rcu: Don't make callbacks go through second full grace period
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53
54 #include "rcutree.h"
55 #include <trace/events/rcu.h>
56
57 #include "rcu.h"
58
59 /* Data structures. */
60
61 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .fqs_state = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
80 }
81
82 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89
90 /*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
99 int rcu_scheduler_active __read_mostly;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
102 /*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114 static int rcu_scheduler_fully_active __read_mostly;
115
116 #ifdef CONFIG_RCU_BOOST
117
118 /*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work);
127
128 #endif /* #ifdef CONFIG_RCU_BOOST */
129
130 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133
134 /*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143 unsigned long rcutorture_testseq;
144 unsigned long rcutorture_vernum;
145
146 /*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151 static int rcu_gp_in_progress(struct rcu_state *rsp)
152 {
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154 }
155
156 /*
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
161 */
162 void rcu_sched_qs(int cpu)
163 {
164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165
166 rdp->passed_quiesce_gpnum = rdp->gpnum;
167 barrier();
168 if (rdp->passed_quiesce == 0)
169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 rdp->passed_quiesce = 1;
171 }
172
173 void rcu_bh_qs(int cpu)
174 {
175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 /*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
188 */
189 void rcu_note_context_switch(int cpu)
190 {
191 trace_rcu_utilization("Start context switch");
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
194 trace_rcu_utilization("End context switch");
195 }
196 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197
198 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199 .dynticks_nesting = DYNTICK_TASK_NESTING,
200 .dynticks = ATOMIC_INIT(1),
201 };
202
203 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
204 static int qhimark = 10000; /* If this many pending, ignore blimit. */
205 static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
207 module_param(blimit, int, 0);
208 module_param(qhimark, int, 0);
209 module_param(qlowmark, int, 0);
210
211 int rcu_cpu_stall_suppress __read_mostly;
212 module_param(rcu_cpu_stall_suppress, int, 0644);
213
214 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
215 static int rcu_pending(int cpu);
216
217 /*
218 * Return the number of RCU-sched batches processed thus far for debug & stats.
219 */
220 long rcu_batches_completed_sched(void)
221 {
222 return rcu_sched_state.completed;
223 }
224 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
225
226 /*
227 * Return the number of RCU BH batches processed thus far for debug & stats.
228 */
229 long rcu_batches_completed_bh(void)
230 {
231 return rcu_bh_state.completed;
232 }
233 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
234
235 /*
236 * Force a quiescent state for RCU BH.
237 */
238 void rcu_bh_force_quiescent_state(void)
239 {
240 force_quiescent_state(&rcu_bh_state, 0);
241 }
242 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
243
244 /*
245 * Record the number of times rcutorture tests have been initiated and
246 * terminated. This information allows the debugfs tracing stats to be
247 * correlated to the rcutorture messages, even when the rcutorture module
248 * is being repeatedly loaded and unloaded. In other words, we cannot
249 * store this state in rcutorture itself.
250 */
251 void rcutorture_record_test_transition(void)
252 {
253 rcutorture_testseq++;
254 rcutorture_vernum = 0;
255 }
256 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
257
258 /*
259 * Record the number of writer passes through the current rcutorture test.
260 * This is also used to correlate debugfs tracing stats with the rcutorture
261 * messages.
262 */
263 void rcutorture_record_progress(unsigned long vernum)
264 {
265 rcutorture_vernum++;
266 }
267 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
268
269 /*
270 * Force a quiescent state for RCU-sched.
271 */
272 void rcu_sched_force_quiescent_state(void)
273 {
274 force_quiescent_state(&rcu_sched_state, 0);
275 }
276 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
277
278 /*
279 * Does the CPU have callbacks ready to be invoked?
280 */
281 static int
282 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
283 {
284 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
285 }
286
287 /*
288 * Does the current CPU require a yet-as-unscheduled grace period?
289 */
290 static int
291 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
292 {
293 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
294 }
295
296 /*
297 * Return the root node of the specified rcu_state structure.
298 */
299 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
300 {
301 return &rsp->node[0];
302 }
303
304 #ifdef CONFIG_SMP
305
306 /*
307 * If the specified CPU is offline, tell the caller that it is in
308 * a quiescent state. Otherwise, whack it with a reschedule IPI.
309 * Grace periods can end up waiting on an offline CPU when that
310 * CPU is in the process of coming online -- it will be added to the
311 * rcu_node bitmasks before it actually makes it online. The same thing
312 * can happen while a CPU is in the process of coming online. Because this
313 * race is quite rare, we check for it after detecting that the grace
314 * period has been delayed rather than checking each and every CPU
315 * each and every time we start a new grace period.
316 */
317 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
318 {
319 /*
320 * If the CPU is offline, it is in a quiescent state. We can
321 * trust its state not to change because interrupts are disabled.
322 */
323 if (cpu_is_offline(rdp->cpu)) {
324 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
325 rdp->offline_fqs++;
326 return 1;
327 }
328
329 /*
330 * The CPU is online, so send it a reschedule IPI. This forces
331 * it through the scheduler, and (inefficiently) also handles cases
332 * where idle loops fail to inform RCU about the CPU being idle.
333 */
334 if (rdp->cpu != smp_processor_id())
335 smp_send_reschedule(rdp->cpu);
336 else
337 set_need_resched();
338 rdp->resched_ipi++;
339 return 0;
340 }
341
342 #endif /* #ifdef CONFIG_SMP */
343
344 /*
345 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
346 *
347 * If the new value of the ->dynticks_nesting counter now is zero,
348 * we really have entered idle, and must do the appropriate accounting.
349 * The caller must have disabled interrupts.
350 */
351 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
352 {
353 trace_rcu_dyntick("Start", oldval, 0);
354 if (!is_idle_task(current)) {
355 struct task_struct *idle = idle_task(smp_processor_id());
356
357 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
358 ftrace_dump(DUMP_ALL);
359 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
360 current->pid, current->comm,
361 idle->pid, idle->comm); /* must be idle task! */
362 }
363 rcu_prepare_for_idle(smp_processor_id());
364 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
365 smp_mb__before_atomic_inc(); /* See above. */
366 atomic_inc(&rdtp->dynticks);
367 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
368 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
369 }
370
371 /**
372 * rcu_idle_enter - inform RCU that current CPU is entering idle
373 *
374 * Enter idle mode, in other words, -leave- the mode in which RCU
375 * read-side critical sections can occur. (Though RCU read-side
376 * critical sections can occur in irq handlers in idle, a possibility
377 * handled by irq_enter() and irq_exit().)
378 *
379 * We crowbar the ->dynticks_nesting field to zero to allow for
380 * the possibility of usermode upcalls having messed up our count
381 * of interrupt nesting level during the prior busy period.
382 */
383 void rcu_idle_enter(void)
384 {
385 unsigned long flags;
386 long long oldval;
387 struct rcu_dynticks *rdtp;
388
389 local_irq_save(flags);
390 rdtp = &__get_cpu_var(rcu_dynticks);
391 oldval = rdtp->dynticks_nesting;
392 rdtp->dynticks_nesting = 0;
393 rcu_idle_enter_common(rdtp, oldval);
394 local_irq_restore(flags);
395 }
396
397 /**
398 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
399 *
400 * Exit from an interrupt handler, which might possibly result in entering
401 * idle mode, in other words, leaving the mode in which read-side critical
402 * sections can occur.
403 *
404 * This code assumes that the idle loop never does anything that might
405 * result in unbalanced calls to irq_enter() and irq_exit(). If your
406 * architecture violates this assumption, RCU will give you what you
407 * deserve, good and hard. But very infrequently and irreproducibly.
408 *
409 * Use things like work queues to work around this limitation.
410 *
411 * You have been warned.
412 */
413 void rcu_irq_exit(void)
414 {
415 unsigned long flags;
416 long long oldval;
417 struct rcu_dynticks *rdtp;
418
419 local_irq_save(flags);
420 rdtp = &__get_cpu_var(rcu_dynticks);
421 oldval = rdtp->dynticks_nesting;
422 rdtp->dynticks_nesting--;
423 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
424 if (rdtp->dynticks_nesting)
425 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
426 else
427 rcu_idle_enter_common(rdtp, oldval);
428 local_irq_restore(flags);
429 }
430
431 /*
432 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
433 *
434 * If the new value of the ->dynticks_nesting counter was previously zero,
435 * we really have exited idle, and must do the appropriate accounting.
436 * The caller must have disabled interrupts.
