rcu: Enable fourth level of TREE_RCU hierarchy
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50
51 #include "rcutree.h"
52
53 /* Data structures. */
54
55 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
56
57 #define RCU_STATE_INITIALIZER(name) { \
58 .level = { &name.node[0] }, \
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
65 }, \
66 .signaled = RCU_GP_IDLE, \
67 .gpnum = -300, \
68 .completed = -300, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &name.orphan_cbs_list, \
72 .orphan_qlen = 0, \
73 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 }
77
78 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
80
81 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
83
84 static int rcu_scheduler_active __read_mostly;
85
86
87 /*
88 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
89 * permit this function to be invoked without holding the root rcu_node
90 * structure's ->lock, but of course results can be subject to change.
91 */
92 static int rcu_gp_in_progress(struct rcu_state *rsp)
93 {
94 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
95 }
96
97 /*
98 * Note a quiescent state. Because we do not need to know
99 * how many quiescent states passed, just if there was at least
100 * one since the start of the grace period, this just sets a flag.
101 */
102 void rcu_sched_qs(int cpu)
103 {
104 struct rcu_data *rdp;
105
106 rdp = &per_cpu(rcu_sched_data, cpu);
107 rdp->passed_quiesc_completed = rdp->gpnum - 1;
108 barrier();
109 rdp->passed_quiesc = 1;
110 rcu_preempt_note_context_switch(cpu);
111 }
112
113 void rcu_bh_qs(int cpu)
114 {
115 struct rcu_data *rdp;
116
117 rdp = &per_cpu(rcu_bh_data, cpu);
118 rdp->passed_quiesc_completed = rdp->gpnum - 1;
119 barrier();
120 rdp->passed_quiesc = 1;
121 }
122
123 #ifdef CONFIG_NO_HZ
124 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
125 .dynticks_nesting = 1,
126 .dynticks = 1,
127 };
128 #endif /* #ifdef CONFIG_NO_HZ */
129
130 static int blimit = 10; /* Maximum callbacks per softirq. */
131 static int qhimark = 10000; /* If this many pending, ignore blimit. */
132 static int qlowmark = 100; /* Once only this many pending, use blimit. */
133
134 module_param(blimit, int, 0);
135 module_param(qhimark, int, 0);
136 module_param(qlowmark, int, 0);
137
138 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
139 static int rcu_pending(int cpu);
140
141 /*
142 * Return the number of RCU-sched batches processed thus far for debug & stats.
143 */
144 long rcu_batches_completed_sched(void)
145 {
146 return rcu_sched_state.completed;
147 }
148 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
149
150 /*
151 * Return the number of RCU BH batches processed thus far for debug & stats.
152 */
153 long rcu_batches_completed_bh(void)
154 {
155 return rcu_bh_state.completed;
156 }
157 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
158
159 /*
160 * Does the CPU have callbacks ready to be invoked?
161 */
162 static int
163 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
164 {
165 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
166 }
167
168 /*
169 * Does the current CPU require a yet-as-unscheduled grace period?
170 */
171 static int
172 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
173 {
174 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
175 }
176
177 /*
178 * Return the root node of the specified rcu_state structure.
179 */
180 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
181 {
182 return &rsp->node[0];
183 }
184
185 #ifdef CONFIG_SMP
186
187 /*
188 * If the specified CPU is offline, tell the caller that it is in
189 * a quiescent state. Otherwise, whack it with a reschedule IPI.
190 * Grace periods can end up waiting on an offline CPU when that
191 * CPU is in the process of coming online -- it will be added to the
192 * rcu_node bitmasks before it actually makes it online. The same thing
193 * can happen while a CPU is in the process of coming online. Because this
194 * race is quite rare, we check for it after detecting that the grace
195 * period has been delayed rather than checking each and every CPU
196 * each and every time we start a new grace period.
197 */
198 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
199 {
200 /*
201 * If the CPU is offline, it is in a quiescent state. We can
202 * trust its state not to change because interrupts are disabled.
203 */
204 if (cpu_is_offline(rdp->cpu)) {
205 rdp->offline_fqs++;
206 return 1;
207 }
208
209 /* If preemptable RCU, no point in sending reschedule IPI. */
210 if (rdp->preemptable)
211 return 0;
212
213 /* The CPU is online, so send it a reschedule IPI. */
214 if (rdp->cpu != smp_processor_id())
215 smp_send_reschedule(rdp->cpu);
216 else
217 set_need_resched();
218 rdp->resched_ipi++;
219 return 0;
220 }
221
222 #endif /* #ifdef CONFIG_SMP */
223
224 #ifdef CONFIG_NO_HZ
225
226 /**
227 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
228 *
229 * Enter nohz mode, in other words, -leave- the mode in which RCU
230 * read-side critical sections can occur. (Though RCU read-side
231 * critical sections can occur in irq handlers in nohz mode, a possibility
232 * handled by rcu_irq_enter() and rcu_irq_exit()).
233 */
234 void rcu_enter_nohz(void)
235 {
236 unsigned long flags;
237 struct rcu_dynticks *rdtp;
238
239 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
240 local_irq_save(flags);
241 rdtp = &__get_cpu_var(rcu_dynticks);
242 rdtp->dynticks++;
243 rdtp->dynticks_nesting--;
244 WARN_ON_ONCE(rdtp->dynticks & 0x1);
245 local_irq_restore(flags);
246 }
247
248 /*
249 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
250 *
251 * Exit nohz mode, in other words, -enter- the mode in which RCU
252 * read-side critical sections normally occur.
253 */
254 void rcu_exit_nohz(void)
255 {
256 unsigned long flags;
257 struct rcu_dynticks *rdtp;
258
259 local_irq_save(flags);
260 rdtp = &__get_cpu_var(rcu_dynticks);
261 rdtp->dynticks++;
262 rdtp->dynticks_nesting++;
263 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
264 local_irq_restore(flags);
265 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
266 }
267
268 /**
269 * rcu_nmi_enter - inform RCU of entry to NMI context
270 *
271 * If the CPU was idle with dynamic ticks active, and there is no
272 * irq handler running, this updates rdtp->dynticks_nmi to let the
273 * RCU grace-period handling know that the CPU is active.
274 */
275 void rcu_nmi_enter(void)
276 {
277 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
278
279 if (rdtp->dynticks & 0x1)
280 return;
281 rdtp->dynticks_nmi++;
282 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
283 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
284 }
285
286 /**
287 * rcu_nmi_exit - inform RCU of exit from NMI context
288 *
289 * If the CPU was idle with dynamic ticks active, and there is no
290 * irq handler running, this updates rdtp->dynticks_nmi to let the
291 * RCU grace-period handling know that the CPU is no longer active.
292 */
293 void rcu_nmi_exit(void)
294 {
295 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
296
297 if (rdtp->dynticks & 0x1)
298 return;
299 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
300 rdtp->dynticks_nmi++;
301 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
302 }
303
304 /**
305 * rcu_irq_enter - inform RCU of entry to hard irq context
306 *
307 * If the CPU was idle with dynamic ticks active, this updates the
308 * rdtp->dynticks to let the RCU handling know that the CPU is active.
