rcu: Limit lazy-callback duration
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53
54 #include "rcutree.h"
55 #include <trace/events/rcu.h>
56
57 #include "rcu.h"
58
59 /* Data structures. */
60
61 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .fqs_state = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
80 }
81
82 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89
90 /*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
99 int rcu_scheduler_active __read_mostly;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
102 /*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114 static int rcu_scheduler_fully_active __read_mostly;
115
116 #ifdef CONFIG_RCU_BOOST
117
118 /*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work);
127
128 #endif /* #ifdef CONFIG_RCU_BOOST */
129
130 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133
134 /*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143 unsigned long rcutorture_testseq;
144 unsigned long rcutorture_vernum;
145
146 /*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151 static int rcu_gp_in_progress(struct rcu_state *rsp)
152 {
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154 }
155
156 /*
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
161 */
162 void rcu_sched_qs(int cpu)
163 {
164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165
166 rdp->passed_quiesce_gpnum = rdp->gpnum;
167 barrier();
168 if (rdp->passed_quiesce == 0)
169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 rdp->passed_quiesce = 1;
171 }
172
173 void rcu_bh_qs(int cpu)
174 {
175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 /*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
188 */
189 void rcu_note_context_switch(int cpu)
190 {
191 trace_rcu_utilization("Start context switch");
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
194 trace_rcu_utilization("End context switch");
195 }
196 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197
198 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199 .dynticks_nesting = DYNTICK_TASK_NESTING,
200 .dynticks = ATOMIC_INIT(1),
201 };
202
203 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
204 static int qhimark = 10000; /* If this many pending, ignore blimit. */
205 static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
207 module_param(blimit, int, 0);
208 module_param(qhimark, int, 0);
209 module_param(qlowmark, int, 0);
210
211 int rcu_cpu_stall_suppress __read_mostly;
212 module_param(rcu_cpu_stall_suppress, int, 0644);
213
214 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
215 static int rcu_pending(int cpu);
216
217 /*
218 * Return the number of RCU-sched batches processed thus far for debug & stats.
219 */
220 long rcu_batches_completed_sched(void)
221 {
222 return rcu_sched_state.completed;
223 }
224 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
225
226 /*
227 * Return the number of RCU BH batches processed thus far for debug & stats.
228 */
229 long rcu_batches_completed_bh(void)
230 {
231 return rcu_bh_state.completed;
232 }
233 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
234
235 /*
236 * Force a quiescent state for RCU BH.
237 */
238 void rcu_bh_force_quiescent_state(void)
239 {
240 force_quiescent_state(&rcu_bh_state, 0);
241 }
242 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
243
244 /*
245 * Record the number of times rcutorture tests have been initiated and
246 * terminated. This information allows the debugfs tracing stats to be
247 * correlated to the rcutorture messages, even when the rcutorture module
248 * is being repeatedly loaded and unloaded. In other words, we cannot
249 * store this state in rcutorture itself.
250 */
251 void rcutorture_record_test_transition(void)
252 {
253 rcutorture_testseq++;
254 rcutorture_vernum = 0;
255 }
256 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
257
258 /*
259 * Record the number of writer passes through the current rcutorture test.
260 * This is also used to correlate debugfs tracing stats with the rcutorture
261 * messages.
262 */
263 void rcutorture_record_progress(unsigned long vernum)
264 {
265 rcutorture_vernum++;
266 }
267 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
268
269 /*
270 * Force a quiescent state for RCU-sched.
271 */
272 void rcu_sched_force_quiescent_state(void)
273 {
274 force_quiescent_state(&rcu_sched_state, 0);
275 }
276 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
277
278 /*
279 * Does the CPU have callbacks ready to be invoked?
280 */
281 static int
282 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
283 {
284 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
285 }
286
287 /*
288 * Does the current CPU require a yet-as-unscheduled grace period?
289 */
290 static int
291 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
292 {
293 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
294 }
295
296 /*
297 * Return the root node of the specified rcu_state structure.
298 */
299 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
300 {
301 return &rsp->node[0];
302 }
303
304 #ifdef CONFIG_SMP
305
306 /*
307 * If the specified CPU is offline, tell the caller that it is in
308 * a quiescent state. Otherwise, whack it with a reschedule IPI.
309 * Grace periods can end up waiting on an offline CPU when that
310 * CPU is in the process of coming online -- it will be added to the
311 * rcu_node bitmasks before it actually makes it online. The same thing
312 * can happen while a CPU is in the process of coming online. Because this
313 * race is quite rare, we check for it after detecting that the grace
314 * period has been delayed rather than checking each and every CPU
315 * each and every time we start a new grace period.
316 */
317 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
318 {
319 /*
320 * If the CPU is offline, it is in a quiescent state. We can
321 * trust its state not to change because interrupts are disabled.
322 */
323 if (cpu_is_offline(rdp->cpu)) {
324 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
325 rdp->offline_fqs++;
326 return 1;
327 }
328
329 /*
330 * The CPU is online, so send it a reschedule IPI. This forces
331 * it through the scheduler, and (inefficiently) also handles cases
332 * where idle loops fail to inform RCU about the CPU being idle.
333 */
334 if (rdp->cpu != smp_processor_id())
335 smp_send_reschedule(rdp->cpu);
336 else
337 set_need_resched();
338 rdp->resched_ipi++;
339 return 0;
340 }
341
342 #endif /* #ifdef CONFIG_SMP */
343
344 /*
345 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
346 *
347 * If the new value of the ->dynticks_nesting counter now is zero,
348 * we really have entered idle, and must do the appropriate accounting.
349 * The caller must have disabled interrupts.
350 */
351 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
352 {
353 trace_rcu_dyntick("Start", oldval, 0);
354 if (!is_idle_task(current)) {
355 struct task_struct *idle = idle_task(smp_processor_id());
356
357 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
358 ftrace_dump(DUMP_ALL);
359 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
360 current->pid, current->comm,
361 idle->pid, idle->comm); /* must be idle task! */
362 }
363 rcu_prepare_for_idle(smp_processor_id());
364 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
365 smp_mb__before_atomic_inc(); /* See above. */
366 atomic_inc(&rdtp->dynticks);
367 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
368 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
369 }
370
371 /**
372 * rcu_idle_enter - inform RCU that current CPU is entering idle
373 *
374 * Enter idle mode, in other words, -leave- the mode in which RCU
375 * read-side critical sections can occur. (Though RCU read-side
376 * critical sections can occur in irq handlers in idle, a possibility
377 * handled by irq_enter() and irq_exit().)
378 *
379 * We crowbar the ->dynticks_nesting field to zero to allow for
380 * the possibility of usermode upcalls having messed up our count
381 * of interrupt nesting level during the prior busy period.
382 */
383 void rcu_idle_enter(void)
384 {
385 unsigned long flags;
386 long long oldval;
387 struct rcu_dynticks *rdtp;
388
389 local_irq_save(flags);
390 rdtp = &__get_cpu_var(rcu_dynticks);
391 oldval = rdtp->dynticks_nesting;
392 rdtp->dynticks_nesting = 0;
393 rcu_idle_enter_common(rdtp, oldval);
394 local_irq_restore(flags);
395 }
396
397 /**
398 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
399 *
400 * Exit from an interrupt handler, which might possibly result in entering
401 * idle mode, in other words, leaving the mode in which read-side critical
402 * sections can occur.
403 *
404 * This code assumes that the idle loop never does anything that might
405 * result in unbalanced calls to irq_enter() and irq_exit(). If your
406 * architecture violates this assumption, RCU will give you what you
407 * deserve, good and hard. But very infrequently and irreproducibly.
408 *
409 * Use things like work queues to work around this limitation.
410 *
411 * You have been warned.
412 */
413 void rcu_irq_exit(void)
414 {
415 unsigned long flags;
416 long long oldval;
417 struct rcu_dynticks *rdtp;
418
419 local_irq_save(flags);
420 rdtp = &__get_cpu_var(rcu_dynticks);
421 oldval = rdtp->dynticks_nesting;
422 rdtp->dynticks_nesting--;
423 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
424 if (rdtp->dynticks_nesting)
425 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
426 else
427 rcu_idle_enter_common(rdtp, oldval);
428 local_irq_restore(flags);
429 }
430
431 /*
432 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
433 *
434 * If the new value of the ->dynticks_nesting counter was previously zero,
435 * we really have exited idle, and must do the appropriate accounting.