437 */
438 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
439 {
440 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
441 atomic_inc(&rdtp->dynticks);
442 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
443 smp_mb__after_atomic_inc(); /* See above. */
444 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
445 rcu_cleanup_after_idle(smp_processor_id());
446 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
447 if (!is_idle_task(current)) {
448 struct task_struct *idle = idle_task(smp_processor_id());
449
450 trace_rcu_dyntick("Error on exit: not idle task",
451 oldval, rdtp->dynticks_nesting);
452 ftrace_dump(DUMP_ALL);
453 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
454 current->pid, current->comm,
455 idle->pid, idle->comm); /* must be idle task! */
456 }
457 }
458
459 /**
460 * rcu_idle_exit - inform RCU that current CPU is leaving idle
461 *
462 * Exit idle mode, in other words, -enter- the mode in which RCU
463 * read-side critical sections can occur.
464 *
465 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
466 * allow for the possibility of usermode upcalls messing up our count
467 * of interrupt nesting level during the busy period that is just
468 * now starting.
469 */
470 void rcu_idle_exit(void)
471 {
472 unsigned long flags;
473 struct rcu_dynticks *rdtp;
474 long long oldval;
475
476 local_irq_save(flags);
477 rdtp = &__get_cpu_var(rcu_dynticks);
478 oldval = rdtp->dynticks_nesting;
479 WARN_ON_ONCE(oldval != 0);
480 rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
481 rcu_idle_exit_common(rdtp, oldval);
482 local_irq_restore(flags);
483 }
484
485 /**
486 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
487 *
488 * Enter an interrupt handler, which might possibly result in exiting
489 * idle mode, in other words, entering the mode in which read-side critical
490 * sections can occur.
491 *
492 * Note that the Linux kernel is fully capable of entering an interrupt
493 * handler that it never exits, for example when doing upcalls to
494 * user mode! This code assumes that the idle loop never does upcalls to
495 * user mode. If your architecture does do upcalls from the idle loop (or
496 * does anything else that results in unbalanced calls to the irq_enter()
497 * and irq_exit() functions), RCU will give you what you deserve, good
498 * and hard. But very infrequently and irreproducibly.
499 *
500 * Use things like work queues to work around this limitation.
501 *
502 * You have been warned.
503 */
504 void rcu_irq_enter(void)
505 {
506 unsigned long flags;
507 struct rcu_dynticks *rdtp;
508 long long oldval;
509
510 local_irq_save(flags);
511 rdtp = &__get_cpu_var(rcu_dynticks);
512 oldval = rdtp->dynticks_nesting;
513 rdtp->dynticks_nesting++;
514 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
515 if (oldval)
516 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
517 else
518 rcu_idle_exit_common(rdtp, oldval);
519 local_irq_restore(flags);
520 }
521
522 /**
523 * rcu_nmi_enter - inform RCU of entry to NMI context
524 *
525 * If the CPU was idle with dynamic ticks active, and there is no
526 * irq handler running, this updates rdtp->dynticks_nmi to let the
527 * RCU grace-period handling know that the CPU is active.
528 */
529 void rcu_nmi_enter(void)
530 {
531 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
532
533 if (rdtp->dynticks_nmi_nesting == 0 &&
534 (atomic_read(&rdtp->dynticks) & 0x1))
535 return;
536 rdtp->dynticks_nmi_nesting++;
537 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
538 atomic_inc(&rdtp->dynticks);
539 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
540 smp_mb__after_atomic_inc(); /* See above. */
541 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
542 }
543
544 /**
545 * rcu_nmi_exit - inform RCU of exit from NMI context
546 *
547 * If the CPU was idle with dynamic ticks active, and there is no
548 * irq handler running, this updates rdtp->dynticks_nmi to let the
549 * RCU grace-period handling know that the CPU is no longer active.
550 */
551 void rcu_nmi_exit(void)
552 {
553 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
554
555 if (rdtp->dynticks_nmi_nesting == 0 ||
556 --rdtp->dynticks_nmi_nesting != 0)
557 return;
558 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
559 smp_mb__before_atomic_inc(); /* See above. */
560 atomic_inc(&rdtp->dynticks);
561 smp_mb__after_atomic_inc(); /* Force delay to next write. */
562 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
563 }
564
565 #ifdef CONFIG_PROVE_RCU
566
567 /**
568 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
569 *
570 * If the current CPU is in its idle loop and is neither in an interrupt
571 * or NMI handler, return true.
572 */
573 int rcu_is_cpu_idle(void)
574 {
575 int ret;
576
577 preempt_disable();
578 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
579 preempt_enable();
580 return ret;
581 }
582 EXPORT_SYMBOL(rcu_is_cpu_idle);
583
584 #endif /* #ifdef CONFIG_PROVE_RCU */
585
586 /**
587 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
588 *
589 * If the current CPU is idle or running at a first-level (not nested)
590 * interrupt from idle, return true. The caller must have at least
591 * disabled preemption.
592 */
593 int rcu_is_cpu_rrupt_from_idle(void)
594 {
595 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
596 }
597
598 #ifdef CONFIG_SMP
599
600 /*
601 * Snapshot the specified CPU's dynticks counter so that we can later
602 * credit them with an implicit quiescent state. Return 1 if this CPU
603 * is in dynticks idle mode, which is an extended quiescent state.
604 */
605 static int dyntick_save_progress_counter(struct rcu_data *rdp)
606 {
607 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
608 return (rdp->dynticks_snap & 0x1) == 0;
609 }
610
611 /*
612 * Return true if the specified CPU has passed through a quiescent
613 * state by virtue of being in or having passed through an dynticks
614 * idle state since the last call to dyntick_save_progress_counter()
615 * for this same CPU.
616 */
617 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
618 {
619 unsigned int curr;
620 unsigned int snap;
621
622 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
623 snap = (unsigned int)rdp->dynticks_snap;
624
625 /*
626 * If the CPU passed through or entered a dynticks idle phase with
627 * no active irq/NMI handlers, then we can safely pretend that the CPU
628 * already acknowledged the request to pass through a quiescent
629 * state. Either way, that CPU cannot possibly be in an RCU
630 * read-side critical section that started before the beginning
631 * of the current RCU grace period.
632 */
633 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
634 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
635 rdp->dynticks_fqs++;
636 return 1;
637 }
638
639 /* Go check for the CPU being offline. */
640 return rcu_implicit_offline_qs(rdp);
641 }
642
643 #endif /* #ifdef CONFIG_SMP */
644
645 static void record_gp_stall_check_time(struct rcu_state *rsp)
646 {
647 rsp->gp_start = jiffies;
648 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
649 }
650
651 static void print_other_cpu_stall(struct rcu_state *rsp)
652 {
653 int cpu;
654 long delta;
655 unsigned long flags;
656 int ndetected;
657 struct rcu_node *rnp = rcu_get_root(rsp);
658
659 /* Only let one CPU complain about others per time interval. */
660
661 raw_spin_lock_irqsave(&rnp->lock, flags);
662 delta = jiffies - rsp->jiffies_stall;
663 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
664 raw_spin_unlock_irqrestore(&rnp->lock, flags);
665 return;
666 }
667 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
668
669 /*
670 * Now rat on any tasks that got kicked up to the root rcu_node
671 * due to CPU offlining.
672 */
673 ndetected = rcu_print_task_stall(rnp);
674 raw_spin_unlock_irqrestore(&rnp->lock, flags);
675
676 /*
677 * OK, time to rat on our buddy...
678 * See Documentation/RCU/stallwarn.txt for info on how to debug
679 * RCU CPU stall warnings.
680 */
681 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
682 rsp->name);
683 rcu_for_each_leaf_node(rsp, rnp) {
684 raw_spin_lock_irqsave(&rnp->lock, flags);
685 ndetected += rcu_print_task_stall(rnp);
686 raw_spin_unlock_irqrestore(&rnp->lock, flags);
687 if (rnp->qsmask == 0)
688 continue;
689 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
690 if (rnp->qsmask & (1UL << cpu)) {
691 printk(" %d", rnp->grplo + cpu);
692 ndetected++;
693 }
694 }
695 printk("} (detected by %d, t=%ld jiffies)\n",
696 smp_processor_id(), (long)(jiffies - rsp->gp_start));
697 if (ndetected == 0)
698 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
699 else if (!trigger_all_cpu_backtrace())
700 dump_stack();
701
702 /* If so configured, complain about tasks blocking the grace period. */
703
704 rcu_print_detail_task_stall(rsp);
705
706 force_quiescent_state(rsp, 0); /* Kick them all. */
707 }
708
709 static void print_cpu_stall(struct rcu_state *rsp)
710 {
711 unsigned long flags;
712 struct rcu_node *rnp = rcu_get_root(rsp);
713
714 /*
715 * OK, time to rat on ourselves...
