffies_stall);
978 rnp = rdp->mynode;
979 if (rcu_gp_in_progress(rsp) &&
980 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
981
982 /* We haven't checked in, so go dump stack. */
983 print_cpu_stall(rsp);
984
985 } else if (rcu_gp_in_progress(rsp) &&
986 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
987
988 /* They had a few time units to dump stack, so complain. */
989 print_other_cpu_stall(rsp);
990 }
991 }
992
993 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
994 {
995 rcu_cpu_stall_suppress = 1;
996 return NOTIFY_DONE;
997 }
998
999 /**
1000 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1001 *
1002 * Set the stall-warning timeout way off into the future, thus preventing
1003 * any RCU CPU stall-warning messages from appearing in the current set of
1004 * RCU grace periods.
1005 *
1006 * The caller must disable hard irqs.
1007 */
1008 void rcu_cpu_stall_reset(void)
1009 {
1010 struct rcu_state *rsp;
1011
1012 for_each_rcu_flavor(rsp)
1013 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1014 }
1015
1016 static struct notifier_block rcu_panic_block = {
1017 .notifier_call = rcu_panic,
1018 };
1019
1020 static void __init check_cpu_stall_init(void)
1021 {
1022 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
1023 }
1024
1025 /*
1026 * Update CPU-local rcu_data state to record the newly noticed grace period.
1027 * This is used both when we started the grace period and when we notice
1028 * that someone else started the grace period. The caller must hold the
1029 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
1030 * and must have irqs disabled.
1031 */
1032 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1033 {
1034 if (rdp->gpnum != rnp->gpnum) {
1035 /*
1036 * If the current grace period is waiting for this CPU,
1037 * set up to detect a quiescent state, otherwise don't
1038 * go looking for one.
1039 */
1040 rdp->gpnum = rnp->gpnum;
1041 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
1042 rdp->passed_quiesce = 0;
1043 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1044 zero_cpu_stall_ticks(rdp);
1045 }
1046 }
1047
1048 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1049 {
1050 unsigned long flags;
1051 struct rcu_node *rnp;
1052
1053 local_irq_save(flags);
1054 rnp = rdp->mynode;
1055 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1056 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1057 local_irq_restore(flags);
1058 return;
1059 }
1060 __note_new_gpnum(rsp, rnp, rdp);
1061 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1062 }
1063
1064 /*
1065 * Did someone else start a new RCU grace period start since we last
1066 * checked? Update local state appropriately if so. Must be called
1067 * on the CPU corresponding to rdp.
1068 */
1069 static int
1070 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1071 {
1072 unsigned long flags;
1073 int ret = 0;
1074
1075 local_irq_save(flags);
1076 if (rdp->gpnum != rsp->gpnum) {
1077 note_new_gpnum(rsp, rdp);
1078 ret = 1;
1079 }
1080 local_irq_restore(flags);
1081 return ret;
1082 }
1083
1084 /*
1085 * Initialize the specified rcu_data structure's callback list to empty.
1086 */
1087 static void init_callback_list(struct rcu_data *rdp)
1088 {
1089 int i;
1090
1091 rdp->nxtlist = NULL;
1092 for (i = 0; i < RCU_NEXT_SIZE; i++)
1093 rdp->nxttail[i] = &rdp->nxtlist;
1094 }
1095
1096 /*
1097 * Advance this CPU's callbacks, but only if the current grace period
1098 * has ended. This may be called only from the CPU to whom the rdp
1099 * belongs. In addition, the corresponding leaf rcu_node structure's
1100 * ->lock must be held by the caller, with irqs disabled.
1101 */
1102 static void
1103 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1104 {
1105 /* Did another grace period end? */
1106 if (rdp->completed != rnp->completed) {
1107
1108 /* Advance callbacks. No harm if list empty. */
1109 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
1110 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
1111 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1112
1113 /* Remember that we saw this grace-period completion. */
1114 rdp->completed = rnp->completed;
1115 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1116
1117 /*
1118 * If we were in an extended quiescent state, we may have
1119 * missed some grace periods that others CPUs handled on
1120 * our behalf. Catch up with this state to avoid noting
1121 * spurious new grace periods. If another grace period
1122 * has started, then rnp->gpnum will have advanced, so
1123 * we will detect this later on. Of course, any quiescent
1124 * states we found for the old GP are now invalid.
1125 */
1126 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1127 rdp->gpnum = rdp->completed;
1128 rdp->passed_quiesce = 0;
1129 }
1130
1131 /*
1132 * If RCU does not need a quiescent state from this CPU,
1133 * then make sure that this CPU doesn't go looking for one.
1134 */
1135 if ((rnp->qsmask & rdp->grpmask) == 0)
1136 rdp->qs_pending = 0;
1137 }
1138 }
1139
1140 /*
1141 * Advance this CPU's callbacks, but only if the current grace period
1142 * has ended. This may be called only from the CPU to whom the rdp
1143 * belongs.
1144 */
1145 static void
1146 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1147 {
1148 unsigned long flags;
1149 struct rcu_node *rnp;
1150
1151 local_irq_save(flags);
1152 rnp = rdp->mynode;
1153 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1154 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1155 local_irq_restore(flags);
1156 return;
1157 }
1158 __rcu_process_gp_end(rsp, rnp, rdp);
1159 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1160 }
1161
1162 /*
1163 * Do per-CPU grace-period initialization for running CPU. The caller
1164 * must hold the lock of the leaf rcu_node structure corresponding to
1165 * this CPU.
1166 */
1167 static void
1168 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1169 {
1170 /* Prior grace period ended, so advance callbacks for current CPU. */
1171 __rcu_process_gp_end(rsp, rnp, rdp);
1172
1173 /* Set state so that this CPU will detect the next quiescent state. */
1174 __note_new_gpnum(rsp, rnp, rdp);
1175 }
1176
1177 /*
1178 * Initialize a new grace period.
1179 */
1180 static int rcu_gp_init(struct rcu_state *rsp)
1181 {
1182 struct rcu_data *rdp;
1183 struct rcu_node *rnp = rcu_get_root(rsp);
1184
1185 raw_spin_lock_irq(&rnp->lock);
1186 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1187
1188 if (rcu_gp_in_progress(rsp)) {
1189 /* Grace period already in progress, don't start another. */
1190 raw_spin_unlock_irq(&rnp->lock);
1191 return 0;
1192 }
1193
1194 /* Advance to a new grace period and initialize state. */
1195 rsp->gpnum++;
1196 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1197 record_gp_stall_check_time(rsp);
1198 raw_spin_unlock_irq(&rnp->lock);
1199
1200 /* Exclude any concurrent CPU-hotplug operations. */
1201 mutex_lock(&rsp->onoff_mutex);
1202
1203 /*
1204 * Set the quiescent-state-needed bits in all the rcu_node
1205 * structures for all currently online CPUs in breadth-first order,
1206 * starting from the root rcu_node structure, relying on the layout
1207 * of the tree within the rsp->node[] array. Note that other CPUs
1208 * will access only the leaves of the hierarchy, thus seeing that no
1209 * grace period is in progress, at least until the corresponding
1210 * leaf node has been initialized. In addition, we have excluded
1211 * CPU-hotplug operations.
1212 *
1213 * The grace period cannot complete until the initialization
1214 * process finishes, because this kthread handles both.
1215 */
1216 rcu_for_each_node_breadth_first(rsp, rnp) {
1217 raw_spin_lock_irq(&rnp->lock);
1218 rdp = this_cpu_ptr(rsp->rda);
1219 rcu_preempt_check_blocked_tasks(rnp);
1220 rnp->qsmask = rnp->qsmaskinit;
1221 rnp->gpnum = rsp->gpnum;
1222 WARN_ON_ONCE(rnp->completed != rsp->completed);
1223 rnp->completed = rsp->completed;
1224 if (rnp == rdp->mynode)
1225 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1226 rcu_preempt_boost_start_gp(rnp);
1227 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1228 rnp->level, rnp->grplo,
1229 rnp->grphi, rnp->qsmask);
1230 raw_spin_unlock_irq(&rnp->lock);
1231 #ifdef CONFIG_PROVE_RCU_DELAY
1232 if ((random32() % (rcu_num_nodes * 8)) == 0)
1233 schedule_timeout_uninterruptible(2);
1234 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1235 cond_resched();
1236 }
1237
1238 mutex_unlock(&rsp->onoff_mutex);
1239 return 1;
1240 }
1241
1242 /*
1243 * Do one round of quiescent-state forcing.