309 */
310 void rcu_irq_enter(void)
311 {
312 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
313
314 if (rdtp->dynticks_nesting++)
315 return;
316 rdtp->dynticks++;
317 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
318 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
319 }
320
321 /**
322 * rcu_irq_exit - inform RCU of exit from hard irq context
323 *
324 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
325 * to put let the RCU handling be aware that the CPU is going back to idle
326 * with no ticks.
327 */
328 void rcu_irq_exit(void)
329 {
330 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
331
332 if (--rdtp->dynticks_nesting)
333 return;
334 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
335 rdtp->dynticks++;
336 WARN_ON_ONCE(rdtp->dynticks & 0x1);
337
338 /* If the interrupt queued a callback, get out of dyntick mode. */
339 if (__get_cpu_var(rcu_sched_data).nxtlist ||
340 __get_cpu_var(rcu_bh_data).nxtlist)
341 set_need_resched();
342 }
343
344 #ifdef CONFIG_SMP
345
346 /*
347 * Snapshot the specified CPU's dynticks counter so that we can later
348 * credit them with an implicit quiescent state. Return 1 if this CPU
349 * is in dynticks idle mode, which is an extended quiescent state.
350 */
351 static int dyntick_save_progress_counter(struct rcu_data *rdp)
352 {
353 int ret;
354 int snap;
355 int snap_nmi;
356
357 snap = rdp->dynticks->dynticks;
358 snap_nmi = rdp->dynticks->dynticks_nmi;
359 smp_mb(); /* Order sampling of snap with end of grace period. */
360 rdp->dynticks_snap = snap;
361 rdp->dynticks_nmi_snap = snap_nmi;
362 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
363 if (ret)
364 rdp->dynticks_fqs++;
365 return ret;
366 }
367
368 /*
369 * Return true if the specified CPU has passed through a quiescent
370 * state by virtue of being in or having passed through an dynticks
371 * idle state since the last call to dyntick_save_progress_counter()
372 * for this same CPU.
373 */
374 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
375 {
376 long curr;
377 long curr_nmi;
378 long snap;
379 long snap_nmi;
380
381 curr = rdp->dynticks->dynticks;
382 snap = rdp->dynticks_snap;
383 curr_nmi = rdp->dynticks->dynticks_nmi;
384 snap_nmi = rdp->dynticks_nmi_snap;
385 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
386
387 /*
388 * If the CPU passed through or entered a dynticks idle phase with
389 * no active irq/NMI handlers, then we can safely pretend that the CPU
390 * already acknowledged the request to pass through a quiescent
391 * state. Either way, that CPU cannot possibly be in an RCU
392 * read-side critical section that started before the beginning
393 * of the current RCU grace period.
394 */
395 if ((curr != snap || (curr & 0x1) == 0) &&
396 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
397 rdp->dynticks_fqs++;
398 return 1;
399 }
400
401 /* Go check for the CPU being offline. */
402 return rcu_implicit_offline_qs(rdp);
403 }
404
405 #endif /* #ifdef CONFIG_SMP */
406
407 #else /* #ifdef CONFIG_NO_HZ */
408
409 #ifdef CONFIG_SMP
410
411 static int dyntick_save_progress_counter(struct rcu_data *rdp)
412 {
413 return 0;
414 }
415
416 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
417 {
418 return rcu_implicit_offline_qs(rdp);
419 }
420
421 #endif /* #ifdef CONFIG_SMP */
422
423 #endif /* #else #ifdef CONFIG_NO_HZ */
424
425 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
426
427 static void record_gp_stall_check_time(struct rcu_state *rsp)
428 {
429 rsp->gp_start = jiffies;
430 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
431 }
432
433 static void print_other_cpu_stall(struct rcu_state *rsp)
434 {
435 int cpu;
436 long delta;
437 unsigned long flags;
438 struct rcu_node *rnp = rcu_get_root(rsp);
439
440 /* Only let one CPU complain about others per time interval. */
441
442 spin_lock_irqsave(&rnp->lock, flags);
443 delta = jiffies - rsp->jiffies_stall;
444 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
445 spin_unlock_irqrestore(&rnp->lock, flags);
446 return;
447 }
448 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
449
450 /*
451 * Now rat on any tasks that got kicked up to the root rcu_node
452 * due to CPU offlining.
453 */
454 rcu_print_task_stall(rnp);
455 spin_unlock_irqrestore(&rnp->lock, flags);
456
457 /* OK, time to rat on our buddy... */
458
459 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
460 rcu_for_each_leaf_node(rsp, rnp) {
461 rcu_print_task_stall(rnp);
462 if (rnp->qsmask == 0)
463 continue;
464 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
465 if (rnp->qsmask & (1UL << cpu))
466 printk(" %d", rnp->grplo + cpu);
467 }
468 printk(" (detected by %d, t=%ld jiffies)\n",
469 smp_processor_id(), (long)(jiffies - rsp->gp_start));
470 trigger_all_cpu_backtrace();
471
472 force_quiescent_state(rsp, 0); /* Kick them all. */
473 }
474
475 static void print_cpu_stall(struct rcu_state *rsp)
476 {
477 unsigned long flags;
478 struct rcu_node *rnp = rcu_get_root(rsp);
479
480 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
481 smp_processor_id(), jiffies - rsp->gp_start);
482 trigger_all_cpu_backtrace();
483
484 spin_lock_irqsave(&rnp->lock, flags);
485 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
486 rsp->jiffies_stall =
487 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
488 spin_unlock_irqrestore(&rnp->lock, flags);
489
490 set_need_resched(); /* kick ourselves to get things going. */
491 }
492
493 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
494 {
495 long delta;
496 struct rcu_node *rnp;
497
498 delta = jiffies - rsp->jiffies_stall;
499 rnp = rdp->mynode;
500 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
501
502 /* We haven't checked in, so go dump stack. */
503 print_cpu_stall(rsp);
504
505 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
506
507 /* They had two time units to dump stack, so complain. */
508 print_other_cpu_stall(rsp);
509 }
510 }
511
512 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
513
514 static void record_gp_stall_check_time(struct rcu_state *rsp)
515 {
516 }
517
518 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
519 {
520 }
521
522 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
523
524 /*
525 * Update CPU-local rcu_data state to record the newly noticed grace period.
526 * This is used both when we started the grace period and when we notice
527 * that someone else started the grace period. The caller must hold the
528 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
529 * and must have irqs disabled.
530 */
531 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
532 {
533 if (rdp->gpnum != rnp->gpnum) {
534 rdp->qs_pending = 1;
535 rdp->passed_quiesc = 0;
536 rdp->gpnum = rnp->gpnum;
537 }
538 }
539
540 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
541 {
542 unsigned long flags;
543 struct rcu_node *rnp;
544
545 local_irq_save(flags);
546 rnp = rdp->mynode;
547 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
548 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
549 local_irq_restore(flags);
550 return;
551 }
552 __note_new_gpnum(rsp, rnp, rdp);
553 spin_unlock_irqrestore(&rnp->lock, flags);
554 }
555
556 /*
557 * Did someone else start a new RCU grace period start since we last
558 * checked? Update local state appropriately if so. Must be called
559 * on the CPU corresponding to rdp.