716 * See Documentation/RCU/stallwarn.txt for info on how to debug
717 * RCU CPU stall warnings.
718 */
719 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
720 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
721 if (!trigger_all_cpu_backtrace())
722 dump_stack();
723
724 raw_spin_lock_irqsave(&rnp->lock, flags);
725 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
726 rsp->jiffies_stall =
727 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
728 raw_spin_unlock_irqrestore(&rnp->lock, flags);
729
730 set_need_resched(); /* kick ourselves to get things going. */
731 }
732
733 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
734 {
735 unsigned long j;
736 unsigned long js;
737 struct rcu_node *rnp;
738
739 if (rcu_cpu_stall_suppress)
740 return;
741 j = ACCESS_ONCE(jiffies);
742 js = ACCESS_ONCE(rsp->jiffies_stall);
743 rnp = rdp->mynode;
744 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
745
746 /* We haven't checked in, so go dump stack. */
747 print_cpu_stall(rsp);
748
749 } else if (rcu_gp_in_progress(rsp) &&
750 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
751
752 /* They had a few time units to dump stack, so complain. */
753 print_other_cpu_stall(rsp);
754 }
755 }
756
757 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
758 {
759 rcu_cpu_stall_suppress = 1;
760 return NOTIFY_DONE;
761 }
762
763 /**
764 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
765 *
766 * Set the stall-warning timeout way off into the future, thus preventing
767 * any RCU CPU stall-warning messages from appearing in the current set of
768 * RCU grace periods.
769 *
770 * The caller must disable hard irqs.
771 */
772 void rcu_cpu_stall_reset(void)
773 {
774 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
775 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
776 rcu_preempt_stall_reset();
777 }
778
779 static struct notifier_block rcu_panic_block = {
780 .notifier_call = rcu_panic,
781 };
782
783 static void __init check_cpu_stall_init(void)
784 {
785 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
786 }
787
788 /*
789 * Update CPU-local rcu_data state to record the newly noticed grace period.
790 * This is used both when we started the grace period and when we notice
791 * that someone else started the grace period. The caller must hold the
792 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
793 * and must have irqs disabled.
794 */
795 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
796 {
797 if (rdp->gpnum != rnp->gpnum) {
798 /*
799 * If the current grace period is waiting for this CPU,
800 * set up to detect a quiescent state, otherwise don't
801 * go looking for one.
802 */
803 rdp->gpnum = rnp->gpnum;
804 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
805 if (rnp->qsmask & rdp->grpmask) {
806 rdp->qs_pending = 1;
807 rdp->passed_quiesce = 0;
808 } else
809 rdp->qs_pending = 0;
810 }
811 }
812
813 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
814 {
815 unsigned long flags;
816 struct rcu_node *rnp;
817
818 local_irq_save(flags);
819 rnp = rdp->mynode;
820 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
821 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
822 local_irq_restore(flags);
823 return;
824 }
825 __note_new_gpnum(rsp, rnp, rdp);
826 raw_spin_unlock_irqrestore(&rnp->lock, flags);
827 }
828
829 /*
830 * Did someone else start a new RCU grace period start since we last
831 * checked? Update local state appropriately if so. Must be called
832 * on the CPU corresponding to rdp.
833 */
834 static int
835 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
836 {
837 unsigned long flags;
838 int ret = 0;
839
840 local_irq_save(flags);
841 if (rdp->gpnum != rsp->gpnum) {
842 note_new_gpnum(rsp, rdp);
843 ret = 1;
844 }
845 local_irq_restore(flags);
846 return ret;
847 }
848
849 /*
850 * Advance this CPU's callbacks, but only if the current grace period
851 * has ended. This may be called only from the CPU to whom the rdp
852 * belongs. In addition, the corresponding leaf rcu_node structure's
853 * ->lock must be held by the caller, with irqs disabled.
854 */
855 static void
856 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
857 {
858 /* Did another grace period end? */
859 if (rdp->completed != rnp->completed) {
860
861 /* Advance callbacks. No harm if list empty. */
862 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
863 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
864 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
865
866 /* Remember that we saw this grace-period completion. */
867 rdp->completed = rnp->completed;
868 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
869
870 /*
871 * If we were in an extended quiescent state, we may have
872 * missed some grace periods that others CPUs handled on
873 * our behalf. Catch up with this state to avoid noting
874 * spurious new grace periods. If another grace period
875 * has started, then rnp->gpnum will have advanced, so
876 * we will detect this later on.
877 */
878 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
879 rdp->gpnum = rdp->completed;
880
881 /*
882 * If RCU does not need a quiescent state from this CPU,
883 * then make sure that this CPU doesn't go looking for one.
884 */
885 if ((rnp->qsmask & rdp->grpmask) == 0)
886 rdp->qs_pending = 0;
887 }
888 }
889
890 /*
891 * Advance this CPU's callbacks, but only if the current grace period
892 * has ended. This may be called only from the CPU to whom the rdp
893 * belongs.
894 */
895 static void
896 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
897 {
898 unsigned long flags;
899 struct rcu_node *rnp;
900
901 local_irq_save(flags);
902 rnp = rdp->mynode;
903 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
904 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
905 local_irq_restore(flags);
906 return;
907 }
908 __rcu_process_gp_end(rsp, rnp, rdp);
909 raw_spin_unlock_irqrestore(&rnp->lock, flags);
910 }
911
912 /*
913 * Do per-CPU grace-period initialization for running CPU. The caller
914 * must hold the lock of the leaf rcu_node structure corresponding to
915 * this CPU.
916 */
917 static void
918 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
919 {
920 /* Prior grace period ended, so advance callbacks for current CPU. */
921 __rcu_process_gp_end(rsp, rnp, rdp);
922
923 /*
924 * Because this CPU just now started the new grace period, we know
925 * that all of its callbacks will be covered by this upcoming grace
926 * period, even the ones that were registered arbitrarily recently.
927 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
928 *
929 * Other CPUs cannot be sure exactly when the grace period started.
930 * Therefore, their recently registered callbacks must pass through
931 * an additional RCU_NEXT_READY stage, so that they will be handled
932 * by the next RCU grace period.
933 */
934 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
935 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
936
937 /* Set state so that this CPU will detect the next quiescent state. */
938 __note_new_gpnum(rsp, rnp, rdp);
939 }
940
941 /*
942 * Start a new RCU grace period if warranted, re-initializing the hierarchy
943 * in preparation for detecting the next grace period. The caller must hold
944 * the root node's ->lock, which is released before return. Hard irqs must
945 * be disabled.
946 *
947 * Note that it is legal for a dying CPU (which is marked as offline) to
948 * invoke this function. This can happen when the dying CPU reports its
949 * quiescent state.
950 */
951 static void
952 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
953 __releases(rcu_get_root(rsp)->lock)
954 {
955 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
956 struct rcu_node *rnp = rcu_get_root(rsp);
957
958 if (!rcu_scheduler_fully_active ||
959 !cpu_needs_another_gp(rsp, rdp)) {
960 /*
961 * Either the scheduler hasn't yet spawned the first
962 * non-idle task or this CPU does not need another
963 * grace period. Either way, don't start a new grace
964 * period.
965 */
966 raw_spin_unlock_irqrestore(&rnp->lock, flags);
967 return;
968 }
969
970 if (rsp->fqs_active) {
971 /*
972 * This CPU needs a grace period, but force_quiescent_state()
973 * is running. Tell it to start one on this CPU's behalf.
974 */
975 rsp->fqs_need_gp = 1;
976 raw_spin_unlock_irqrestore(&rnp->lock, flags);
977 return;
978 }
979
980 /* Advance to a new grace period and initialize state. */
981 rsp->gpnum++;
982 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
983 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
984 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
985 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
986 record_gp_stall_check_time(rsp);
987
988 /* Special-case the common single-level case. */
989 if (NUM_RCU_NODES == 1) {
990 rcu_preempt_check_blocked_tasks(rnp);
991 rnp->qsmask = rnp->qsmaskinit;
992 rnp->gpnum = rsp->gpnum;
993 rnp->completed = rsp->completed;
994 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
995 rcu_start_gp_per_cpu(rsp, rnp, rdp);
996 rcu_preempt_boost_start_gp(rnp);
997 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
998 rnp->level, rnp->grplo,
999 rnp->grphi, rnp->qsmask);
1000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1001 return;
1002 }
1003
1004 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1005
1006
1007 /* Exclude any concurrent CPU-hotplug operations. */
1008 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1009
1010 /*
1011 * Set the quiescent-state-needed bits in all the rcu_node
1012 * structures for all currently online CPUs in breadth-first
1013 * order, starting from the root rcu_node structure. This
1014 * operation relies on the layout of the hierarchy within the
1015 * rsp->node[] array. Note that other CPUs will access only
1016 * the leaves of the hierarchy, which still indicate that no
1017 * grace period is in progress, at least until the corresponding
1018 * leaf node has been initialized. In addition, we have excluded
1019 * CPU-hotplug operations.