1244 */
1245 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1246 {
1247 int fqs_state = fqs_state_in;
1248 struct rcu_node *rnp = rcu_get_root(rsp);
1249
1250 rsp->n_force_qs++;
1251 if (fqs_state == RCU_SAVE_DYNTICK) {
1252 /* Collect dyntick-idle snapshots. */
1253 force_qs_rnp(rsp, dyntick_save_progress_counter);
1254 fqs_state = RCU_FORCE_QS;
1255 } else {
1256 /* Handle dyntick-idle and offline CPUs. */
1257 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1258 }
1259 /* Clear flag to prevent immediate re-entry. */
1260 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1261 raw_spin_lock_irq(&rnp->lock);
1262 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1263 raw_spin_unlock_irq(&rnp->lock);
1264 }
1265 return fqs_state;
1266 }
1267
1268 /*
1269 * Clean up after the old grace period.
1270 */
1271 static void rcu_gp_cleanup(struct rcu_state *rsp)
1272 {
1273 unsigned long gp_duration;
1274 struct rcu_data *rdp;
1275 struct rcu_node *rnp = rcu_get_root(rsp);
1276
1277 raw_spin_lock_irq(&rnp->lock);
1278 gp_duration = jiffies - rsp->gp_start;
1279 if (gp_duration > rsp->gp_max)
1280 rsp->gp_max = gp_duration;
1281
1282 /*
1283 * We know the grace period is complete, but to everyone else
1284 * it appears to still be ongoing. But it is also the case
1285 * that to everyone else it looks like there is nothing that
1286 * they can do to advance the grace period. It is therefore
1287 * safe for us to drop the lock in order to mark the grace
1288 * period as completed in all of the rcu_node structures.
1289 */
1290 raw_spin_unlock_irq(&rnp->lock);
1291
1292 /*
1293 * Propagate new ->completed value to rcu_node structures so
1294 * that other CPUs don't have to wait until the start of the next
1295 * grace period to process their callbacks. This also avoids
1296 * some nasty RCU grace-period initialization races by forcing
1297 * the end of the current grace period to be completely recorded in
1298 * all of the rcu_node structures before the beginning of the next
1299 * grace period is recorded in any of the rcu_node structures.
1300 */
1301 rcu_for_each_node_breadth_first(rsp, rnp) {
1302 raw_spin_lock_irq(&rnp->lock);
1303 rnp->completed = rsp->gpnum;
1304 raw_spin_unlock_irq(&rnp->lock);
1305 cond_resched();
1306 }
1307 rnp = rcu_get_root(rsp);
1308 raw_spin_lock_irq(&rnp->lock);
1309
1310 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1311 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1312 rsp->fqs_state = RCU_GP_IDLE;
1313 rdp = this_cpu_ptr(rsp->rda);
1314 if (cpu_needs_another_gp(rsp, rdp))
1315 rsp->gp_flags = 1;
1316 raw_spin_unlock_irq(&rnp->lock);
1317 }
1318
1319 /*
1320 * Body of kthread that handles grace periods.
1321 */
1322 static int __noreturn rcu_gp_kthread(void *arg)
1323 {
1324 int fqs_state;
1325 unsigned long j;
1326 int ret;
1327 struct rcu_state *rsp = arg;
1328 struct rcu_node *rnp = rcu_get_root(rsp);
1329
1330 for (;;) {
1331
1332 /* Handle grace-period start. */
1333 for (;;) {
1334 wait_event_interruptible(rsp->gp_wq,
1335 rsp->gp_flags &
1336 RCU_GP_FLAG_INIT);
1337 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1338 rcu_gp_init(rsp))
1339 break;
1340 cond_resched();
1341 flush_signals(current);
1342 }
1343
1344 /* Handle quiescent-state forcing. */
1345 fqs_state = RCU_SAVE_DYNTICK;
1346 j = jiffies_till_first_fqs;
1347 if (j > HZ) {
1348 j = HZ;
1349 jiffies_till_first_fqs = HZ;
1350 }
1351 for (;;) {
1352 rsp->jiffies_force_qs = jiffies + j;
1353 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1354 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1355 (!ACCESS_ONCE(rnp->qsmask) &&
1356 !rcu_preempt_blocked_readers_cgp(rnp)),
1357 j);
1358 /* If grace period done, leave loop. */
1359 if (!ACCESS_ONCE(rnp->qsmask) &&
1360 !rcu_preempt_blocked_readers_cgp(rnp))
1361 break;
1362 /* If time for quiescent-state forcing, do it. */
1363 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1364 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1365 cond_resched();
1366 } else {
1367 /* Deal with stray signal. */
1368 cond_resched();
1369 flush_signals(current);
1370 }
1371 j = jiffies_till_next_fqs;
1372 if (j > HZ) {
1373 j = HZ;
1374 jiffies_till_next_fqs = HZ;
1375 } else if (j < 1) {
1376 j = 1;
1377 jiffies_till_next_fqs = 1;
1378 }
1379 }
1380
1381 /* Handle grace-period end. */
1382 rcu_gp_cleanup(rsp);
1383 }
1384 }
1385
1386 /*
1387 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1388 * in preparation for detecting the next grace period. The caller must hold
1389 * the root node's ->lock, which is released before return. Hard irqs must
1390 * be disabled.
1391 *
1392 * Note that it is legal for a dying CPU (which is marked as offline) to
1393 * invoke this function. This can happen when the dying CPU reports its
1394 * quiescent state.
1395 */
1396 static void
1397 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1398 __releases(rcu_get_root(rsp)->lock)
1399 {
1400 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1401 struct rcu_node *rnp = rcu_get_root(rsp);
1402
1403 if (!rsp->gp_kthread ||
1404 !cpu_needs_another_gp(rsp, rdp)) {
1405 /*
1406 * Either we have not yet spawned the grace-period
1407 * task, this CPU does not need another grace period,
1408 * or a grace period is already in progress.
1409 * Either way, don't start a new grace period.
1410 */
1411 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1412 return;
1413 }
1414
1415 /*
1416 * Because there is no grace period in progress right now,
1417 * any callbacks we have up to this point will be satisfied
1418 * by the next grace period. So promote all callbacks to be
1419 * handled after the end of the next grace period. If the
1420 * CPU is not yet aware of the end of the previous grace period,
1421 * we need to allow for the callback advancement that will
1422 * occur when it does become aware. Deadlock prevents us from
1423 * making it aware at this point: We cannot acquire a leaf
1424 * rcu_node ->lock while holding the root rcu_node ->lock.
1425 */
1426 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1427 if (rdp->completed == rsp->completed)
1428 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1429
1430 rsp->gp_flags = RCU_GP_FLAG_INIT;
1431 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
1432
1433 /* Ensure that CPU is aware of completion of last grace period. */
1434 rcu_process_gp_end(rsp, rdp);
1435 local_irq_restore(flags);
1436
1437 /* Wake up rcu_gp_kthread() to start the grace period. */
1438 wake_up(&rsp->gp_wq);
1439 }
1440
1441 /*
1442 * Report a full set of quiescent states to the specified rcu_state
1443 * data structure. This involves cleaning up after the prior grace
1444 * period and letting rcu_start_gp() start up the next grace period
1445 * if one is needed. Note that the caller must hold rnp->lock, as
1446 * required by rcu_start_gp(), which will release it.
1447 */
1448 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1449 __releases(rcu_get_root(rsp)->lock)
1450 {
1451 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1452 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1453 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1454 }
1455
1456 /*
1457 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1458 * Allows quiescent states for a group of CPUs to be reported at one go
1459 * to the specified rcu_node structure, though all the CPUs in the group
1460 * must be represented by the same rcu_node structure (which need not be
1461 * a leaf rcu_node structure, though it often will be). That structure's
1462 * lock must be held upon entry, and it is released before return.