436 * The caller must have disabled interrupts.
437 */
438 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
439 {
440 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
441 atomic_inc(&rdtp->dynticks);
442 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
443 smp_mb__after_atomic_inc(); /* See above. */
444 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
445 rcu_cleanup_after_idle(smp_processor_id());
446 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
447 if (!is_idle_task(current)) {
448 struct task_struct *idle = idle_task(smp_processor_id());
449
450 trace_rcu_dyntick("Error on exit: not idle task",
451 oldval, rdtp->dynticks_nesting);
452 ftrace_dump(DUMP_ALL);
453 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
454 current->pid, current->comm,
455 idle->pid, idle->comm); /* must be idle task! */
456 }
457 }
458
459 /**
460 * rcu_idle_exit - inform RCU that current CPU is leaving idle
461 *
462 * Exit idle mode, in other words, -enter- the mode in which RCU
463 * read-side critical sections can occur.
464 *
465 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
466 * allow for the possibility of usermode upcalls messing up our count
467 * of interrupt nesting level during the busy period that is just
468 * now starting.
469 */
470 void rcu_idle_exit(void)
471 {
472 unsigned long flags;
473 struct rcu_dynticks *rdtp;
474 long long oldval;
475
476 local_irq_save(flags);
477 rdtp = &__get_cpu_var(rcu_dynticks);
478 oldval = rdtp->dynticks_nesting;
479 WARN_ON_ONCE(oldval != 0);
480 rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
481 rcu_idle_exit_common(rdtp, oldval);
482 local_irq_restore(flags);
483 }
484
485 /**
486 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
487 *
488 * Enter an interrupt handler, which might possibly result in exiting
489 * idle mode, in other words, entering the mode in which read-side critical
490 * sections can occur.
491 *
492 * Note that the Linux kernel is fully capable of entering an interrupt
493 * handler that it never exits, for example when doing upcalls to
494 * user mode! This code assumes that the idle loop never does upcalls to
495 * user mode. If your architecture does do upcalls from the idle loop (or
496 * does anything else that results in unbalanced calls to the irq_enter()
497 * and irq_exit() functions), RCU will give you what you deserve, good
498 * and hard. But very infrequently and irreproducibly.
499 *
500 * Use things like work queues to work around this limitation.
501 *
502 * You have been warned.
503 */
504 void rcu_irq_enter(void)
505 {
506 unsigned long flags;
507 struct rcu_dynticks *rdtp;
508 long long oldval;
509
510 local_irq_save(flags);
511 rdtp = &__get_cpu_var(rcu_dynticks);
512 oldval = rdtp->dynticks_nesting;
513 rdtp->dynticks_nesting++;
514 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
515 if (oldval)
516 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
517 else
518 rcu_idle_exit_common(rdtp, oldval);
519 local_irq_restore(flags);
520 }
521
522 /**
523 * rcu_nmi_enter - inform RCU of entry to NMI context
524 *
525 * If the CPU was idle with dynamic ticks active, and there is no
526 * irq handler running, this updates rdtp->dynticks_nmi to let the
527 * RCU grace-period handling know that the CPU is active.
528 */
529 void rcu_nmi_enter(void)
530 {
531 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
532
533 if (rdtp->dynticks_nmi_nesting == 0 &&
534 (atomic_read(&rdtp->dynticks) & 0x1))
535 return;
536 rdtp->dynticks_nmi_nesting++;
537 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
538 atomic_inc(&rdtp->dynticks);
539 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
540 smp_mb__after_atomic_inc(); /* See above. */
541 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
542 }
543
544 /**
545 * rcu_nmi_exit - inform RCU of exit from NMI context
546 *
547 * If the CPU was idle with dynamic ticks active, and there is no
548 * irq handler running, this updates rdtp->dynticks_nmi to let the
549 * RCU grace-period handling know that the CPU is no longer active.
550 */
551 void rcu_nmi_exit(void)
552 {
553 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
554
555 if (rdtp->dynticks_nmi_nesting == 0 ||
556 --rdtp->dynticks_nmi_nesting != 0)
557 return;
558 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
559 smp_mb__before_atomic_inc(); /* See above. */
560 atomic_inc(&rdtp->dynticks);
561 smp_mb__after_atomic_inc(); /* Force delay to next write. */
562 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
563 }
564
565 #ifdef CONFIG_PROVE_RCU
566
567 /**
568 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
569 *
570 * If the current CPU is in its idle loop and is neither in an interrupt
571 * or NMI handler, return true.
572 */
573 int rcu_is_cpu_idle(void)
574 {
575 int ret;
576
577 preempt_disable();
578 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
579 preempt_enable();
580 return ret;
581 }
582 EXPORT_SYMBOL(rcu_is_cpu_idle);
583
584 #endif /* #ifdef CONFIG_PROVE_RCU */
585
586 /**
587 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
588 *
589 * If the current CPU is idle or running at a first-level (not nested)
590 * interrupt from idle, return true. The caller must have at least
591 * disabled preemption.
592 */
593 int rcu_is_cpu_rrupt_from_idle(void)
594 {
595 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
596 }
597
598 #ifdef CONFIG_SMP
599
600 /*
601 * Snapshot the specified CPU's dynticks counter so that we can later
602 * credit them with an implicit quiescent state. Return 1 if this CPU
603 * is in dynticks idle mode, which is an extended quiescent state.
604 */
605 static int dyntick_save_progress_counter(struct rcu_data *rdp)
606 {
607 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
608 return (rdp->dynticks_snap & 0x1) == 0;
609 }
610
611 /*
612 * Return true if the specified CPU has passed through a quiescent
613 * state by virtue of being in or having passed through an dynticks
614 * idle state since the last call to dyntick_save_progress_counter()
615 * for this same CPU.
616 */
617 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
618 {
619 unsigned int curr;
620 unsigned int snap;
621
622 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
623 snap = (unsigned int)rdp->dynticks_snap;
624
625 /*
626 * If the CPU passed through or entered a dynticks idle phase with
627 * no active irq/NMI handlers, then we can safely pretend that the CPU
628 * already acknowledged the request to pass through a quiescent
629 * state. Either way, that CPU cannot possibly be in an RCU
630 * read-side critical section that started before the beginning
631 * of the current RCU grace period.
632 */
633 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
634 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
635 rdp->dynticks_fqs++;
636 return 1;
637 }
638
639 /* Go check for the CPU being offline. */
640 return rcu_implicit_offline_qs(rdp);
641 }
642
643 #endif /* #ifdef CONFIG_SMP */
644
645 static void record_gp_stall_check_time(struct rcu_state *rsp)
646 {
647 rsp->gp_start = jiffies;
648 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
649 }
650
651 static void print_other_cpu_stall(struct rcu_state *rsp)
652 {
653 int cpu;
654 long delta;
655 unsigned long flags;
656 int ndetected;
657 struct rcu_node *rnp = rcu_get_root(rsp);
658
659 /* Only let one CPU complain about others per time interval. */
660
661 raw_spin_lock_irqsave(&rnp->lock, flags);
662 delta = jiffies - rsp->jiffies_stall;
663 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
664 raw_spin_unlock_irqrestore(&rnp->lock, flags);
665 return;
666 }
667 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
668
669 /*
670 * Now rat on any tasks that got kicked up to the root rcu_node
671 * due to CPU offlining.
672 */
673 ndetected = rcu_print_task_stall(rnp);
674 raw_spin_unlock_irqrestore(&rnp->lock, flags);
675
676 /*
677 * OK, time to rat on our buddy...
678 * See Documentation/RCU/stallwarn.txt for info on how to debug
679 * RCU CPU stall warnings.
680 */
681 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
682 rsp->name);
683 rcu_for_each_leaf_node(rsp, rnp) {
684 raw_spin_lock_irqsave(&rnp->lock, flags);
685 ndetected += rcu_print_task_stall(rnp);
686 raw_spin_unlock_irqrestore(&rnp->lock, flags);
687 if (rnp->qsmask == 0)
688 continue;
689 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
690 if (rnp->qsmask & (1UL << cpu)) {
691 printk(" %d", rnp->grplo + cpu);
692 ndetected++;
693 }
694 }
695 printk("} (detected by %d, t=%ld jiffies)\n",
696 smp_processor_id(), (long)(jiffies - rsp->gp_start));
697 if (ndetected == 0)
698 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
699 else if (!trigger_all_cpu_backtrace())
700 dump_stack();
701
702 /* If so configured, complain about tasks blocking the grace period. */
703
704 rcu_print_detail_task_stall(rsp);
705
706 force_quiescent_state(rsp, 0); /* Kick them all. */
707 }
708
709 static void print_cpu_stall(struct rcu_state *rsp)
710 {
711 unsigned long flags;
712 struct rcu_node *rnp = rcu_get_root(rsp);
713
714 /*
715 * OK, time to rat on ourselves...