1020 *
1021 * Note that the grace period cannot complete until we finish
1022 * the initialization process, as there will be at least one
1023 * qsmask bit set in the root node until that time, namely the
1024 * one corresponding to this CPU, due to the fact that we have
1025 * irqs disabled.
1026 */
1027 rcu_for_each_node_breadth_first(rsp, rnp) {
1028 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1029 rcu_preempt_check_blocked_tasks(rnp);
1030 rnp->qsmask = rnp->qsmaskinit;
1031 rnp->gpnum = rsp->gpnum;
1032 rnp->completed = rsp->completed;
1033 if (rnp == rdp->mynode)
1034 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1035 rcu_preempt_boost_start_gp(rnp);
1036 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1037 rnp->level, rnp->grplo,
1038 rnp->grphi, rnp->qsmask);
1039 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1040 }
1041
1042 rnp = rcu_get_root(rsp);
1043 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1044 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1045 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1046 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1047 }
1048
1049 /*
1050 * Report a full set of quiescent states to the specified rcu_state
1051 * data structure. This involves cleaning up after the prior grace
1052 * period and letting rcu_start_gp() start up the next grace period
1053 * if one is needed. Note that the caller must hold rnp->lock, as
1054 * required by rcu_start_gp(), which will release it.
1055 */
1056 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1057 __releases(rcu_get_root(rsp)->lock)
1058 {
1059 unsigned long gp_duration;
1060 struct rcu_node *rnp = rcu_get_root(rsp);
1061 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1062
1063 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1064
1065 /*
1066 * Ensure that all grace-period and pre-grace-period activity
1067 * is seen before the assignment to rsp->completed.
1068 */
1069 smp_mb(); /* See above block comment. */
1070 gp_duration = jiffies - rsp->gp_start;
1071 if (gp_duration > rsp->gp_max)
1072 rsp->gp_max = gp_duration;
1073
1074 /*
1075 * We know the grace period is complete, but to everyone else
1076 * it appears to still be ongoing. But it is also the case
1077 * that to everyone else it looks like there is nothing that
1078 * they can do to advance the grace period. It is therefore
1079 * safe for us to drop the lock in order to mark the grace
1080 * period as completed in all of the rcu_node structures.
1081 *
1082 * But if this CPU needs another grace period, it will take
1083 * care of this while initializing the next grace period.
1084 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1085 * because the callbacks have not yet been advanced: Those
1086 * callbacks are waiting on the grace period that just now
1087 * completed.
1088 */
1089 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1090 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1091
1092 /*
1093 * Propagate new ->completed value to rcu_node structures
1094 * so that other CPUs don't have to wait until the start
1095 * of the next grace period to process their callbacks.
1096 */
1097 rcu_for_each_node_breadth_first(rsp, rnp) {
1098 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1099 rnp->completed = rsp->gpnum;
1100 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1101 }
1102 rnp = rcu_get_root(rsp);
1103 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1104 }
1105
1106 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1107 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1108 rsp->fqs_state = RCU_GP_IDLE;
1109 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1110 }
1111
1112 /*
1113 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1114 * Allows quiescent states for a group of CPUs to be reported at one go
1115 * to the specified rcu_node structure, though all the CPUs in the group
1116 * must be represented by the same rcu_node structure (which need not be
1117 * a leaf rcu_node structure, though it often will be). That structure's
1118 * lock must be held upon entry, and it is released before return.
1119 */
1120 static void
1121 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1122 struct rcu_node *rnp, unsigned long flags)
1123 __releases(rnp->lock)
1124 {
1125 struct rcu_node *rnp_c;
1126
1127 /* Walk up the rcu_node hierarchy. */
1128 for (;;) {
1129 if (!(rnp->qsmask & mask)) {
1130
1131 /* Our bit has already been cleared, so done. */
1132 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1133 return;
1134 }
1135 rnp->qsmask &= ~mask;
1136 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1137 mask, rnp->qsmask, rnp->level,
1138 rnp->grplo, rnp->grphi,
1139 !!rnp->gp_tasks);
1140 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1141
1142 /* Other bits still set at this level, so done. */
1143 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1144 return;
1145 }
1146 mask = rnp->grpmask;
1147 if (rnp->parent == NULL) {
1148
1149 /* No more levels. Exit loop holding root lock. */
1150
1151 break;
1152 }
1153 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1154 rnp_c = rnp;
1155 rnp = rnp->parent;
1156 raw_spin_lock_irqsave(&rnp->lock, flags);
1157 WARN_ON_ONCE(rnp_c->qsmask);
1158 }
1159
1160 /*
1161 * Get here if we are the last CPU to pass through a quiescent
1162 * state for this grace period. Invoke rcu_report_qs_rsp()
1163 * to clean up and start the next grace period if one is needed.
1164 */
1165 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1166 }
1167
1168 /*
1169 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1170 * structure. This must be either called from the specified CPU, or
1171 * called when the specified CPU is known to be offline (and when it is
1172 * also known that no other CPU is concurrently trying to help the offline
1173 * CPU). The lastcomp argument is used to make sure we are still in the
1174 * grace period of interest. We don't want to end the current grace period
1175 * based on quiescent states detected in an earlier grace period!
1176 */
1177 static void
1178 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1179 {
1180 unsigned long flags;
1181 unsigned long mask;
1182 struct rcu_node *rnp;
1183
1184 rnp = rdp->mynode;
1185 raw_spin_lock_irqsave(&rnp->lock, flags);
1186 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1187
1188 /*
1189 * The grace period in which this quiescent state was
1190 * recorded has ended, so don't report it upwards.
1191 * We will instead need a new quiescent state that lies
1192 * within the current grace period.
1193 */
1194 rdp->passed_quiesce = 0; /* need qs for new gp. */
1195 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1196 return;
1197 }
1198 mask = rdp->grpmask;
1199 if ((rnp->qsmask & mask) == 0) {
1200 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1201 } else {
1202 rdp->qs_pending = 0;
1203
1204 /*
1205 * This GP can't end until cpu checks in, so all of our
1206 * callbacks can be processed during the next GP.
1207 */
1208 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1209
1210 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1211 }
1212 }
1213
1214 /*
1215 * Check to see if there is a new grace period of which this CPU
1216 * is not yet aware, and if so, set up local rcu_data state for it.
1217 * Otherwise, see if this CPU has just passed through its first
1218 * quiescent state for this grace period, and record that fact if so.
1219 */
1220 static void
1221 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1222 {
1223 /* If there is now a new grace period, record and return. */
1224 if (check_for_new_grace_period(rsp, rdp))
1225 return;
1226
1227 /*
1228 * Does this CPU still need to do its part for current grace period?
1229 * If no, return and let the other CPUs do their part as well.
1230 */
1231 if (!rdp->qs_pending)
1232 return;
1233
1234 /*
1235 * Was there a quiescent state since the beginning of the grace
1236 * period? If no, then exit and wait for the next call.
1237 */
1238 if (!rdp->passed_quiesce)
1239 return;
1240
1241 /*
1242 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1243 * judge of that).
1244 */
1245 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1246 }
1247
1248 #ifdef CONFIG_HOTPLUG_CPU
1249
1250 /*
1251 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1252 * Also record a quiescent state for this CPU for the current grace period.
1253 * Synchronization and interrupt disabling are not required because
1254 * this function executes in stop_machine() context. Therefore, cleanup
1255 * operations that might block must be done later from the CPU_DEAD
1256 * notifier.
1257 *
1258 * Note that the outgoing CPU's bit has already been cleared in the
1259 * cpu_online_mask. This allows us to randomly pick a callback
1260 * destination from the bits set in that mask.
1261 */
1262 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1263 {
1264 unsigned long flags;
1265 int i;
1266 unsigned long mask;
1267 int need_report;
1268 int receive_cpu = cpumask_any(cpu_online_mask);
1269 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1270 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1271 struct rcu_node *rnp = rdp->mynode; /* For dying CPU. */
1272
1273 /* First, adjust the counts. */
1274 if (rdp->nxtlist != NULL) {
1275 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1276 receive_rdp->qlen += rdp->qlen;
1277 rdp->qlen_lazy = 0;
1278 rdp->qlen = 0;
1279 }
1280
1281 /*
1282 * Next, move ready-to-invoke callbacks to be invoked on some
1283 * other CPU. These will not be required to pass through another
1284 * grace period: They are done, regardless of CPU.