1463 */
1464 static void
1465 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1466 struct rcu_node *rnp, unsigned long flags)
1467 __releases(rnp->lock)
1468 {
1469 struct rcu_node *rnp_c;
1470
1471 /* Walk up the rcu_node hierarchy. */
1472 for (;;) {
1473 if (!(rnp->qsmask & mask)) {
1474
1475 /* Our bit has already been cleared, so done. */
1476 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1477 return;
1478 }
1479 rnp->qsmask &= ~mask;
1480 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1481 mask, rnp->qsmask, rnp->level,
1482 rnp->grplo, rnp->grphi,
1483 !!rnp->gp_tasks);
1484 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1485
1486 /* Other bits still set at this level, so done. */
1487 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1488 return;
1489 }
1490 mask = rnp->grpmask;
1491 if (rnp->parent == NULL) {
1492
1493 /* No more levels. Exit loop holding root lock. */
1494
1495 break;
1496 }
1497 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1498 rnp_c = rnp;
1499 rnp = rnp->parent;
1500 raw_spin_lock_irqsave(&rnp->lock, flags);
1501 WARN_ON_ONCE(rnp_c->qsmask);
1502 }
1503
1504 /*
1505 * Get here if we are the last CPU to pass through a quiescent
1506 * state for this grace period. Invoke rcu_report_qs_rsp()
1507 * to clean up and start the next grace period if one is needed.
1508 */
1509 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1510 }
1511
1512 /*
1513 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1514 * structure. This must be either called from the specified CPU, or
1515 * called when the specified CPU is known to be offline (and when it is
1516 * also known that no other CPU is concurrently trying to help the offline
1517 * CPU). The lastcomp argument is used to make sure we are still in the
1518 * grace period of interest. We don't want to end the current grace period
1519 * based on quiescent states detected in an earlier grace period!
1520 */
1521 static void
1522 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1523 {
1524 unsigned long flags;
1525 unsigned long mask;
1526 struct rcu_node *rnp;
1527
1528 rnp = rdp->mynode;
1529 raw_spin_lock_irqsave(&rnp->lock, flags);
1530 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1531 rnp->completed == rnp->gpnum) {
1532
1533 /*
1534 * The grace period in which this quiescent state was
1535 * recorded has ended, so don't report it upwards.
1536 * We will instead need a new quiescent state that lies
1537 * within the current grace period.
1538 */
1539 rdp->passed_quiesce = 0; /* need qs for new gp. */
1540 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1541 return;
1542 }
1543 mask = rdp->grpmask;
1544 if ((rnp->qsmask & mask) == 0) {
1545 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1546 } else {
1547 rdp->qs_pending = 0;
1548
1549 /*
1550 * This GP can't end until cpu checks in, so all of our
1551 * callbacks can be processed during the next GP.
1552 */
1553 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1554
1555 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1556 }
1557 }
1558
1559 /*
1560 * Check to see if there is a new grace period of which this CPU
1561 * is not yet aware, and if so, set up local rcu_data state for it.
1562 * Otherwise, see if this CPU has just passed through its first
1563 * quiescent state for this grace period, and record that fact if so.
1564 */
1565 static void
1566 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1567 {
1568 /* If there is now a new grace period, record and return. */
1569 if (check_for_new_grace_period(rsp, rdp))
1570 return;
1571
1572 /*
1573 * Does this CPU still need to do its part for current grace period?
1574 * If no, return and let the other CPUs do their part as well.
1575 */
1576 if (!rdp->qs_pending)
1577 return;
1578
1579 /*
1580 * Was there a quiescent state since the beginning of the grace
1581 * period? If no, then exit and wait for the next call.
1582 */
1583 if (!rdp->passed_quiesce)
1584 return;
1585
1586 /*
1587 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1588 * judge of that).
1589 */
1590 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1591 }
1592
1593 #ifdef CONFIG_HOTPLUG_CPU
1594
1595 /*
1596 * Send the specified CPU's RCU callbacks to the orphanage. The
1597 * specified CPU must be offline, and the caller must hold the
1598 * ->onofflock.
1599 */
1600 static void
1601 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1602 struct rcu_node *rnp, struct rcu_data *rdp)
1603 {
1604 /*
1605 * Orphan the callbacks. First adjust the counts. This is safe
1606 * because ->onofflock excludes _rcu_barrier()'s adoption of
1607 * the callbacks, thus no memory barrier is required.
1608 */
1609 if (rdp->nxtlist != NULL) {
1610 rsp->qlen_lazy += rdp->qlen_lazy;
1611 rsp->qlen += rdp->qlen;
1612 rdp->n_cbs_orphaned += rdp->qlen;
1613 rdp->qlen_lazy = 0;
1614 ACCESS_ONCE(rdp->qlen) = 0;
1615 }
1616
1617 /*
1618 * Next, move those callbacks still needing a grace period to
1619 * the orphanage, where some other CPU will pick them up.
1620 * Some of the callbacks might have gone partway through a grace
1621 * period, but that is too bad. They get to start over because we
1622 * cannot assume that grace periods are synchronized across CPUs.
1623 * We don't bother updating the ->nxttail[] array yet, instead
1624 * we just reset the whole thing later on.
1625 */
1626 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1627 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1628 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1629 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1630 }
1631
1632 /*
1633 * Then move the ready-to-invoke callbacks to the orphanage,
1634 * where some other CPU will pick them up. These will not be
1635 * required to pass though another grace period: They are done.
1636 */
1637 if (rdp->nxtlist != NULL) {
1638 *rsp->orphan_donetail = rdp->nxtlist;
1639 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1640 }
1641
1642 /* Finally, initialize the rcu_data structure's list to empty. */
1643 init_callback_list(rdp);
1644 }
1645
1646 /*
1647 * Adopt the RCU callbacks from the specified rcu_state structure's
1648 * orphanage. The caller must hold the ->onofflock.
1649 */
1650 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1651 {
1652 int i;
1653 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1654
1655 /* Do the accounting first. */
1656 rdp->qlen_lazy += rsp->qlen_lazy;
1657 rdp->qlen += rsp->qlen;
1658 rdp->n_cbs_adopted += rsp->qlen;
1659 if (rsp->qlen_lazy != rsp->qlen)
1660 rcu_idle_count_callbacks_posted();
1661 rsp->qlen_lazy = 0;
1662 rsp->qlen = 0;
1663
1664 /*
1665 * We do not need a memory barrier here because the only way we
1666 * can get here if there is an rcu_barrier() in flight is if
1667 * we are the task doing the rcu_barrier().
1668 */
1669
1670 /* First adopt the ready-to-invoke callbacks. */
1671 if (rsp->orphan_donelist != NULL) {
1672 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1673 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1674 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1675 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1676 rdp->nxttail[i] = rsp->orphan_donetail;
1677 rsp->orphan_donelist = NULL;
1678 rsp->orphan_donetail = &rsp->orphan_donelist;
1679 }
1680
1681 /* And then adopt the callbacks that still need a grace period. */
1682 if (rsp->orphan_nxtlist != NULL) {
1683 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1684 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1685 rsp->orphan_nxtlist = NULL;
1686 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1687 }
1688 }
1689
1690 /*
1691 * Trace the fact that this CPU is going offline.
1692 */
1693 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1694 {
1695 RCU_TRACE(unsigned long mask);
1696 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1697 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1698
1699 RCU_TRACE(mask = rdp->grpmask);
1700 trace_rcu_grace_period(rsp->name,
1701 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1702 "cpuofl");
1703 }
1704
1705 /*
1706 * The CPU has been completely removed, and some other CPU is reporting
1707 * this fact from process context. Do the remainder of the cleanup,
1708 * including orphaning the outgoing CPU's RCU callbacks, and also
1709 * adopting them. There can only be one CPU hotplug operation at a time,
1710 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1711 */
1712 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1713 {
1714 unsigned long flags;
1715 unsigned long mask;
1716 int need_report = 0;
1717 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1718 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1719
1720 /* Adjust any no-longer-needed kthreads. */
1721 rcu_boost_kthread_setaffinity(rnp, -1);
1722
1723 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1724
1725 /* Exclude any attempts to start a new grace period. */
1726 mutex_lock(&rsp->onoff_mutex);
1727 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1728
1729 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1730 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1731 rcu_adopt_orphan_cbs(rsp);
1732
1733 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1734 mask = rdp->grpmask; /* rnp->grplo is constant. */
1735 do {
1736 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1737 rnp->qsmaskinit &= ~mask;
1738 if (rnp->qsmaskinit != 0) {
1739 if (rnp != rdp->mynode)
1740 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1741 break;
1742 }
1743 if (rnp == rdp->mynode)
1744 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1745 else
1746 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1747 mask = rnp->grpmask;
1748 rnp = rnp->parent;
1749 } while (rnp != NULL);
1750
1751 /*
1752 * We still hold the leaf rcu_node structure lock here, and
1753 * irqs are still disabled. The reason for this subterfuge is
1754 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1755 * held leads to deadlock.