560 */
561 static int
562 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
563 {
564 unsigned long flags;
565 int ret = 0;
566
567 local_irq_save(flags);
568 if (rdp->gpnum != rsp->gpnum) {
569 note_new_gpnum(rsp, rdp);
570 ret = 1;
571 }
572 local_irq_restore(flags);
573 return ret;
574 }
575
576 /*
577 * Advance this CPU's callbacks, but only if the current grace period
578 * has ended. This may be called only from the CPU to whom the rdp
579 * belongs. In addition, the corresponding leaf rcu_node structure's
580 * ->lock must be held by the caller, with irqs disabled.
581 */
582 static void
583 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
584 {
585 /* Did another grace period end? */
586 if (rdp->completed != rnp->completed) {
587
588 /* Advance callbacks. No harm if list empty. */
589 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
590 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
591 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
592
593 /* Remember that we saw this grace-period completion. */
594 rdp->completed = rnp->completed;
595 }
596 }
597
598 /*
599 * Advance this CPU's callbacks, but only if the current grace period
600 * has ended. This may be called only from the CPU to whom the rdp
601 * belongs.
602 */
603 static void
604 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
605 {
606 unsigned long flags;
607 struct rcu_node *rnp;
608
609 local_irq_save(flags);
610 rnp = rdp->mynode;
611 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
612 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
613 local_irq_restore(flags);
614 return;
615 }
616 __rcu_process_gp_end(rsp, rnp, rdp);
617 spin_unlock_irqrestore(&rnp->lock, flags);
618 }
619
620 /*
621 * Do per-CPU grace-period initialization for running CPU. The caller
622 * must hold the lock of the leaf rcu_node structure corresponding to
623 * this CPU.
624 */
625 static void
626 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
627 {
628 /* Prior grace period ended, so advance callbacks for current CPU. */
629 __rcu_process_gp_end(rsp, rnp, rdp);
630
631 /*
632 * Because this CPU just now started the new grace period, we know
633 * that all of its callbacks will be covered by this upcoming grace
634 * period, even the ones that were registered arbitrarily recently.
635 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
636 *
637 * Other CPUs cannot be sure exactly when the grace period started.
638 * Therefore, their recently registered callbacks must pass through
639 * an additional RCU_NEXT_READY stage, so that they will be handled
640 * by the next RCU grace period.
641 */
642 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
643 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
644
645 /* Set state so that this CPU will detect the next quiescent state. */
646 __note_new_gpnum(rsp, rnp, rdp);
647 }
648
649 /*
650 * Start a new RCU grace period if warranted, re-initializing the hierarchy
651 * in preparation for detecting the next grace period. The caller must hold
652 * the root node's ->lock, which is released before return. Hard irqs must
653 * be disabled.
654 */
655 static void
656 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
657 __releases(rcu_get_root(rsp)->lock)
658 {
659 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
660 struct rcu_node *rnp = rcu_get_root(rsp);
661
662 if (!cpu_needs_another_gp(rsp, rdp)) {
663 if (rnp->completed == rsp->completed) {
664 spin_unlock_irqrestore(&rnp->lock, flags);
665 return;
666 }
667 spin_unlock(&rnp->lock); /* irqs remain disabled. */
668
669 /*
670 * Propagate new ->completed value to rcu_node structures
671 * so that other CPUs don't have to wait until the start
672 * of the next grace period to process their callbacks.
673 */
674 rcu_for_each_node_breadth_first(rsp, rnp) {
675 spin_lock(&rnp->lock); /* irqs already disabled. */
676 rnp->completed = rsp->completed;
677 spin_unlock(&rnp->lock); /* irqs remain disabled. */
678 }
679 local_irq_restore(flags);
680 return;
681 }
682
683 /* Advance to a new grace period and initialize state. */
684 rsp->gpnum++;
685 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
686 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
687 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
688 record_gp_stall_check_time(rsp);
689
690 /* Special-case the common single-level case. */
691 if (NUM_RCU_NODES == 1) {
692 rcu_preempt_check_blocked_tasks(rnp);
693 rnp->qsmask = rnp->qsmaskinit;
694 rnp->gpnum = rsp->gpnum;
695 rnp->completed = rsp->completed;
696 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
697 rcu_start_gp_per_cpu(rsp, rnp, rdp);
698 spin_unlock_irqrestore(&rnp->lock, flags);
699 return;
700 }
701
702 spin_unlock(&rnp->lock); /* leave irqs disabled. */
703
704
705 /* Exclude any concurrent CPU-hotplug operations. */
706 spin_lock(&rsp->onofflock); /* irqs already disabled. */
707
708 /*
709 * Set the quiescent-state-needed bits in all the rcu_node
710 * structures for all currently online CPUs in breadth-first
711 * order, starting from the root rcu_node structure. This
712 * operation relies on the layout of the hierarchy within the
713 * rsp->node[] array. Note that other CPUs will access only
714 * the leaves of the hierarchy, which still indicate that no
715 * grace period is in progress, at least until the corresponding
716 * leaf node has been initialized. In addition, we have excluded
717 * CPU-hotplug operations.
718 *
719 * Note that the grace period cannot complete until we finish
720 * the initialization process, as there will be at least one
721 * qsmask bit set in the root node until that time, namely the
722 * one corresponding to this CPU, due to the fact that we have
723 * irqs disabled.
724 */
725 rcu_for_each_node_breadth_first(rsp, rnp) {
726 spin_lock(&rnp->lock); /* irqs already disabled. */
727 rcu_preempt_check_blocked_tasks(rnp);
728 rnp->qsmask = rnp->qsmaskinit;
729 rnp->gpnum = rsp->gpnum;
730 rnp->completed = rsp->completed;
731 if (rnp == rdp->mynode)
732 rcu_start_gp_per_cpu(rsp, rnp, rdp);
733 spin_unlock(&rnp->lock); /* irqs remain disabled. */
734 }
735
736 rnp = rcu_get_root(rsp);
737 spin_lock(&rnp->lock); /* irqs already disabled. */
738 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
739 spin_unlock(&rnp->lock); /* irqs remain disabled. */
740 spin_unlock_irqrestore(&rsp->onofflock, flags);
741 }
742
743 /*
744 * Report a full set of quiescent states to the specified rcu_state
745 * data structure. This involves cleaning up after the prior grace
746 * period and letting rcu_start_gp() start up the next grace period
747 * if one is needed. Note that the caller must hold rnp->lock, as
748 * required by rcu_start_gp(), which will release it.
749 */
750 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
751 __releases(rcu_get_root(rsp)->lock)
752 {
753 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
754 rsp->completed = rsp->gpnum;
755 rsp->signaled = RCU_GP_IDLE;
756 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
757 }
758
759 /*
760 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
761 * Allows quiescent states for a group of CPUs to be reported at one go
762 * to the specified rcu_node structure, though all the CPUs in the group
763 * must be represented by the same rcu_node structure (which need not be
764 * a leaf rcu_node structure, though it often will be). That structure's
765 * lock must be held upon entry, and it is released before return.
