rcu: Don't check irq nesting from rcu idle entry/exit
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53
54 #include "rcutree.h"
55 #include <trace/events/rcu.h>
56
57 #include "rcu.h"
58
59 /* Data structures. */
60
61 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .fqs_state = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
80 }
81
82 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89
90 /*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
99 int rcu_scheduler_active __read_mostly;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
102 /*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114 static int rcu_scheduler_fully_active __read_mostly;
115
116 #ifdef CONFIG_RCU_BOOST
117
118 /*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work);
127
128 #endif /* #ifdef CONFIG_RCU_BOOST */
129
130 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133
134 /*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143 unsigned long rcutorture_testseq;
144 unsigned long rcutorture_vernum;
145
146 /*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151 static int rcu_gp_in_progress(struct rcu_state *rsp)
152 {
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154 }
155
156 /*
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
161 */
162 void rcu_sched_qs(int cpu)
163 {
164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165
166 rdp->passed_quiesce_gpnum = rdp->gpnum;
167 barrier();
168 if (rdp->passed_quiesce == 0)
169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 rdp->passed_quiesce = 1;
171 }
172
173 void rcu_bh_qs(int cpu)
174 {
175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 /*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
188 */
189 void rcu_note_context_switch(int cpu)
190 {
191 trace_rcu_utilization("Start context switch");
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
194 trace_rcu_utilization("End context switch");
195 }
196 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197
198 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199 .dynticks_nesting = DYNTICK_TASK_NESTING,
200 .dynticks = ATOMIC_INIT(1),
201 };
202
203 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
204 static int qhimark = 10000; /* If this many pending, ignore blimit. */
205 static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
207 module_param(blimit, int, 0);
208 module_param(qhimark, int, 0);
209 module_param(qlowmark, int, 0);
210
211 int rcu_cpu_stall_suppress __read_mostly;
212 module_param(rcu_cpu_stall_suppress, int, 0644);
213
214 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
215 static int rcu_pending(int cpu);
216
217 /*
218 * Return the number of RCU-sched batches processed thus far for debug & stats.
219 */
220 long rcu_batches_completed_sched(void)
221 {
222 return rcu_sched_state.completed;
223 }
224 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
225
226 /*
227 * Return the number of RCU BH batches processed thus far for debug & stats.
228 */
229 long rcu_batches_completed_bh(void)
230 {
231 return rcu_bh_state.completed;
232 }
233 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
234
235 /*
236 * Force a quiescent state for RCU BH.
237 */
238 void rcu_bh_force_quiescent_state(void)
239 {
240 force_quiescent_state(&rcu_bh_state, 0);
241 }
242 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
243
244 /*
245 * Record the number of times rcutorture tests have been initiated and
246 * terminated. This information allows the debugfs tracing stats to be
247 * correlated to the rcutorture messages, even when the rcutorture module
248 * is being repeatedly loaded and unloaded. In other words, we cannot
249 * store this state in rcutorture itself.
250 */
251 void rcutorture_record_test_transition(void)
252 {
253 rcutorture_testseq++;
254 rcutorture_vernum = 0;
255 }
256 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
257
258 /*
259 * Record the number of writer passes through the current rcutorture test.
260 * This is also used to correlate debugfs tracing stats with the rcutorture
261 * messages.
262 */
263 void rcutorture_record_progress(unsigned long vernum)
264 {
265 rcutorture_vernum++;
266 }
267 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
268
269 /*
270 * Force a quiescent state for RCU-sched.
271 */
272 void rcu_sched_force_quiescent_state(void)
273 {
274 force_quiescent_state(&rcu_sched_state, 0);
275 }
276 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
277
278 /*
279 * Does the CPU have callbacks ready to be invoked?
280 */
281 static int
282 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
283 {
284 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
285 }
286
287 /*
288 * Does the current CPU require a yet-as-unscheduled grace period?
289 */
290 static int
291 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
292 {
293 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
294 }
295
296 /*
297 * Return the root node of the specified rcu_state structure.
298 */
299 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
300 {
301 return &rsp->node[0];
302 }
303
304 #ifdef CONFIG_SMP
305
306 /*
307 * If the specified CPU is offline, tell the caller that it is in
308 * a quiescent state. Otherwise, whack it with a reschedule IPI.
309 * Grace periods can end up waiting on an offline CPU when that
310 * CPU is in the process of coming online -- it will be added to the
311 * rcu_node bitmasks before it actually makes it online. The same thing
312 * can happen while a CPU is in the process of coming online. Because this
313 * race is quite rare, we check for it after detecting that the grace
314 * period has been delayed rather than checking each and every CPU
315 * each and every time we start a new grace period.
316 */
317 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
318 {
319 /*
320 * If the CPU is offline, it is in a quiescent state. We can
321 * trust its state not to change because interrupts are disabled.
322 */
323 if (cpu_is_offline(rdp->cpu)) {
324 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
325 rdp->offline_fqs++;
326 return 1;
327 }
328
329 /*
330 * The CPU is online, so send it a reschedule IPI. This forces
331 * it through the scheduler, and (inefficiently) also handles cases
332 * where idle loops fail to inform RCU about the CPU being idle.
333 */
334 if (rdp->cpu != smp_processor_id())
335 smp_send_reschedule(rdp->cpu);
336 else
337 set_need_resched();
338 rdp->resched_ipi++;
339 return 0;
340 }
341
342 #endif /* #ifdef CONFIG_SMP */
343
344 /*
345 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
346 *
347 * If the new value of the ->dynticks_nesting counter now is zero,
348 * we really have entered idle, and must do the appropriate accounting.
349 * The caller must have disabled interrupts.
350 */
351 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
352 {
353 trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
354 if (!is_idle_task(current)) {
355 struct task_struct *idle = idle_task(smp_processor_id());
356
357 trace_rcu_dyntick("Error on entry: not idle task",
358 oldval, rdtp->dynticks_nesting);
359 ftrace_dump(DUMP_ALL);
360 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
361 current->pid, current->comm,
362 idle->pid, idle->comm); /* must be idle task! */
363 }
364 rcu_prepare_for_idle(smp_processor_id());
365 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
366 smp_mb__before_atomic_inc(); /* See above. */
367 atomic_inc(&rdtp->dynticks);
368 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
369 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
370 }
371
372 /**
373 * rcu_idle_enter - inform RCU that current CPU is entering idle
374 *
375 * Enter idle mode, in other words, -leave- the mode in which RCU
376 * read-side critical sections can occur. (Though RCU read-side
377 * critical sections can occur in irq handlers in idle, a possibility
378 * handled by irq_enter() and irq_exit().)
379 *
380 * We crowbar the ->dynticks_nesting field to zero to allow for
381 * the possibility of usermode upcalls having messed up our count
382 * of interrupt nesting level during the prior busy period.
383 */
384 void rcu_idle_enter(void)
385 {
386 unsigned long flags;
387 long long oldval;
388 struct rcu_dynticks *rdtp;
389
390 local_irq_save(flags);
391 rdtp = &__get_cpu_var(rcu_dynticks);
392 oldval = rdtp->dynticks_nesting;
393 rdtp->dynticks_nesting = 0;
394 rcu_idle_enter_common(rdtp, oldval);
395 local_irq_restore(flags);
396 }
397
398 /**
399 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
400 *
401 * Exit from an interrupt handler, which might possibly result in entering
402 * idle mode, in other words, leaving the mode in which read-side critical
403 * sections can occur.
404 *
405 * This code assumes that the idle loop never does anything that might
406 * result in unbalanced calls to irq_enter() and irq_exit(). If your
407 * architecture violates this assumption, RCU will give you what you
408 * deserve, good and hard. But very infrequently and irreproducibly.
409 *
410 * Use things like work queues to work around this limitation.
411 *
412 * You have been warned.
413 */
414 void rcu_irq_exit(void)
415 {
416 unsigned long flags;
417 long long oldval;
418 struct rcu_dynticks *rdtp;
419
420 local_irq_save(flags);
421 rdtp = &__get_cpu_var(rcu_dynticks);
422 oldval = rdtp->dynticks_nesting;
423 rdtp->dynticks_nesting--;
424 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
425 if (rdtp->dynticks_nesting)
426 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
427 else
428 rcu_idle_enter_common(rdtp, oldval);
429 local_irq_restore(flags);
430 }
431
432 /*
433 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
434 *
435 * If the new value of the ->dynticks_nesting counter was previously zero,
436 * we really have exited idle, and must do the appropriate accounting.