1756 */
1757 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1758 rnp = rdp->mynode;
1759 if (need_report & RCU_OFL_TASKS_NORM_GP)
1760 rcu_report_unblock_qs_rnp(rnp, flags);
1761 else
1762 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1763 if (need_report & RCU_OFL_TASKS_EXP_GP)
1764 rcu_report_exp_rnp(rsp, rnp, true);
1765 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1766 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1767 cpu, rdp->qlen, rdp->nxtlist);
1768 init_callback_list(rdp);
1769 /* Disallow further callbacks on this CPU. */
1770 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1771 mutex_unlock(&rsp->onoff_mutex);
1772 }
1773
1774 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1775
1776 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1777 {
1778 }
1779
1780 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1781 {
1782 }
1783
1784 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1785
1786 /*
1787 * Invoke any RCU callbacks that have made it to the end of their grace
1788 * period. Thottle as specified by rdp->blimit.
1789 */
1790 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1791 {
1792 unsigned long flags;
1793 struct rcu_head *next, *list, **tail;
1794 long bl, count, count_lazy;
1795 int i;
1796
1797 /* If no callbacks are ready, just return.*/
1798 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1799 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1800 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1801 need_resched(), is_idle_task(current),
1802 rcu_is_callbacks_kthread());
1803 return;
1804 }
1805
1806 /*
1807 * Extract the list of ready callbacks, disabling to prevent
1808 * races with call_rcu() from interrupt handlers.
1809 */
1810 local_irq_save(flags);
1811 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1812 bl = rdp->blimit;
1813 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1814 list = rdp->nxtlist;
1815 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1816 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1817 tail = rdp->nxttail[RCU_DONE_TAIL];
1818 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1819 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1820 rdp->nxttail[i] = &rdp->nxtlist;
1821 local_irq_restore(flags);
1822
1823 /* Invoke callbacks. */
1824 count = count_lazy = 0;
1825 while (list) {
1826 next = list->next;
1827 prefetch(next);
1828 debug_rcu_head_unqueue(list);
1829 if (__rcu_reclaim(rsp->name, list))
1830 count_lazy++;
1831 list = next;
1832 /* Stop only if limit reached and CPU has something to do. */
1833 if (++count >= bl &&
1834 (need_resched() ||
1835 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1836 break;
1837 }
1838
1839 local_irq_save(flags);
1840 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1841 is_idle_task(current),
1842 rcu_is_callbacks_kthread());
1843
1844 /* Update count, and requeue any remaining callbacks. */
1845 if (list != NULL) {
1846 *tail = rdp->nxtlist;
1847 rdp->nxtlist = list;
1848 for (i = 0; i < RCU_NEXT_SIZE; i++)
1849 if (&rdp->nxtlist == rdp->nxttail[i])
1850 rdp->nxttail[i] = tail;
1851 else
1852 break;
1853 }
1854 smp_mb(); /* List handling before counting for rcu_barrier(). */
1855 rdp->qlen_lazy -= count_lazy;
1856 ACCESS_ONCE(rdp->qlen) -= count;
1857 rdp->n_cbs_invoked += count;
1858
1859 /* Reinstate batch limit if we have worked down the excess. */
1860 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1861 rdp->blimit = blimit;
1862
1863 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1864 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1865 rdp->qlen_last_fqs_check = 0;
1866 rdp->n_force_qs_snap = rsp->n_force_qs;
1867 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1868 rdp->qlen_last_fqs_check = rdp->qlen;
1869 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1870
1871 local_irq_restore(flags);
1872
1873 /* Re-invoke RCU core processing if there are callbacks remaining. */
1874 if (cpu_has_callbacks_ready_to_invoke(rdp))
1875 invoke_rcu_core();
1876 }
1877
1878 /*
1879 * Check to see if this CPU is in a non-context-switch quiescent state
1880 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1881 * Also schedule RCU core processing.
1882 *
1883 * This function must be called from hardirq context. It is normally
1884 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1885 * false, there is no point in invoking rcu_check_callbacks().
1886 */
1887 void rcu_check_callbacks(int cpu, int user)
1888 {
1889 trace_rcu_utilization("Start scheduler-tick");
1890 increment_cpu_stall_ticks();
1891 if (user || rcu_is_cpu_rrupt_from_idle()) {
1892
1893 /*
1894 * Get here if this CPU took its interrupt from user
1895 * mode or from the idle loop, and if this is not a
1896 * nested interrupt. In this case, the CPU is in
1897 * a quiescent state, so note it.
1898 *
1899 * No memory barrier is required here because both
1900 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1901 * variables that other CPUs neither access nor modify,
1902 * at least not while the corresponding CPU is online.
1903 */
1904
1905 rcu_sched_qs(cpu);
1906 rcu_bh_qs(cpu);
1907
1908 } else if (!in_softirq()) {
1909
1910 /*
1911 * Get here if this CPU did not take its interrupt from
1912 * softirq, in other words, if it is not interrupting
1913 * a rcu_bh read-side critical section. This is an _bh
1914 * critical section, so note it.
1915 */
1916
1917 rcu_bh_qs(cpu);
1918 }
1919 rcu_preempt_check_callbacks(cpu);
1920 if (rcu_pending(cpu))
1921 invoke_rcu_core();
1922 trace_rcu_utilization("End scheduler-tick");
1923 }
1924
1925 /*
1926 * Scan the leaf rcu_node structures, processing dyntick state for any that
1927 * have not yet encountered a quiescent state, using the function specified.
1928 * Also initiate boosting for any threads blocked on the root rcu_node.
1929 *
1930 * The caller must have suppressed start of new grace periods.
1931 */
1932 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1933 {
1934 unsigned long bit;
1935 int cpu;
1936 unsigned long flags;
1937 unsigned long mask;
1938 struct rcu_node *rnp;
1939
1940 rcu_for_each_leaf_node(rsp, rnp) {
1941 cond_resched();
1942 mask = 0;
1943 raw_spin_lock_irqsave(&rnp->lock, flags);
1944 if (!rcu_gp_in_progress(rsp)) {
1945 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1946 return;
1947 }
1948 if (rnp->qsmask == 0) {
1949 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1950 continue;
1951 }
1952 cpu = rnp->grplo;
1953 bit = 1;
1954 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1955 if ((rnp->qsmask & bit) != 0 &&
1956 f(per_cpu_ptr(rsp->rda, cpu)))
1957 mask |= bit;
1958 }
1959 if (mask != 0) {
1960
1961 /* rcu_report_qs_rnp() releases rnp->lock. */
1962 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1963 continue;
1964 }
1965 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1966 }
1967 rnp = rcu_get_root(rsp);
1968 if (rnp->qsmask == 0) {
1969 raw_spin_lock_irqsave(&rnp->lock, flags);
1970 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1971 }
1972 }
1973
1974 /*
1975 * Force quiescent states on reluctant CPUs, and also detect which
1976 * CPUs are in dyntick-idle mode.
1977 */
1978 static void force_quiescent_state(struct rcu_state *rsp)
1979 {
1980 unsigned long flags;
1981 bool ret;
1982 struct rcu_node *rnp;
1983 struct rcu_node *rnp_old = NULL;
1984
1985 /* Funnel through hierarchy to reduce memory contention. */
1986 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
1987 for (; rnp != NULL; rnp = rnp->parent) {
1988 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
1989 !raw_spin_trylock(&rnp->fqslock);
1990 if (rnp_old != NULL)
1991 raw_spin_unlock(&rnp_old->fqslock);
1992 if (ret) {
1993 rsp->n_force_qs_lh++;
1994 return;
1995 }
1996 rnp_old = rnp;
1997 }
1998 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
1999
2000 /* Reached the root of the rcu_node tree, acquire lock. */
2001 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2002 raw_spin_unlock(&rnp_old->fqslock);
2003 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2004 rsp->n_force_qs_lh++;
2005 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2006 return; /* Someone beat us to it. */
2007 }
2008 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2009 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2010 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2011 }
2012
2013 /*
2014 * This does the RCU core processing work for the specified rcu_state
2015 * and rcu_data structures. This may be called only from the CPU to
2016 * whom the rdp belongs.
