Merge tag 'firmware-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59
60 #include "rcu.h"
61
62 /* Data structures. */
63
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = 0UL - 300UL, \
72 .completed = 0UL - 300UL, \
73 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 .name = #sname, \
79 .abbr = sabbr, \
80 }
81
82 struct rcu_state rcu_sched_state =
83 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
84 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
85
86 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
87 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
88
89 static struct rcu_state *rcu_state;
90 LIST_HEAD(rcu_struct_flavors);
91
92 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
93 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
94 module_param(rcu_fanout_leaf, int, 0444);
95 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
96 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
97 NUM_RCU_LVL_0,
98 NUM_RCU_LVL_1,
99 NUM_RCU_LVL_2,
100 NUM_RCU_LVL_3,
101 NUM_RCU_LVL_4,
102 };
103 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
104
105 /*
106 * The rcu_scheduler_active variable transitions from zero to one just
107 * before the first task is spawned. So when this variable is zero, RCU
108 * can assume that there is but one task, allowing RCU to (for example)
109 * optimize synchronize_sched() to a simple barrier(). When this variable
110 * is one, RCU must actually do all the hard work required to detect real
111 * grace periods. This variable is also used to suppress boot-time false
112 * positives from lockdep-RCU error checking.
113 */
114 int rcu_scheduler_active __read_mostly;
115 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
116
117 /*
118 * The rcu_scheduler_fully_active variable transitions from zero to one
119 * during the early_initcall() processing, which is after the scheduler
120 * is capable of creating new tasks. So RCU processing (for example,
121 * creating tasks for RCU priority boosting) must be delayed until after
122 * rcu_scheduler_fully_active transitions from zero to one. We also
123 * currently delay invocation of any RCU callbacks until after this point.
124 *
125 * It might later prove better for people registering RCU callbacks during
126 * early boot to take responsibility for these callbacks, but one step at
127 * a time.
128 */
129 static int rcu_scheduler_fully_active __read_mostly;
130
131 #ifdef CONFIG_RCU_BOOST
132
133 /*
134 * Control variables for per-CPU and per-rcu_node kthreads. These
135 * handle all flavors of RCU.
136 */
137 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
139 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
140 DEFINE_PER_CPU(char, rcu_cpu_has_work);
141
142 #endif /* #ifdef CONFIG_RCU_BOOST */
143
144 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
145 static void invoke_rcu_core(void);
146 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
147
148 /*
149 * Track the rcutorture test sequence number and the update version
150 * number within a given test. The rcutorture_testseq is incremented
151 * on every rcutorture module load and unload, so has an odd value
152 * when a test is running. The rcutorture_vernum is set to zero
153 * when rcutorture starts and is incremented on each rcutorture update.
154 * These variables enable correlating rcutorture output with the
155 * RCU tracing information.
156 */
157 unsigned long rcutorture_testseq;
158 unsigned long rcutorture_vernum;
159
160 /*
161 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
162 * permit this function to be invoked without holding the root rcu_node
163 * structure's ->lock, but of course results can be subject to change.
164 */
165 static int rcu_gp_in_progress(struct rcu_state *rsp)
166 {
167 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
168 }
169
170 /*
171 * Note a quiescent state. Because we do not need to know
172 * how many quiescent states passed, just if there was at least
173 * one since the start of the grace period, this just sets a flag.
174 * The caller must have disabled preemption.
175 */
176 void rcu_sched_qs(int cpu)
177 {
178 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
179
180 if (rdp->passed_quiesce == 0)
181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182 rdp->passed_quiesce = 1;
183 }
184
185 void rcu_bh_qs(int cpu)
186 {
187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
188
189 if (rdp->passed_quiesce == 0)
190 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
191 rdp->passed_quiesce = 1;
192 }
193
194 /*
195 * Note a context switch. This is a quiescent state for RCU-sched,
196 * and requires special handling for preemptible RCU.
197 * The caller must have disabled preemption.
198 */
199 void rcu_note_context_switch(int cpu)
200 {
201 trace_rcu_utilization("Start context switch");
202 rcu_sched_qs(cpu);
203 rcu_preempt_note_context_switch(cpu);
204 trace_rcu_utilization("End context switch");
205 }
206 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
207
208 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
209 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
210 .dynticks = ATOMIC_INIT(1),
211 };
212
213 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
214 static long qhimark = 10000; /* If this many pending, ignore blimit. */
215 static long qlowmark = 100; /* Once only this many pending, use blimit. */
216
217 module_param(blimit, long, 0444);
218 module_param(qhimark, long, 0444);
219 module_param(qlowmark, long, 0444);
220
221 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
222 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
223
224 module_param(jiffies_till_first_fqs, ulong, 0644);
225 module_param(jiffies_till_next_fqs, ulong, 0644);
226
227 static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
228 struct rcu_data *rdp);
229 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
230 static void force_quiescent_state(struct rcu_state *rsp);
231 static int rcu_pending(int cpu);
232
233 /*
234 * Return the number of RCU-sched batches processed thus far for debug & stats.