766 */
767 static void
768 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
769 struct rcu_node *rnp, unsigned long flags)
770 __releases(rnp->lock)
771 {
772 struct rcu_node *rnp_c;
773
774 /* Walk up the rcu_node hierarchy. */
775 for (;;) {
776 if (!(rnp->qsmask & mask)) {
777
778 /* Our bit has already been cleared, so done. */
779 spin_unlock_irqrestore(&rnp->lock, flags);
780 return;
781 }
782 rnp->qsmask &= ~mask;
783 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
784
785 /* Other bits still set at this level, so done. */
786 spin_unlock_irqrestore(&rnp->lock, flags);
787 return;
788 }
789 mask = rnp->grpmask;
790 if (rnp->parent == NULL) {
791
792 /* No more levels. Exit loop holding root lock. */
793
794 break;
795 }
796 spin_unlock_irqrestore(&rnp->lock, flags);
797 rnp_c = rnp;
798 rnp = rnp->parent;
799 spin_lock_irqsave(&rnp->lock, flags);
800 WARN_ON_ONCE(rnp_c->qsmask);
801 }
802
803 /*
804 * Get here if we are the last CPU to pass through a quiescent
805 * state for this grace period. Invoke rcu_report_qs_rsp()
806 * to clean up and start the next grace period if one is needed.
807 */
808 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
809 }
810
811 /*
812 * Record a quiescent state for the specified CPU to that CPU's rcu_data
813 * structure. This must be either called from the specified CPU, or
814 * called when the specified CPU is known to be offline (and when it is
815 * also known that no other CPU is concurrently trying to help the offline
816 * CPU). The lastcomp argument is used to make sure we are still in the
817 * grace period of interest. We don't want to end the current grace period
818 * based on quiescent states detected in an earlier grace period!
819 */
820 static void
821 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
822 {
823 unsigned long flags;
824 unsigned long mask;
825 struct rcu_node *rnp;
826
827 rnp = rdp->mynode;
828 spin_lock_irqsave(&rnp->lock, flags);
829 if (lastcomp != rnp->completed) {
830
831 /*
832 * Someone beat us to it for this grace period, so leave.
833 * The race with GP start is resolved by the fact that we
834 * hold the leaf rcu_node lock, so that the per-CPU bits
835 * cannot yet be initialized -- so we would simply find our
836 * CPU's bit already cleared in rcu_report_qs_rnp() if this
837 * race occurred.
838 */
839 rdp->passed_quiesc = 0; /* try again later! */
840 spin_unlock_irqrestore(&rnp->lock, flags);
841 return;
842 }
843 mask = rdp->grpmask;
844 if ((rnp->qsmask & mask) == 0) {
845 spin_unlock_irqrestore(&rnp->lock, flags);
846 } else {
847 rdp->qs_pending = 0;
848
849 /*
850 * This GP can't end until cpu checks in, so all of our
851 * callbacks can be processed during the next GP.
852 */
853 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
854
855 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
856 }
857 }
858
859 /*
860 * Check to see if there is a new grace period of which this CPU
861 * is not yet aware, and if so, set up local rcu_data state for it.
862 * Otherwise, see if this CPU has just passed through its first
863 * quiescent state for this grace period, and record that fact if so.
864 */
865 static void
866 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
867 {
868 /* If there is now a new grace period, record and return. */
869 if (check_for_new_grace_period(rsp, rdp))
870 return;
871
872 /*
873 * Does this CPU still need to do its part for current grace period?
874 * If no, return and let the other CPUs do their part as well.
875 */
876 if (!rdp->qs_pending)
877 return;
878
879 /*
880 * Was there a quiescent state since the beginning of the grace
881 * period? If no, then exit and wait for the next call.
882 */
883 if (!rdp->passed_quiesc)
884 return;
885
886 /*
887 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
888 * judge of that).
889 */
890 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
891 }
892
893 #ifdef CONFIG_HOTPLUG_CPU
894
895 /*
896 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
897 * specified flavor of RCU. The callbacks will be adopted by the next
898 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
899 * comes first. Because this is invoked from the CPU_DYING notifier,
900 * irqs are already disabled.
901 */
902 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
903 {
904 int i;
905 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
906
907 if (rdp->nxtlist == NULL)
908 return; /* irqs disabled, so comparison is stable. */
909 spin_lock(&rsp->onofflock); /* irqs already disabled. */
910 *rsp->orphan_cbs_tail = rdp->nxtlist;
911 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
912 rdp->nxtlist = NULL;
913 for (i = 0; i < RCU_NEXT_SIZE; i++)
914 rdp->nxttail[i] = &rdp->nxtlist;
915 rsp->orphan_qlen += rdp->qlen;
916 rdp->qlen = 0;
917 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
918 }
919
920 /*
921 * Adopt previously orphaned RCU callbacks.
922 */
923 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
924 {
925 unsigned long flags;
926 struct rcu_data *rdp;
927
928 spin_lock_irqsave(&rsp->onofflock, flags);
929 rdp = rsp->rda[smp_processor_id()];
930 if (rsp->orphan_cbs_list == NULL) {
931 spin_unlock_irqrestore(&rsp->onofflock, flags);
932 return;
933 }
934 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
935 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
936 rdp->qlen += rsp->orphan_qlen;
937 rsp->orphan_cbs_list = NULL;
938 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
939 rsp->orphan_qlen = 0;
940 spin_unlock_irqrestore(&rsp->onofflock, flags);
941 }
942
943 /*
944 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
945 * and move all callbacks from the outgoing CPU to the current one.
946 */
947 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
948 {
949 unsigned long flags;
950 unsigned long mask;
951 int need_quiet = 0;
952 struct rcu_data *rdp = rsp->rda[cpu];
953 struct rcu_node *rnp;
954
955 /* Exclude any attempts to start a new grace period. */
956 spin_lock_irqsave(&rsp->onofflock, flags);
957
958 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
959 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
960 mask = rdp->grpmask; /* rnp->grplo is constant. */
961 do {
962 spin_lock(&rnp->lock); /* irqs already disabled. */
963 rnp->qsmaskinit &= ~mask;
964 if (rnp->qsmaskinit != 0) {
965 if (rnp != rdp->mynode)
966 spin_unlock(&rnp->lock); /* irqs remain disabled. */
967 break;
968 }
969 if (rnp == rdp->mynode)
970 need_quiet = rcu_preempt_offline_tasks(rsp, rnp, rdp);
971 else
972 spin_unlock(&rnp->lock); /* irqs remain disabled. */
973 mask = rnp->grpmask;
974 rnp = rnp->parent;
975 } while (rnp != NULL);
976
977 /*
978 * We still hold the leaf rcu_node structure lock here, and
979 * irqs are still disabled. The reason for this subterfuge is
980 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
981 * held leads to deadlock.
982 */
983 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
984 rnp = rdp->mynode;
985 if (need_quiet)
986 rcu_report_unblock_qs_rnp(rnp, flags);
987 else
988 spin_unlock_irqrestore(&rnp->lock, flags);
989
990 rcu_adopt_orphan_cbs(rsp);
991 }
992
993 /*
994 * Remove the specified CPU from the RCU hierarchy and move any pending
995 * callbacks that it might have to the current CPU. This code assumes
996 * that at least one CPU in the system will remain running at all times.