2017 */
2018 static void
2019 __rcu_process_callbacks(struct rcu_state *rsp)
2020 {
2021 unsigned long flags;
2022 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2023
2024 WARN_ON_ONCE(rdp->beenonline == 0);
2025
2026 /*
2027 * Advance callbacks in response to end of earlier grace
2028 * period that some other CPU ended.
2029 */
2030 rcu_process_gp_end(rsp, rdp);
2031
2032 /* Update RCU state based on any recent quiescent states. */
2033 rcu_check_quiescent_state(rsp, rdp);
2034
2035 /* Does this CPU require a not-yet-started grace period? */
2036 if (cpu_needs_another_gp(rsp, rdp)) {
2037 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
2038 rcu_start_gp(rsp, flags); /* releases above lock */
2039 }
2040
2041 /* If there are callbacks ready, invoke them. */
2042 if (cpu_has_callbacks_ready_to_invoke(rdp))
2043 invoke_rcu_callbacks(rsp, rdp);
2044 }
2045
2046 /*
2047 * Do RCU core processing for the current CPU.
2048 */
2049 static void rcu_process_callbacks(struct softirq_action *unused)
2050 {
2051 struct rcu_state *rsp;
2052
2053 if (cpu_is_offline(smp_processor_id()))
2054 return;
2055 trace_rcu_utilization("Start RCU core");
2056 for_each_rcu_flavor(rsp)
2057 __rcu_process_callbacks(rsp);
2058 trace_rcu_utilization("End RCU core");
2059 }
2060
2061 /*
2062 * Schedule RCU callback invocation. If the specified type of RCU
2063 * does not support RCU priority boosting, just do a direct call,
2064 * otherwise wake up the per-CPU kernel kthread. Note that because we
2065 * are running on the current CPU with interrupts disabled, the
2066 * rcu_cpu_kthread_task cannot disappear out from under us.
2067 */
2068 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2069 {
2070 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2071 return;
2072 if (likely(!rsp->boost)) {
2073 rcu_do_batch(rsp, rdp);
2074 return;
2075 }
2076 invoke_rcu_callbacks_kthread();
2077 }
2078
2079 static void invoke_rcu_core(void)
2080 {
2081 raise_softirq(RCU_SOFTIRQ);
2082 }
2083
2084 /*
2085 * Handle any core-RCU processing required by a call_rcu() invocation.
2086 */
2087 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2088 struct rcu_head *head, unsigned long flags)
2089 {
2090 /*
2091 * If called from an extended quiescent state, invoke the RCU
2092 * core in order to force a re-evaluation of RCU's idleness.
2093 */
2094 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2095 invoke_rcu_core();
2096
2097 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2098 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2099 return;
2100
2101 /*
2102 * Force the grace period if too many callbacks or too long waiting.
2103 * Enforce hysteresis, and don't invoke force_quiescent_state()
2104 * if some other CPU has recently done so. Also, don't bother
2105 * invoking force_quiescent_state() if the newly enqueued callback
2106 * is the only one waiting for a grace period to complete.
2107 */
2108 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2109
2110 /* Are we ignoring a completed grace period? */
2111 rcu_process_gp_end(rsp, rdp);
2112 check_for_new_grace_period(rsp, rdp);
2113
2114 /* Start a new grace period if one not already started. */
2115 if (!rcu_gp_in_progress(rsp)) {
2116 unsigned long nestflag;
2117 struct rcu_node *rnp_root = rcu_get_root(rsp);
2118
2119 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2120 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2121 } else {
2122 /* Give the grace period a kick. */
2123 rdp->blimit = LONG_MAX;
2124 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2125 *rdp->nxttail[RCU_DONE_TAIL] != head)
2126 force_quiescent_state(rsp);
2127 rdp->n_force_qs_snap = rsp->n_force_qs;
2128 rdp->qlen_last_fqs_check = rdp->qlen;
2129 }
2130 }
2131 }
2132
2133 static void
2134 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2135 struct rcu_state *rsp, bool lazy)
2136 {
2137 unsigned long flags;
2138 struct rcu_data *rdp;
2139
2140 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2141 debug_rcu_head_queue(head);
2142 head->func = func;
2143 head->next = NULL;
2144
2145 /*
2146 * Opportunistically note grace-period endings and beginnings.
2147 * Note that we might see a beginning right after we see an
2148 * end, but never vice versa, since this CPU has to pass through
2149 * a quiescent state betweentimes.
2150 */
2151 local_irq_save(flags);
2152 rdp = this_cpu_ptr(rsp->rda);
2153
2154 /* Add the callback to our list. */
2155 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL)) {
2156 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2157 WARN_ON_ONCE(1);
2158 local_irq_restore(flags);
2159 return;
2160 }
2161 ACCESS_ONCE(rdp->qlen)++;
2162 if (lazy)
2163 rdp->qlen_lazy++;
2164 else
2165 rcu_idle_count_callbacks_posted();
2166 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2167 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2168 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2169
2170 if (__is_kfree_rcu_offset((unsigned long)func))
2171 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2172 rdp->qlen_lazy, rdp->qlen);
2173 else
2174 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2175
2176 /* Go handle any RCU core processing required. */
2177 __call_rcu_core(rsp, rdp, head, flags);
2178 local_irq_restore(flags);
2179 }
2180
2181 /*
2182 * Queue an RCU-sched callback for invocation after a grace period.
2183 */
2184 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2185 {
2186 __call_rcu(head, func, &rcu_sched_state, 0);
2187 }
2188 EXPORT_SYMBOL_GPL(call_rcu_sched);
2189
2190 /*
2191 * Queue an RCU callback for invocation after a quicker grace period.
2192 */
2193 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2194 {
2195 __call_rcu(head, func, &rcu_bh_state, 0);
2196 }
2197 EXPORT_SYMBOL_GPL(call_rcu_bh);
2198
2199 /*
2200 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2201 * any blocking grace-period wait automatically implies a grace period
2202 * if there is only one CPU online at any point time during execution
2203 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2204 * occasionally incorrectly indicate that there are multiple CPUs online
2205 * when there was in fact only one the whole time, as this just adds
2206 * some overhead: RCU still operates correctly.
2207 */
2208 static inline int rcu_blocking_is_gp(void)
2209 {
2210 int ret;
2211
2212 might_sleep(); /* Check for RCU read-side critical section. */
2213 preempt_disable();
2214 ret = num_online_cpus() <= 1;
2215 preempt_enable();
2216 return ret;
2217 }
2218
2219 /**
2220 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2221 *
2222 * Control will return to the caller some time after a full rcu-sched
2223 * grace period has elapsed, in other words after all currently executing
2224 * rcu-sched read-side critical sections have completed. These read-side
2225 * critical sections are delimited by rcu_read_lock_sched() and
2226 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2227 * local_irq_disable(), and so on may be used in place of
2228 * rcu_read_lock_sched().
2229 *
2230 * This means that all preempt_disable code sequences, including NMI and
2231 * hardware-interrupt handlers, in progress on entry will have completed
2232 * before this primitive returns. However, this does not guarantee that
2233 * softirq handlers will have completed, since in some kernels, these
2234 * handlers can run in process context, and can block.
2235 *
2236 * This primitive provides the guarantees made by the (now removed)
2237 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2238 * guarantees that rcu_read_lock() sections will have completed.
2239 * In "classic RCU", these two guarantees happen to be one and
2240 * the same, but can differ in realtime RCU implementations.
2241 */
2242 void synchronize_sched(void)
2243 {
2244 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2245 !lock_is_held(&rcu_lock_map) &&
2246 !lock_is_held(&rcu_sched_lock_map),
2247 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2248 if (rcu_blocking_is_gp())
2249 return;
2250 wait_rcu_gp(call_rcu_sched);
2251 }
2252 EXPORT_SYMBOL_GPL(synchronize_sched);
2253
2254 /**
2255 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2256 *
2257 * Control will return to the caller some time after a full rcu_bh grace
2258 * period has elapsed, in other words after all currently executing rcu_bh
2259 * read-side critical sections have completed. RCU read-side critical
2260 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2261 * and may be nested.