716 * See Documentation/RCU/stallwarn.txt for info on how to debug
717 * RCU CPU stall warnings.
718 */
719 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
720 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
721 if (!trigger_all_cpu_backtrace())
722 dump_stack();
723
724 raw_spin_lock_irqsave(&rnp->lock, flags);
725 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
726 rsp->jiffies_stall =
727 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
728 raw_spin_unlock_irqrestore(&rnp->lock, flags);
729
730 set_need_resched(); /* kick ourselves to get things going. */
731 }
732
733 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
734 {
735 unsigned long j;
736 unsigned long js;
737 struct rcu_node *rnp;
738
739 if (rcu_cpu_stall_suppress)
740 return;
741 j = ACCESS_ONCE(jiffies);
742 js = ACCESS_ONCE(rsp->jiffies_stall);
743 rnp = rdp->mynode;
744 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
745
746 /* We haven't checked in, so go dump stack. */
747 print_cpu_stall(rsp);
748
749 } else if (rcu_gp_in_progress(rsp) &&
750 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
751
752 /* They had a few time units to dump stack, so complain. */
753 print_other_cpu_stall(rsp);
754 }
755 }
756
757 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
758 {
759 rcu_cpu_stall_suppress = 1;
760 return NOTIFY_DONE;
761 }
762
763 /**
764 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
765 *
766 * Set the stall-warning timeout way off into the future, thus preventing
767 * any RCU CPU stall-warning messages from appearing in the current set of
768 * RCU grace periods.
769 *
770 * The caller must disable hard irqs.
771 */
772 void rcu_cpu_stall_reset(void)
773 {
774 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
775 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
776 rcu_preempt_stall_reset();
777 }
778
779 static struct notifier_block rcu_panic_block = {
780 .notifier_call = rcu_panic,
781 };
782
783 static void __init check_cpu_stall_init(void)
784 {
785 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
786 }
787
788 /*
789 * Update CPU-local rcu_data state to record the newly noticed grace period.
790 * This is used both when we started the grace period and when we notice
791 * that someone else started the grace period. The caller must hold the
792 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
793 * and must have irqs disabled.
794 */
795 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
796 {
797 if (rdp->gpnum != rnp->gpnum) {
798 /*
799 * If the current grace period is waiting for this CPU,
800 * set up to detect a quiescent state, otherwise don't
801 * go looking for one.
802 */
803 rdp->gpnum = rnp->gpnum;
804 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
805 if (rnp->qsmask & rdp->grpmask) {
806 rdp->qs_pending = 1;
807 rdp->passed_quiesce = 0;
808 } else
809 rdp->qs_pending = 0;
810 }
811 }
812
813 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
814 {
815 unsigned long flags;
816 struct rcu_node *rnp;
817
818 local_irq_save(flags);
819 rnp = rdp->mynode;
820 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
821 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
822 local_irq_restore(flags);
823 return;
824 }
825 __note_new_gpnum(rsp, rnp, rdp);
826 raw_spin_unlock_irqrestore(&rnp->lock, flags);
827 }
828
829 /*
830 * Did someone else start a new RCU grace period start since we last
831 * checked? Update local state appropriately if so. Must be called
832 * on the CPU corresponding to rdp.
833 */
834 static int
835 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
836 {
837 unsigned long flags;
838 int ret = 0;
839
840 local_irq_save(flags);
841 if (rdp->gpnum != rsp->gpnum) {
842 note_new_gpnum(rsp, rdp);
843 ret = 1;
844 }
845 local_irq_restore(flags);
846 return ret;
847 }
848
849 /*
850 * Advance this CPU's callbacks, but only if the current grace period
851 * has ended. This may be called only from the CPU to whom the rdp
852 * belongs. In addition, the corresponding leaf rcu_node structure's
853 * ->lock must be held by the caller, with irqs disabled.
854 */
855 static void
856 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
857 {
858 /* Did another grace period end? */
859 if (rdp->completed != rnp->completed) {
860
861 /* Advance callbacks. No harm if list empty. */
862 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
863 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
864 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
865
866 /* Remember that we saw this grace-period completion. */
867 rdp->completed = rnp->completed;
868 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
869
870 /*
871 * If we were in an extended quiescent state, we may have
872 * missed some grace periods that others CPUs handled on
873 * our behalf. Catch up with this state to avoid noting
874 * spurious new grace periods. If another grace period
875 * has started, then rnp->gpnum will have advanced, so
876 * we will detect this later on.
877 */
878 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
879 rdp->gpnum = rdp->completed;
880
881 /*
882 * If RCU does not need a quiescent state from this CPU,
883 * then make sure that this CPU doesn't go looking for one.
884 */
885 if ((rnp->qsmask & rdp->grpmask) == 0)
886 rdp->qs_pending = 0;
887 }
888 }
889
890 /*
891 * Advance this CPU's callbacks, but only if the current grace period
892 * has ended. This may be called only from the CPU to whom the rdp
893 * belongs.
894 */
895 static void
896 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
897 {
898 unsigned long flags;
899 struct rcu_node *rnp;
900
901 local_irq_save(flags);
902 rnp = rdp->mynode;
903 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
904 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
905 local_irq_restore(flags);
906 return;
907 }
908 __rcu_process_gp_end(rsp, rnp, rdp);
909 raw_spin_unlock_irqrestore(&rnp->lock, flags);
910 }
911
912 /*
913 * Do per-CPU grace-period initialization for running CPU. The caller
914 * must hold the lock of the leaf rcu_node structure corresponding to
915 * this CPU.
916 */
917 static void
918 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
919 {
920 /* Prior grace period ended, so advance callbacks for current CPU. */
921 __rcu_process_gp_end(rsp, rnp, rdp);
922
923 /*
924 * Because this CPU just now started the new grace period, we know
925 * that all of its callbacks will be covered by this upcoming grace
926 * period, even the ones that were registered arbitrarily recently.
927 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
928 *
929 * Other CPUs cannot be sure exactly when the grace period started.
930 * Therefore, their recently registered callbacks must pass through
931 * an additional RCU_NEXT_READY stage, so that they will be handled
932 * by the next RCU grace period.
933 */
934 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
935 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
936
937 /* Set state so that this CPU will detect the next quiescent state. */
938 __note_new_gpnum(rsp, rnp, rdp);
939 }
940
941 /*
942 * Start a new RCU grace period if warranted, re-initializing the hierarchy
943 * in preparation for detecting the next grace period. The caller must hold
944 * the root node's ->lock, which is released before return. Hard irqs must
945 * be disabled.
946 *
947 * Note that it is legal for a dying CPU (which is marked as offline) to
948 * invoke this function. This can happen when the dying CPU reports its
949 * quiescent state.
950 */
951 static void
952 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
953 __releases(rcu_get_root(rsp)->lock)
954 {
955 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
956 struct rcu_node *rnp = rcu_get_root(rsp);
957
958 if (!rcu_scheduler_fully_active ||
959 !cpu_needs_another_gp(rsp, rdp)) {
960 /*
961 * Either the scheduler hasn't yet spawned the first
962 * non-idle task or this CPU does not need another
963 * grace period. Either way, don't start a new grace
964 * period.
965 */
966 raw_spin_unlock_irqrestore(&rnp->lock, flags);
967 return;
968 }
969
970 if (rsp->fqs_active) {
971 /*
972 * This CPU needs a grace period, but force_quiescent_state()
973 * is running. Tell it to start one on this CPU's behalf.