1285 */
1286 if (rdp->nxtlist != NULL &&
1287 rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
1288 struct rcu_head *oldhead;
1289 struct rcu_head **oldtail;
1290 struct rcu_head **newtail;
1291
1292 oldhead = rdp->nxtlist;
1293 oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
1294 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1295 *rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
1296 *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
1297 newtail = rdp->nxttail[RCU_DONE_TAIL];
1298 for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
1299 if (receive_rdp->nxttail[i] == oldtail)
1300 receive_rdp->nxttail[i] = newtail;
1301 if (rdp->nxttail[i] == newtail)
1302 rdp->nxttail[i] = &rdp->nxtlist;
1303 }
1304 }
1305
1306 /*
1307 * Finally, put the rest of the callbacks at the end of the list.
1308 * The ones that made it partway through get to start over: We
1309 * cannot assume that grace periods are synchronized across CPUs.
1310 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1311 * this does not seem compelling. Not yet, anyway.)
1312 */
1313 if (rdp->nxtlist != NULL) {
1314 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1315 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1316 rdp->nxttail[RCU_NEXT_TAIL];
1317 receive_rdp->n_cbs_adopted += rdp->qlen;
1318 rdp->n_cbs_orphaned += rdp->qlen;
1319
1320 rdp->nxtlist = NULL;
1321 for (i = 0; i < RCU_NEXT_SIZE; i++)
1322 rdp->nxttail[i] = &rdp->nxtlist;
1323 }
1324
1325 /*
1326 * Record a quiescent state for the dying CPU. This is safe
1327 * only because we have already cleared out the callbacks.
1328 * (Otherwise, the RCU core might try to schedule the invocation
1329 * of callbacks on this now-offline CPU, which would be bad.)
1330 */
1331 mask = rdp->grpmask; /* rnp->grplo is constant. */
1332 trace_rcu_grace_period(rsp->name,
1333 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1334 "cpuofl");
1335 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1336 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1337
1338 /*
1339 * Remove the dying CPU from the bitmasks in the rcu_node
1340 * hierarchy. Because we are in stop_machine() context, we
1341 * automatically exclude ->onofflock critical sections.
1342 */
1343 do {
1344 raw_spin_lock_irqsave(&rnp->lock, flags);
1345 rnp->qsmaskinit &= ~mask;
1346 if (rnp->qsmaskinit != 0) {
1347 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1348 break;
1349 }
1350 if (rnp == rdp->mynode) {
1351 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1352 if (need_report & RCU_OFL_TASKS_NORM_GP)
1353 rcu_report_unblock_qs_rnp(rnp, flags);
1354 else
1355 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1356 if (need_report & RCU_OFL_TASKS_EXP_GP)
1357 rcu_report_exp_rnp(rsp, rnp, true);
1358 } else
1359 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1360 mask = rnp->grpmask;
1361 rnp = rnp->parent;
1362 } while (rnp != NULL);
1363 }
1364
1365 /*
1366 * The CPU has been completely removed, and some other CPU is reporting
1367 * this fact from process context. Do the remainder of the cleanup.
1368 * There can only be one CPU hotplug operation at a time, so no other
1369 * CPU can be attempting to update rcu_cpu_kthread_task.
1370 */
1371 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1372 {
1373 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1374 struct rcu_node *rnp = rdp->mynode;
1375
1376 rcu_stop_cpu_kthread(cpu);
1377 rcu_node_kthread_setaffinity(rnp, -1);
1378 }
1379
1380 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1381
1382 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1383 {
1384 }
1385
1386 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1387 {
1388 }
1389
1390 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1391
1392 /*
1393 * Invoke any RCU callbacks that have made it to the end of their grace
1394 * period. Thottle as specified by rdp->blimit.
1395 */
1396 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1397 {
1398 unsigned long flags;
1399 struct rcu_head *next, *list, **tail;
1400 int bl, count, count_lazy;
1401
1402 /* If no callbacks are ready, just return.*/
1403 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1404 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1405 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1406 need_resched(), is_idle_task(current),
1407 rcu_is_callbacks_kthread());
1408 return;
1409 }
1410
1411 /*
1412 * Extract the list of ready callbacks, disabling to prevent
1413 * races with call_rcu() from interrupt handlers.
1414 */
1415 local_irq_save(flags);
1416 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1417 bl = rdp->blimit;
1418 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1419 list = rdp->nxtlist;
1420 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1421 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1422 tail = rdp->nxttail[RCU_DONE_TAIL];
1423 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1424 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1425 rdp->nxttail[count] = &rdp->nxtlist;
1426 local_irq_restore(flags);
1427
1428 /* Invoke callbacks. */
1429 count = count_lazy = 0;
1430 while (list) {
1431 next = list->next;
1432 prefetch(next);
1433 debug_rcu_head_unqueue(list);
1434 if (__rcu_reclaim(rsp->name, list))
1435 count_lazy++;
1436 list = next;
1437 /* Stop only if limit reached and CPU has something to do. */
1438 if (++count >= bl &&
1439 (need_resched() ||
1440 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1441 break;
1442 }
1443
1444 local_irq_save(flags);
1445 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1446 is_idle_task(current),
1447 rcu_is_callbacks_kthread());
1448
1449 /* Update count, and requeue any remaining callbacks. */
1450 rdp->qlen_lazy -= count_lazy;
1451 rdp->qlen -= count;
1452 rdp->n_cbs_invoked += count;
1453 if (list != NULL) {
1454 *tail = rdp->nxtlist;
1455 rdp->nxtlist = list;
1456 for (count = 0; count < RCU_NEXT_SIZE; count++)
1457 if (&rdp->nxtlist == rdp->nxttail[count])
1458 rdp->nxttail[count] = tail;
1459 else
1460 break;
1461 }
1462
1463 /* Reinstate batch limit if we have worked down the excess. */
1464 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1465 rdp->blimit = blimit;
1466
1467 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1468 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1469 rdp->qlen_last_fqs_check = 0;
1470 rdp->n_force_qs_snap = rsp->n_force_qs;
1471 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1472 rdp->qlen_last_fqs_check = rdp->qlen;
1473
1474 local_irq_restore(flags);
1475
1476 /* Re-invoke RCU core processing if there are callbacks remaining. */
1477 if (cpu_has_callbacks_ready_to_invoke(rdp))
1478 invoke_rcu_core();
1479 }
1480
1481 /*
1482 * Check to see if this CPU is in a non-context-switch quiescent state
1483 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1484 * Also schedule RCU core processing.
1485 *
1486 * This function must be called from hardirq context. It is normally
1487 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1488 * false, there is no point in invoking rcu_check_callbacks().
1489 */
1490 void rcu_check_callbacks(int cpu, int user)
1491 {
1492 trace_rcu_utilization("Start scheduler-tick");
1493 if (user || rcu_is_cpu_rrupt_from_idle()) {
1494
1495 /*
1496 * Get here if this CPU took its interrupt from user
1497 * mode or from the idle loop, and if this is not a
1498 * nested interrupt. In this case, the CPU is in
1499 * a quiescent state, so note it.
1500 *
1501 * No memory barrier is required here because both
1502 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1503 * variables that other CPUs neither access nor modify,
1504 * at least not while the corresponding CPU is online.
1505 */
1506
1507 rcu_sched_qs(cpu);
1508 rcu_bh_qs(cpu);
1509
1510 } else if (!in_softirq()) {
1511
1512 /*
1513 * Get here if this CPU did not take its interrupt from
1514 * softirq, in other words, if it is not interrupting
1515 * a rcu_bh read-side critical section. This is an _bh
1516 * critical section, so note it.
1517 */
1518
1519 rcu_bh_qs(cpu);
1520 }
1521 rcu_preempt_check_callbacks(cpu);
1522 if (rcu_pending(cpu))
1523 invoke_rcu_core();
1524 trace_rcu_utilization("End scheduler-tick");
1525 }
1526
1527 #ifdef CONFIG_SMP
1528
1529 /*
1530 * Scan the leaf rcu_node structures, processing dyntick state for any that
1531 * have not yet encountered a quiescent state, using the function specified.
1532 * Also initiate boosting for any threads blocked on the root rcu_node.
1533 *
1534 * The caller must have suppressed start of new grace periods.