997 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
998 */
999 static void rcu_offline_cpu(int cpu)
1000 {
1001 __rcu_offline_cpu(cpu, &rcu_sched_state);
1002 __rcu_offline_cpu(cpu, &rcu_bh_state);
1003 rcu_preempt_offline_cpu(cpu);
1004 }
1005
1006 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1007
1008 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1009 {
1010 }
1011
1012 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1013 {
1014 }
1015
1016 static void rcu_offline_cpu(int cpu)
1017 {
1018 }
1019
1020 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1021
1022 /*
1023 * Invoke any RCU callbacks that have made it to the end of their grace
1024 * period. Thottle as specified by rdp->blimit.
1025 */
1026 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1027 {
1028 unsigned long flags;
1029 struct rcu_head *next, *list, **tail;
1030 int count;
1031
1032 /* If no callbacks are ready, just return.*/
1033 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1034 return;
1035
1036 /*
1037 * Extract the list of ready callbacks, disabling to prevent
1038 * races with call_rcu() from interrupt handlers.
1039 */
1040 local_irq_save(flags);
1041 list = rdp->nxtlist;
1042 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1043 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1044 tail = rdp->nxttail[RCU_DONE_TAIL];
1045 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1046 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1047 rdp->nxttail[count] = &rdp->nxtlist;
1048 local_irq_restore(flags);
1049
1050 /* Invoke callbacks. */
1051 count = 0;
1052 while (list) {
1053 next = list->next;
1054 prefetch(next);
1055 list->func(list);
1056 list = next;
1057 if (++count >= rdp->blimit)
1058 break;
1059 }
1060
1061 local_irq_save(flags);
1062
1063 /* Update count, and requeue any remaining callbacks. */
1064 rdp->qlen -= count;
1065 if (list != NULL) {
1066 *tail = rdp->nxtlist;
1067 rdp->nxtlist = list;
1068 for (count = 0; count < RCU_NEXT_SIZE; count++)
1069 if (&rdp->nxtlist == rdp->nxttail[count])
1070 rdp->nxttail[count] = tail;
1071 else
1072 break;
1073 }
1074
1075 /* Reinstate batch limit if we have worked down the excess. */
1076 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1077 rdp->blimit = blimit;
1078
1079 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1080 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1081 rdp->qlen_last_fqs_check = 0;
1082 rdp->n_force_qs_snap = rsp->n_force_qs;
1083 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1084 rdp->qlen_last_fqs_check = rdp->qlen;
1085
1086 local_irq_restore(flags);
1087
1088 /* Re-raise the RCU softirq if there are callbacks remaining. */
1089 if (cpu_has_callbacks_ready_to_invoke(rdp))
1090 raise_softirq(RCU_SOFTIRQ);
1091 }
1092
1093 /*
1094 * Check to see if this CPU is in a non-context-switch quiescent state
1095 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1096 * Also schedule the RCU softirq handler.
1097 *
1098 * This function must be called with hardirqs disabled. It is normally
1099 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1100 * false, there is no point in invoking rcu_check_callbacks().
1101 */
1102 void rcu_check_callbacks(int cpu, int user)
1103 {
1104 if (!rcu_pending(cpu))
1105 return; /* if nothing for RCU to do. */
1106 if (user ||
1107 (idle_cpu(cpu) && rcu_scheduler_active &&
1108 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1109
1110 /*
1111 * Get here if this CPU took its interrupt from user
1112 * mode or from the idle loop, and if this is not a
1113 * nested interrupt. In this case, the CPU is in
1114 * a quiescent state, so note it.
1115 *
1116 * No memory barrier is required here because both
1117 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1118 * variables that other CPUs neither access nor modify,
1119 * at least not while the corresponding CPU is online.
1120 */
1121
1122 rcu_sched_qs(cpu);
1123 rcu_bh_qs(cpu);
1124
1125 } else if (!in_softirq()) {
1126
1127 /*
1128 * Get here if this CPU did not take its interrupt from
1129 * softirq, in other words, if it is not interrupting
1130 * a rcu_bh read-side critical section. This is an _bh
1131 * critical section, so note it.
1132 */
1133
1134 rcu_bh_qs(cpu);
1135 }
1136 rcu_preempt_check_callbacks(cpu);
1137 raise_softirq(RCU_SOFTIRQ);
1138 }
1139
1140 #ifdef CONFIG_SMP
1141
1142 /*
1143 * Scan the leaf rcu_node structures, processing dyntick state for any that
1144 * have not yet encountered a quiescent state, using the function specified.
1145 * Returns 1 if the current grace period ends while scanning (possibly
1146 * because we made it end).
1147 */
1148 static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1149 int (*f)(struct rcu_data *))
1150 {
1151 unsigned long bit;
1152 int cpu;
1153 unsigned long flags;
1154 unsigned long mask;
1155 struct rcu_node *rnp;
1156
1157 rcu_for_each_leaf_node(rsp, rnp) {
1158 mask = 0;
1159 spin_lock_irqsave(&rnp->lock, flags);
1160 if (rnp->completed != lastcomp) {
1161 spin_unlock_irqrestore(&rnp->lock, flags);
1162 return 1;
1163 }
1164 if (rnp->qsmask == 0) {
1165 spin_unlock_irqrestore(&rnp->lock, flags);
1166 continue;
1167 }
1168 cpu = rnp->grplo;
1169 bit = 1;
1170 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1171 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1172 mask |= bit;
1173 }
1174 if (mask != 0 && rnp->completed == lastcomp) {
1175
1176 /* rcu_report_qs_rnp() releases rnp->lock. */
1177 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1178 continue;
1179 }
1180 spin_unlock_irqrestore(&rnp->lock, flags);
1181 }
1182 return 0;
1183 }
1184
1185 /*
1186 * Force quiescent states on reluctant CPUs, and also detect which
1187 * CPUs are in dyntick-idle mode.
1188 */
1189 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1190 {
1191 unsigned long flags;
1192 long lastcomp;
1193 struct rcu_node *rnp = rcu_get_root(rsp);
1194 u8 signaled;
1195 u8 forcenow;
1196
1197 if (!rcu_gp_in_progress(rsp))
1198 return; /* No grace period in progress, nothing to force. */
1199 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1200 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1201 return; /* Someone else is already on the job. */
1202 }
1203 if (relaxed &&
1204 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1205 goto unlock_ret; /* no emergency and done recently. */
1206 rsp->n_force_qs++;
1207 spin_lock(&rnp->lock);
1208 lastcomp = rsp->gpnum - 1;
1209 signaled = rsp->signaled;
1210 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1211 if(!rcu_gp_in_progress(rsp)) {
1212 rsp->n_force_qs_ngp++;
1213 spin_unlock(&rnp->lock);
1214 goto unlock_ret; /* no GP in progress, time updated. */
1215 }
1216 spin_unlock(&rnp->lock);
1217 switch (signaled) {
1218 case RCU_GP_IDLE:
1219 case RCU_GP_INIT:
1220
1221 break; /* grace period idle or initializing, ignore. */
1222
1223 case RCU_SAVE_DYNTICK:
1224
1225 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1226 break; /* So gcc recognizes the dead code. */
1227
1228 /* Record dyntick-idle state. */
1229 if (rcu_process_dyntick(rsp, lastcomp,
1230 dyntick_save_progress_counter))
1231 goto unlock_ret;
1232 /* fall into next case. */
1233
1234 case RCU_SAVE_COMPLETED:
1235
1236 /* Update state, record completion counter. */
1237 forcenow = 0;
1238 spin_lock(&rnp->lock);
1239 if (lastcomp + 1 == rsp->gpnum &&
1240 lastcomp == rsp->completed &&
1241 rsp->signaled == signaled) {
1242 rsp->signaled = RCU_FORCE_QS;
1243 rsp->completed_fqs = lastcomp;
1244 forcenow = signaled == RCU_SAVE_COMPLETED;
1245 }
1246 spin_unlock(&rnp->lock);
1247 if (!forcenow)
1248 break;
1249 /* fall into next case. */
1250
1251 case RCU_FORCE_QS:
1252
1253 /* Check dyntick-idle state, send IPI to laggarts. */
1254 if (rcu_process_dyntick(rsp, rsp->completed_fqs,
1255 rcu_implicit_dynticks_qs))
1256 goto unlock_ret;
1257
1258 /* Leave state in case more forcing is required. */
1259
1260 break;
1261 }
1262 unlock_ret:
1263 spin_unlock_irqrestore(&rsp->fqslock, flags);
1264 }
1265
1266 #else /* #ifdef CONFIG_SMP */
1267
1268 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1269 {
1270 set_need_resched();
1271 }
1272
1273 #endif /* #else #ifdef CONFIG_SMP */
1274
1275 /*
1276 * This does the RCU processing work from softirq context for the
1277 * specified rcu_state and rcu_data structures. This may be called
1278 * only from the CPU to whom the rdp belongs.