235 */
236 long rcu_batches_completed_sched(void)
237 {
238 return rcu_sched_state.completed;
239 }
240 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
241
242 /*
243 * Return the number of RCU BH batches processed thus far for debug & stats.
244 */
245 long rcu_batches_completed_bh(void)
246 {
247 return rcu_bh_state.completed;
248 }
249 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
250
251 /*
252 * Force a quiescent state for RCU BH.
253 */
254 void rcu_bh_force_quiescent_state(void)
255 {
256 force_quiescent_state(&rcu_bh_state);
257 }
258 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
259
260 /*
261 * Record the number of times rcutorture tests have been initiated and
262 * terminated. This information allows the debugfs tracing stats to be
263 * correlated to the rcutorture messages, even when the rcutorture module
264 * is being repeatedly loaded and unloaded. In other words, we cannot
265 * store this state in rcutorture itself.
266 */
267 void rcutorture_record_test_transition(void)
268 {
269 rcutorture_testseq++;
270 rcutorture_vernum = 0;
271 }
272 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
273
274 /*
275 * Record the number of writer passes through the current rcutorture test.
276 * This is also used to correlate debugfs tracing stats with the rcutorture
277 * messages.
278 */
279 void rcutorture_record_progress(unsigned long vernum)
280 {
281 rcutorture_vernum++;
282 }
283 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
284
285 /*
286 * Force a quiescent state for RCU-sched.
287 */
288 void rcu_sched_force_quiescent_state(void)
289 {
290 force_quiescent_state(&rcu_sched_state);
291 }
292 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
293
294 /*
295 * Does the CPU have callbacks ready to be invoked?
296 */
297 static int
298 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
299 {
300 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
301 rdp->nxttail[RCU_DONE_TAIL] != NULL;
302 }
303
304 /*
305 * Does the current CPU require a not-yet-started grace period?
306 * The caller must have disabled interrupts to prevent races with
307 * normal callback registry.
308 */
309 static int
310 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
311 {
312 int i;
313
314 if (rcu_gp_in_progress(rsp))
315 return 0; /* No, a grace period is already in progress. */
316 if (rcu_nocb_needs_gp(rsp))
317 return 1; /* Yes, a no-CBs CPU needs one. */
318 if (!rdp->nxttail[RCU_NEXT_TAIL])
319 return 0; /* No, this is a no-CBs (or offline) CPU. */
320 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
321 return 1; /* Yes, this CPU has newly registered callbacks. */
322 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
323 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
324 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
325 rdp->nxtcompleted[i]))
326 return 1; /* Yes, CBs for future grace period. */
327 return 0; /* No grace period needed. */
328 }
329
330 /*
331 * Return the root node of the specified rcu_state structure.
332 */
333 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
334 {
335 return &rsp->node[0];
336 }
337
338 /*
339 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
340 *
341 * If the new value of the ->dynticks_nesting counter now is zero,
342 * we really have entered idle, and must do the appropriate accounting.
343 * The caller must have disabled interrupts.
344 */
345 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
346 bool user)
347 {
348 trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
349 if (!user && !is_idle_task(current)) {
350 struct task_struct *idle = idle_task(smp_processor_id());
351
352 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
353 ftrace_dump(DUMP_ORIG);
354 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
355 current->pid, current->comm,
356 idle->pid, idle->comm); /* must be idle task! */
357 }
358 rcu_prepare_for_idle(smp_processor_id());
359 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
360 smp_mb__before_atomic_inc(); /* See above. */
361 atomic_inc(&rdtp->dynticks);
362 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
363 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
364
365 /*
366 * It is illegal to enter an extended quiescent state while
367 * in an RCU read-side critical section.
368 */
369 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
370 "Illegal idle entry in RCU read-side critical section.");
371 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
372 "Illegal idle entry in RCU-bh read-side critical section.");
373 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
374 "Illegal idle entry in RCU-sched read-side critical section.");
375 }
376
377 /*
378 * Enter an RCU extended quiescent state, which can be either the
379 * idle loop or adaptive-tickless usermode execution.