1535 */
1536 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1537 {
1538 unsigned long bit;
1539 int cpu;
1540 unsigned long flags;
1541 unsigned long mask;
1542 struct rcu_node *rnp;
1543
1544 rcu_for_each_leaf_node(rsp, rnp) {
1545 mask = 0;
1546 raw_spin_lock_irqsave(&rnp->lock, flags);
1547 if (!rcu_gp_in_progress(rsp)) {
1548 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1549 return;
1550 }
1551 if (rnp->qsmask == 0) {
1552 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1553 continue;
1554 }
1555 cpu = rnp->grplo;
1556 bit = 1;
1557 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1558 if ((rnp->qsmask & bit) != 0 &&
1559 f(per_cpu_ptr(rsp->rda, cpu)))
1560 mask |= bit;
1561 }
1562 if (mask != 0) {
1563
1564 /* rcu_report_qs_rnp() releases rnp->lock. */
1565 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1566 continue;
1567 }
1568 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1569 }
1570 rnp = rcu_get_root(rsp);
1571 if (rnp->qsmask == 0) {
1572 raw_spin_lock_irqsave(&rnp->lock, flags);
1573 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1574 }
1575 }
1576
1577 /*
1578 * Force quiescent states on reluctant CPUs, and also detect which
1579 * CPUs are in dyntick-idle mode.
1580 */
1581 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1582 {
1583 unsigned long flags;
1584 struct rcu_node *rnp = rcu_get_root(rsp);
1585
1586 trace_rcu_utilization("Start fqs");
1587 if (!rcu_gp_in_progress(rsp)) {
1588 trace_rcu_utilization("End fqs");
1589 return; /* No grace period in progress, nothing to force. */
1590 }
1591 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1592 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1593 trace_rcu_utilization("End fqs");
1594 return; /* Someone else is already on the job. */
1595 }
1596 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1597 goto unlock_fqs_ret; /* no emergency and done recently. */
1598 rsp->n_force_qs++;
1599 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1600 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1601 if(!rcu_gp_in_progress(rsp)) {
1602 rsp->n_force_qs_ngp++;
1603 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1604 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1605 }
1606 rsp->fqs_active = 1;
1607 switch (rsp->fqs_state) {
1608 case RCU_GP_IDLE:
1609 case RCU_GP_INIT:
1610
1611 break; /* grace period idle or initializing, ignore. */
1612
1613 case RCU_SAVE_DYNTICK:
1614 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1615 break; /* So gcc recognizes the dead code. */
1616
1617 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1618
1619 /* Record dyntick-idle state. */
1620 force_qs_rnp(rsp, dyntick_save_progress_counter);
1621 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1622 if (rcu_gp_in_progress(rsp))
1623 rsp->fqs_state = RCU_FORCE_QS;
1624 break;
1625
1626 case RCU_FORCE_QS:
1627
1628 /* Check dyntick-idle state, send IPI to laggarts. */
1629 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1630 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1631
1632 /* Leave state in case more forcing is required. */
1633
1634 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1635 break;
1636 }
1637 rsp->fqs_active = 0;
1638 if (rsp->fqs_need_gp) {
1639 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1640 rsp->fqs_need_gp = 0;
1641 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1642 trace_rcu_utilization("End fqs");
1643 return;
1644 }
1645 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1646 unlock_fqs_ret:
1647 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1648 trace_rcu_utilization("End fqs");
1649 }
1650
1651 #else /* #ifdef CONFIG_SMP */
1652
1653 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1654 {
1655 set_need_resched();
1656 }
1657
1658 #endif /* #else #ifdef CONFIG_SMP */
1659
1660 /*
1661 * This does the RCU core processing work for the specified rcu_state
1662 * and rcu_data structures. This may be called only from the CPU to
1663 * whom the rdp belongs.
1664 */
1665 static void
1666 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1667 {
1668 unsigned long flags;
1669
1670 WARN_ON_ONCE(rdp->beenonline == 0);
1671
1672 /*
1673 * If an RCU GP has gone long enough, go check for dyntick
1674 * idle CPUs and, if needed, send resched IPIs.
1675 */
1676 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1677 force_quiescent_state(rsp, 1);
1678
1679 /*
1680 * Advance callbacks in response to end of earlier grace
1681 * period that some other CPU ended.
1682 */
1683 rcu_process_gp_end(rsp, rdp);
1684
1685 /* Update RCU state based on any recent quiescent states. */
1686 rcu_check_quiescent_state(rsp, rdp);
1687
1688 /* Does this CPU require a not-yet-started grace period? */
1689 if (cpu_needs_another_gp(rsp, rdp)) {
1690 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1691 rcu_start_gp(rsp, flags); /* releases above lock */
1692 }
1693
1694 /* If there are callbacks ready, invoke them. */
1695 if (cpu_has_callbacks_ready_to_invoke(rdp))
1696 invoke_rcu_callbacks(rsp, rdp);
1697 }
1698
1699 /*
1700 * Do RCU core processing for the current CPU.
1701 */
1702 static void rcu_process_callbacks(struct softirq_action *unused)
1703 {
1704 trace_rcu_utilization("Start RCU core");
1705 __rcu_process_callbacks(&rcu_sched_state,
1706 &__get_cpu_var(rcu_sched_data));
1707 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1708 rcu_preempt_process_callbacks();
1709 trace_rcu_utilization("End RCU core");
1710 }
1711
1712 /*
1713 * Schedule RCU callback invocation. If the specified type of RCU
1714 * does not support RCU priority boosting, just do a direct call,
1715 * otherwise wake up the per-CPU kernel kthread. Note that because we
1716 * are running on the current CPU with interrupts disabled, the
1717 * rcu_cpu_kthread_task cannot disappear out from under us.
1718 */
1719 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1720 {
1721 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1722 return;
1723 if (likely(!rsp->boost)) {
1724 rcu_do_batch(rsp, rdp);
1725 return;
1726 }
1727 invoke_rcu_callbacks_kthread();
1728 }
1729
1730 static void invoke_rcu_core(void)
1731 {
1732 raise_softirq(RCU_SOFTIRQ);
1733 }
1734
1735 static void
1736 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1737 struct rcu_state *rsp, bool lazy)
1738 {
1739 unsigned long flags;
1740 struct rcu_data *rdp;
1741
1742 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1743 debug_rcu_head_queue(head);
1744 head->func = func;
1745 head->next = NULL;
1746
1747 smp_mb(); /* Ensure RCU update seen before callback registry. */
1748
1749 /*
1750 * Opportunistically note grace-period endings and beginnings.
1751 * Note that we might see a beginning right after we see an
1752 * end, but never vice versa, since this CPU has to pass through
1753 * a quiescent state betweentimes.
1754 */
1755 local_irq_save(flags);
1756 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1757 rdp = this_cpu_ptr(rsp->rda);
1758
1759 /* Add the callback to our list. */
1760 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1761 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1762 rdp->qlen++;
1763 if (lazy)
1764 rdp->qlen_lazy++;
1765
1766 if (__is_kfree_rcu_offset((unsigned long)func))
1767 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1768 rdp->qlen_lazy, rdp->qlen);
1769 else
1770 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1771
1772 /* If interrupts were disabled, don't dive into RCU core. */
1773 if (irqs_disabled_flags(flags)) {
1774 local_irq_restore(flags);
1775 return;
1776 }
1777
1778 /*
1779 * Force the grace period if too many callbacks or too long waiting.
1780 * Enforce hysteresis, and don't invoke force_quiescent_state()
1781 * if some other CPU has recently done so. Also, don't bother
1782 * invoking force_quiescent_state() if the newly enqueued callback
1783 * is the only one waiting for a grace period to complete.
1784 */
1785 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1786
1787 /* Are we ignoring a completed grace period? */
1788 rcu_process_gp_end(rsp, rdp);
1789 check_for_new_grace_period(rsp, rdp);
1790
1791 /* Start a new grace period if one not already started. */
1792 if (!rcu_gp_in_progress(rsp)) {
1793 unsigned long nestflag;
1794 struct rcu_node *rnp_root = rcu_get_root(rsp);
1795
1796 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1797 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1798 } else {
1799 /* Give the grace period a kick. */
1800 rdp->blimit = LONG_MAX;
1801 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1802 *rdp->nxttail[RCU_DONE_TAIL] != head)
1803 force_quiescent_state(rsp, 0);
1804 rdp->n_force_qs_snap = rsp->n_force_qs;
1805 rdp->qlen_last_fqs_check = rdp->qlen;
1806 }
1807 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1808 force_quiescent_state(rsp, 1);
1809 local_irq_restore(flags);
1810 }
1811
1812 /*
1813 * Queue an RCU-sched callback for invocation after a grace period.