437 * The caller must have disabled interrupts.
438 */
439 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
440 {
441 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
442 atomic_inc(&rdtp->dynticks);
443 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
444 smp_mb__after_atomic_inc(); /* See above. */
445 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
446 rcu_cleanup_after_idle(smp_processor_id());
447 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
448 if (!is_idle_task(current)) {
449 struct task_struct *idle = idle_task(smp_processor_id());
450
451 trace_rcu_dyntick("Error on exit: not idle task",
452 oldval, rdtp->dynticks_nesting);
453 ftrace_dump(DUMP_ALL);
454 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
455 current->pid, current->comm,
456 idle->pid, idle->comm); /* must be idle task! */
457 }
458 }
459
460 /**
461 * rcu_idle_exit - inform RCU that current CPU is leaving idle
462 *
463 * Exit idle mode, in other words, -enter- the mode in which RCU
464 * read-side critical sections can occur.
465 *
466 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
467 * allow for the possibility of usermode upcalls messing up our count
468 * of interrupt nesting level during the busy period that is just
469 * now starting.
470 */
471 void rcu_idle_exit(void)
472 {
473 unsigned long flags;
474 struct rcu_dynticks *rdtp;
475 long long oldval;
476
477 local_irq_save(flags);
478 rdtp = &__get_cpu_var(rcu_dynticks);
479 oldval = rdtp->dynticks_nesting;
480 WARN_ON_ONCE(oldval != 0);
481 rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
482 rcu_idle_exit_common(rdtp, oldval);
483 local_irq_restore(flags);
484 }
485
486 /**
487 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
488 *
489 * Enter an interrupt handler, which might possibly result in exiting
490 * idle mode, in other words, entering the mode in which read-side critical
491 * sections can occur.
492 *
493 * Note that the Linux kernel is fully capable of entering an interrupt
494 * handler that it never exits, for example when doing upcalls to
495 * user mode! This code assumes that the idle loop never does upcalls to
496 * user mode. If your architecture does do upcalls from the idle loop (or
497 * does anything else that results in unbalanced calls to the irq_enter()
498 * and irq_exit() functions), RCU will give you what you deserve, good
499 * and hard. But very infrequently and irreproducibly.
500 *
501 * Use things like work queues to work around this limitation.
502 *
503 * You have been warned.
504 */
505 void rcu_irq_enter(void)
506 {
507 unsigned long flags;
508 struct rcu_dynticks *rdtp;
509 long long oldval;
510
511 local_irq_save(flags);
512 rdtp = &__get_cpu_var(rcu_dynticks);
513 oldval = rdtp->dynticks_nesting;
514 rdtp->dynticks_nesting++;
515 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
516 if (oldval)
517 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
518 else
519 rcu_idle_exit_common(rdtp, oldval);
520 local_irq_restore(flags);
521 }
522
523 /**
524 * rcu_nmi_enter - inform RCU of entry to NMI context
525 *
526 * If the CPU was idle with dynamic ticks active, and there is no
527 * irq handler running, this updates rdtp->dynticks_nmi to let the
528 * RCU grace-period handling know that the CPU is active.
529 */
530 void rcu_nmi_enter(void)
531 {
532 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
533
534 if (rdtp->dynticks_nmi_nesting == 0 &&
535 (atomic_read(&rdtp->dynticks) & 0x1))
536 return;
537 rdtp->dynticks_nmi_nesting++;
538 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
539 atomic_inc(&rdtp->dynticks);
540 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
541 smp_mb__after_atomic_inc(); /* See above. */
542 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
543 }
544
545 /**
546 * rcu_nmi_exit - inform RCU of exit from NMI context
547 *
548 * If the CPU was idle with dynamic ticks active, and there is no
549 * irq handler running, this updates rdtp->dynticks_nmi to let the
550 * RCU grace-period handling know that the CPU is no longer active.
551 */
552 void rcu_nmi_exit(void)
553 {
554 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
555
556 if (rdtp->dynticks_nmi_nesting == 0 ||
557 --rdtp->dynticks_nmi_nesting != 0)
558 return;
559 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
560 smp_mb__before_atomic_inc(); /* See above. */
561 atomic_inc(&rdtp->dynticks);
562 smp_mb__after_atomic_inc(); /* Force delay to next write. */
563 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
564 }
565
566 #ifdef CONFIG_PROVE_RCU
567
568 /**
569 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
570 *
571 * If the current CPU is in its idle loop and is neither in an interrupt
572 * or NMI handler, return true.
573 */
574 int rcu_is_cpu_idle(void)
575 {
576 int ret;
577
578 preempt_disable();
579 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
580 preempt_enable();
581 return ret;
582 }
583 EXPORT_SYMBOL(rcu_is_cpu_idle);
584
585 #endif /* #ifdef CONFIG_PROVE_RCU */
586
587 /**
588 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
589 *
590 * If the current CPU is idle or running at a first-level (not nested)
591 * interrupt from idle, return true. The caller must have at least
592 * disabled preemption.
593 */
594 int rcu_is_cpu_rrupt_from_idle(void)
595 {
596 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
597 }
598
599 #ifdef CONFIG_SMP
600
601 /*
602 * Snapshot the specified CPU's dynticks counter so that we can later
603 * credit them with an implicit quiescent state. Return 1 if this CPU
604 * is in dynticks idle mode, which is an extended quiescent state.
605 */
606 static int dyntick_save_progress_counter(struct rcu_data *rdp)
607 {
608 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
609 return (rdp->dynticks_snap & 0x1) == 0;
610 }
611
612 /*
613 * Return true if the specified CPU has passed through a quiescent
614 * state by virtue of being in or having passed through an dynticks
615 * idle state since the last call to dyntick_save_progress_counter()
616 * for this same CPU.
617 */
618 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
619 {
620 unsigned int curr;
621 unsigned int snap;
622
623 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
624 snap = (unsigned int)rdp->dynticks_snap;
625
626 /*
627 * If the CPU passed through or entered a dynticks idle phase with
628 * no active irq/NMI handlers, then we can safely pretend that the CPU
629 * already acknowledged the request to pass through a quiescent
630 * state. Either way, that CPU cannot possibly be in an RCU
631 * read-side critical section that started before the beginning
632 * of the current RCU grace period.
633 */
634 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
635 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
636 rdp->dynticks_fqs++;
637 return 1;
638 }
639
640 /* Go check for the CPU being offline. */
641 return rcu_implicit_offline_qs(rdp);
642 }
643
644 #endif /* #ifdef CONFIG_SMP */
645
646 int rcu_cpu_stall_suppress __read_mostly;
647
648 static void record_gp_stall_check_time(struct rcu_state *rsp)
649 {
650 rsp->gp_start = jiffies;
651 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
652 }
653
654 static void print_other_cpu_stall(struct rcu_state *rsp)
655 {
656 int cpu;
657 long delta;
658 unsigned long flags;
659 int ndetected;
660 struct rcu_node *rnp = rcu_get_root(rsp);
661
662 /* Only let one CPU complain about others per time interval. */
663
664 raw_spin_lock_irqsave(&rnp->lock, flags);
665 delta = jiffies - rsp->jiffies_stall;
666 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
667 raw_spin_unlock_irqrestore(&rnp->lock, flags);
668 return;
669 }
670 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
671
672 /*
673 * Now rat on any tasks that got kicked up to the root rcu_node
674 * due to CPU offlining.
675 */
676 ndetected = rcu_print_task_stall(rnp);
677 raw_spin_unlock_irqrestore(&rnp->lock, flags);
678
679 /*
680 * OK, time to rat on our buddy...
681 * See Documentation/RCU/stallwarn.txt for info on how to debug
682 * RCU CPU stall warnings.