380 */
381 static void rcu_eqs_enter(bool user)
382 {
383 long long oldval;
384 struct rcu_dynticks *rdtp;
385
386 rdtp = &__get_cpu_var(rcu_dynticks);
387 oldval = rdtp->dynticks_nesting;
388 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
389 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
390 rdtp->dynticks_nesting = 0;
391 else
392 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
393 rcu_eqs_enter_common(rdtp, oldval, user);
394 }
395
396 /**
397 * rcu_idle_enter - inform RCU that current CPU is entering idle
398 *
399 * Enter idle mode, in other words, -leave- the mode in which RCU
400 * read-side critical sections can occur. (Though RCU read-side
401 * critical sections can occur in irq handlers in idle, a possibility
402 * handled by irq_enter() and irq_exit().)
403 *
404 * We crowbar the ->dynticks_nesting field to zero to allow for
405 * the possibility of usermode upcalls having messed up our count
406 * of interrupt nesting level during the prior busy period.
407 */
408 void rcu_idle_enter(void)
409 {
410 unsigned long flags;
411
412 local_irq_save(flags);
413 rcu_eqs_enter(false);
414 local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL_GPL(rcu_idle_enter);
417
418 #ifdef CONFIG_RCU_USER_QS
419 /**
420 * rcu_user_enter - inform RCU that we are resuming userspace.
421 *
422 * Enter RCU idle mode right before resuming userspace. No use of RCU
423 * is permitted between this call and rcu_user_exit(). This way the
424 * CPU doesn't need to maintain the tick for RCU maintenance purposes
425 * when the CPU runs in userspace.
426 */
427 void rcu_user_enter(void)
428 {
429 rcu_eqs_enter(1);
430 }
431
432 /**
433 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
434 * after the current irq returns.
435 *
436 * This is similar to rcu_user_enter() but in the context of a non-nesting
437 * irq. After this call, RCU enters into idle mode when the interrupt
438 * returns.
439 */
440 void rcu_user_enter_after_irq(void)
441 {
442 unsigned long flags;
443 struct rcu_dynticks *rdtp;
444
445 local_irq_save(flags);
446 rdtp = &__get_cpu_var(rcu_dynticks);
447 /* Ensure this irq is interrupting a non-idle RCU state. */
448 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
449 rdtp->dynticks_nesting = 1;
450 local_irq_restore(flags);
451 }
452 #endif /* CONFIG_RCU_USER_QS */
453
454 /**
455 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
456 *
457 * Exit from an interrupt handler, which might possibly result in entering
458 * idle mode, in other words, leaving the mode in which read-side critical
459 * sections can occur.
460 *
461 * This code assumes that the idle loop never does anything that might
462 * result in unbalanced calls to irq_enter() and irq_exit(). If your
463 * architecture violates this assumption, RCU will give you what you
464 * deserve, good and hard. But very infrequently and irreproducibly.
465 *
466 * Use things like work queues to work around this limitation.
467 *
468 * You have been warned.
469 */
470 void rcu_irq_exit(void)
471 {
472 unsigned long flags;
473 long long oldval;
474 struct rcu_dynticks *rdtp;
475
476 local_irq_save(flags);
477 rdtp = &__get_cpu_var(rcu_dynticks);
478 oldval = rdtp->dynticks_nesting;
479 rdtp->dynticks_nesting--;
480 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
481 if (rdtp->dynticks_nesting)
482 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
483 else
484 rcu_eqs_enter_common(rdtp, oldval, true);
485 local_irq_restore(flags);
486 }
487
488 /*
489 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
490 *
491 * If the new value of the ->dynticks_nesting counter was previously zero,
492 * we really have exited idle, and must do the appropriate accounting.
493 * The caller must have disabled interrupts.
494 */
495 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
496 int user)
497 {
498 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
499 atomic_inc(&rdtp->dynticks);
500 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
501 smp_mb__after_atomic_inc(); /* See above. */
502 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
503 rcu_cleanup_after_idle(smp_processor_id());
504 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
505 if (!user && !is_idle_task(current)) {
506 struct task_struct *idle = idle_task(smp_processor_id());
507
508 trace_rcu_dyntick("Error on exit: not idle task",
509 oldval, rdtp->dynticks_nesting);
510 ftrace_dump(DUMP_ORIG);
511 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
512 current->pid, current->comm,
513 idle->pid, idle->comm); /* must be idle task! */
514 }
515 }
516
517 /*
518 * Exit an RCU extended quiescent state, which can be either the
519 * idle loop or adaptive-tickless usermode execution.