1279 */
1280 static void
1281 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1282 {
1283 unsigned long flags;
1284
1285 WARN_ON_ONCE(rdp->beenonline == 0);
1286
1287 /*
1288 * If an RCU GP has gone long enough, go check for dyntick
1289 * idle CPUs and, if needed, send resched IPIs.
1290 */
1291 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1292 force_quiescent_state(rsp, 1);
1293
1294 /*
1295 * Advance callbacks in response to end of earlier grace
1296 * period that some other CPU ended.
1297 */
1298 rcu_process_gp_end(rsp, rdp);
1299
1300 /* Update RCU state based on any recent quiescent states. */
1301 rcu_check_quiescent_state(rsp, rdp);
1302
1303 /* Does this CPU require a not-yet-started grace period? */
1304 if (cpu_needs_another_gp(rsp, rdp)) {
1305 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1306 rcu_start_gp(rsp, flags); /* releases above lock */
1307 }
1308
1309 /* If there are callbacks ready, invoke them. */
1310 rcu_do_batch(rsp, rdp);
1311 }
1312
1313 /*
1314 * Do softirq processing for the current CPU.
1315 */
1316 static void rcu_process_callbacks(struct softirq_action *unused)
1317 {
1318 /*
1319 * Memory references from any prior RCU read-side critical sections
1320 * executed by the interrupted code must be seen before any RCU
1321 * grace-period manipulations below.
1322 */
1323 smp_mb(); /* See above block comment. */
1324
1325 __rcu_process_callbacks(&rcu_sched_state,
1326 &__get_cpu_var(rcu_sched_data));
1327 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1328 rcu_preempt_process_callbacks();
1329
1330 /*
1331 * Memory references from any later RCU read-side critical sections
1332 * executed by the interrupted code must be seen after any RCU
1333 * grace-period manipulations above.
1334 */
1335 smp_mb(); /* See above block comment. */
1336 }
1337
1338 static void
1339 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1340 struct rcu_state *rsp)
1341 {
1342 unsigned long flags;
1343 struct rcu_data *rdp;
1344
1345 head->func = func;
1346 head->next = NULL;
1347
1348 smp_mb(); /* Ensure RCU update seen before callback registry. */
1349
1350 /*
1351 * Opportunistically note grace-period endings and beginnings.
1352 * Note that we might see a beginning right after we see an
1353 * end, but never vice versa, since this CPU has to pass through
1354 * a quiescent state betweentimes.
1355 */
1356 local_irq_save(flags);
1357 rdp = rsp->rda[smp_processor_id()];
1358 rcu_process_gp_end(rsp, rdp);
1359 check_for_new_grace_period(rsp, rdp);
1360
1361 /* Add the callback to our list. */
1362 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1363 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1364
1365 /* Start a new grace period if one not already started. */
1366 if (!rcu_gp_in_progress(rsp)) {
1367 unsigned long nestflag;
1368 struct rcu_node *rnp_root = rcu_get_root(rsp);
1369
1370 spin_lock_irqsave(&rnp_root->lock, nestflag);
1371 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1372 }
1373
1374 /*
1375 * Force the grace period if too many callbacks or too long waiting.
1376 * Enforce hysteresis, and don't invoke force_quiescent_state()
1377 * if some other CPU has recently done so. Also, don't bother
1378 * invoking force_quiescent_state() if the newly enqueued callback
1379 * is the only one waiting for a grace period to complete.
1380 */
1381 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1382 rdp->blimit = LONG_MAX;
1383 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1384 *rdp->nxttail[RCU_DONE_TAIL] != head)
1385 force_quiescent_state(rsp, 0);
1386 rdp->n_force_qs_snap = rsp->n_force_qs;
1387 rdp->qlen_last_fqs_check = rdp->qlen;
1388 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1389 force_quiescent_state(rsp, 1);
1390 local_irq_restore(flags);
1391 }
1392
1393 /*
1394 * Queue an RCU-sched callback for invocation after a grace period.
1395 */
1396 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1397 {
1398 __call_rcu(head, func, &rcu_sched_state);
1399 }
1400 EXPORT_SYMBOL_GPL(call_rcu_sched);
1401
1402 /*
1403 * Queue an RCU for invocation after a quicker grace period.
1404 */
1405 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1406 {
1407 __call_rcu(head, func, &rcu_bh_state);
1408 }
1409 EXPORT_SYMBOL_GPL(call_rcu_bh);
1410
1411 /**
1412 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1413 *
1414 * Control will return to the caller some time after a full rcu-sched
1415 * grace period has elapsed, in other words after all currently executing
1416 * rcu-sched read-side critical sections have completed. These read-side
1417 * critical sections are delimited by rcu_read_lock_sched() and
1418 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1419 * local_irq_disable(), and so on may be used in place of
1420 * rcu_read_lock_sched().
1421 *
1422 * This means that all preempt_disable code sequences, including NMI and
1423 * hardware-interrupt handlers, in progress on entry will have completed
1424 * before this primitive returns. However, this does not guarantee that
1425 * softirq handlers will have completed, since in some kernels, these
1426 * handlers can run in process context, and can block.
1427 *
1428 * This primitive provides the guarantees made by the (now removed)
1429 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1430 * guarantees that rcu_read_lock() sections will have completed.
1431 * In "classic RCU", these two guarantees happen to be one and
1432 * the same, but can differ in realtime RCU implementations.