683 */
684 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
685 rsp->name);
686 rcu_for_each_leaf_node(rsp, rnp) {
687 raw_spin_lock_irqsave(&rnp->lock, flags);
688 ndetected += rcu_print_task_stall(rnp);
689 raw_spin_unlock_irqrestore(&rnp->lock, flags);
690 if (rnp->qsmask == 0)
691 continue;
692 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
693 if (rnp->qsmask & (1UL << cpu)) {
694 printk(" %d", rnp->grplo + cpu);
695 ndetected++;
696 }
697 }
698 printk("} (detected by %d, t=%ld jiffies)\n",
699 smp_processor_id(), (long)(jiffies - rsp->gp_start));
700 if (ndetected == 0)
701 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
702 else if (!trigger_all_cpu_backtrace())
703 dump_stack();
704
705 /* If so configured, complain about tasks blocking the grace period. */
706
707 rcu_print_detail_task_stall(rsp);
708
709 force_quiescent_state(rsp, 0); /* Kick them all. */
710 }
711
712 static void print_cpu_stall(struct rcu_state *rsp)
713 {
714 unsigned long flags;
715 struct rcu_node *rnp = rcu_get_root(rsp);
716
717 /*
718 * OK, time to rat on ourselves...
719 * See Documentation/RCU/stallwarn.txt for info on how to debug
720 * RCU CPU stall warnings.
721 */
722 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
723 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
724 if (!trigger_all_cpu_backtrace())
725 dump_stack();
726
727 raw_spin_lock_irqsave(&rnp->lock, flags);
728 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
729 rsp->jiffies_stall =
730 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
731 raw_spin_unlock_irqrestore(&rnp->lock, flags);
732
733 set_need_resched(); /* kick ourselves to get things going. */
734 }
735
736 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
737 {
738 unsigned long j;
739 unsigned long js;
740 struct rcu_node *rnp;
741
742 if (rcu_cpu_stall_suppress)
743 return;
744 j = ACCESS_ONCE(jiffies);
745 js = ACCESS_ONCE(rsp->jiffies_stall);
746 rnp = rdp->mynode;
747 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
748
749 /* We haven't checked in, so go dump stack. */
750 print_cpu_stall(rsp);
751
752 } else if (rcu_gp_in_progress(rsp) &&
753 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
754
755 /* They had a few time units to dump stack, so complain. */
756 print_other_cpu_stall(rsp);
757 }
758 }
759
760 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
761 {
762 rcu_cpu_stall_suppress = 1;
763 return NOTIFY_DONE;
764 }
765
766 /**
767 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
768 *
769 * Set the stall-warning timeout way off into the future, thus preventing
770 * any RCU CPU stall-warning messages from appearing in the current set of
771 * RCU grace periods.
772 *
773 * The caller must disable hard irqs.
774 */
775 void rcu_cpu_stall_reset(void)
776 {
777 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
778 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
779 rcu_preempt_stall_reset();
780 }
781
782 static struct notifier_block rcu_panic_block = {
783 .notifier_call = rcu_panic,
784 };
785
786 static void __init check_cpu_stall_init(void)
787 {
788 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
789 }
790
791 /*
792 * Update CPU-local rcu_data state to record the newly noticed grace period.
793 * This is used both when we started the grace period and when we notice
794 * that someone else started the grace period. The caller must hold the
795 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
796 * and must have irqs disabled.
797 */
798 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
799 {
800 if (rdp->gpnum != rnp->gpnum) {
801 /*
802 * If the current grace period is waiting for this CPU,
803 * set up to detect a quiescent state, otherwise don't
804 * go looking for one.
805 */
806 rdp->gpnum = rnp->gpnum;
807 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
808 if (rnp->qsmask & rdp->grpmask) {
809 rdp->qs_pending = 1;
810 rdp->passed_quiesce = 0;
811 } else
812 rdp->qs_pending = 0;
813 }
814 }
815
816 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
817 {
818 unsigned long flags;
819 struct rcu_node *rnp;
820
821 local_irq_save(flags);
822 rnp = rdp->mynode;
823 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
824 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
825 local_irq_restore(flags);
826 return;
827 }
828 __note_new_gpnum(rsp, rnp, rdp);
829 raw_spin_unlock_irqrestore(&rnp->lock, flags);
830 }
831
832 /*
833 * Did someone else start a new RCU grace period start since we last
834 * checked? Update local state appropriately if so. Must be called
835 * on the CPU corresponding to rdp.
836 */
837 static int
838 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
839 {
840 unsigned long flags;
841 int ret = 0;
842
843 local_irq_save(flags);
844 if (rdp->gpnum != rsp->gpnum) {
845 note_new_gpnum(rsp, rdp);
846 ret = 1;
847 }
848 local_irq_restore(flags);
849 return ret;
850 }
851
852 /*
853 * Advance this CPU's callbacks, but only if the current grace period
854 * has ended. This may be called only from the CPU to whom the rdp
855 * belongs. In addition, the corresponding leaf rcu_node structure's
856 * ->lock must be held by the caller, with irqs disabled.
857 */
858 static void
859 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
860 {
861 /* Did another grace period end? */
862 if (rdp->completed != rnp->completed) {
863
864 /* Advance callbacks. No harm if list empty. */
865 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
866 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
867 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
868
869 /* Remember that we saw this grace-period completion. */
870 rdp->completed = rnp->completed;
871 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
872
873 /*
874 * If we were in an extended quiescent state, we may have
875 * missed some grace periods that others CPUs handled on
876 * our behalf. Catch up with this state to avoid noting
877 * spurious new grace periods. If another grace period
878 * has started, then rnp->gpnum will have advanced, so
879 * we will detect this later on.
880 */
881 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
882 rdp->gpnum = rdp->completed;
883
884 /*
885 * If RCU does not need a quiescent state from this CPU,
886 * then make sure that this CPU doesn't go looking for one.
887 */
888 if ((rnp->qsmask & rdp->grpmask) == 0)
889 rdp->qs_pending = 0;
890 }
891 }
892
893 /*
894 * Advance this CPU's callbacks, but only if the current grace period
895 * has ended. This may be called only from the CPU to whom the rdp
896 * belongs.
897 */
898 static void
899 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
900 {
901 unsigned long flags;
902 struct rcu_node *rnp;
903
904 local_irq_save(flags);
905 rnp = rdp->mynode;
906 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
907 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
908 local_irq_restore(flags);
909 return;
910 }
911 __rcu_process_gp_end(rsp, rnp, rdp);
912 raw_spin_unlock_irqrestore(&rnp->lock, flags);
913 }
914
915 /*
916 * Do per-CPU grace-period initialization for running CPU. The caller
917 * must hold the lock of the leaf rcu_node structure corresponding to
918 * this CPU.
919 */
920 static void
921 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
922 {
923 /* Prior grace period ended, so advance callbacks for current CPU. */
924 __rcu_process_gp_end(rsp, rnp, rdp);
925
926 /*
927 * Because this CPU just now started the new grace period, we know
928 * that all of its callbacks will be covered by this upcoming grace
929 * period, even the ones that were registered arbitrarily recently.
930 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
931 *
932 * Other CPUs cannot be sure exactly when the grace period started.
933 * Therefore, their recently registered callbacks must pass through
934 * an additional RCU_NEXT_READY stage, so that they will be handled
935 * by the next RCU grace period.
936 */
937 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
938 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
939
940 /* Set state so that this CPU will detect the next quiescent state. */
941 __note_new_gpnum(rsp, rnp, rdp);
942 }
943
944 /*
945 * Start a new RCU grace period if warranted, re-initializing the hierarchy
946 * in preparation for detecting the next grace period. The caller must hold
947 * the root node's ->lock, which is released before return. Hard irqs must
948 * be disabled.
949 */
950 static void
951 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
952 __releases(rcu_get_root(rsp)->lock)
953 {
954 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
955 struct rcu_node *rnp = rcu_get_root(rsp);
956
957 if (!rcu_scheduler_fully_active ||
958 !cpu_needs_another_gp(rsp, rdp)) {
959 /*
960 * Either the scheduler hasn't yet spawned the first
961 * non-idle task or this CPU does not need another
962 * grace period. Either way, don't start a new grace
963 * period.
964 */
965 raw_spin_unlock_irqrestore(&rnp->lock, flags);
966 return;
967 }
968
969 if (rsp->fqs_active) {
970 /*
971 * This CPU needs a grace period, but force_quiescent_state()
972 * is running. Tell it to start one on this CPU's behalf.