520 */
521 static void rcu_eqs_exit(bool user)
522 {
523 struct rcu_dynticks *rdtp;
524 long long oldval;
525
526 rdtp = &__get_cpu_var(rcu_dynticks);
527 oldval = rdtp->dynticks_nesting;
528 WARN_ON_ONCE(oldval < 0);
529 if (oldval & DYNTICK_TASK_NEST_MASK)
530 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
531 else
532 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
533 rcu_eqs_exit_common(rdtp, oldval, user);
534 }
535
536 /**
537 * rcu_idle_exit - inform RCU that current CPU is leaving idle
538 *
539 * Exit idle mode, in other words, -enter- the mode in which RCU
540 * read-side critical sections can occur.
541 *
542 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
543 * allow for the possibility of usermode upcalls messing up our count
544 * of interrupt nesting level during the busy period that is just
545 * now starting.
546 */
547 void rcu_idle_exit(void)
548 {
549 unsigned long flags;
550
551 local_irq_save(flags);
552 rcu_eqs_exit(false);
553 local_irq_restore(flags);
554 }
555 EXPORT_SYMBOL_GPL(rcu_idle_exit);
556
557 #ifdef CONFIG_RCU_USER_QS
558 /**
559 * rcu_user_exit - inform RCU that we are exiting userspace.
560 *
561 * Exit RCU idle mode while entering the kernel because it can
562 * run a RCU read side critical section anytime.
563 */
564 void rcu_user_exit(void)
565 {
566 rcu_eqs_exit(1);
567 }
568
569 /**
570 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
571 * idle mode after the current non-nesting irq returns.
572 *
573 * This is similar to rcu_user_exit() but in the context of an irq.
574 * This is called when the irq has interrupted a userspace RCU idle mode
575 * context. When the current non-nesting interrupt returns after this call,
576 * the CPU won't restore the RCU idle mode.
577 */
578 void rcu_user_exit_after_irq(void)
579 {
580 unsigned long flags;
581 struct rcu_dynticks *rdtp;
582
583 local_irq_save(flags);
584 rdtp = &__get_cpu_var(rcu_dynticks);
585 /* Ensure we are interrupting an RCU idle mode. */
586 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
587 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
588 local_irq_restore(flags);
589 }
590 #endif /* CONFIG_RCU_USER_QS */
591
592 /**
593 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
594 *
595 * Enter an interrupt handler, which might possibly result in exiting
596 * idle mode, in other words, entering the mode in which read-side critical
597 * sections can occur.
598 *
599 * Note that the Linux kernel is fully capable of entering an interrupt
600 * handler that it never exits, for example when doing upcalls to
601 * user mode! This code assumes that the idle loop never does upcalls to
602 * user mode. If your architecture does do upcalls from the idle loop (or
603 * does anything else that results in unbalanced calls to the irq_enter()
604 * and irq_exit() functions), RCU will give you what you deserve, good
605 * and hard. But very infrequently and irreproducibly.
606 *
607 * Use things like work queues to work around this limitation.
608 *
609 * You have been warned.
610 */
611 void rcu_irq_enter(void)
612 {
613 unsigned long flags;
614 struct rcu_dynticks *rdtp;
615 long long oldval;
616
617 local_irq_save(flags);
618 rdtp = &__get_cpu_var(rcu_dynticks);
619 oldval = rdtp->dynticks_nesting;
620 rdtp->dynticks_nesting++;
621 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
622 if (oldval)
623 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
624 else
625 rcu_eqs_exit_common(rdtp, oldval, true);
626 local_irq_restore(flags);
627 }
628
629 /**
630 * rcu_nmi_enter - inform RCU of entry to NMI context
631 *
632 * If the CPU was idle with dynamic ticks active, and there is no
633 * irq handler running, this updates rdtp->dynticks_nmi to let the
634 * RCU grace-period handling know that the CPU is active.
635 */
636 void rcu_nmi_enter(void)
637 {
638 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
639
640 if (rdtp->dynticks_nmi_nesting == 0 &&
641 (atomic_read(&rdtp->dynticks) & 0x1))
642 return;
643 rdtp->dynticks_nmi_nesting++;
644 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
645 atomic_inc(&rdtp->dynticks);
646 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
647 smp_mb__after_atomic_inc(); /* See above. */
648 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
649 }
650
651 /**
652 * rcu_nmi_exit - inform RCU of exit from NMI context
653 *
654 * If the CPU was idle with dynamic ticks active, and there is no
655 * irq handler running, this updates rdtp->dynticks_nmi to let the
656 * RCU grace-period handling know that the CPU is no longer active.