1433 */
1434 void synchronize_sched(void)
1435 {
1436 struct rcu_synchronize rcu;
1437
1438 if (rcu_blocking_is_gp())
1439 return;
1440
1441 init_completion(&rcu.completion);
1442 /* Will wake me after RCU finished. */
1443 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1444 /* Wait for it. */
1445 wait_for_completion(&rcu.completion);
1446 }
1447 EXPORT_SYMBOL_GPL(synchronize_sched);
1448
1449 /**
1450 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1451 *
1452 * Control will return to the caller some time after a full rcu_bh grace
1453 * period has elapsed, in other words after all currently executing rcu_bh
1454 * read-side critical sections have completed. RCU read-side critical
1455 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1456 * and may be nested.
1457 */
1458 void synchronize_rcu_bh(void)
1459 {
1460 struct rcu_synchronize rcu;
1461
1462 if (rcu_blocking_is_gp())
1463 return;
1464
1465 init_completion(&rcu.completion);
1466 /* Will wake me after RCU finished. */
1467 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1468 /* Wait for it. */
1469 wait_for_completion(&rcu.completion);
1470 }
1471 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1472
1473 /*
1474 * Check to see if there is any immediate RCU-related work to be done
1475 * by the current CPU, for the specified type of RCU, returning 1 if so.
1476 * The checks are in order of increasing expense: checks that can be
1477 * carried out against CPU-local state are performed first. However,
1478 * we must check for CPU stalls first, else we might not get a chance.
1479 */
1480 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1481 {
1482 struct rcu_node *rnp = rdp->mynode;
1483
1484 rdp->n_rcu_pending++;
1485
1486 /* Check for CPU stalls, if enabled. */
1487 check_cpu_stall(rsp, rdp);
1488
1489 /* Is the RCU core waiting for a quiescent state from this CPU? */
1490 if (rdp->qs_pending) {
1491 rdp->n_rp_qs_pending++;
1492 return 1;
1493 }
1494
1495 /* Does this CPU have callbacks ready to invoke? */
1496 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1497 rdp->n_rp_cb_ready++;
1498 return 1;
1499 }
1500
1501 /* Has RCU gone idle with this CPU needing another grace period? */
1502 if (cpu_needs_another_gp(rsp, rdp)) {
1503 rdp->n_rp_cpu_needs_gp++;
1504 return 1;
1505 }
1506
1507 /* Has another RCU grace period completed? */
1508 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1509 rdp->n_rp_gp_completed++;
1510 return 1;
1511 }
1512
1513 /* Has a new RCU grace period started? */
1514 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1515 rdp->n_rp_gp_started++;
1516 return 1;
1517 }
1518
1519 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1520 if (rcu_gp_in_progress(rsp) &&
1521 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1522 rdp->n_rp_need_fqs++;
1523 return 1;
1524 }
1525
1526 /* nothing to do */
1527 rdp->n_rp_need_nothing++;
1528 return 0;
1529 }
1530
1531 /*
1532 * Check to see if there is any immediate RCU-related work to be done
1533 * by the current CPU, returning 1 if so. This function is part of the
1534 * RCU implementation; it is -not- an exported member of the RCU API.
1535 */
1536 static int rcu_pending(int cpu)
1537 {
1538 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1539 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1540 rcu_preempt_pending(cpu);
1541 }
1542
1543 /*
1544 * Check to see if any future RCU-related work will need to be done
1545 * by the current CPU, even if none need be done immediately, returning
1546 * 1 if so. This function is part of the RCU implementation; it is -not-
1547 * an exported member of the RCU API.
1548 */
1549 int rcu_needs_cpu(int cpu)
1550 {
1551 /* RCU callbacks either ready or pending? */
1552 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1553 per_cpu(rcu_bh_data, cpu).nxtlist ||
1554 rcu_preempt_needs_cpu(cpu);
1555 }
1556
1557 /*
1558 * This function is invoked towards the end of the scheduler's initialization
1559 * process. Before this is called, the idle task might contain
1560 * RCU read-side critical sections (during which time, this idle
1561 * task is booting the system). After this function is called, the
1562 * idle tasks are prohibited from containing RCU read-side critical
1563 * sections.
1564 */
1565 void rcu_scheduler_starting(void)
1566 {
1567 WARN_ON(num_online_cpus() != 1);
1568 WARN_ON(nr_context_switches() > 0);
1569 rcu_scheduler_active = 1;
1570 }
1571
1572 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1573 static atomic_t rcu_barrier_cpu_count;
1574 static DEFINE_MUTEX(rcu_barrier_mutex);
1575 static struct completion rcu_barrier_completion;
1576
1577 static void rcu_barrier_callback(struct rcu_head *notused)
1578 {
1579 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1580 complete(&rcu_barrier_completion);
1581 }
1582
1583 /*
1584 * Called with preemption disabled, and from cross-cpu IRQ context.
1585 */
1586 static void rcu_barrier_func(void *type)
1587 {
1588 int cpu = smp_processor_id();
1589 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1590 void (*call_rcu_func)(struct rcu_head *head,
1591 void (*func)(struct rcu_head *head));
1592
1593 atomic_inc(&rcu_barrier_cpu_count);
1594 call_rcu_func = type;
1595 call_rcu_func(head, rcu_barrier_callback);
1596 }
1597
1598 /*
1599 * Orchestrate the specified type of RCU barrier, waiting for all
1600 * RCU callbacks of the specified type to complete.
1601 */
1602 static void _rcu_barrier(struct rcu_state *rsp,
1603 void (*call_rcu_func)(struct rcu_head *head,
1604 void (*func)(struct rcu_head *head)))
1605 {
1606 BUG_ON(in_interrupt());
1607 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1608 mutex_lock(&rcu_barrier_mutex);
1609 init_completion(&rcu_barrier_completion);
1610 /*
1611 * Initialize rcu_barrier_cpu_count to 1, then invoke
1612 * rcu_barrier_func() on each CPU, so that each CPU also has
1613 * incremented rcu_barrier_cpu_count. Only then is it safe to
1614 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1615 * might complete its grace period before all of the other CPUs
1616 * did their increment, causing this function to return too
1617 * early.
1618 */
1619 atomic_set(&rcu_barrier_cpu_count, 1);
1620 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1621 rcu_adopt_orphan_cbs(rsp);
1622 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1623 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1624 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1625 complete(&rcu_barrier_completion);
1626 wait_for_completion(&rcu_barrier_completion);
1627 mutex_unlock(&rcu_barrier_mutex);
1628 }
1629
1630 /**
1631 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1632 */
1633 void rcu_barrier_bh(void)
1634 {
1635 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1636 }
1637 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1638
1639 /**
1640 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1641 */
1642 void rcu_barrier_sched(void)
1643 {
1644 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1645 }
1646 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1647
1648 /*
1649 * Do boot-time initialization of a CPU's per-CPU RCU data.