973 */
974 rsp->fqs_need_gp = 1;
975 raw_spin_unlock_irqrestore(&rnp->lock, flags);
976 return;
977 }
978
979 /* Advance to a new grace period and initialize state. */
980 rsp->gpnum++;
981 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
982 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
983 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
984 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
985 record_gp_stall_check_time(rsp);
986
987 /* Special-case the common single-level case. */
988 if (NUM_RCU_NODES == 1) {
989 rcu_preempt_check_blocked_tasks(rnp);
990 rnp->qsmask = rnp->qsmaskinit;
991 rnp->gpnum = rsp->gpnum;
992 rnp->completed = rsp->completed;
993 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
994 rcu_start_gp_per_cpu(rsp, rnp, rdp);
995 rcu_preempt_boost_start_gp(rnp);
996 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
997 rnp->level, rnp->grplo,
998 rnp->grphi, rnp->qsmask);
999 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1000 return;
1001 }
1002
1003 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1004
1005
1006 /* Exclude any concurrent CPU-hotplug operations. */
1007 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1008
1009 /*
1010 * Set the quiescent-state-needed bits in all the rcu_node
1011 * structures for all currently online CPUs in breadth-first
1012 * order, starting from the root rcu_node structure. This
1013 * operation relies on the layout of the hierarchy within the
1014 * rsp->node[] array. Note that other CPUs will access only
1015 * the leaves of the hierarchy, which still indicate that no
1016 * grace period is in progress, at least until the corresponding
1017 * leaf node has been initialized. In addition, we have excluded
1018 * CPU-hotplug operations.
1019 *
1020 * Note that the grace period cannot complete until we finish
1021 * the initialization process, as there will be at least one
1022 * qsmask bit set in the root node until that time, namely the
1023 * one corresponding to this CPU, due to the fact that we have
1024 * irqs disabled.
1025 */
1026 rcu_for_each_node_breadth_first(rsp, rnp) {
1027 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1028 rcu_preempt_check_blocked_tasks(rnp);
1029 rnp->qsmask = rnp->qsmaskinit;
1030 rnp->gpnum = rsp->gpnum;
1031 rnp->completed = rsp->completed;
1032 if (rnp == rdp->mynode)
1033 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1034 rcu_preempt_boost_start_gp(rnp);
1035 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1036 rnp->level, rnp->grplo,
1037 rnp->grphi, rnp->qsmask);
1038 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1039 }
1040
1041 rnp = rcu_get_root(rsp);
1042 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1043 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1044 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1045 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1046 }
1047
1048 /*
1049 * Report a full set of quiescent states to the specified rcu_state
1050 * data structure. This involves cleaning up after the prior grace
1051 * period and letting rcu_start_gp() start up the next grace period
1052 * if one is needed. Note that the caller must hold rnp->lock, as
1053 * required by rcu_start_gp(), which will release it.
1054 */
1055 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1056 __releases(rcu_get_root(rsp)->lock)
1057 {
1058 unsigned long gp_duration;
1059 struct rcu_node *rnp = rcu_get_root(rsp);
1060 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1061
1062 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1063
1064 /*
1065 * Ensure that all grace-period and pre-grace-period activity
1066 * is seen before the assignment to rsp->completed.
1067 */
1068 smp_mb(); /* See above block comment. */
1069 gp_duration = jiffies - rsp->gp_start;
1070 if (gp_duration > rsp->gp_max)
1071 rsp->gp_max = gp_duration;
1072
1073 /*
1074 * We know the grace period is complete, but to everyone else
1075 * it appears to still be ongoing. But it is also the case
1076 * that to everyone else it looks like there is nothing that
1077 * they can do to advance the grace period. It is therefore
1078 * safe for us to drop the lock in order to mark the grace
1079 * period as completed in all of the rcu_node structures.
1080 *
1081 * But if this CPU needs another grace period, it will take
1082 * care of this while initializing the next grace period.
1083 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1084 * because the callbacks have not yet been advanced: Those
1085 * callbacks are waiting on the grace period that just now
1086 * completed.
1087 */
1088 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1089 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1090
1091 /*
1092 * Propagate new ->completed value to rcu_node structures
1093 * so that other CPUs don't have to wait until the start
1094 * of the next grace period to process their callbacks.
1095 */
1096 rcu_for_each_node_breadth_first(rsp, rnp) {
1097 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1098 rnp->completed = rsp->gpnum;
1099 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1100 }
1101 rnp = rcu_get_root(rsp);
1102 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1103 }
1104
1105 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1106 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1107 rsp->fqs_state = RCU_GP_IDLE;
1108 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1109 }
1110
1111 /*
1112 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1113 * Allows quiescent states for a group of CPUs to be reported at one go
1114 * to the specified rcu_node structure, though all the CPUs in the group
1115 * must be represented by the same rcu_node structure (which need not be
1116 * a leaf rcu_node structure, though it often will be). That structure's
1117 * lock must be held upon entry, and it is released before return.
1118 */
1119 static void
1120 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1121 struct rcu_node *rnp, unsigned long flags)
1122 __releases(rnp->lock)
1123 {
1124 struct rcu_node *rnp_c;
1125
1126 /* Walk up the rcu_node hierarchy. */
1127 for (;;) {
1128 if (!(rnp->qsmask & mask)) {
1129
1130 /* Our bit has already been cleared, so done. */
1131 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1132 return;
1133 }
1134 rnp->qsmask &= ~mask;
1135 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1136 mask, rnp->qsmask, rnp->level,
1137 rnp->grplo, rnp->grphi,
1138 !!rnp->gp_tasks);
1139 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1140
1141 /* Other bits still set at this level, so done. */
1142 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1143 return;
1144 }
1145 mask = rnp->grpmask;
1146 if (rnp->parent == NULL) {
1147
1148 /* No more levels. Exit loop holding root lock. */
1149
1150 break;
1151 }
1152 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1153 rnp_c = rnp;
1154 rnp = rnp->parent;
1155 raw_spin_lock_irqsave(&rnp->lock, flags);
1156 WARN_ON_ONCE(rnp_c->qsmask);
1157 }
1158
1159 /*
1160 * Get here if we are the last CPU to pass through a quiescent
1161 * state for this grace period. Invoke rcu_report_qs_rsp()
1162 * to clean up and start the next grace period if one is needed.
1163 */
1164 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1165 }
1166
1167 /*
1168 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1169 * structure. This must be either called from the specified CPU, or
1170 * called when the specified CPU is known to be offline (and when it is
1171 * also known that no other CPU is concurrently trying to help the offline
1172 * CPU). The lastcomp argument is used to make sure we are still in the
1173 * grace period of interest. We don't want to end the current grace period
1174 * based on quiescent states detected in an earlier grace period!
1175 */
1176 static void
1177 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1178 {
1179 unsigned long flags;
1180 unsigned long mask;
1181 struct rcu_node *rnp;
1182
1183 rnp = rdp->mynode;
1184 raw_spin_lock_irqsave(&rnp->lock, flags);
1185 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1186
1187 /*
1188 * The grace period in which this quiescent state was
1189 * recorded has ended, so don't report it upwards.
1190 * We will instead need a new quiescent state that lies
1191 * within the current grace period.
1192 */
1193 rdp->passed_quiesce = 0; /* need qs for new gp. */
1194 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1195 return;
1196 }
1197 mask = rdp->grpmask;
1198 if ((rnp->qsmask & mask) == 0) {
1199 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1200 } else {
1201 rdp->qs_pending = 0;
1202
1203 /*
1204 * This GP can't end until cpu checks in, so all of our
1205 * callbacks can be processed during the next GP.
1206 */
1207 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1208
1209 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1210 }
1211 }
1212
1213 /*
1214 * Check to see if there is a new grace period of which this CPU
1215 * is not yet aware, and if so, set up local rcu_data state for it.
1216 * Otherwise, see if this CPU has just passed through its first
1217 * quiescent state for this grace period, and record that fact if so.
1218 */
1219 static void
1220 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1221 {
1222 /* If there is now a new grace period, record and return. */
1223 if (check_for_new_grace_period(rsp, rdp))
1224 return;
1225
1226 /*
1227 * Does this CPU still need to do its part for current grace period?
1228 * If no, return and let the other CPUs do their part as well.
1229 */
1230 if (!rdp->qs_pending)
1231 return;
1232
1233 /*
1234 * Was there a quiescent state since the beginning of the grace
1235 * period? If no, then exit and wait for the next call.
1236 */
1237 if (!rdp->passed_quiesce)
1238 return;
1239
1240 /*
1241 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1242 * judge of that).
1243 */
1244 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1245 }
1246
1247 #ifdef CONFIG_HOTPLUG_CPU
1248
1249 /*
1250 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1251 * Synchronization is not required because this function executes
1252 * in stop_machine() context.