657 */
658 void rcu_nmi_exit(void)
659 {
660 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
661
662 if (rdtp->dynticks_nmi_nesting == 0 ||
663 --rdtp->dynticks_nmi_nesting != 0)
664 return;
665 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
666 smp_mb__before_atomic_inc(); /* See above. */
667 atomic_inc(&rdtp->dynticks);
668 smp_mb__after_atomic_inc(); /* Force delay to next write. */
669 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
670 }
671
672 /**
673 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
674 *
675 * If the current CPU is in its idle loop and is neither in an interrupt
676 * or NMI handler, return true.
677 */
678 int rcu_is_cpu_idle(void)
679 {
680 int ret;
681
682 preempt_disable();
683 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
684 preempt_enable();
685 return ret;
686 }
687 EXPORT_SYMBOL(rcu_is_cpu_idle);
688
689 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
690
691 /*
692 * Is the current CPU online? Disable preemption to avoid false positives
693 * that could otherwise happen due to the current CPU number being sampled,
694 * this task being preempted, its old CPU being taken offline, resuming
695 * on some other CPU, then determining that its old CPU is now offline.
696 * It is OK to use RCU on an offline processor during initial boot, hence
697 * the check for rcu_scheduler_fully_active. Note also that it is OK
698 * for a CPU coming online to use RCU for one jiffy prior to marking itself
699 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
700 * offline to continue to use RCU for one jiffy after marking itself
701 * offline in the cpu_online_mask. This leniency is necessary given the
702 * non-atomic nature of the online and offline processing, for example,
703 * the fact that a CPU enters the scheduler after completing the CPU_DYING
704 * notifiers.
705 *
706 * This is also why RCU internally marks CPUs online during the
707 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
708 *
709 * Disable checking if in an NMI handler because we cannot safely report
710 * errors from NMI handlers anyway.
711 */
712 bool rcu_lockdep_current_cpu_online(void)
713 {
714 struct rcu_data *rdp;
715 struct rcu_node *rnp;
716 bool ret;
717
718 if (in_nmi())
719 return 1;
720 preempt_disable();
721 rdp = &__get_cpu_var(rcu_sched_data);
722 rnp = rdp->mynode;
723 ret = (rdp->grpmask & rnp->qsmaskinit) ||
724 !rcu_scheduler_fully_active;
725 preempt_enable();
726 return ret;
727 }
728 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
729
730 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
731
732 /**
733 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
734 *
735 * If the current CPU is idle or running at a first-level (not nested)
736 * interrupt from idle, return true. The caller must have at least
737 * disabled preemption.
738 */
739 static int rcu_is_cpu_rrupt_from_idle(void)
740 {
741 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
742 }
743
744 /*
745 * Snapshot the specified CPU's dynticks counter so that we can later
746 * credit them with an implicit quiescent state. Return 1 if this CPU
747 * is in dynticks idle mode, which is an extended quiescent state.
748 */
749 static int dyntick_save_progress_counter(struct rcu_data *rdp)
750 {
751 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
752 return (rdp->dynticks_snap & 0x1) == 0;
753 }
754
755 /*
756 * Return true if the specified CPU has passed through a quiescent
757 * state by virtue of being in or having passed through an dynticks
758 * idle state since the last call to dyntick_save_progress_counter()
759 * for this same CPU, or by virtue of having been offline.
760 */
761 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
762 {
763 unsigned int curr;
764 unsigned int snap;
765
766 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
767 snap = (unsigned int)rdp->dynticks_snap;
768
769 /*
770 * If the CPU passed through or entered a dynticks idle phase with
771 * no active irq/NMI handlers, then we can safely pretend that the CPU
772 * already acknowledged the request to pass through a quiescent
773 * state. Either way, that CPU cannot possibly be in an RCU
774 * read-side critical section that started before the beginning
775 * of the current RCU grace period.
776 */
777 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
778 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
779 rdp->dynticks_fqs++;
780 return 1;
781 }
782
783 /*
784 * Check for the CPU being offline, but only if the grace period
785 * is old enough. We don't need to worry about the CPU changing
786 * state: If we see it offline even once, it has been through a
787 * quiescent state.
788 *
789 * The reason for insisting that the grace period be at least
790 * one jiffy old is that CPUs that are not quite online and that
791 * have just gone offline can still execute RCU read-side critical
792 * sections.
793 */
794 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
795 return 0; /* Grace period is not old enough. */
796 barrier();
797 if (cpu_is_offline(rdp->cpu)) {
798 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
799 rdp->offline_fqs++;
800 return 1;
801 }
802 return 0;
803 }
804
805 static void record_gp_stall_check_time(struct rcu_state *rsp)
806 {
807 rsp->gp_start = jiffies;
808 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
809 }
810
811 /*
812 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
813 * for architectures that do not implement trigger_all_cpu_backtrace().