974 */
975 rsp->fqs_need_gp = 1;
976 raw_spin_unlock_irqrestore(&rnp->lock, flags);
977 return;
978 }
979
980 /* Advance to a new grace period and initialize state. */
981 rsp->gpnum++;
982 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
983 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
984 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
985 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
986 record_gp_stall_check_time(rsp);
987
988 /* Special-case the common single-level case. */
989 if (NUM_RCU_NODES == 1) {
990 rcu_preempt_check_blocked_tasks(rnp);
991 rnp->qsmask = rnp->qsmaskinit;
992 rnp->gpnum = rsp->gpnum;
993 rnp->completed = rsp->completed;
994 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
995 rcu_start_gp_per_cpu(rsp, rnp, rdp);
996 rcu_preempt_boost_start_gp(rnp);
997 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
998 rnp->level, rnp->grplo,
999 rnp->grphi, rnp->qsmask);
1000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1001 return;
1002 }
1003
1004 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1005
1006
1007 /* Exclude any concurrent CPU-hotplug operations. */
1008 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1009
1010 /*
1011 * Set the quiescent-state-needed bits in all the rcu_node
1012 * structures for all currently online CPUs in breadth-first
1013 * order, starting from the root rcu_node structure. This
1014 * operation relies on the layout of the hierarchy within the
1015 * rsp->node[] array. Note that other CPUs will access only
1016 * the leaves of the hierarchy, which still indicate that no
1017 * grace period is in progress, at least until the corresponding
1018 * leaf node has been initialized. In addition, we have excluded
1019 * CPU-hotplug operations.
1020 *
1021 * Note that the grace period cannot complete until we finish
1022 * the initialization process, as there will be at least one
1023 * qsmask bit set in the root node until that time, namely the
1024 * one corresponding to this CPU, due to the fact that we have
1025 * irqs disabled.
1026 */
1027 rcu_for_each_node_breadth_first(rsp, rnp) {
1028 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1029 rcu_preempt_check_blocked_tasks(rnp);
1030 rnp->qsmask = rnp->qsmaskinit;
1031 rnp->gpnum = rsp->gpnum;
1032 rnp->completed = rsp->completed;
1033 if (rnp == rdp->mynode)
1034 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1035 rcu_preempt_boost_start_gp(rnp);
1036 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1037 rnp->level, rnp->grplo,
1038 rnp->grphi, rnp->qsmask);
1039 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1040 }
1041
1042 rnp = rcu_get_root(rsp);
1043 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1044 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1045 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1046 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1047 }
1048
1049 /*
1050 * Report a full set of quiescent states to the specified rcu_state
1051 * data structure. This involves cleaning up after the prior grace
1052 * period and letting rcu_start_gp() start up the next grace period
1053 * if one is needed. Note that the caller must hold rnp->lock, as
1054 * required by rcu_start_gp(), which will release it.
1055 */
1056 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1057 __releases(rcu_get_root(rsp)->lock)
1058 {
1059 unsigned long gp_duration;
1060 struct rcu_node *rnp = rcu_get_root(rsp);
1061 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1062
1063 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1064
1065 /*
1066 * Ensure that all grace-period and pre-grace-period activity
1067 * is seen before the assignment to rsp->completed.
1068 */
1069 smp_mb(); /* See above block comment. */
1070 gp_duration = jiffies - rsp->gp_start;
1071 if (gp_duration > rsp->gp_max)
1072 rsp->gp_max = gp_duration;
1073
1074 /*
1075 * We know the grace period is complete, but to everyone else
1076 * it appears to still be ongoing. But it is also the case
1077 * that to everyone else it looks like there is nothing that
1078 * they can do to advance the grace period. It is therefore
1079 * safe for us to drop the lock in order to mark the grace
1080 * period as completed in all of the rcu_node structures.
1081 *
1082 * But if this CPU needs another grace period, it will take
1083 * care of this while initializing the next grace period.
1084 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1085 * because the callbacks have not yet been advanced: Those
1086 * callbacks are waiting on the grace period that just now
1087 * completed.
1088 */
1089 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1090 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1091
1092 /*
1093 * Propagate new ->completed value to rcu_node structures
1094 * so that other CPUs don't have to wait until the start
1095 * of the next grace period to process their callbacks.
1096 */
1097 rcu_for_each_node_breadth_first(rsp, rnp) {
1098 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1099 rnp->completed = rsp->gpnum;
1100 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1101 }
1102 rnp = rcu_get_root(rsp);
1103 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1104 }
1105
1106 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1107 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1108 rsp->fqs_state = RCU_GP_IDLE;
1109 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1110 }
1111
1112 /*
1113 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1114 * Allows quiescent states for a group of CPUs to be reported at one go
1115 * to the specified rcu_node structure, though all the CPUs in the group
1116 * must be represented by the same rcu_node structure (which need not be
1117 * a leaf rcu_node structure, though it often will be). That structure's
1118 * lock must be held upon entry, and it is released before return.
1119 */
1120 static void
1121 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1122 struct rcu_node *rnp, unsigned long flags)
1123 __releases(rnp->lock)
1124 {
1125 struct rcu_node *rnp_c;
1126
1127 /* Walk up the rcu_node hierarchy. */
1128 for (;;) {
1129 if (!(rnp->qsmask & mask)) {
1130
1131 /* Our bit has already been cleared, so done. */
1132 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1133 return;
1134 }
1135 rnp->qsmask &= ~mask;
1136 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1137 mask, rnp->qsmask, rnp->level,
1138 rnp->grplo, rnp->grphi,
1139 !!rnp->gp_tasks);
1140 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1141
1142 /* Other bits still set at this level, so done. */
1143 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1144 return;
1145 }
1146 mask = rnp->grpmask;
1147 if (rnp->parent == NULL) {
1148
1149 /* No more levels. Exit loop holding root lock. */
1150
1151 break;
1152 }
1153 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1154 rnp_c = rnp;
1155 rnp = rnp->parent;
1156 raw_spin_lock_irqsave(&rnp->lock, flags);
1157 WARN_ON_ONCE(rnp_c->qsmask);
1158 }
1159
1160 /*
1161 * Get here if we are the last CPU to pass through a quiescent
1162 * state for this grace period. Invoke rcu_report_qs_rsp()
1163 * to clean up and start the next grace period if one is needed.
1164 */
1165 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1166 }
1167
1168 /*
1169 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1170 * structure. This must be either called from the specified CPU, or
1171 * called when the specified CPU is known to be offline (and when it is
1172 * also known that no other CPU is concurrently trying to help the offline
1173 * CPU). The lastcomp argument is used to make sure we are still in the
1174 * grace period of interest. We don't want to end the current grace period
1175 * based on quiescent states detected in an earlier grace period!
1176 */
1177 static void
1178 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1179 {
1180 unsigned long flags;
1181 unsigned long mask;
1182 struct rcu_node *rnp;
1183
1184 rnp = rdp->mynode;
1185 raw_spin_lock_irqsave(&rnp->lock, flags);
1186 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1187
1188 /*
1189 * The grace period in which this quiescent state was
1190 * recorded has ended, so don't report it upwards.
1191 * We will instead need a new quiescent state that lies
1192 * within the current grace period.
1193 */
1194 rdp->passed_quiesce = 0; /* need qs for new gp. */
1195 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1196 return;
1197 }
1198 mask = rdp->grpmask;
1199 if ((rnp->qsmask & mask) == 0) {
1200 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1201 } else {
1202 rdp->qs_pending = 0;
1203
1204 /*
1205 * This GP can't end until cpu checks in, so all of our
1206 * callbacks can be processed during the next GP.
1207 */
1208 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1209
1210 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1211 }
1212 }
1213
1214 /*
1215 * Check to see if there is a new grace period of which this CPU
1216 * is not yet aware, and if so, set up local rcu_data state for it.
1217 * Otherwise, see if this CPU has just passed through its first
1218 * quiescent state for this grace period, and record that fact if so.
1219 */
1220 static void
1221 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1222 {
1223 /* If there is now a new grace period, record and return. */
1224 if (check_for_new_grace_period(rsp, rdp))
1225 return;
1226
1227 /*
1228 * Does this CPU still need to do its part for current grace period?
1229 * If no, return and let the other CPUs do their part as well.
1230 */
1231 if (!rdp->qs_pending)
1232 return;
1233
1234 /*
1235 * Was there a quiescent state since the beginning of the grace
1236 * period? If no, then exit and wait for the next call.
1237 */
1238 if (!rdp->passed_quiesce)
1239 return;
1240
1241 /*
1242 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1243 * judge of that).
1244 */
1245 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1246 }
1247
1248 #ifdef CONFIG_HOTPLUG_CPU
1249
1250 /*
1251 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1252 * Also record a quiescent state for this CPU for the current grace period.
1253 * Synchronization and interrupt disabling are not required because
1254 * this function executes in stop_machine() context. Therefore, cleanup
1255 * operations that might block must be done later from the CPU_DEAD
1256 * notifier.