1814 */
1815 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1816 {
1817 __call_rcu(head, func, &rcu_sched_state, 0);
1818 }
1819 EXPORT_SYMBOL_GPL(call_rcu_sched);
1820
1821 /*
1822 * Queue an RCU callback for invocation after a quicker grace period.
1823 */
1824 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1825 {
1826 __call_rcu(head, func, &rcu_bh_state, 0);
1827 }
1828 EXPORT_SYMBOL_GPL(call_rcu_bh);
1829
1830 /**
1831 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1832 *
1833 * Control will return to the caller some time after a full rcu-sched
1834 * grace period has elapsed, in other words after all currently executing
1835 * rcu-sched read-side critical sections have completed. These read-side
1836 * critical sections are delimited by rcu_read_lock_sched() and
1837 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1838 * local_irq_disable(), and so on may be used in place of
1839 * rcu_read_lock_sched().
1840 *
1841 * This means that all preempt_disable code sequences, including NMI and
1842 * hardware-interrupt handlers, in progress on entry will have completed
1843 * before this primitive returns. However, this does not guarantee that
1844 * softirq handlers will have completed, since in some kernels, these
1845 * handlers can run in process context, and can block.
1846 *
1847 * This primitive provides the guarantees made by the (now removed)
1848 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1849 * guarantees that rcu_read_lock() sections will have completed.
1850 * In "classic RCU", these two guarantees happen to be one and
1851 * the same, but can differ in realtime RCU implementations.
1852 */
1853 void synchronize_sched(void)
1854 {
1855 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1856 !lock_is_held(&rcu_lock_map) &&
1857 !lock_is_held(&rcu_sched_lock_map),
1858 "Illegal synchronize_sched() in RCU-sched read-side critical section");
1859 if (rcu_blocking_is_gp())
1860 return;
1861 wait_rcu_gp(call_rcu_sched);
1862 }
1863 EXPORT_SYMBOL_GPL(synchronize_sched);
1864
1865 /**
1866 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1867 *
1868 * Control will return to the caller some time after a full rcu_bh grace
1869 * period has elapsed, in other words after all currently executing rcu_bh
1870 * read-side critical sections have completed. RCU read-side critical
1871 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1872 * and may be nested.
1873 */
1874 void synchronize_rcu_bh(void)
1875 {
1876 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1877 !lock_is_held(&rcu_lock_map) &&
1878 !lock_is_held(&rcu_sched_lock_map),
1879 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1880 if (rcu_blocking_is_gp())
1881 return;
1882 wait_rcu_gp(call_rcu_bh);
1883 }
1884 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1885
1886 /*
1887 * Check to see if there is any immediate RCU-related work to be done
1888 * by the current CPU, for the specified type of RCU, returning 1 if so.
1889 * The checks are in order of increasing expense: checks that can be
1890 * carried out against CPU-local state are performed first. However,
1891 * we must check for CPU stalls first, else we might not get a chance.
1892 */
1893 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1894 {
1895 struct rcu_node *rnp = rdp->mynode;
1896
1897 rdp->n_rcu_pending++;
1898
1899 /* Check for CPU stalls, if enabled. */
1900 check_cpu_stall(rsp, rdp);
1901
1902 /* Is the RCU core waiting for a quiescent state from this CPU? */
1903 if (rcu_scheduler_fully_active &&
1904 rdp->qs_pending && !rdp->passed_quiesce) {
1905
1906 /*
1907 * If force_quiescent_state() coming soon and this CPU
1908 * needs a quiescent state, and this is either RCU-sched
1909 * or RCU-bh, force a local reschedule.
1910 */
1911 rdp->n_rp_qs_pending++;
1912 if (!rdp->preemptible &&
1913 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1914 jiffies))
1915 set_need_resched();
1916 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1917 rdp->n_rp_report_qs++;
1918 return 1;
1919 }
1920
1921 /* Does this CPU have callbacks ready to invoke? */
1922 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1923 rdp->n_rp_cb_ready++;
1924 return 1;
1925 }
1926
1927 /* Has RCU gone idle with this CPU needing another grace period? */
1928 if (cpu_needs_another_gp(rsp, rdp)) {
1929 rdp->n_rp_cpu_needs_gp++;
1930 return 1;
1931 }
1932
1933 /* Has another RCU grace period completed? */
1934 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1935 rdp->n_rp_gp_completed++;
1936 return 1;
1937 }
1938
1939 /* Has a new RCU grace period started? */
1940 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1941 rdp->n_rp_gp_started++;
1942 return 1;
1943 }
1944
1945 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1946 if (rcu_gp_in_progress(rsp) &&
1947 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1948 rdp->n_rp_need_fqs++;
1949 return 1;
1950 }
1951
1952 /* nothing to do */
1953 rdp->n_rp_need_nothing++;
1954 return 0;
1955 }
1956
1957 /*
1958 * Check to see if there is any immediate RCU-related work to be done
1959 * by the current CPU, returning 1 if so. This function is part of the
1960 * RCU implementation; it is -not- an exported member of the RCU API.
1961 */
1962 static int rcu_pending(int cpu)
1963 {
1964 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1965 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1966 rcu_preempt_pending(cpu);
1967 }
1968
1969 /*
1970 * Check to see if any future RCU-related work will need to be done
1971 * by the current CPU, even if none need be done immediately, returning
1972 * 1 if so.
1973 */
1974 static int rcu_cpu_has_callbacks(int cpu)
1975 {
1976 /* RCU callbacks either ready or pending? */
1977 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1978 per_cpu(rcu_bh_data, cpu).nxtlist ||
1979 rcu_preempt_needs_cpu(cpu);
1980 }
1981
1982 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1983 static atomic_t rcu_barrier_cpu_count;
1984 static DEFINE_MUTEX(rcu_barrier_mutex);
1985 static struct completion rcu_barrier_completion;
1986
1987 static void rcu_barrier_callback(struct rcu_head *notused)
1988 {
1989 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1990 complete(&rcu_barrier_completion);
1991 }
1992
1993 /*
1994 * Called with preemption disabled, and from cross-cpu IRQ context.
1995 */
1996 static void rcu_barrier_func(void *type)
1997 {
1998 int cpu = smp_processor_id();
1999 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2000 void (*call_rcu_func)(struct rcu_head *head,
2001 void (*func)(struct rcu_head *head));
2002
2003 atomic_inc(&rcu_barrier_cpu_count);
2004 call_rcu_func = type;
2005 call_rcu_func(head, rcu_barrier_callback);
2006 }
2007
2008 /*
2009 * Orchestrate the specified type of RCU barrier, waiting for all
2010 * RCU callbacks of the specified type to complete.
2011 */
2012 static void _rcu_barrier(struct rcu_state *rsp,
2013 void (*call_rcu_func)(struct rcu_head *head,
2014 void (*func)(struct rcu_head *head)))
2015 {
2016 BUG_ON(in_interrupt());
2017 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2018 mutex_lock(&rcu_barrier_mutex);
2019 init_completion(&rcu_barrier_completion);
2020 /*
2021 * Initialize rcu_barrier_cpu_count to 1, then invoke
2022 * rcu_barrier_func() on each CPU, so that each CPU also has
2023 * incremented rcu_barrier_cpu_count. Only then is it safe to
2024 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2025 * might complete its grace period before all of the other CPUs
2026 * did their increment, causing this function to return too
2027 * early. Note that on_each_cpu() disables irqs, which prevents
2028 * any CPUs from coming online or going offline until each online
2029 * CPU has queued its RCU-barrier callback.
2030 */
2031 atomic_set(&rcu_barrier_cpu_count, 1);
2032 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2033 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2034 complete(&rcu_barrier_completion);
2035 wait_for_completion(&rcu_barrier_completion);
2036 mutex_unlock(&rcu_barrier_mutex);
2037 }
2038
2039 /**
2040 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2041 */
2042 void rcu_barrier_bh(void)
2043 {
2044 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2045 }
2046 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2047
2048 /**
2049 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2050 */
2051 void rcu_barrier_sched(void)
2052 {
2053 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2054 }
2055 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2056
2057 /*
2058 * Do boot-time initialization of a CPU's per-CPU RCU data.