1253 */
1254 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1255 {
1256 int i;
1257 /* current DYING CPU is cleared in the cpu_online_mask */
1258 int receive_cpu = cpumask_any(cpu_online_mask);
1259 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1260 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1261
1262 if (rdp->nxtlist == NULL)
1263 return; /* irqs disabled, so comparison is stable. */
1264
1265 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1266 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1267 receive_rdp->qlen += rdp->qlen;
1268 receive_rdp->n_cbs_adopted += rdp->qlen;
1269 rdp->n_cbs_orphaned += rdp->qlen;
1270
1271 rdp->nxtlist = NULL;
1272 for (i = 0; i < RCU_NEXT_SIZE; i++)
1273 rdp->nxttail[i] = &rdp->nxtlist;
1274 rdp->qlen = 0;
1275 }
1276
1277 /*
1278 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1279 * and move all callbacks from the outgoing CPU to the current one.
1280 * There can only be one CPU hotplug operation at a time, so no other
1281 * CPU can be attempting to update rcu_cpu_kthread_task.
1282 */
1283 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1284 {
1285 unsigned long flags;
1286 unsigned long mask;
1287 int need_report = 0;
1288 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1289 struct rcu_node *rnp;
1290
1291 rcu_stop_cpu_kthread(cpu);
1292
1293 /* Exclude any attempts to start a new grace period. */
1294 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1295
1296 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1297 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1298 mask = rdp->grpmask; /* rnp->grplo is constant. */
1299 do {
1300 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1301 rnp->qsmaskinit &= ~mask;
1302 if (rnp->qsmaskinit != 0) {
1303 if (rnp != rdp->mynode)
1304 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1305 else
1306 trace_rcu_grace_period(rsp->name,
1307 rnp->gpnum + 1 -
1308 !!(rnp->qsmask & mask),
1309 "cpuofl");
1310 break;
1311 }
1312 if (rnp == rdp->mynode) {
1313 trace_rcu_grace_period(rsp->name,
1314 rnp->gpnum + 1 -
1315 !!(rnp->qsmask & mask),
1316 "cpuofl");
1317 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1318 } else
1319 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1320 mask = rnp->grpmask;
1321 rnp = rnp->parent;
1322 } while (rnp != NULL);
1323
1324 /*
1325 * We still hold the leaf rcu_node structure lock here, and
1326 * irqs are still disabled. The reason for this subterfuge is
1327 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1328 * held leads to deadlock.
1329 */
1330 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1331 rnp = rdp->mynode;
1332 if (need_report & RCU_OFL_TASKS_NORM_GP)
1333 rcu_report_unblock_qs_rnp(rnp, flags);
1334 else
1335 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1336 if (need_report & RCU_OFL_TASKS_EXP_GP)
1337 rcu_report_exp_rnp(rsp, rnp, true);
1338 rcu_node_kthread_setaffinity(rnp, -1);
1339 }
1340
1341 /*
1342 * Remove the specified CPU from the RCU hierarchy and move any pending
1343 * callbacks that it might have to the current CPU. This code assumes
1344 * that at least one CPU in the system will remain running at all times.
1345 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1346 */
1347 static void rcu_offline_cpu(int cpu)
1348 {
1349 __rcu_offline_cpu(cpu, &rcu_sched_state);
1350 __rcu_offline_cpu(cpu, &rcu_bh_state);
1351 rcu_preempt_offline_cpu(cpu);
1352 }
1353
1354 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1355
1356 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1357 {
1358 }
1359
1360 static void rcu_offline_cpu(int cpu)
1361 {
1362 }
1363
1364 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1365
1366 /*
1367 * Invoke any RCU callbacks that have made it to the end of their grace
1368 * period. Thottle as specified by rdp->blimit.
1369 */
1370 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1371 {
1372 unsigned long flags;
1373 struct rcu_head *next, *list, **tail;
1374 int bl, count;
1375
1376 /* If no callbacks are ready, just return.*/
1377 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1378 trace_rcu_batch_start(rsp->name, 0, 0);
1379 trace_rcu_batch_end(rsp->name, 0);
1380 return;
1381 }
1382
1383 /*
1384 * Extract the list of ready callbacks, disabling to prevent
1385 * races with call_rcu() from interrupt handlers.
1386 */
1387 local_irq_save(flags);
1388 bl = rdp->blimit;
1389 trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1390 list = rdp->nxtlist;
1391 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1392 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1393 tail = rdp->nxttail[RCU_DONE_TAIL];
1394 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1395 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1396 rdp->nxttail[count] = &rdp->nxtlist;
1397 local_irq_restore(flags);
1398
1399 /* Invoke callbacks. */
1400 count = 0;
1401 while (list) {
1402 next = list->next;
1403 prefetch(next);
1404 debug_rcu_head_unqueue(list);
1405 __rcu_reclaim(rsp->name, list);
1406 list = next;
1407 if (++count >= bl)
1408 break;
1409 }
1410
1411 local_irq_save(flags);
1412 trace_rcu_batch_end(rsp->name, count);
1413
1414 /* Update count, and requeue any remaining callbacks. */
1415 rdp->qlen -= count;
1416 rdp->n_cbs_invoked += count;
1417 if (list != NULL) {
1418 *tail = rdp->nxtlist;
1419 rdp->nxtlist = list;
1420 for (count = 0; count < RCU_NEXT_SIZE; count++)
1421 if (&rdp->nxtlist == rdp->nxttail[count])
1422 rdp->nxttail[count] = tail;
1423 else
1424 break;
1425 }
1426
1427 /* Reinstate batch limit if we have worked down the excess. */
1428 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1429 rdp->blimit = blimit;
1430
1431 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1432 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1433 rdp->qlen_last_fqs_check = 0;
1434 rdp->n_force_qs_snap = rsp->n_force_qs;
1435 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1436 rdp->qlen_last_fqs_check = rdp->qlen;
1437
1438 local_irq_restore(flags);
1439
1440 /* Re-invoke RCU core processing if there are callbacks remaining. */
1441 if (cpu_has_callbacks_ready_to_invoke(rdp))
1442 invoke_rcu_core();
1443 }
1444
1445 /*
1446 * Check to see if this CPU is in a non-context-switch quiescent state
1447 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1448 * Also schedule RCU core processing.
1449 *
1450 * This function must be called from hardirq context. It is normally
1451 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1452 * false, there is no point in invoking rcu_check_callbacks().
1453 */
1454 void rcu_check_callbacks(int cpu, int user)
1455 {
1456 trace_rcu_utilization("Start scheduler-tick");
1457 if (user || rcu_is_cpu_rrupt_from_idle()) {
1458
1459 /*
1460 * Get here if this CPU took its interrupt from user
1461 * mode or from the idle loop, and if this is not a
1462 * nested interrupt. In this case, the CPU is in
1463 * a quiescent state, so note it.
1464 *
1465 * No memory barrier is required here because both
1466 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1467 * variables that other CPUs neither access nor modify,
1468 * at least not while the corresponding CPU is online.
1469 */
1470
1471 rcu_sched_qs(cpu);
1472 rcu_bh_qs(cpu);
1473
1474 } else if (!in_softirq()) {
1475
1476 /*
1477 * Get here if this CPU did not take its interrupt from
1478 * softirq, in other words, if it is not interrupting
1479 * a rcu_bh read-side critical section. This is an _bh
1480 * critical section, so note it.
1481 */
1482
1483 rcu_bh_qs(cpu);
1484 }
1485 rcu_preempt_check_callbacks(cpu);
1486 if (rcu_pending(cpu))
1487 invoke_rcu_core();
1488 trace_rcu_utilization("End scheduler-tick");
1489 }
1490
1491 #ifdef CONFIG_SMP
1492
1493 /*
1494 * Scan the leaf rcu_node structures, processing dyntick state for any that
1495 * have not yet encountered a quiescent state, using the function specified.
1496 * Also initiate boosting for any threads blocked on the root rcu_node.
1497 *
1498 * The caller must have suppressed start of new grace periods.