1257 *
1258 * Note that the outgoing CPU's bit has already been cleared in the
1259 * cpu_online_mask. This allows us to randomly pick a callback
1260 * destination from the bits set in that mask.
1261 */
1262 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1263 {
1264 unsigned long flags;
1265 int i;
1266 unsigned long mask;
1267 int need_report;
1268 int receive_cpu = cpumask_any(cpu_online_mask);
1269 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1270 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1271 struct rcu_node *rnp = rdp->mynode; /* For dying CPU. */
1272
1273 /* Move callbacks to some other CPU. */
1274 if (rdp->nxtlist != NULL) {
1275 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1276 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1277 rdp->nxttail[RCU_NEXT_TAIL];
1278 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1279 receive_rdp->qlen += rdp->qlen;
1280 receive_rdp->n_cbs_adopted += rdp->qlen;
1281 rdp->n_cbs_orphaned += rdp->qlen;
1282
1283 rdp->nxtlist = NULL;
1284 for (i = 0; i < RCU_NEXT_SIZE; i++)
1285 rdp->nxttail[i] = &rdp->nxtlist;
1286 rdp->qlen_lazy = 0;
1287 rdp->qlen = 0;
1288 }
1289
1290 /* Record a quiescent state for the dying CPU. */
1291 mask = rdp->grpmask; /* rnp->grplo is constant. */
1292 trace_rcu_grace_period(rsp->name,
1293 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1294 "cpuofl");
1295 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1296 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1297
1298 /*
1299 * Remove the dying CPU from the bitmasks in the rcu_node
1300 * hierarchy. Because we are in stop_machine() context, we
1301 * automatically exclude ->onofflock critical sections.
1302 */
1303 do {
1304 raw_spin_lock_irqsave(&rnp->lock, flags);
1305 rnp->qsmaskinit &= ~mask;
1306 if (rnp->qsmaskinit != 0) {
1307 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1308 break;
1309 }
1310 if (rnp == rdp->mynode) {
1311 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1312 if (need_report & RCU_OFL_TASKS_NORM_GP)
1313 rcu_report_unblock_qs_rnp(rnp, flags);
1314 else
1315 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1316 if (need_report & RCU_OFL_TASKS_EXP_GP)
1317 rcu_report_exp_rnp(rsp, rnp, true);
1318 } else
1319 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1320 mask = rnp->grpmask;
1321 rnp = rnp->parent;
1322 } while (rnp != NULL);
1323 }
1324
1325 /*
1326 * The CPU has been completely removed, and some other CPU is reporting
1327 * this fact from process context. Do the remainder of the cleanup.
1328 * There can only be one CPU hotplug operation at a time, so no other
1329 * CPU can be attempting to update rcu_cpu_kthread_task.
1330 */
1331 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1332 {
1333 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1334 struct rcu_node *rnp = rdp->mynode;
1335
1336 rcu_stop_cpu_kthread(cpu);
1337 rcu_node_kthread_setaffinity(rnp, -1);
1338 }
1339
1340 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1341
1342 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1343 {
1344 }
1345
1346 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1347 {
1348 }
1349
1350 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1351
1352 /*
1353 * Invoke any RCU callbacks that have made it to the end of their grace
1354 * period. Thottle as specified by rdp->blimit.
1355 */
1356 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1357 {
1358 unsigned long flags;
1359 struct rcu_head *next, *list, **tail;
1360 int bl, count, count_lazy;
1361
1362 /* If no callbacks are ready, just return.*/
1363 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1364 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1365 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1366 need_resched(), is_idle_task(current),
1367 rcu_is_callbacks_kthread());
1368 return;
1369 }
1370
1371 /*
1372 * Extract the list of ready callbacks, disabling to prevent
1373 * races with call_rcu() from interrupt handlers.
1374 */
1375 local_irq_save(flags);
1376 bl = rdp->blimit;
1377 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1378 list = rdp->nxtlist;
1379 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1380 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1381 tail = rdp->nxttail[RCU_DONE_TAIL];
1382 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1383 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1384 rdp->nxttail[count] = &rdp->nxtlist;
1385 local_irq_restore(flags);
1386
1387 /* Invoke callbacks. */
1388 count = count_lazy = 0;
1389 while (list) {
1390 next = list->next;
1391 prefetch(next);
1392 debug_rcu_head_unqueue(list);
1393 if (__rcu_reclaim(rsp->name, list))
1394 count_lazy++;
1395 list = next;
1396 /* Stop only if limit reached and CPU has something to do. */
1397 if (++count >= bl &&
1398 (need_resched() ||
1399 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1400 break;
1401 }
1402
1403 local_irq_save(flags);
1404 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1405 is_idle_task(current),
1406 rcu_is_callbacks_kthread());
1407
1408 /* Update count, and requeue any remaining callbacks. */
1409 rdp->qlen_lazy -= count_lazy;
1410 rdp->qlen -= count;
1411 rdp->n_cbs_invoked += count;
1412 if (list != NULL) {
1413 *tail = rdp->nxtlist;
1414 rdp->nxtlist = list;
1415 for (count = 0; count < RCU_NEXT_SIZE; count++)
1416 if (&rdp->nxtlist == rdp->nxttail[count])
1417 rdp->nxttail[count] = tail;
1418 else
1419 break;
1420 }
1421
1422 /* Reinstate batch limit if we have worked down the excess. */
1423 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1424 rdp->blimit = blimit;
1425
1426 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1427 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1428 rdp->qlen_last_fqs_check = 0;
1429 rdp->n_force_qs_snap = rsp->n_force_qs;
1430 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1431 rdp->qlen_last_fqs_check = rdp->qlen;
1432
1433 local_irq_restore(flags);
1434
1435 /* Re-invoke RCU core processing if there are callbacks remaining. */
1436 if (cpu_has_callbacks_ready_to_invoke(rdp))
1437 invoke_rcu_core();
1438 }
1439
1440 /*
1441 * Check to see if this CPU is in a non-context-switch quiescent state
1442 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1443 * Also schedule RCU core processing.
1444 *
1445 * This function must be called from hardirq context. It is normally
1446 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1447 * false, there is no point in invoking rcu_check_callbacks().
1448 */
1449 void rcu_check_callbacks(int cpu, int user)
1450 {
1451 trace_rcu_utilization("Start scheduler-tick");
1452 if (user || rcu_is_cpu_rrupt_from_idle()) {
1453
1454 /*
1455 * Get here if this CPU took its interrupt from user
1456 * mode or from the idle loop, and if this is not a
1457 * nested interrupt. In this case, the CPU is in
1458 * a quiescent state, so note it.
1459 *
1460 * No memory barrier is required here because both
1461 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1462 * variables that other CPUs neither access nor modify,
1463 * at least not while the corresponding CPU is online.
1464 */
1465
1466 rcu_sched_qs(cpu);
1467 rcu_bh_qs(cpu);
1468
1469 } else if (!in_softirq()) {
1470
1471 /*
1472 * Get here if this CPU did not take its interrupt from
1473 * softirq, in other words, if it is not interrupting
1474 * a rcu_bh read-side critical section. This is an _bh
1475 * critical section, so note it.
1476 */
1477
1478 rcu_bh_qs(cpu);
1479 }
1480 rcu_preempt_check_callbacks(cpu);
1481 if (rcu_pending(cpu))
1482 invoke_rcu_core();
1483 trace_rcu_utilization("End scheduler-tick");
1484 }
1485
1486 #ifdef CONFIG_SMP
1487
1488 /*
1489 * Scan the leaf rcu_node structures, processing dyntick state for any that
1490 * have not yet encountered a quiescent state, using the function specified.
1491 * Also initiate boosting for any threads blocked on the root rcu_node.
1492 *
1493 * The caller must have suppressed start of new grace periods.