814 * The NMI-triggered stack traces are more accurate because they are
815 * printed by the target CPU.
816 */
817 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
818 {
819 int cpu;
820 unsigned long flags;
821 struct rcu_node *rnp;
822
823 rcu_for_each_leaf_node(rsp, rnp) {
824 raw_spin_lock_irqsave(&rnp->lock, flags);
825 if (rnp->qsmask != 0) {
826 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
827 if (rnp->qsmask & (1UL << cpu))
828 dump_cpu_task(rnp->grplo + cpu);
829 }
830 raw_spin_unlock_irqrestore(&rnp->lock, flags);
831 }
832 }
833
834 static void print_other_cpu_stall(struct rcu_state *rsp)
835 {
836 int cpu;
837 long delta;
838 unsigned long flags;
839 int ndetected = 0;
840 struct rcu_node *rnp = rcu_get_root(rsp);
841 long totqlen = 0;
842
843 /* Only let one CPU complain about others per time interval. */
844
845 raw_spin_lock_irqsave(&rnp->lock, flags);
846 delta = jiffies - rsp->jiffies_stall;
847 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
848 raw_spin_unlock_irqrestore(&rnp->lock, flags);
849 return;
850 }
851 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
852 raw_spin_unlock_irqrestore(&rnp->lock, flags);
853
854 /*
855 * OK, time to rat on our buddy...
856 * See Documentation/RCU/stallwarn.txt for info on how to debug
857 * RCU CPU stall warnings.
858 */
859 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
860 rsp->name);
861 print_cpu_stall_info_begin();
862 rcu_for_each_leaf_node(rsp, rnp) {
863 raw_spin_lock_irqsave(&rnp->lock, flags);
864 ndetected += rcu_print_task_stall(rnp);
865 if (rnp->qsmask != 0) {
866 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
867 if (rnp->qsmask & (1UL << cpu)) {
868 print_cpu_stall_info(rsp,
869 rnp->grplo + cpu);
870 ndetected++;
871 }
872 }
873 raw_spin_unlock_irqrestore(&rnp->lock, flags);
874 }
875
876 /*
877 * Now rat on any tasks that got kicked up to the root rcu_node
878 * due to CPU offlining.
879 */
880 rnp = rcu_get_root(rsp);
881 raw_spin_lock_irqsave(&rnp->lock, flags);
882 ndetected += rcu_print_task_stall(rnp);
883 raw_spin_unlock_irqrestore(&rnp->lock, flags);
884
885 print_cpu_stall_info_end();
886 for_each_possible_cpu(cpu)
887 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
888 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
889 smp_processor_id(), (long)(jiffies - rsp->gp_start),
890 rsp->gpnum, rsp->completed, totqlen);
891 if (ndetected == 0)
892 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
893 else if (!trigger_all_cpu_backtrace())
894 rcu_dump_cpu_stacks(rsp);
895
896 /* Complain about tasks blocking the grace period. */
897
898 rcu_print_detail_task_stall(rsp);
899
900 force_quiescent_state(rsp); /* Kick them all. */
901 }
902
903 static void print_cpu_stall(struct rcu_state *rsp)
904 {
905 int cpu;
906 unsigned long flags;
907 struct rcu_node *rnp = rcu_get_root(rsp);
908 long totqlen = 0;
909
910 /*
911 * OK, time to rat on ourselves...
912 * See Documentation/RCU/stallwarn.txt for info on how to debug
913 * RCU CPU stall warnings.
914 */
915 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
916 print_cpu_stall_info_begin();
917 print_cpu_stall_info(rsp, smp_processor_id());
918 print_cpu_stall_info_end();
919 for_each_possible_cpu(cpu)
920 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
921 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
922 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
923 if (!trigger_all_cpu_backtrace())
924 dump_stack();
925
926 raw_spin_lock_irqsave(&rnp->lock, flags);
927 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
928 rsp->jiffies_stall = jiffies +
929 3 * rcu_jiffies_till_stall_check() + 3;
930 raw_spin_unlock_irqrestore(&rnp->lock, flags);
931
932 set_need_resched(); /* kick ourselves to get things going. */
933 }
934
935 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
936 {
937 unsigned long j;
938 unsigned long js;
939 struct rcu_node *rnp;
940
941 if (rcu_cpu_stall_suppress)
942 return;
943 j = ACCESS_ONCE(jiffies);
944 js = ACCESS_ONCE(rsp->jiffies_stall);
945 rnp = rdp->mynode;
946 if (rcu_gp_in_progress(rsp) &&
947 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
948
949 /* We haven't checked in, so go dump stack. */
950 print_cpu_stall(rsp);
951
952 } else if (rcu_gp_in_progress(rsp) &&
953 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
954
955 /* They had a few time units to dump stack, so complain. */
956 print_other_cpu_stall(rsp);
957 }
958 }
959
960 /**
961 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
962 *
963 * Set the stall-warning timeout way off into the future, thus preventing
964 * any RCU CPU stall-warning messages from appearing in the current set of
965 * RCU grace periods.