1499 */
1500 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1501 {
1502 unsigned long bit;
1503 int cpu;
1504 unsigned long flags;
1505 unsigned long mask;
1506 struct rcu_node *rnp;
1507
1508 rcu_for_each_leaf_node(rsp, rnp) {
1509 mask = 0;
1510 raw_spin_lock_irqsave(&rnp->lock, flags);
1511 if (!rcu_gp_in_progress(rsp)) {
1512 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1513 return;
1514 }
1515 if (rnp->qsmask == 0) {
1516 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1517 continue;
1518 }
1519 cpu = rnp->grplo;
1520 bit = 1;
1521 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1522 if ((rnp->qsmask & bit) != 0 &&
1523 f(per_cpu_ptr(rsp->rda, cpu)))
1524 mask |= bit;
1525 }
1526 if (mask != 0) {
1527
1528 /* rcu_report_qs_rnp() releases rnp->lock. */
1529 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1530 continue;
1531 }
1532 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1533 }
1534 rnp = rcu_get_root(rsp);
1535 if (rnp->qsmask == 0) {
1536 raw_spin_lock_irqsave(&rnp->lock, flags);
1537 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1538 }
1539 }
1540
1541 /*
1542 * Force quiescent states on reluctant CPUs, and also detect which
1543 * CPUs are in dyntick-idle mode.
1544 */
1545 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1546 {
1547 unsigned long flags;
1548 struct rcu_node *rnp = rcu_get_root(rsp);
1549
1550 trace_rcu_utilization("Start fqs");
1551 if (!rcu_gp_in_progress(rsp)) {
1552 trace_rcu_utilization("End fqs");
1553 return; /* No grace period in progress, nothing to force. */
1554 }
1555 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1556 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1557 trace_rcu_utilization("End fqs");
1558 return; /* Someone else is already on the job. */
1559 }
1560 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1561 goto unlock_fqs_ret; /* no emergency and done recently. */
1562 rsp->n_force_qs++;
1563 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1564 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1565 if(!rcu_gp_in_progress(rsp)) {
1566 rsp->n_force_qs_ngp++;
1567 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1568 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1569 }
1570 rsp->fqs_active = 1;
1571 switch (rsp->fqs_state) {
1572 case RCU_GP_IDLE:
1573 case RCU_GP_INIT:
1574
1575 break; /* grace period idle or initializing, ignore. */
1576
1577 case RCU_SAVE_DYNTICK:
1578 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1579 break; /* So gcc recognizes the dead code. */
1580
1581 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1582
1583 /* Record dyntick-idle state. */
1584 force_qs_rnp(rsp, dyntick_save_progress_counter);
1585 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1586 if (rcu_gp_in_progress(rsp))
1587 rsp->fqs_state = RCU_FORCE_QS;
1588 break;
1589
1590 case RCU_FORCE_QS:
1591
1592 /* Check dyntick-idle state, send IPI to laggarts. */
1593 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1594 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1595
1596 /* Leave state in case more forcing is required. */
1597
1598 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1599 break;
1600 }
1601 rsp->fqs_active = 0;
1602 if (rsp->fqs_need_gp) {
1603 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1604 rsp->fqs_need_gp = 0;
1605 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1606 trace_rcu_utilization("End fqs");
1607 return;
1608 }
1609 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1610 unlock_fqs_ret:
1611 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1612 trace_rcu_utilization("End fqs");
1613 }
1614
1615 #else /* #ifdef CONFIG_SMP */
1616
1617 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1618 {
1619 set_need_resched();
1620 }
1621
1622 #endif /* #else #ifdef CONFIG_SMP */
1623
1624 /*
1625 * This does the RCU core processing work for the specified rcu_state
1626 * and rcu_data structures. This may be called only from the CPU to
1627 * whom the rdp belongs.
1628 */
1629 static void
1630 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1631 {
1632 unsigned long flags;
1633
1634 WARN_ON_ONCE(rdp->beenonline == 0);
1635
1636 /*
1637 * If an RCU GP has gone long enough, go check for dyntick
1638 * idle CPUs and, if needed, send resched IPIs.
1639 */
1640 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1641 force_quiescent_state(rsp, 1);
1642
1643 /*
1644 * Advance callbacks in response to end of earlier grace
1645 * period that some other CPU ended.
1646 */
1647 rcu_process_gp_end(rsp, rdp);
1648
1649 /* Update RCU state based on any recent quiescent states. */
1650 rcu_check_quiescent_state(rsp, rdp);
1651
1652 /* Does this CPU require a not-yet-started grace period? */
1653 if (cpu_needs_another_gp(rsp, rdp)) {
1654 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1655 rcu_start_gp(rsp, flags); /* releases above lock */
1656 }
1657
1658 /* If there are callbacks ready, invoke them. */
1659 if (cpu_has_callbacks_ready_to_invoke(rdp))
1660 invoke_rcu_callbacks(rsp, rdp);
1661 }
1662
1663 /*
1664 * Do RCU core processing for the current CPU.
1665 */
1666 static void rcu_process_callbacks(struct softirq_action *unused)
1667 {
1668 trace_rcu_utilization("Start RCU core");
1669 __rcu_process_callbacks(&rcu_sched_state,
1670 &__get_cpu_var(rcu_sched_data));
1671 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1672 rcu_preempt_process_callbacks();
1673 trace_rcu_utilization("End RCU core");
1674 }
1675
1676 /*
1677 * Schedule RCU callback invocation. If the specified type of RCU
1678 * does not support RCU priority boosting, just do a direct call,
1679 * otherwise wake up the per-CPU kernel kthread. Note that because we
1680 * are running on the current CPU with interrupts disabled, the
1681 * rcu_cpu_kthread_task cannot disappear out from under us.
1682 */
1683 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1684 {
1685 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1686 return;
1687 if (likely(!rsp->boost)) {
1688 rcu_do_batch(rsp, rdp);
1689 return;
1690 }
1691 invoke_rcu_callbacks_kthread();
1692 }
1693
1694 static void invoke_rcu_core(void)
1695 {
1696 raise_softirq(RCU_SOFTIRQ);
1697 }
1698
1699 static void
1700 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1701 struct rcu_state *rsp)
1702 {
1703 unsigned long flags;
1704 struct rcu_data *rdp;
1705
1706 debug_rcu_head_queue(head);
1707 head->func = func;
1708 head->next = NULL;
1709
1710 smp_mb(); /* Ensure RCU update seen before callback registry. */
1711
1712 /*
1713 * Opportunistically note grace-period endings and beginnings.
1714 * Note that we might see a beginning right after we see an
1715 * end, but never vice versa, since this CPU has to pass through
1716 * a quiescent state betweentimes.
1717 */
1718 local_irq_save(flags);
1719 rdp = this_cpu_ptr(rsp->rda);
1720
1721 /* Add the callback to our list. */
1722 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1723 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1724 rdp->qlen++;
1725
1726 if (__is_kfree_rcu_offset((unsigned long)func))
1727 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1728 rdp->qlen);
1729 else
1730 trace_rcu_callback(rsp->name, head, rdp->qlen);
1731
1732 /* If interrupts were disabled, don't dive into RCU core. */
1733 if (irqs_disabled_flags(flags)) {
1734 local_irq_restore(flags);
1735 return;
1736 }
1737
1738 /*
1739 * Force the grace period if too many callbacks or too long waiting.
1740 * Enforce hysteresis, and don't invoke force_quiescent_state()
1741 * if some other CPU has recently done so. Also, don't bother
1742 * invoking force_quiescent_state() if the newly enqueued callback
1743 * is the only one waiting for a grace period to complete.
1744 */
1745 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1746
1747 /* Are we ignoring a completed grace period? */
1748 rcu_process_gp_end(rsp, rdp);
1749 check_for_new_grace_period(rsp, rdp);
1750
1751 /* Start a new grace period if one not already started. */
1752 if (!rcu_gp_in_progress(rsp)) {
1753 unsigned long nestflag;
1754 struct rcu_node *rnp_root = rcu_get_root(rsp);
1755
1756 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1757 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1758 } else {
1759 /* Give the grace period a kick. */
1760 rdp->blimit = LONG_MAX;
1761 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1762 *rdp->nxttail[RCU_DONE_TAIL] != head)
1763 force_quiescent_state(rsp, 0);
1764 rdp->n_force_qs_snap = rsp->n_force_qs;
1765 rdp->qlen_last_fqs_check = rdp->qlen;
1766 }
1767 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1768 force_quiescent_state(rsp, 1);
1769 local_irq_restore(flags);
1770 }
1771
1772 /*
1773 * Queue an RCU-sched callback for invocation after a grace period.