1494 */
1495 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1496 {
1497 unsigned long bit;
1498 int cpu;
1499 unsigned long flags;
1500 unsigned long mask;
1501 struct rcu_node *rnp;
1502
1503 rcu_for_each_leaf_node(rsp, rnp) {
1504 mask = 0;
1505 raw_spin_lock_irqsave(&rnp->lock, flags);
1506 if (!rcu_gp_in_progress(rsp)) {
1507 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1508 return;
1509 }
1510 if (rnp->qsmask == 0) {
1511 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1512 continue;
1513 }
1514 cpu = rnp->grplo;
1515 bit = 1;
1516 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1517 if ((rnp->qsmask & bit) != 0 &&
1518 f(per_cpu_ptr(rsp->rda, cpu)))
1519 mask |= bit;
1520 }
1521 if (mask != 0) {
1522
1523 /* rcu_report_qs_rnp() releases rnp->lock. */
1524 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1525 continue;
1526 }
1527 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1528 }
1529 rnp = rcu_get_root(rsp);
1530 if (rnp->qsmask == 0) {
1531 raw_spin_lock_irqsave(&rnp->lock, flags);
1532 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1533 }
1534 }
1535
1536 /*
1537 * Force quiescent states on reluctant CPUs, and also detect which
1538 * CPUs are in dyntick-idle mode.
1539 */
1540 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1541 {
1542 unsigned long flags;
1543 struct rcu_node *rnp = rcu_get_root(rsp);
1544
1545 trace_rcu_utilization("Start fqs");
1546 if (!rcu_gp_in_progress(rsp)) {
1547 trace_rcu_utilization("End fqs");
1548 return; /* No grace period in progress, nothing to force. */
1549 }
1550 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1551 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1552 trace_rcu_utilization("End fqs");
1553 return; /* Someone else is already on the job. */
1554 }
1555 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1556 goto unlock_fqs_ret; /* no emergency and done recently. */
1557 rsp->n_force_qs++;
1558 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1559 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1560 if(!rcu_gp_in_progress(rsp)) {
1561 rsp->n_force_qs_ngp++;
1562 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1563 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1564 }
1565 rsp->fqs_active = 1;
1566 switch (rsp->fqs_state) {
1567 case RCU_GP_IDLE:
1568 case RCU_GP_INIT:
1569
1570 break; /* grace period idle or initializing, ignore. */
1571
1572 case RCU_SAVE_DYNTICK:
1573 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1574 break; /* So gcc recognizes the dead code. */
1575
1576 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1577
1578 /* Record dyntick-idle state. */
1579 force_qs_rnp(rsp, dyntick_save_progress_counter);
1580 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1581 if (rcu_gp_in_progress(rsp))
1582 rsp->fqs_state = RCU_FORCE_QS;
1583 break;
1584
1585 case RCU_FORCE_QS:
1586
1587 /* Check dyntick-idle state, send IPI to laggarts. */
1588 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1589 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1590
1591 /* Leave state in case more forcing is required. */
1592
1593 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1594 break;
1595 }
1596 rsp->fqs_active = 0;
1597 if (rsp->fqs_need_gp) {
1598 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1599 rsp->fqs_need_gp = 0;
1600 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1601 trace_rcu_utilization("End fqs");
1602 return;
1603 }
1604 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1605 unlock_fqs_ret:
1606 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1607 trace_rcu_utilization("End fqs");
1608 }
1609
1610 #else /* #ifdef CONFIG_SMP */
1611
1612 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1613 {
1614 set_need_resched();
1615 }
1616
1617 #endif /* #else #ifdef CONFIG_SMP */
1618
1619 /*
1620 * This does the RCU core processing work for the specified rcu_state
1621 * and rcu_data structures. This may be called only from the CPU to
1622 * whom the rdp belongs.
1623 */
1624 static void
1625 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1626 {
1627 unsigned long flags;
1628
1629 WARN_ON_ONCE(rdp->beenonline == 0);
1630
1631 /*
1632 * If an RCU GP has gone long enough, go check for dyntick
1633 * idle CPUs and, if needed, send resched IPIs.
1634 */
1635 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1636 force_quiescent_state(rsp, 1);
1637
1638 /*
1639 * Advance callbacks in response to end of earlier grace
1640 * period that some other CPU ended.
1641 */
1642 rcu_process_gp_end(rsp, rdp);
1643
1644 /* Update RCU state based on any recent quiescent states. */
1645 rcu_check_quiescent_state(rsp, rdp);
1646
1647 /* Does this CPU require a not-yet-started grace period? */
1648 if (cpu_needs_another_gp(rsp, rdp)) {
1649 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1650 rcu_start_gp(rsp, flags); /* releases above lock */
1651 }
1652
1653 /* If there are callbacks ready, invoke them. */
1654 if (cpu_has_callbacks_ready_to_invoke(rdp))
1655 invoke_rcu_callbacks(rsp, rdp);
1656 }
1657
1658 /*
1659 * Do RCU core processing for the current CPU.
1660 */
1661 static void rcu_process_callbacks(struct softirq_action *unused)
1662 {
1663 trace_rcu_utilization("Start RCU core");
1664 __rcu_process_callbacks(&rcu_sched_state,
1665 &__get_cpu_var(rcu_sched_data));
1666 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1667 rcu_preempt_process_callbacks();
1668 trace_rcu_utilization("End RCU core");
1669 }
1670
1671 /*
1672 * Schedule RCU callback invocation. If the specified type of RCU
1673 * does not support RCU priority boosting, just do a direct call,
1674 * otherwise wake up the per-CPU kernel kthread. Note that because we
1675 * are running on the current CPU with interrupts disabled, the
1676 * rcu_cpu_kthread_task cannot disappear out from under us.
1677 */
1678 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1679 {
1680 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1681 return;
1682 if (likely(!rsp->boost)) {
1683 rcu_do_batch(rsp, rdp);
1684 return;
1685 }
1686 invoke_rcu_callbacks_kthread();
1687 }
1688
1689 static void invoke_rcu_core(void)
1690 {
1691 raise_softirq(RCU_SOFTIRQ);
1692 }
1693
1694 static void
1695 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1696 struct rcu_state *rsp, bool lazy)
1697 {
1698 unsigned long flags;
1699 struct rcu_data *rdp;
1700
1701 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1702 debug_rcu_head_queue(head);
1703 head->func = func;
1704 head->next = NULL;
1705
1706 smp_mb(); /* Ensure RCU update seen before callback registry. */
1707
1708 /*
1709 * Opportunistically note grace-period endings and beginnings.
1710 * Note that we might see a beginning right after we see an
1711 * end, but never vice versa, since this CPU has to pass through
1712 * a quiescent state betweentimes.
1713 */
1714 local_irq_save(flags);
1715 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1716 rdp = this_cpu_ptr(rsp->rda);
1717
1718 /* Add the callback to our list. */
1719 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1720 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1721 rdp->qlen++;
1722 if (lazy)
1723 rdp->qlen_lazy++;
1724
1725 if (__is_kfree_rcu_offset((unsigned long)func))
1726 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1727 rdp->qlen_lazy, rdp->qlen);
1728 else
1729 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1730
1731 /* If interrupts were disabled, don't dive into RCU core. */
1732 if (irqs_disabled_flags(flags)) {
1733 local_irq_restore(flags);
1734 return;
1735 }
1736
1737 /*
1738 * Force the grace period if too many callbacks or too long waiting.
1739 * Enforce hysteresis, and don't invoke force_quiescent_state()
1740 * if some other CPU has recently done so. Also, don't bother
1741 * invoking force_quiescent_state() if the newly enqueued callback
1742 * is the only one waiting for a grace period to complete.
1743 */
1744 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1745
1746 /* Are we ignoring a completed grace period? */
1747 rcu_process_gp_end(rsp, rdp);
1748 check_for_new_grace_period(rsp, rdp);
1749
1750 /* Start a new grace period if one not already started. */
1751 if (!rcu_gp_in_progress(rsp)) {
1752 unsigned long nestflag;
1753 struct rcu_node *rnp_root = rcu_get_root(rsp);
1754
1755 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1756 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1757 } else {
1758 /* Give the grace period a kick. */
1759 rdp->blimit = LONG_MAX;
1760 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1761 *rdp->nxttail[RCU_DONE_TAIL] != head)
1762 force_quiescent_state(rsp, 0);
1763 rdp->n_force_qs_snap = rsp->n_force_qs;
1764 rdp->qlen_last_fqs_check = rdp->qlen;
1765 }
1766 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1767 force_quiescent_state(rsp, 1);
1768 local_irq_restore(flags);
1769 }
1770
1771 /*
1772 * Queue an RCU-sched callback for invocation after a grace period.
1773 */
1774 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1775 {
1776 __call_rcu(head, func, &rcu_sched_state, 0);
1777 }
1778 EXPORT_SYMBOL_GPL(call_rcu_sched);
1779
1780 /*
1781 * Queue an RCU callback for invocation after a quicker grace period.