1650 */
1651 static void __init
1652 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1653 {
1654 unsigned long flags;
1655 int i;
1656 struct rcu_data *rdp = rsp->rda[cpu];
1657 struct rcu_node *rnp = rcu_get_root(rsp);
1658
1659 /* Set up local state, ensuring consistent view of global state. */
1660 spin_lock_irqsave(&rnp->lock, flags);
1661 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1662 rdp->nxtlist = NULL;
1663 for (i = 0; i < RCU_NEXT_SIZE; i++)
1664 rdp->nxttail[i] = &rdp->nxtlist;
1665 rdp->qlen = 0;
1666 #ifdef CONFIG_NO_HZ
1667 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1668 #endif /* #ifdef CONFIG_NO_HZ */
1669 rdp->cpu = cpu;
1670 spin_unlock_irqrestore(&rnp->lock, flags);
1671 }
1672
1673 /*
1674 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1675 * offline event can be happening at a given time. Note also that we
1676 * can accept some slop in the rsp->completed access due to the fact
1677 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1678 */
1679 static void __cpuinit
1680 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1681 {
1682 unsigned long flags;
1683 unsigned long mask;
1684 struct rcu_data *rdp = rsp->rda[cpu];
1685 struct rcu_node *rnp = rcu_get_root(rsp);
1686
1687 /* Set up local state, ensuring consistent view of global state. */
1688 spin_lock_irqsave(&rnp->lock, flags);
1689 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1690 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1691 rdp->beenonline = 1; /* We have now been online. */
1692 rdp->preemptable = preemptable;
1693 rdp->qlen_last_fqs_check = 0;
1694 rdp->n_force_qs_snap = rsp->n_force_qs;
1695 rdp->blimit = blimit;
1696 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1697
1698 /*
1699 * A new grace period might start here. If so, we won't be part
1700 * of it, but that is OK, as we are currently in a quiescent state.
1701 */
1702
1703 /* Exclude any attempts to start a new GP on large systems. */
1704 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1705
1706 /* Add CPU to rcu_node bitmasks. */
1707 rnp = rdp->mynode;
1708 mask = rdp->grpmask;
1709 do {
1710 /* Exclude any attempts to start a new GP on small systems. */
1711 spin_lock(&rnp->lock); /* irqs already disabled. */
1712 rnp->qsmaskinit |= mask;
1713 mask = rnp->grpmask;
1714 if (rnp == rdp->mynode) {
1715 rdp->gpnum = rnp->completed; /* if GP in progress... */
1716 rdp->completed = rnp->completed;
1717 rdp->passed_quiesc_completed = rnp->completed - 1;
1718 }
1719 spin_unlock(&rnp->lock); /* irqs already disabled. */
1720 rnp = rnp->parent;
1721 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1722
1723 spin_unlock_irqrestore(&rsp->onofflock, flags);
1724 }
1725
1726 static void __cpuinit rcu_online_cpu(int cpu)
1727 {
1728 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1729 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1730 rcu_preempt_init_percpu_data(cpu);
1731 }
1732
1733 /*
1734 * Handle CPU online/offline notification events.
1735 */
1736 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1737 unsigned long action, void *hcpu)
1738 {
1739 long cpu = (long)hcpu;
1740
1741 switch (action) {
1742 case CPU_UP_PREPARE:
1743 case CPU_UP_PREPARE_FROZEN:
1744 rcu_online_cpu(cpu);
1745 break;
1746 case CPU_DYING:
1747 case CPU_DYING_FROZEN:
1748 /*
1749 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1750 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1751 * returns, all online cpus have queued rcu_barrier_func().
1752 * The dying CPU clears its cpu_online_mask bit and
1753 * moves all of its RCU callbacks to ->orphan_cbs_list
1754 * in the context of stop_machine(), so subsequent calls
1755 * to _rcu_barrier() will adopt these callbacks and only
1756 * then queue rcu_barrier_func() on all remaining CPUs.
1757 */
1758 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1759 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1760 rcu_preempt_send_cbs_to_orphanage();
1761 break;
1762 case CPU_DEAD:
1763 case CPU_DEAD_FROZEN:
1764 case CPU_UP_CANCELED:
1765 case CPU_UP_CANCELED_FROZEN:
1766 rcu_offline_cpu(cpu);
1767 break;
1768 default:
1769 break;
1770 }
1771 return NOTIFY_OK;
1772 }
1773
1774 /*
1775 * Compute the per-level fanout, either using the exact fanout specified
1776 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1777 */
1778 #ifdef CONFIG_RCU_FANOUT_EXACT
1779 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1780 {
1781 int i;
1782
1783 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1784 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1785 }
1786 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1787 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1788 {
1789 int ccur;
1790 int cprv;
1791 int i;
1792
1793 cprv = NR_CPUS;
1794 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1795 ccur = rsp->levelcnt[i];
1796 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1797 cprv = ccur;
1798 }
1799 }
1800 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1801
1802 /*
1803 * Helper function for rcu_init() that initializes one rcu_state structure.
1804 */
1805 static void __init rcu_init_one(struct rcu_state *rsp)
1806 {
1807 int cpustride = 1;
1808 int i;
1809 int j;
1810 struct rcu_node *rnp;
1811
1812 /* Initialize the level-tracking arrays. */
1813
1814 for (i = 1; i < NUM_RCU_LVLS; i++)
1815 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1816 rcu_init_levelspread(rsp);
1817
1818 /* Initialize the elements themselves, starting from the leaves. */
1819
1820 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1821 cpustride *= rsp->levelspread[i];
1822 rnp = rsp->level[i];
1823 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1824 spin_lock_init(&rnp->lock);
1825 lockdep_set_class(&rnp->lock, &rcu_node_class[i]);
1826 rnp->gpnum = 0;
1827 rnp->qsmask = 0;
1828 rnp->qsmaskinit = 0;
1829 rnp->grplo = j * cpustride;
1830 rnp->grphi = (j + 1) * cpustride - 1;
1831 if (rnp->grphi >= NR_CPUS)
1832 rnp->grphi = NR_CPUS - 1;
1833 if (i == 0) {
1834 rnp->grpnum = 0;
1835 rnp->grpmask = 0;
1836 rnp->parent = NULL;
1837 } else {
1838 rnp->grpnum = j % rsp->levelspread[i - 1];
1839 rnp->grpmask = 1UL << rnp->grpnum;
1840 rnp->parent = rsp->level[i - 1] +
1841 j / rsp->levelspread[i - 1];
1842 }
1843 rnp->level = i;
1844 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1845 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1846 }
1847 }
1848 }
1849
1850 /*
1851 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1852 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1853 * structure.
1854 */
1855 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1856 do { \
1857 int i; \
1858 int j; \
1859 struct rcu_node *rnp; \
1860 \
1861 rcu_init_one(rsp); \
1862 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1863 j = 0; \
1864 for_each_possible_cpu(i) { \
1865 if (i > rnp[j].grphi) \
1866 j++; \
1867 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1868 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1869 rcu_boot_init_percpu_data(i, rsp); \
1870 } \
1871 } while (0)
1872
1873 void __init rcu_init(void)
1874 {
1875 int i;
1876
1877 rcu_bootup_announce();
1878 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1879 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1880 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1881 #if NUM_RCU_LVL_4 != 0
1882 printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
1883 #endif /* #if NUM_RCU_LVL_4 != 0 */
1884 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1885 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1886 __rcu_init_preempt();
1887 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1888
1889 /*
1890 * We don't need protection against CPU-hotplug here because
1891 * this is called early in boot, before either interrupts
1892 * or the scheduler are operational.
1893 */
1894 cpu_notifier(rcu_cpu_notify, 0);
1895 for_each_online_cpu(i)
1896 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)i);
1897 }
1898
1899 #include "rcutree_plugin.h"
This page took 0.167407 seconds and 6 git commands to generate.