2262 */
2263 void synchronize_rcu_bh(void)
2264 {
2265 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2266 !lock_is_held(&rcu_lock_map) &&
2267 !lock_is_held(&rcu_sched_lock_map),
2268 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2269 if (rcu_blocking_is_gp())
2270 return;
2271 wait_rcu_gp(call_rcu_bh);
2272 }
2273 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2274
2275 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2276 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2277
2278 static int synchronize_sched_expedited_cpu_stop(void *data)
2279 {
2280 /*
2281 * There must be a full memory barrier on each affected CPU
2282 * between the time that try_stop_cpus() is called and the
2283 * time that it returns.
2284 *
2285 * In the current initial implementation of cpu_stop, the
2286 * above condition is already met when the control reaches
2287 * this point and the following smp_mb() is not strictly
2288 * necessary. Do smp_mb() anyway for documentation and
2289 * robustness against future implementation changes.
2290 */
2291 smp_mb(); /* See above comment block. */
2292 return 0;
2293 }
2294
2295 /**
2296 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2297 *
2298 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2299 * approach to force the grace period to end quickly. This consumes
2300 * significant time on all CPUs and is unfriendly to real-time workloads,
2301 * so is thus not recommended for any sort of common-case code. In fact,
2302 * if you are using synchronize_sched_expedited() in a loop, please
2303 * restructure your code to batch your updates, and then use a single
2304 * synchronize_sched() instead.
2305 *
2306 * Note that it is illegal to call this function while holding any lock
2307 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2308 * to call this function from a CPU-hotplug notifier. Failing to observe
2309 * these restriction will result in deadlock.
2310 *
2311 * This implementation can be thought of as an application of ticket
2312 * locking to RCU, with sync_sched_expedited_started and
2313 * sync_sched_expedited_done taking on the roles of the halves
2314 * of the ticket-lock word. Each task atomically increments
2315 * sync_sched_expedited_started upon entry, snapshotting the old value,
2316 * then attempts to stop all the CPUs. If this succeeds, then each
2317 * CPU will have executed a context switch, resulting in an RCU-sched
2318 * grace period. We are then done, so we use atomic_cmpxchg() to
2319 * update sync_sched_expedited_done to match our snapshot -- but
2320 * only if someone else has not already advanced past our snapshot.
2321 *
2322 * On the other hand, if try_stop_cpus() fails, we check the value
2323 * of sync_sched_expedited_done. If it has advanced past our
2324 * initial snapshot, then someone else must have forced a grace period
2325 * some time after we took our snapshot. In this case, our work is
2326 * done for us, and we can simply return. Otherwise, we try again,
2327 * but keep our initial snapshot for purposes of checking for someone
2328 * doing our work for us.
2329 *
2330 * If we fail too many times in a row, we fall back to synchronize_sched().
2331 */
2332 void synchronize_sched_expedited(void)
2333 {
2334 int firstsnap, s, snap, trycount = 0;
2335
2336 /* Note that atomic_inc_return() implies full memory barrier. */
2337 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2338 get_online_cpus();
2339 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2340
2341 /*
2342 * Each pass through the following loop attempts to force a
2343 * context switch on each CPU.
2344 */
2345 while (try_stop_cpus(cpu_online_mask,
2346 synchronize_sched_expedited_cpu_stop,
2347 NULL) == -EAGAIN) {
2348 put_online_cpus();
2349
2350 /* No joy, try again later. Or just synchronize_sched(). */
2351 if (trycount++ < 10) {
2352 udelay(trycount * num_online_cpus());
2353 } else {
2354 synchronize_sched();
2355 return;
2356 }
2357
2358 /* Check to see if someone else did our work for us. */
2359 s = atomic_read(&sync_sched_expedited_done);
2360 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2361 smp_mb(); /* ensure test happens before caller kfree */
2362 return;
2363 }
2364
2365 /*
2366 * Refetching sync_sched_expedited_started allows later
2367 * callers to piggyback on our grace period. We subtract
2368 * 1 to get the same token that the last incrementer got.
2369 * We retry after they started, so our grace period works
2370 * for them, and they started after our first try, so their
2371 * grace period works for us.
2372 */
2373 get_online_cpus();
2374 snap = atomic_read(&sync_sched_expedited_started);
2375 smp_mb(); /* ensure read is before try_stop_cpus(). */
2376 }
2377
2378 /*
2379 * Everyone up to our most recent fetch is covered by our grace
2380 * period. Update the counter, but only if our work is still
2381 * relevant -- which it won't be if someone who started later
2382 * than we did beat us to the punch.
2383 */
2384 do {
2385 s = atomic_read(&sync_sched_expedited_done);
2386 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2387 smp_mb(); /* ensure test happens before caller kfree */
2388 break;
2389 }
2390 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2391
2392 put_online_cpus();
2393 }
2394 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2395
2396 /*
2397 * Check to see if there is any immediate RCU-related work to be done
2398 * by the current CPU, for the specified type of RCU, returning 1 if so.
2399 * The checks are in order of increasing expense: checks that can be
2400 * carried out against CPU-local state are performed first. However,
2401 * we must check for CPU stalls first, else we might not get a chance.
2402 */
2403 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2404 {
2405 struct rcu_node *rnp = rdp->mynode;
2406
2407 rdp->n_rcu_pending++;
2408
2409 /* Check for CPU stalls, if enabled. */
2410 check_cpu_stall(rsp, rdp);
2411
2412 /* Is the RCU core waiting for a quiescent state from this CPU? */
2413 if (rcu_scheduler_fully_active &&
2414 rdp->qs_pending && !rdp->passed_quiesce) {
2415 rdp->n_rp_qs_pending++;
2416 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2417 rdp->n_rp_report_qs++;
2418 return 1;
2419 }
2420
2421 /* Does this CPU have callbacks ready to invoke? */
2422 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2423 rdp->n_rp_cb_ready++;
2424 return 1;
2425 }
2426
2427 /* Has RCU gone idle with this CPU needing another grace period? */
2428 if (cpu_needs_another_gp(rsp, rdp)) {
2429 rdp->n_rp_cpu_needs_gp++;
2430 return 1;
2431 }
2432
2433 /* Has another RCU grace period completed? */
2434 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2435 rdp->n_rp_gp_completed++;
2436 return 1;
2437 }
2438
2439 /* Has a new RCU grace period started? */
2440 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2441 rdp->n_rp_gp_started++;
2442 return 1;
2443 }
2444
2445 /* nothing to do */
2446 rdp->n_rp_need_nothing++;
2447 return 0;
2448 }
2449
2450 /*
2451 * Check to see if there is any immediate RCU-related work to be done
2452 * by the current CPU, returning 1 if so. This function is part of the
2453 * RCU implementation; it is -not- an exported member of the RCU API.
2454 */
2455 static int rcu_pending(int cpu)
2456 {
2457 struct rcu_state *rsp;
2458
2459 for_each_rcu_flavor(rsp)
2460 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2461 return 1;
2462 return 0;
2463 }
2464
2465 /*
2466 * Check to see if any future RCU-related work will need to be done
2467 * by the current CPU, even if none need be done immediately, returning
2468 * 1 if so.
2469 */
2470 static int rcu_cpu_has_callbacks(int cpu)
2471 {
2472 struct rcu_state *rsp;
2473
2474 /* RCU callbacks either ready or pending? */
2475 for_each_rcu_flavor(rsp)
2476 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2477 return 1;
2478 return 0;
2479 }
2480
2481 /*
2482 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2483 * the compiler is expected to optimize this away.
2484 */
2485 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2486 int cpu, unsigned long done)
2487 {
2488 trace_rcu_barrier(rsp->name, s, cpu,
2489 atomic_read(&rsp->barrier_cpu_count), done);
2490 }
2491
2492 /*
2493 * RCU callback function for _rcu_barrier(). If we are last, wake
2494 * up the task executing _rcu_barrier().
2495 */
2496 static void rcu_barrier_callback(struct rcu_head *rhp)
2497 {
2498 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2499 struct rcu_state *rsp = rdp->rsp;
2500
2501 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2502 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2503 complete(&rsp->barrier_completion);
2504 } else {
2505 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2506 }
2507 }
2508
2509 /*
2510 * Called with preemption disabled, and from cross-cpu IRQ context.