1782 */
1783 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1784 {
1785 __call_rcu(head, func, &rcu_bh_state, 0);
1786 }
1787 EXPORT_SYMBOL_GPL(call_rcu_bh);
1788
1789 /**
1790 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1791 *
1792 * Control will return to the caller some time after a full rcu-sched
1793 * grace period has elapsed, in other words after all currently executing
1794 * rcu-sched read-side critical sections have completed. These read-side
1795 * critical sections are delimited by rcu_read_lock_sched() and
1796 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1797 * local_irq_disable(), and so on may be used in place of
1798 * rcu_read_lock_sched().
1799 *
1800 * This means that all preempt_disable code sequences, including NMI and
1801 * hardware-interrupt handlers, in progress on entry will have completed
1802 * before this primitive returns. However, this does not guarantee that
1803 * softirq handlers will have completed, since in some kernels, these
1804 * handlers can run in process context, and can block.
1805 *
1806 * This primitive provides the guarantees made by the (now removed)
1807 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1808 * guarantees that rcu_read_lock() sections will have completed.
1809 * In "classic RCU", these two guarantees happen to be one and
1810 * the same, but can differ in realtime RCU implementations.
1811 */
1812 void synchronize_sched(void)
1813 {
1814 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1815 !lock_is_held(&rcu_lock_map) &&
1816 !lock_is_held(&rcu_sched_lock_map),
1817 "Illegal synchronize_sched() in RCU-sched read-side critical section");
1818 if (rcu_blocking_is_gp())
1819 return;
1820 wait_rcu_gp(call_rcu_sched);
1821 }
1822 EXPORT_SYMBOL_GPL(synchronize_sched);
1823
1824 /**
1825 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1826 *
1827 * Control will return to the caller some time after a full rcu_bh grace
1828 * period has elapsed, in other words after all currently executing rcu_bh
1829 * read-side critical sections have completed. RCU read-side critical
1830 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1831 * and may be nested.
1832 */
1833 void synchronize_rcu_bh(void)
1834 {
1835 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1836 !lock_is_held(&rcu_lock_map) &&
1837 !lock_is_held(&rcu_sched_lock_map),
1838 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1839 if (rcu_blocking_is_gp())
1840 return;
1841 wait_rcu_gp(call_rcu_bh);
1842 }
1843 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1844
1845 /*
1846 * Check to see if there is any immediate RCU-related work to be done
1847 * by the current CPU, for the specified type of RCU, returning 1 if so.
1848 * The checks are in order of increasing expense: checks that can be
1849 * carried out against CPU-local state are performed first. However,
1850 * we must check for CPU stalls first, else we might not get a chance.
1851 */
1852 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1853 {
1854 struct rcu_node *rnp = rdp->mynode;
1855
1856 rdp->n_rcu_pending++;
1857
1858 /* Check for CPU stalls, if enabled. */
1859 check_cpu_stall(rsp, rdp);
1860
1861 /* Is the RCU core waiting for a quiescent state from this CPU? */
1862 if (rcu_scheduler_fully_active &&
1863 rdp->qs_pending && !rdp->passed_quiesce) {
1864
1865 /*
1866 * If force_quiescent_state() coming soon and this CPU
1867 * needs a quiescent state, and this is either RCU-sched
1868 * or RCU-bh, force a local reschedule.
1869 */
1870 rdp->n_rp_qs_pending++;
1871 if (!rdp->preemptible &&
1872 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1873 jiffies))
1874 set_need_resched();
1875 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1876 rdp->n_rp_report_qs++;
1877 return 1;
1878 }
1879
1880 /* Does this CPU have callbacks ready to invoke? */
1881 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1882 rdp->n_rp_cb_ready++;
1883 return 1;
1884 }
1885
1886 /* Has RCU gone idle with this CPU needing another grace period? */
1887 if (cpu_needs_another_gp(rsp, rdp)) {
1888 rdp->n_rp_cpu_needs_gp++;
1889 return 1;
1890 }
1891
1892 /* Has another RCU grace period completed? */
1893 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1894 rdp->n_rp_gp_completed++;
1895 return 1;
1896 }
1897
1898 /* Has a new RCU grace period started? */
1899 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1900 rdp->n_rp_gp_started++;
1901 return 1;
1902 }
1903
1904 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1905 if (rcu_gp_in_progress(rsp) &&
1906 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1907 rdp->n_rp_need_fqs++;
1908 return 1;
1909 }
1910
1911 /* nothing to do */
1912 rdp->n_rp_need_nothing++;
1913 return 0;
1914 }
1915
1916 /*
1917 * Check to see if there is any immediate RCU-related work to be done
1918 * by the current CPU, returning 1 if so. This function is part of the
1919 * RCU implementation; it is -not- an exported member of the RCU API.
1920 */
1921 static int rcu_pending(int cpu)
1922 {
1923 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1924 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1925 rcu_preempt_pending(cpu);
1926 }
1927
1928 /*
1929 * Check to see if any future RCU-related work will need to be done
1930 * by the current CPU, even if none need be done immediately, returning
1931 * 1 if so.
1932 */
1933 static int rcu_cpu_has_callbacks(int cpu)
1934 {
1935 /* RCU callbacks either ready or pending? */
1936 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1937 per_cpu(rcu_bh_data, cpu).nxtlist ||
1938 rcu_preempt_needs_cpu(cpu);
1939 }
1940
1941 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1942 static atomic_t rcu_barrier_cpu_count;
1943 static DEFINE_MUTEX(rcu_barrier_mutex);
1944 static struct completion rcu_barrier_completion;
1945
1946 static void rcu_barrier_callback(struct rcu_head *notused)
1947 {
1948 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1949 complete(&rcu_barrier_completion);
1950 }
1951
1952 /*
1953 * Called with preemption disabled, and from cross-cpu IRQ context.
1954 */
1955 static void rcu_barrier_func(void *type)
1956 {
1957 int cpu = smp_processor_id();
1958 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1959 void (*call_rcu_func)(struct rcu_head *head,
1960 void (*func)(struct rcu_head *head));
1961
1962 atomic_inc(&rcu_barrier_cpu_count);
1963 call_rcu_func = type;
1964 call_rcu_func(head, rcu_barrier_callback);
1965 }
1966
1967 /*
1968 * Orchestrate the specified type of RCU barrier, waiting for all
1969 * RCU callbacks of the specified type to complete.
1970 */
1971 static void _rcu_barrier(struct rcu_state *rsp,
1972 void (*call_rcu_func)(struct rcu_head *head,
1973 void (*func)(struct rcu_head *head)))
1974 {
1975 BUG_ON(in_interrupt());
1976 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1977 mutex_lock(&rcu_barrier_mutex);
1978 init_completion(&rcu_barrier_completion);
1979 /*
1980 * Initialize rcu_barrier_cpu_count to 1, then invoke
1981 * rcu_barrier_func() on each CPU, so that each CPU also has
1982 * incremented rcu_barrier_cpu_count. Only then is it safe to
1983 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1984 * might complete its grace period before all of the other CPUs
1985 * did their increment, causing this function to return too
1986 * early. Note that on_each_cpu() disables irqs, which prevents
1987 * any CPUs from coming online or going offline until each online
1988 * CPU has queued its RCU-barrier callback.
1989 */
1990 atomic_set(&rcu_barrier_cpu_count, 1);
1991 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1992 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1993 complete(&rcu_barrier_completion);
1994 wait_for_completion(&rcu_barrier_completion);
1995 mutex_unlock(&rcu_barrier_mutex);
1996 }
1997
1998 /**
1999 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2000 */
2001 void rcu_barrier_bh(void)
2002 {
2003 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2004 }
2005 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2006
2007 /**
2008 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2009 */
2010 void rcu_barrier_sched(void)
2011 {
2012 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2013 }
2014 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2015
2016 /*
2017 * Do boot-time initialization of a CPU's per-CPU RCU data.