2059 */
2060 static void __init
2061 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2062 {
2063 unsigned long flags;
2064 int i;
2065 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2066 struct rcu_node *rnp = rcu_get_root(rsp);
2067
2068 /* Set up local state, ensuring consistent view of global state. */
2069 raw_spin_lock_irqsave(&rnp->lock, flags);
2070 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2071 rdp->nxtlist = NULL;
2072 for (i = 0; i < RCU_NEXT_SIZE; i++)
2073 rdp->nxttail[i] = &rdp->nxtlist;
2074 rdp->qlen_lazy = 0;
2075 rdp->qlen = 0;
2076 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2077 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
2078 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2079 rdp->cpu = cpu;
2080 rdp->rsp = rsp;
2081 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2082 }
2083
2084 /*
2085 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2086 * offline event can be happening at a given time. Note also that we
2087 * can accept some slop in the rsp->completed access due to the fact
2088 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2089 */
2090 static void __cpuinit
2091 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2092 {
2093 unsigned long flags;
2094 unsigned long mask;
2095 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2096 struct rcu_node *rnp = rcu_get_root(rsp);
2097
2098 /* Set up local state, ensuring consistent view of global state. */
2099 raw_spin_lock_irqsave(&rnp->lock, flags);
2100 rdp->beenonline = 1; /* We have now been online. */
2101 rdp->preemptible = preemptible;
2102 rdp->qlen_last_fqs_check = 0;
2103 rdp->n_force_qs_snap = rsp->n_force_qs;
2104 rdp->blimit = blimit;
2105 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2106 atomic_set(&rdp->dynticks->dynticks,
2107 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2108 rcu_prepare_for_idle_init(cpu);
2109 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2110
2111 /*
2112 * A new grace period might start here. If so, we won't be part
2113 * of it, but that is OK, as we are currently in a quiescent state.
2114 */
2115
2116 /* Exclude any attempts to start a new GP on large systems. */
2117 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2118
2119 /* Add CPU to rcu_node bitmasks. */
2120 rnp = rdp->mynode;
2121 mask = rdp->grpmask;
2122 do {
2123 /* Exclude any attempts to start a new GP on small systems. */
2124 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2125 rnp->qsmaskinit |= mask;
2126 mask = rnp->grpmask;
2127 if (rnp == rdp->mynode) {
2128 /*
2129 * If there is a grace period in progress, we will
2130 * set up to wait for it next time we run the
2131 * RCU core code.
2132 */
2133 rdp->gpnum = rnp->completed;
2134 rdp->completed = rnp->completed;
2135 rdp->passed_quiesce = 0;
2136 rdp->qs_pending = 0;
2137 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2138 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2139 }
2140 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2141 rnp = rnp->parent;
2142 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2143
2144 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2145 }
2146
2147 static void __cpuinit rcu_prepare_cpu(int cpu)
2148 {
2149 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2150 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2151 rcu_preempt_init_percpu_data(cpu);
2152 }
2153
2154 /*
2155 * Handle CPU online/offline notification events.
2156 */
2157 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2158 unsigned long action, void *hcpu)
2159 {
2160 long cpu = (long)hcpu;
2161 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2162 struct rcu_node *rnp = rdp->mynode;
2163
2164 trace_rcu_utilization("Start CPU hotplug");
2165 switch (action) {
2166 case CPU_UP_PREPARE:
2167 case CPU_UP_PREPARE_FROZEN:
2168 rcu_prepare_cpu(cpu);
2169 rcu_prepare_kthreads(cpu);
2170 break;
2171 case CPU_ONLINE:
2172 case CPU_DOWN_FAILED:
2173 rcu_node_kthread_setaffinity(rnp, -1);
2174 rcu_cpu_kthread_setrt(cpu, 1);
2175 break;
2176 case CPU_DOWN_PREPARE:
2177 rcu_node_kthread_setaffinity(rnp, cpu);
2178 rcu_cpu_kthread_setrt(cpu, 0);
2179 break;
2180 case CPU_DYING:
2181 case CPU_DYING_FROZEN:
2182 /*
2183 * The whole machine is "stopped" except this CPU, so we can
2184 * touch any data without introducing corruption. We send the
2185 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2186 */
2187 rcu_cleanup_dying_cpu(&rcu_bh_state);
2188 rcu_cleanup_dying_cpu(&rcu_sched_state);
2189 rcu_preempt_cleanup_dying_cpu();
2190 rcu_cleanup_after_idle(cpu);
2191 break;
2192 case CPU_DEAD:
2193 case CPU_DEAD_FROZEN:
2194 case CPU_UP_CANCELED:
2195 case CPU_UP_CANCELED_FROZEN:
2196 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2197 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2198 rcu_preempt_cleanup_dead_cpu(cpu);
2199 break;
2200 default:
2201 break;
2202 }
2203 trace_rcu_utilization("End CPU hotplug");
2204 return NOTIFY_OK;
2205 }
2206
2207 /*
2208 * This function is invoked towards the end of the scheduler's initialization
2209 * process. Before this is called, the idle task might contain
2210 * RCU read-side critical sections (during which time, this idle
2211 * task is booting the system). After this function is called, the
2212 * idle tasks are prohibited from containing RCU read-side critical
2213 * sections. This function also enables RCU lockdep checking.
2214 */
2215 void rcu_scheduler_starting(void)
2216 {
2217 WARN_ON(num_online_cpus() != 1);
2218 WARN_ON(nr_context_switches() > 0);
2219 rcu_scheduler_active = 1;
2220 }
2221
2222 /*
2223 * Compute the per-level fanout, either using the exact fanout specified
2224 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2225 */
2226 #ifdef CONFIG_RCU_FANOUT_EXACT
2227 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2228 {
2229 int i;
2230
2231 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2232 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2233 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2234 }
2235 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2236 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2237 {
2238 int ccur;
2239 int cprv;
2240 int i;
2241
2242 cprv = NR_CPUS;
2243 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2244 ccur = rsp->levelcnt[i];
2245 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2246 cprv = ccur;
2247 }
2248 }
2249 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2250
2251 /*
2252 * Helper function for rcu_init() that initializes one rcu_state structure.
2253 */
2254 static void __init rcu_init_one(struct rcu_state *rsp,
2255 struct rcu_data __percpu *rda)
2256 {
2257 static char *buf[] = { "rcu_node_level_0",
2258 "rcu_node_level_1",
2259 "rcu_node_level_2",
2260 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2261 int cpustride = 1;
2262 int i;
2263 int j;
2264 struct rcu_node *rnp;
2265
2266 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2267
2268 /* Initialize the level-tracking arrays. */
2269
2270 for (i = 1; i < NUM_RCU_LVLS; i++)
2271 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2272 rcu_init_levelspread(rsp);
2273
2274 /* Initialize the elements themselves, starting from the leaves. */
2275
2276 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2277 cpustride *= rsp->levelspread[i];
2278 rnp = rsp->level[i];
2279 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2280 raw_spin_lock_init(&rnp->lock);
2281 lockdep_set_class_and_name(&rnp->lock,
2282 &rcu_node_class[i], buf[i]);
2283 rnp->gpnum = 0;
2284 rnp->qsmask = 0;
2285 rnp->qsmaskinit = 0;
2286 rnp->grplo = j * cpustride;
2287 rnp->grphi = (j + 1) * cpustride - 1;
2288 if (rnp->grphi >= NR_CPUS)
2289 rnp->grphi = NR_CPUS - 1;
2290 if (i == 0) {
2291 rnp->grpnum = 0;
2292 rnp->grpmask = 0;
2293 rnp->parent = NULL;
2294 } else {
2295 rnp->grpnum = j % rsp->levelspread[i - 1];
2296 rnp->grpmask = 1UL << rnp->grpnum;
2297 rnp->parent = rsp->level[i - 1] +
2298 j / rsp->levelspread[i - 1];
2299 }
2300 rnp->level = i;
2301 INIT_LIST_HEAD(&rnp->blkd_tasks);
2302 }
2303 }
2304
2305 rsp->rda = rda;
2306 rnp = rsp->level[NUM_RCU_LVLS - 1];
2307 for_each_possible_cpu(i) {
2308 while (i > rnp->grphi)
2309 rnp++;
2310 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2311 rcu_boot_init_percpu_data(i, rsp);
2312 }
2313 }
2314
2315 void __init rcu_init(void)
2316 {
2317 int cpu;
2318
2319 rcu_bootup_announce();
2320 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2321 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2322 __rcu_init_preempt();
2323 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2324
2325 /*
2326 * We don't need protection against CPU-hotplug here because
2327 * this is called early in boot, before either interrupts
2328 * or the scheduler are operational.
2329 */
2330 cpu_notifier(rcu_cpu_notify, 0);
2331 for_each_online_cpu(cpu)
2332 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2333 check_cpu_stall_init();
2334 }
2335
2336 #include "rcutree_plugin.h"
This page took 0.085492 seconds and 6 git commands to generate.