2511 */
2512 static void rcu_barrier_func(void *type)
2513 {
2514 struct rcu_state *rsp = type;
2515 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2516
2517 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2518 atomic_inc(&rsp->barrier_cpu_count);
2519 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2520 }
2521
2522 /*
2523 * Orchestrate the specified type of RCU barrier, waiting for all
2524 * RCU callbacks of the specified type to complete.
2525 */
2526 static void _rcu_barrier(struct rcu_state *rsp)
2527 {
2528 int cpu;
2529 struct rcu_data *rdp;
2530 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2531 unsigned long snap_done;
2532
2533 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2534
2535 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2536 mutex_lock(&rsp->barrier_mutex);
2537
2538 /*
2539 * Ensure that all prior references, including to ->n_barrier_done,
2540 * are ordered before the _rcu_barrier() machinery.
2541 */
2542 smp_mb(); /* See above block comment. */
2543
2544 /*
2545 * Recheck ->n_barrier_done to see if others did our work for us.
2546 * This means checking ->n_barrier_done for an even-to-odd-to-even
2547 * transition. The "if" expression below therefore rounds the old
2548 * value up to the next even number and adds two before comparing.
2549 */
2550 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2551 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2552 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2553 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2554 smp_mb(); /* caller's subsequent code after above check. */
2555 mutex_unlock(&rsp->barrier_mutex);
2556 return;
2557 }
2558
2559 /*
2560 * Increment ->n_barrier_done to avoid duplicate work. Use
2561 * ACCESS_ONCE() to prevent the compiler from speculating
2562 * the increment to precede the early-exit check.
2563 */
2564 ACCESS_ONCE(rsp->n_barrier_done)++;
2565 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2566 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2567 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2568
2569 /*
2570 * Initialize the count to one rather than to zero in order to
2571 * avoid a too-soon return to zero in case of a short grace period
2572 * (or preemption of this task). Exclude CPU-hotplug operations
2573 * to ensure that no offline CPU has callbacks queued.
2574 */
2575 init_completion(&rsp->barrier_completion);
2576 atomic_set(&rsp->barrier_cpu_count, 1);
2577 get_online_cpus();
2578
2579 /*
2580 * Force each CPU with callbacks to register a new callback.
2581 * When that callback is invoked, we will know that all of the
2582 * corresponding CPU's preceding callbacks have been invoked.
2583 */
2584 for_each_online_cpu(cpu) {
2585 rdp = per_cpu_ptr(rsp->rda, cpu);
2586 if (ACCESS_ONCE(rdp->qlen)) {
2587 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2588 rsp->n_barrier_done);
2589 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2590 } else {
2591 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2592 rsp->n_barrier_done);
2593 }
2594 }
2595 put_online_cpus();
2596
2597 /*
2598 * Now that we have an rcu_barrier_callback() callback on each
2599 * CPU, and thus each counted, remove the initial count.
2600 */
2601 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2602 complete(&rsp->barrier_completion);
2603
2604 /* Increment ->n_barrier_done to prevent duplicate work. */
2605 smp_mb(); /* Keep increment after above mechanism. */
2606 ACCESS_ONCE(rsp->n_barrier_done)++;
2607 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2608 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2609 smp_mb(); /* Keep increment before caller's subsequent code. */
2610
2611 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2612 wait_for_completion(&rsp->barrier_completion);
2613
2614 /* Other rcu_barrier() invocations can now safely proceed. */
2615 mutex_unlock(&rsp->barrier_mutex);
2616 }
2617
2618 /**
2619 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2620 */
2621 void rcu_barrier_bh(void)
2622 {
2623 _rcu_barrier(&rcu_bh_state);
2624 }
2625 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2626
2627 /**
2628 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2629 */
2630 void rcu_barrier_sched(void)
2631 {
2632 _rcu_barrier(&rcu_sched_state);
2633 }
2634 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2635
2636 /*
2637 * Do boot-time initialization of a CPU's per-CPU RCU data.
2638 */
2639 static void __init
2640 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2641 {
2642 unsigned long flags;
2643 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2644 struct rcu_node *rnp = rcu_get_root(rsp);
2645
2646 /* Set up local state, ensuring consistent view of global state. */
2647 raw_spin_lock_irqsave(&rnp->lock, flags);
2648 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2649 init_callback_list(rdp);
2650 rdp->qlen_lazy = 0;
2651 ACCESS_ONCE(rdp->qlen) = 0;
2652 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2653 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2654 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2655 #ifdef CONFIG_RCU_USER_QS
2656 WARN_ON_ONCE(rdp->dynticks->in_user);
2657 #endif
2658 rdp->cpu = cpu;
2659 rdp->rsp = rsp;
2660 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2661 }
2662
2663 /*
2664 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2665 * offline event can be happening at a given time. Note also that we
2666 * can accept some slop in the rsp->completed access due to the fact
2667 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2668 */
2669 static void __cpuinit
2670 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2671 {
2672 unsigned long flags;
2673 unsigned long mask;
2674 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2675 struct rcu_node *rnp = rcu_get_root(rsp);
2676
2677 /* Exclude new grace periods. */
2678 mutex_lock(&rsp->onoff_mutex);
2679
2680 /* Set up local state, ensuring consistent view of global state. */
2681 raw_spin_lock_irqsave(&rnp->lock, flags);
2682 rdp->beenonline = 1; /* We have now been online. */
2683 rdp->preemptible = preemptible;
2684 rdp->qlen_last_fqs_check = 0;
2685 rdp->n_force_qs_snap = rsp->n_force_qs;
2686 rdp->blimit = blimit;
2687 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2688 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2689 atomic_set(&rdp->dynticks->dynticks,
2690 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2691 rcu_prepare_for_idle_init(cpu);
2692 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2693
2694 /* Add CPU to rcu_node bitmasks. */
2695 rnp = rdp->mynode;
2696 mask = rdp->grpmask;
2697 do {
2698 /* Exclude any attempts to start a new GP on small systems. */
2699 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2700 rnp->qsmaskinit |= mask;
2701 mask = rnp->grpmask;
2702 if (rnp == rdp->mynode) {
2703 /*
2704 * If there is a grace period in progress, we will
2705 * set up to wait for it next time we run the
2706 * RCU core code.
2707 */
2708 rdp->gpnum = rnp->completed;
2709 rdp->completed = rnp->completed;
2710 rdp->passed_quiesce = 0;
2711 rdp->qs_pending = 0;
2712 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2713 }
2714 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2715 rnp = rnp->parent;
2716 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2717 local_irq_restore(flags);
2718
2719 mutex_unlock(&rsp->onoff_mutex);
2720 }
2721
2722 static void __cpuinit rcu_prepare_cpu(int cpu)
2723 {
2724 struct rcu_state *rsp;
2725
2726 for_each_rcu_flavor(rsp)
2727 rcu_init_percpu_data(cpu, rsp,
2728 strcmp(rsp->name, "rcu_preempt") == 0);
2729 }
2730
2731 /*
2732 * Handle CPU online/offline notification events.
2733 */
2734 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2735 unsigned long action, void *hcpu)
2736 {
2737 long cpu = (long)hcpu;
2738 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2739 struct rcu_node *rnp = rdp->mynode;
2740 struct rcu_state *rsp;
2741
2742 trace_rcu_utilization("Start CPU hotplug");
2743 switch (action) {
2744 case CPU_UP_PREPARE:
2745 case CPU_UP_PREPARE_FROZEN:
2746 rcu_prepare_cpu(cpu);
2747 rcu_prepare_kthreads(cpu);
2748 break;
2749 case CPU_ONLINE:
2750 case CPU_DOWN_FAILED:
2751 rcu_boost_kthread_setaffinity(rnp, -1);
2752 break;
2753 case CPU_DOWN_PREPARE:
2754 rcu_boost_kthread_setaffinity(rnp, cpu);
2755 break;
2756 case CPU_DYING:
2757 case CPU_DYING_FROZEN:
2758 /*
2759 * The whole machine is "stopped" except this CPU, so we can
2760 * touch any data without introducing corruption. We send the
2761 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2762 */
2763 for_each_rcu_flavor(rsp)
2764 rcu_cleanup_dying_cpu(rsp);
2765 rcu_cleanup_after_idle(cpu);
2766 break;
2767 case CPU_DEAD:
2768 case CPU_DEAD_FROZEN:
2769 case CPU_UP_CANCELED:
2770 case CPU_UP_CANCELED_FROZEN:
2771 for_each_rcu_flavor(rsp)
2772 rcu_cleanup_dead_cpu(cpu, rsp);
2773 break;
2774 default:
2775 break;
2776 }
2777 trace_rcu_utilization("End CPU hotplug");
2778 return NOTIFY_OK;
2779 }
2780
2781 /*
2782 * Spawn the kthread that handles this RCU flavor's grace periods.