2018 */
2019 static void __init
2020 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2021 {
2022 unsigned long flags;
2023 int i;
2024 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2025 struct rcu_node *rnp = rcu_get_root(rsp);
2026
2027 /* Set up local state, ensuring consistent view of global state. */
2028 raw_spin_lock_irqsave(&rnp->lock, flags);
2029 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2030 rdp->nxtlist = NULL;
2031 for (i = 0; i < RCU_NEXT_SIZE; i++)
2032 rdp->nxttail[i] = &rdp->nxtlist;
2033 rdp->qlen_lazy = 0;
2034 rdp->qlen = 0;
2035 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2036 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
2037 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2038 rdp->cpu = cpu;
2039 rdp->rsp = rsp;
2040 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2041 }
2042
2043 /*
2044 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2045 * offline event can be happening at a given time. Note also that we
2046 * can accept some slop in the rsp->completed access due to the fact
2047 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2048 */
2049 static void __cpuinit
2050 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2051 {
2052 unsigned long flags;
2053 unsigned long mask;
2054 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2055 struct rcu_node *rnp = rcu_get_root(rsp);
2056
2057 /* Set up local state, ensuring consistent view of global state. */
2058 raw_spin_lock_irqsave(&rnp->lock, flags);
2059 rdp->beenonline = 1; /* We have now been online. */
2060 rdp->preemptible = preemptible;
2061 rdp->qlen_last_fqs_check = 0;
2062 rdp->n_force_qs_snap = rsp->n_force_qs;
2063 rdp->blimit = blimit;
2064 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2065 atomic_set(&rdp->dynticks->dynticks,
2066 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2067 rcu_prepare_for_idle_init(cpu);
2068 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2069
2070 /*
2071 * A new grace period might start here. If so, we won't be part
2072 * of it, but that is OK, as we are currently in a quiescent state.
2073 */
2074
2075 /* Exclude any attempts to start a new GP on large systems. */
2076 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2077
2078 /* Add CPU to rcu_node bitmasks. */
2079 rnp = rdp->mynode;
2080 mask = rdp->grpmask;
2081 do {
2082 /* Exclude any attempts to start a new GP on small systems. */
2083 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2084 rnp->qsmaskinit |= mask;
2085 mask = rnp->grpmask;
2086 if (rnp == rdp->mynode) {
2087 /*
2088 * If there is a grace period in progress, we will
2089 * set up to wait for it next time we run the
2090 * RCU core code.
2091 */
2092 rdp->gpnum = rnp->completed;
2093 rdp->completed = rnp->completed;
2094 rdp->passed_quiesce = 0;
2095 rdp->qs_pending = 0;
2096 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2097 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2098 }
2099 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2100 rnp = rnp->parent;
2101 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2102
2103 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2104 }
2105
2106 static void __cpuinit rcu_prepare_cpu(int cpu)
2107 {
2108 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2109 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2110 rcu_preempt_init_percpu_data(cpu);
2111 }
2112
2113 /*
2114 * Handle CPU online/offline notification events.
2115 */
2116 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2117 unsigned long action, void *hcpu)
2118 {
2119 long cpu = (long)hcpu;
2120 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2121 struct rcu_node *rnp = rdp->mynode;
2122
2123 trace_rcu_utilization("Start CPU hotplug");
2124 switch (action) {
2125 case CPU_UP_PREPARE:
2126 case CPU_UP_PREPARE_FROZEN:
2127 rcu_prepare_cpu(cpu);
2128 rcu_prepare_kthreads(cpu);
2129 break;
2130 case CPU_ONLINE:
2131 case CPU_DOWN_FAILED:
2132 rcu_node_kthread_setaffinity(rnp, -1);
2133 rcu_cpu_kthread_setrt(cpu, 1);
2134 break;
2135 case CPU_DOWN_PREPARE:
2136 rcu_node_kthread_setaffinity(rnp, cpu);
2137 rcu_cpu_kthread_setrt(cpu, 0);
2138 break;
2139 case CPU_DYING:
2140 case CPU_DYING_FROZEN:
2141 /*
2142 * The whole machine is "stopped" except this CPU, so we can
2143 * touch any data without introducing corruption. We send the
2144 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2145 */
2146 rcu_cleanup_dying_cpu(&rcu_bh_state);
2147 rcu_cleanup_dying_cpu(&rcu_sched_state);
2148 rcu_preempt_cleanup_dying_cpu();
2149 rcu_cleanup_after_idle(cpu);
2150 break;
2151 case CPU_DEAD:
2152 case CPU_DEAD_FROZEN:
2153 case CPU_UP_CANCELED:
2154 case CPU_UP_CANCELED_FROZEN:
2155 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2156 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2157 rcu_preempt_cleanup_dead_cpu(cpu);
2158 break;
2159 default:
2160 break;
2161 }
2162 trace_rcu_utilization("End CPU hotplug");
2163 return NOTIFY_OK;
2164 }
2165
2166 /*
2167 * This function is invoked towards the end of the scheduler's initialization
2168 * process. Before this is called, the idle task might contain
2169 * RCU read-side critical sections (during which time, this idle
2170 * task is booting the system). After this function is called, the
2171 * idle tasks are prohibited from containing RCU read-side critical
2172 * sections. This function also enables RCU lockdep checking.
2173 */
2174 void rcu_scheduler_starting(void)
2175 {
2176 WARN_ON(num_online_cpus() != 1);
2177 WARN_ON(nr_context_switches() > 0);
2178 rcu_scheduler_active = 1;
2179 }
2180
2181 /*
2182 * Compute the per-level fanout, either using the exact fanout specified
2183 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2184 */
2185 #ifdef CONFIG_RCU_FANOUT_EXACT
2186 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2187 {
2188 int i;
2189
2190 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2191 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2192 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2193 }
2194 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2195 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2196 {
2197 int ccur;
2198 int cprv;
2199 int i;
2200
2201 cprv = NR_CPUS;
2202 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2203 ccur = rsp->levelcnt[i];
2204 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2205 cprv = ccur;
2206 }
2207 }
2208 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2209
2210 /*
2211 * Helper function for rcu_init() that initializes one rcu_state structure.
2212 */
2213 static void __init rcu_init_one(struct rcu_state *rsp,
2214 struct rcu_data __percpu *rda)
2215 {
2216 static char *buf[] = { "rcu_node_level_0",
2217 "rcu_node_level_1",
2218 "rcu_node_level_2",
2219 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2220 int cpustride = 1;
2221 int i;
2222 int j;
2223 struct rcu_node *rnp;
2224
2225 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2226
2227 /* Initialize the level-tracking arrays. */
2228
2229 for (i = 1; i < NUM_RCU_LVLS; i++)
2230 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2231 rcu_init_levelspread(rsp);
2232
2233 /* Initialize the elements themselves, starting from the leaves. */
2234
2235 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2236 cpustride *= rsp->levelspread[i];
2237 rnp = rsp->level[i];
2238 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2239 raw_spin_lock_init(&rnp->lock);
2240 lockdep_set_class_and_name(&rnp->lock,
2241 &rcu_node_class[i], buf[i]);
2242 rnp->gpnum = 0;
2243 rnp->qsmask = 0;
2244 rnp->qsmaskinit = 0;
2245 rnp->grplo = j * cpustride;
2246 rnp->grphi = (j + 1) * cpustride - 1;
2247 if (rnp->grphi >= NR_CPUS)
2248 rnp->grphi = NR_CPUS - 1;
2249 if (i == 0) {
2250 rnp->grpnum = 0;
2251 rnp->grpmask = 0;
2252 rnp->parent = NULL;
2253 } else {
2254 rnp->grpnum = j % rsp->levelspread[i - 1];
2255 rnp->grpmask = 1UL << rnp->grpnum;
2256 rnp->parent = rsp->level[i - 1] +
2257 j / rsp->levelspread[i - 1];
2258 }
2259 rnp->level = i;
2260 INIT_LIST_HEAD(&rnp->blkd_tasks);
2261 }
2262 }
2263
2264 rsp->rda = rda;
2265 rnp = rsp->level[NUM_RCU_LVLS - 1];
2266 for_each_possible_cpu(i) {
2267 while (i > rnp->grphi)
2268 rnp++;
2269 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2270 rcu_boot_init_percpu_data(i, rsp);
2271 }
2272 }
2273
2274 void __init rcu_init(void)
2275 {
2276 int cpu;
2277
2278 rcu_bootup_announce();
2279 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2280 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2281 __rcu_init_preempt();
2282 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2283
2284 /*
2285 * We don't need protection against CPU-hotplug here because
2286 * this is called early in boot, before either interrupts
2287 * or the scheduler are operational.
2288 */
2289 cpu_notifier(rcu_cpu_notify, 0);
2290 for_each_online_cpu(cpu)
2291 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2292 check_cpu_stall_init();
2293 }
2294
2295 #include "rcutree_plugin.h"
This page took 0.09778 seconds and 6 git commands to generate.