966 *
967 * The caller must disable hard irqs.
968 */
969 void rcu_cpu_stall_reset(void)
970 {
971 struct rcu_state *rsp;
972
973 for_each_rcu_flavor(rsp)
974 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
975 }
976
977 /*
978 * Update CPU-local rcu_data state to record the newly noticed grace period.
979 * This is used both when we started the grace period and when we notice
980 * that someone else started the grace period. The caller must hold the
981 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
982 * and must have irqs disabled.
983 */
984 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
985 {
986 if (rdp->gpnum != rnp->gpnum) {
987 /*
988 * If the current grace period is waiting for this CPU,
989 * set up to detect a quiescent state, otherwise don't
990 * go looking for one.
991 */
992 rdp->gpnum = rnp->gpnum;
993 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
994 rdp->passed_quiesce = 0;
995 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
996 zero_cpu_stall_ticks(rdp);
997 }
998 }
999
1000 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1001 {
1002 unsigned long flags;
1003 struct rcu_node *rnp;
1004
1005 local_irq_save(flags);
1006 rnp = rdp->mynode;
1007 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1008 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1009 local_irq_restore(flags);
1010 return;
1011 }
1012 __note_new_gpnum(rsp, rnp, rdp);
1013 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1014 }
1015
1016 /*
1017 * Did someone else start a new RCU grace period start since we last
1018 * checked? Update local state appropriately if so. Must be called
1019 * on the CPU corresponding to rdp.
1020 */
1021 static int
1022 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1023 {
1024 unsigned long flags;
1025 int ret = 0;
1026
1027 local_irq_save(flags);
1028 if (rdp->gpnum != rsp->gpnum) {
1029 note_new_gpnum(rsp, rdp);
1030 ret = 1;
1031 }
1032 local_irq_restore(flags);
1033 return ret;
1034 }
1035
1036 /*
1037 * Initialize the specified rcu_data structure's callback list to empty.
1038 */
1039 static void init_callback_list(struct rcu_data *rdp)
1040 {
1041 int i;
1042
1043 if (init_nocb_callback_list(rdp))
1044 return;
1045 rdp->nxtlist = NULL;
1046 for (i = 0; i < RCU_NEXT_SIZE; i++)
1047 rdp->nxttail[i] = &rdp->nxtlist;
1048 }
1049
1050 /*
1051 * Determine the value that ->completed will have at the end of the
1052 * next subsequent grace period. This is used to tag callbacks so that
1053 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1054 * been dyntick-idle for an extended period with callbacks under the
1055 * influence of RCU_FAST_NO_HZ.
1056 *
1057 * The caller must hold rnp->lock with interrupts disabled.
1058 */
1059 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1060 struct rcu_node *rnp)
1061 {
1062 /*
1063 * If RCU is idle, we just wait for the next grace period.
1064 * But we can only be sure that RCU is idle if we are looking
1065 * at the root rcu_node structure -- otherwise, a new grace
1066 * period might have started, but just not yet gotten around
1067 * to initializing the current non-root rcu_node structure.
1068 */
1069 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1070 return rnp->completed + 1;
1071
1072 /*
1073 * Otherwise, wait for a possible partial grace period and
1074 * then the subsequent full grace period.
1075 */
1076 return rnp->completed + 2;
1077 }
1078
1079 /*
1080 * Trace-event helper function for rcu_start_future_gp() and
1081 * rcu_nocb_wait_gp().
1082 */
1083 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1084 unsigned long c, char *s)
1085 {
1086 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1087 rnp->completed, c, rnp->level,
1088 rnp->grplo, rnp->grphi, s);
1089 }
1090
1091 /*
1092 * Start some future grace period, as needed to handle newly arrived
1093 * callbacks. The required future grace periods are recorded in each
1094 * rcu_node structure's ->need_future_gp field.
1095 *
1096 * The caller must hold the specified rcu_node structure's ->lock.
1097 */
1098 static unsigned long __maybe_unused
1099 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1100 {
1101 unsigned long c;
1102 int i;
1103 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1104
1105 /*
1106 * Pick up grace-period number for new callbacks. If this
1107 * grace period is already marked as needed, return to the caller.