1774 */
1775 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1776 {
1777 __call_rcu(head, func, &rcu_sched_state);
1778 }
1779 EXPORT_SYMBOL_GPL(call_rcu_sched);
1780
1781 /*
1782 * Queue an RCU for invocation after a quicker grace period.
1783 */
1784 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1785 {
1786 __call_rcu(head, func, &rcu_bh_state);
1787 }
1788 EXPORT_SYMBOL_GPL(call_rcu_bh);
1789
1790 /**
1791 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1792 *
1793 * Control will return to the caller some time after a full rcu-sched
1794 * grace period has elapsed, in other words after all currently executing
1795 * rcu-sched read-side critical sections have completed. These read-side
1796 * critical sections are delimited by rcu_read_lock_sched() and
1797 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1798 * local_irq_disable(), and so on may be used in place of
1799 * rcu_read_lock_sched().
1800 *
1801 * This means that all preempt_disable code sequences, including NMI and
1802 * hardware-interrupt handlers, in progress on entry will have completed
1803 * before this primitive returns. However, this does not guarantee that
1804 * softirq handlers will have completed, since in some kernels, these
1805 * handlers can run in process context, and can block.
1806 *
1807 * This primitive provides the guarantees made by the (now removed)
1808 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1809 * guarantees that rcu_read_lock() sections will have completed.
1810 * In "classic RCU", these two guarantees happen to be one and
1811 * the same, but can differ in realtime RCU implementations.
1812 */
1813 void synchronize_sched(void)
1814 {
1815 if (rcu_blocking_is_gp())
1816 return;
1817 wait_rcu_gp(call_rcu_sched);
1818 }
1819 EXPORT_SYMBOL_GPL(synchronize_sched);
1820
1821 /**
1822 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1823 *
1824 * Control will return to the caller some time after a full rcu_bh grace
1825 * period has elapsed, in other words after all currently executing rcu_bh
1826 * read-side critical sections have completed. RCU read-side critical
1827 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1828 * and may be nested.
1829 */
1830 void synchronize_rcu_bh(void)
1831 {
1832 if (rcu_blocking_is_gp())
1833 return;
1834 wait_rcu_gp(call_rcu_bh);
1835 }
1836 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1837
1838 /*
1839 * Check to see if there is any immediate RCU-related work to be done
1840 * by the current CPU, for the specified type of RCU, returning 1 if so.
1841 * The checks are in order of increasing expense: checks that can be
1842 * carried out against CPU-local state are performed first. However,
1843 * we must check for CPU stalls first, else we might not get a chance.
1844 */
1845 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1846 {
1847 struct rcu_node *rnp = rdp->mynode;
1848
1849 rdp->n_rcu_pending++;
1850
1851 /* Check for CPU stalls, if enabled. */
1852 check_cpu_stall(rsp, rdp);
1853
1854 /* Is the RCU core waiting for a quiescent state from this CPU? */
1855 if (rcu_scheduler_fully_active &&
1856 rdp->qs_pending && !rdp->passed_quiesce) {
1857
1858 /*
1859 * If force_quiescent_state() coming soon and this CPU
1860 * needs a quiescent state, and this is either RCU-sched
1861 * or RCU-bh, force a local reschedule.
1862 */
1863 rdp->n_rp_qs_pending++;
1864 if (!rdp->preemptible &&
1865 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1866 jiffies))
1867 set_need_resched();
1868 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1869 rdp->n_rp_report_qs++;
1870 return 1;
1871 }
1872
1873 /* Does this CPU have callbacks ready to invoke? */
1874 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1875 rdp->n_rp_cb_ready++;
1876 return 1;
1877 }
1878
1879 /* Has RCU gone idle with this CPU needing another grace period? */
1880 if (cpu_needs_another_gp(rsp, rdp)) {
1881 rdp->n_rp_cpu_needs_gp++;
1882 return 1;
1883 }
1884
1885 /* Has another RCU grace period completed? */
1886 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1887 rdp->n_rp_gp_completed++;
1888 return 1;
1889 }
1890
1891 /* Has a new RCU grace period started? */
1892 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1893 rdp->n_rp_gp_started++;
1894 return 1;
1895 }
1896
1897 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1898 if (rcu_gp_in_progress(rsp) &&
1899 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1900 rdp->n_rp_need_fqs++;
1901 return 1;
1902 }
1903
1904 /* nothing to do */
1905 rdp->n_rp_need_nothing++;
1906 return 0;
1907 }
1908
1909 /*
1910 * Check to see if there is any immediate RCU-related work to be done
1911 * by the current CPU, returning 1 if so. This function is part of the
1912 * RCU implementation; it is -not- an exported member of the RCU API.
1913 */
1914 static int rcu_pending(int cpu)
1915 {
1916 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1917 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1918 rcu_preempt_pending(cpu);
1919 }
1920
1921 /*
1922 * Check to see if any future RCU-related work will need to be done
1923 * by the current CPU, even if none need be done immediately, returning
1924 * 1 if so.
1925 */
1926 static int rcu_cpu_has_callbacks(int cpu)
1927 {
1928 /* RCU callbacks either ready or pending? */
1929 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1930 per_cpu(rcu_bh_data, cpu).nxtlist ||
1931 rcu_preempt_needs_cpu(cpu);
1932 }
1933
1934 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1935 static atomic_t rcu_barrier_cpu_count;
1936 static DEFINE_MUTEX(rcu_barrier_mutex);
1937 static struct completion rcu_barrier_completion;
1938
1939 static void rcu_barrier_callback(struct rcu_head *notused)
1940 {
1941 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1942 complete(&rcu_barrier_completion);
1943 }
1944
1945 /*
1946 * Called with preemption disabled, and from cross-cpu IRQ context.
1947 */
1948 static void rcu_barrier_func(void *type)
1949 {
1950 int cpu = smp_processor_id();
1951 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1952 void (*call_rcu_func)(struct rcu_head *head,
1953 void (*func)(struct rcu_head *head));
1954
1955 atomic_inc(&rcu_barrier_cpu_count);
1956 call_rcu_func = type;
1957 call_rcu_func(head, rcu_barrier_callback);
1958 }
1959
1960 /*
1961 * Orchestrate the specified type of RCU barrier, waiting for all
1962 * RCU callbacks of the specified type to complete.
1963 */
1964 static void _rcu_barrier(struct rcu_state *rsp,
1965 void (*call_rcu_func)(struct rcu_head *head,
1966 void (*func)(struct rcu_head *head)))
1967 {
1968 BUG_ON(in_interrupt());
1969 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1970 mutex_lock(&rcu_barrier_mutex);
1971 init_completion(&rcu_barrier_completion);
1972 /*
1973 * Initialize rcu_barrier_cpu_count to 1, then invoke
1974 * rcu_barrier_func() on each CPU, so that each CPU also has
1975 * incremented rcu_barrier_cpu_count. Only then is it safe to
1976 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1977 * might complete its grace period before all of the other CPUs
1978 * did their increment, causing this function to return too
1979 * early. Note that on_each_cpu() disables irqs, which prevents
1980 * any CPUs from coming online or going offline until each online
1981 * CPU has queued its RCU-barrier callback.
1982 */
1983 atomic_set(&rcu_barrier_cpu_count, 1);
1984 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1985 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1986 complete(&rcu_barrier_completion);
1987 wait_for_completion(&rcu_barrier_completion);
1988 mutex_unlock(&rcu_barrier_mutex);
1989 }
1990
1991 /**
1992 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1993 */
1994 void rcu_barrier_bh(void)
1995 {
1996 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1997 }
1998 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1999
2000 /**
2001 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2002 */
2003 void rcu_barrier_sched(void)
2004 {
2005 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2006 }
2007 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2008
2009 /*
2010 * Do boot-time initialization of a CPU's per-CPU RCU data.