2783 */
2784 static int __init rcu_spawn_gp_kthread(void)
2785 {
2786 unsigned long flags;
2787 struct rcu_node *rnp;
2788 struct rcu_state *rsp;
2789 struct task_struct *t;
2790
2791 for_each_rcu_flavor(rsp) {
2792 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2793 BUG_ON(IS_ERR(t));
2794 rnp = rcu_get_root(rsp);
2795 raw_spin_lock_irqsave(&rnp->lock, flags);
2796 rsp->gp_kthread = t;
2797 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2798 }
2799 return 0;
2800 }
2801 early_initcall(rcu_spawn_gp_kthread);
2802
2803 /*
2804 * This function is invoked towards the end of the scheduler's initialization
2805 * process. Before this is called, the idle task might contain
2806 * RCU read-side critical sections (during which time, this idle
2807 * task is booting the system). After this function is called, the
2808 * idle tasks are prohibited from containing RCU read-side critical
2809 * sections. This function also enables RCU lockdep checking.
2810 */
2811 void rcu_scheduler_starting(void)
2812 {
2813 WARN_ON(num_online_cpus() != 1);
2814 WARN_ON(nr_context_switches() > 0);
2815 rcu_scheduler_active = 1;
2816 }
2817
2818 /*
2819 * Compute the per-level fanout, either using the exact fanout specified
2820 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2821 */
2822 #ifdef CONFIG_RCU_FANOUT_EXACT
2823 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2824 {
2825 int i;
2826
2827 for (i = rcu_num_lvls - 1; i > 0; i--)
2828 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2829 rsp->levelspread[0] = rcu_fanout_leaf;
2830 }
2831 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2832 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2833 {
2834 int ccur;
2835 int cprv;
2836 int i;
2837
2838 cprv = nr_cpu_ids;
2839 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2840 ccur = rsp->levelcnt[i];
2841 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2842 cprv = ccur;
2843 }
2844 }
2845 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2846
2847 /*
2848 * Helper function for rcu_init() that initializes one rcu_state structure.
2849 */
2850 static void __init rcu_init_one(struct rcu_state *rsp,
2851 struct rcu_data __percpu *rda)
2852 {
2853 static char *buf[] = { "rcu_node_0",
2854 "rcu_node_1",
2855 "rcu_node_2",
2856 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2857 static char *fqs[] = { "rcu_node_fqs_0",
2858 "rcu_node_fqs_1",
2859 "rcu_node_fqs_2",
2860 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
2861 int cpustride = 1;
2862 int i;
2863 int j;
2864 struct rcu_node *rnp;
2865
2866 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2867
2868 /* Initialize the level-tracking arrays. */
2869
2870 for (i = 0; i < rcu_num_lvls; i++)
2871 rsp->levelcnt[i] = num_rcu_lvl[i];
2872 for (i = 1; i < rcu_num_lvls; i++)
2873 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2874 rcu_init_levelspread(rsp);
2875
2876 /* Initialize the elements themselves, starting from the leaves. */
2877
2878 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2879 cpustride *= rsp->levelspread[i];
2880 rnp = rsp->level[i];
2881 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2882 raw_spin_lock_init(&rnp->lock);
2883 lockdep_set_class_and_name(&rnp->lock,
2884 &rcu_node_class[i], buf[i]);
2885 raw_spin_lock_init(&rnp->fqslock);
2886 lockdep_set_class_and_name(&rnp->fqslock,
2887 &rcu_fqs_class[i], fqs[i]);
2888 rnp->gpnum = rsp->gpnum;
2889 rnp->completed = rsp->completed;
2890 rnp->qsmask = 0;
2891 rnp->qsmaskinit = 0;
2892 rnp->grplo = j * cpustride;
2893 rnp->grphi = (j + 1) * cpustride - 1;
2894 if (rnp->grphi >= NR_CPUS)
2895 rnp->grphi = NR_CPUS - 1;
2896 if (i == 0) {
2897 rnp->grpnum = 0;
2898 rnp->grpmask = 0;
2899 rnp->parent = NULL;
2900 } else {
2901 rnp->grpnum = j % rsp->levelspread[i - 1];
2902 rnp->grpmask = 1UL << rnp->grpnum;
2903 rnp->parent = rsp->level[i - 1] +
2904 j / rsp->levelspread[i - 1];
2905 }
2906 rnp->level = i;
2907 INIT_LIST_HEAD(&rnp->blkd_tasks);
2908 }
2909 }
2910
2911 rsp->rda = rda;
2912 init_waitqueue_head(&rsp->gp_wq);
2913 rnp = rsp->level[rcu_num_lvls - 1];
2914 for_each_possible_cpu(i) {
2915 while (i > rnp->grphi)
2916 rnp++;
2917 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2918 rcu_boot_init_percpu_data(i, rsp);
2919 }
2920 list_add(&rsp->flavors, &rcu_struct_flavors);
2921 }
2922
2923 /*
2924 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2925 * replace the definitions in rcutree.h because those are needed to size
2926 * the ->node array in the rcu_state structure.
2927 */
2928 static void __init rcu_init_geometry(void)
2929 {
2930 int i;
2931 int j;
2932 int n = nr_cpu_ids;
2933 int rcu_capacity[MAX_RCU_LVLS + 1];
2934
2935 /* If the compile-time values are accurate, just leave. */
2936 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
2937 nr_cpu_ids == NR_CPUS)
2938 return;
2939
2940 /*
2941 * Compute number of nodes that can be handled an rcu_node tree
2942 * with the given number of levels. Setting rcu_capacity[0] makes
2943 * some of the arithmetic easier.
2944 */
2945 rcu_capacity[0] = 1;
2946 rcu_capacity[1] = rcu_fanout_leaf;
2947 for (i = 2; i <= MAX_RCU_LVLS; i++)
2948 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2949
2950 /*
2951 * The boot-time rcu_fanout_leaf parameter is only permitted
2952 * to increase the leaf-level fanout, not decrease it. Of course,
2953 * the leaf-level fanout cannot exceed the number of bits in
2954 * the rcu_node masks. Finally, the tree must be able to accommodate
2955 * the configured number of CPUs. Complain and fall back to the
2956 * compile-time values if these limits are exceeded.
2957 */
2958 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2959 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2960 n > rcu_capacity[MAX_RCU_LVLS]) {
2961 WARN_ON(1);
2962 return;
2963 }
2964
2965 /* Calculate the number of rcu_nodes at each level of the tree. */
2966 for (i = 1; i <= MAX_RCU_LVLS; i++)
2967 if (n <= rcu_capacity[i]) {
2968 for (j = 0; j <= i; j++)
2969 num_rcu_lvl[j] =
2970 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2971 rcu_num_lvls = i;
2972 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2973 num_rcu_lvl[j] = 0;
2974 break;
2975 }
2976
2977 /* Calculate the total number of rcu_node structures. */
2978 rcu_num_nodes = 0;
2979 for (i = 0; i <= MAX_RCU_LVLS; i++)
2980 rcu_num_nodes += num_rcu_lvl[i];
2981 rcu_num_nodes -= n;
2982 }
2983
2984 void __init rcu_init(void)
2985 {
2986 int cpu;
2987
2988 rcu_bootup_announce();
2989 rcu_init_geometry();
2990 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2991 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2992 __rcu_init_preempt();
2993 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2994
2995 /*
2996 * We don't need protection against CPU-hotplug here because
2997 * this is called early in boot, before either interrupts
2998 * or the scheduler are operational.
2999 */
3000 cpu_notifier(rcu_cpu_notify, 0);
3001 for_each_online_cpu(cpu)
3002 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3003 check_cpu_stall_init();
3004 }
3005
3006 #include "rcutree_plugin.h"
This page took 0.12623 seconds and 6 git commands to generate.