2011 */
2012 static void __init
2013 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2014 {
2015 unsigned long flags;
2016 int i;
2017 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2018 struct rcu_node *rnp = rcu_get_root(rsp);
2019
2020 /* Set up local state, ensuring consistent view of global state. */
2021 raw_spin_lock_irqsave(&rnp->lock, flags);
2022 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2023 rdp->nxtlist = NULL;
2024 for (i = 0; i < RCU_NEXT_SIZE; i++)
2025 rdp->nxttail[i] = &rdp->nxtlist;
2026 rdp->qlen = 0;
2027 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2028 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
2029 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2030 rdp->cpu = cpu;
2031 rdp->rsp = rsp;
2032 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2033 }
2034
2035 /*
2036 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2037 * offline event can be happening at a given time. Note also that we
2038 * can accept some slop in the rsp->completed access due to the fact
2039 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2040 */
2041 static void __cpuinit
2042 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2043 {
2044 unsigned long flags;
2045 unsigned long mask;
2046 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2047 struct rcu_node *rnp = rcu_get_root(rsp);
2048
2049 /* Set up local state, ensuring consistent view of global state. */
2050 raw_spin_lock_irqsave(&rnp->lock, flags);
2051 rdp->beenonline = 1; /* We have now been online. */
2052 rdp->preemptible = preemptible;
2053 rdp->qlen_last_fqs_check = 0;
2054 rdp->n_force_qs_snap = rsp->n_force_qs;
2055 rdp->blimit = blimit;
2056 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2057 atomic_set(&rdp->dynticks->dynticks,
2058 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2059 rcu_prepare_for_idle_init(cpu);
2060 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2061
2062 /*
2063 * A new grace period might start here. If so, we won't be part
2064 * of it, but that is OK, as we are currently in a quiescent state.
2065 */
2066
2067 /* Exclude any attempts to start a new GP on large systems. */
2068 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2069
2070 /* Add CPU to rcu_node bitmasks. */
2071 rnp = rdp->mynode;
2072 mask = rdp->grpmask;
2073 do {
2074 /* Exclude any attempts to start a new GP on small systems. */
2075 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2076 rnp->qsmaskinit |= mask;
2077 mask = rnp->grpmask;
2078 if (rnp == rdp->mynode) {
2079 /*
2080 * If there is a grace period in progress, we will
2081 * set up to wait for it next time we run the
2082 * RCU core code.
2083 */
2084 rdp->gpnum = rnp->completed;
2085 rdp->completed = rnp->completed;
2086 rdp->passed_quiesce = 0;
2087 rdp->qs_pending = 0;
2088 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2089 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2090 }
2091 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2092 rnp = rnp->parent;
2093 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2094
2095 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2096 }
2097
2098 static void __cpuinit rcu_prepare_cpu(int cpu)
2099 {
2100 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2101 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2102 rcu_preempt_init_percpu_data(cpu);
2103 }
2104
2105 /*
2106 * Handle CPU online/offline notification events.
2107 */
2108 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2109 unsigned long action, void *hcpu)
2110 {
2111 long cpu = (long)hcpu;
2112 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2113 struct rcu_node *rnp = rdp->mynode;
2114
2115 trace_rcu_utilization("Start CPU hotplug");
2116 switch (action) {
2117 case CPU_UP_PREPARE:
2118 case CPU_UP_PREPARE_FROZEN:
2119 rcu_prepare_cpu(cpu);
2120 rcu_prepare_kthreads(cpu);
2121 break;
2122 case CPU_ONLINE:
2123 case CPU_DOWN_FAILED:
2124 rcu_node_kthread_setaffinity(rnp, -1);
2125 rcu_cpu_kthread_setrt(cpu, 1);
2126 break;
2127 case CPU_DOWN_PREPARE:
2128 rcu_node_kthread_setaffinity(rnp, cpu);
2129 rcu_cpu_kthread_setrt(cpu, 0);
2130 break;
2131 case CPU_DYING:
2132 case CPU_DYING_FROZEN:
2133 /*
2134 * The whole machine is "stopped" except this CPU, so we can
2135 * touch any data without introducing corruption. We send the
2136 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2137 */
2138 rcu_send_cbs_to_online(&rcu_bh_state);
2139 rcu_send_cbs_to_online(&rcu_sched_state);
2140 rcu_preempt_send_cbs_to_online();
2141 rcu_cleanup_after_idle(cpu);
2142 break;
2143 case CPU_DEAD:
2144 case CPU_DEAD_FROZEN:
2145 case CPU_UP_CANCELED:
2146 case CPU_UP_CANCELED_FROZEN:
2147 rcu_offline_cpu(cpu);
2148 break;
2149 default:
2150 break;
2151 }
2152 trace_rcu_utilization("End CPU hotplug");
2153 return NOTIFY_OK;
2154 }
2155
2156 /*
2157 * This function is invoked towards the end of the scheduler's initialization
2158 * process. Before this is called, the idle task might contain
2159 * RCU read-side critical sections (during which time, this idle
2160 * task is booting the system). After this function is called, the
2161 * idle tasks are prohibited from containing RCU read-side critical
2162 * sections. This function also enables RCU lockdep checking.
2163 */
2164 void rcu_scheduler_starting(void)
2165 {
2166 WARN_ON(num_online_cpus() != 1);
2167 WARN_ON(nr_context_switches() > 0);
2168 rcu_scheduler_active = 1;
2169 }
2170
2171 /*
2172 * Compute the per-level fanout, either using the exact fanout specified
2173 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2174 */
2175 #ifdef CONFIG_RCU_FANOUT_EXACT
2176 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2177 {
2178 int i;
2179
2180 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2181 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2182 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2183 }
2184 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2185 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2186 {
2187 int ccur;
2188 int cprv;
2189 int i;
2190
2191 cprv = NR_CPUS;
2192 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2193 ccur = rsp->levelcnt[i];
2194 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2195 cprv = ccur;
2196 }
2197 }
2198 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2199
2200 /*
2201 * Helper function for rcu_init() that initializes one rcu_state structure.
2202 */
2203 static void __init rcu_init_one(struct rcu_state *rsp,
2204 struct rcu_data __percpu *rda)
2205 {
2206 static char *buf[] = { "rcu_node_level_0",
2207 "rcu_node_level_1",
2208 "rcu_node_level_2",
2209 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2210 int cpustride = 1;
2211 int i;
2212 int j;
2213 struct rcu_node *rnp;
2214
2215 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2216
2217 /* Initialize the level-tracking arrays. */
2218
2219 for (i = 1; i < NUM_RCU_LVLS; i++)
2220 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2221 rcu_init_levelspread(rsp);
2222
2223 /* Initialize the elements themselves, starting from the leaves. */
2224
2225 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2226 cpustride *= rsp->levelspread[i];
2227 rnp = rsp->level[i];
2228 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2229 raw_spin_lock_init(&rnp->lock);
2230 lockdep_set_class_and_name(&rnp->lock,
2231 &rcu_node_class[i], buf[i]);
2232 rnp->gpnum = 0;
2233 rnp->qsmask = 0;
2234 rnp->qsmaskinit = 0;
2235 rnp->grplo = j * cpustride;
2236 rnp->grphi = (j + 1) * cpustride - 1;
2237 if (rnp->grphi >= NR_CPUS)
2238 rnp->grphi = NR_CPUS - 1;
2239 if (i == 0) {
2240 rnp->grpnum = 0;
2241 rnp->grpmask = 0;
2242 rnp->parent = NULL;
2243 } else {
2244 rnp->grpnum = j % rsp->levelspread[i - 1];
2245 rnp->grpmask = 1UL << rnp->grpnum;
2246 rnp->parent = rsp->level[i - 1] +
2247 j / rsp->levelspread[i - 1];
2248 }
2249 rnp->level = i;
2250 INIT_LIST_HEAD(&rnp->blkd_tasks);
2251 }
2252 }
2253
2254 rsp->rda = rda;
2255 rnp = rsp->level[NUM_RCU_LVLS - 1];
2256 for_each_possible_cpu(i) {
2257 while (i > rnp->grphi)
2258 rnp++;
2259 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2260 rcu_boot_init_percpu_data(i, rsp);
2261 }
2262 }
2263
2264 void __init rcu_init(void)
2265 {
2266 int cpu;
2267
2268 rcu_bootup_announce();
2269 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2270 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2271 __rcu_init_preempt();
2272 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2273
2274 /*
2275 * We don't need protection against CPU-hotplug here because
2276 * this is called early in boot, before either interrupts
2277 * or the scheduler are operational.
2278 */
2279 cpu_notifier(rcu_cpu_notify, 0);
2280 for_each_online_cpu(cpu)
2281 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2282 check_cpu_stall_init();
2283 }
2284
2285 #include "rcutree_plugin.h"
This page took 0.07725 seconds and 6 git commands to generate.