1108 */
1109 c = rcu_cbs_completed(rdp->rsp, rnp);
1110 trace_rcu_future_gp(rnp, rdp, c, "Startleaf");
1111 if (rnp->need_future_gp[c & 0x1]) {
1112 trace_rcu_future_gp(rnp, rdp, c, "Prestartleaf");
1113 return c;
1114 }
1115
1116 /*
1117 * If either this rcu_node structure or the root rcu_node structure
1118 * believe that a grace period is in progress, then we must wait
1119 * for the one following, which is in "c". Because our request
1120 * will be noticed at the end of the current grace period, we don't
1121 * need to explicitly start one.
1122 */
1123 if (rnp->gpnum != rnp->completed ||
1124 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1125 rnp->need_future_gp[c & 0x1]++;
1126 trace_rcu_future_gp(rnp, rdp, c, "Startedleaf");
1127 return c;
1128 }
1129
1130 /*
1131 * There might be no grace period in progress. If we don't already
1132 * hold it, acquire the root rcu_node structure's lock in order to
1133 * start one (if needed).
1134 */
1135 if (rnp != rnp_root)
1136 raw_spin_lock(&rnp_root->lock);
1137
1138 /*
1139 * Get a new grace-period number. If there really is no grace
1140 * period in progress, it will be smaller than the one we obtained
1141 * earlier. Adjust callbacks as needed. Note that even no-CBs
1142 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1143 */
1144 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1145 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1146 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1147 rdp->nxtcompleted[i] = c;
1148
1149 /*
1150 * If the needed for the required grace period is already
1151 * recorded, trace and leave.
1152 */
1153 if (rnp_root->need_future_gp[c & 0x1]) {
1154 trace_rcu_future_gp(rnp, rdp, c, "Prestartedroot");
1155 goto unlock_out;
1156 }
1157
1158 /* Record the need for the future grace period. */
1159 rnp_root->need_future_gp[c & 0x1]++;
1160
1161 /* If a grace period is not already in progress, start one. */
1162 if (rnp_root->gpnum != rnp_root->completed) {
1163 trace_rcu_future_gp(rnp, rdp, c, "Startedleafroot");
1164 } else {
1165 trace_rcu_future_gp(rnp, rdp, c, "Startedroot");
1166 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1167 }
1168 unlock_out:
1169 if (rnp != rnp_root)
1170 raw_spin_unlock(&rnp_root->lock);
1171 return c;
1172 }
1173
1174 /*
1175 * Clean up any old requests for the just-ended grace period. Also return
1176 * whether any additional grace periods have been requested. Also invoke
1177 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1178 * waiting for this grace period to complete.
1179 */
1180 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1181 {
1182 int c = rnp->completed;
1183 int needmore;
1184 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1185
1186 rcu_nocb_gp_cleanup(rsp, rnp);
1187 rnp->need_future_gp[c & 0x1] = 0;
1188 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1189 trace_rcu_future_gp(rnp, rdp, c, needmore ? "CleanupMore" : "Cleanup");
1190 return needmore;
1191 }
1192
1193 /*
1194 * If there is room, assign a ->completed number to any callbacks on
1195 * this CPU that have not already been assigned. Also accelerate any
1196 * callbacks that were previously assigned a ->completed number that has
1197 * since proven to be too conservative, which can happen if callbacks get
1198 * assigned a ->completed number while RCU is idle, but with reference to
1199 * a non-root rcu_node structure. This function is idempotent, so it does
1200 * not hurt to call it repeatedly.
1201 *
1202 * The caller must hold rnp->lock with interrupts disabled.
1203 */
1204 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1205 struct rcu_data *rdp)
1206 {
1207 unsigned long c;
1208 int i;
1209
1210 /* If the CPU has no callbacks, nothing to do. */
1211 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1212 return;
1213
1214 /*
1215 * Starting from the sublist containing the callbacks most
1216 * recently assigned a ->completed number and working down, find the
1217 * first sublist that is not assignable to an upcoming grace period.
1218 * Such a sublist has something in it (first two tests) and has
1219 * a ->completed number assigned that will complete sooner than
1220 * the ->completed number for newly arrived callbacks (last test).
1221 *
1222 * The key point is that any later sublist can be assigned the
1223 * same ->completed number as the newly arrived callbacks, which
1224 * means that the callbacks in any of these later sublist can be
1225 * grouped into a single sublist, whether or not they have already
1226 * been assigned a ->completed number.
1227 */
1228 c = rcu_cbs_completed(rsp, rnp);
1229 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1230 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1231 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1232 break;
1233
1234 /*
1235 * If there are no sublist for unassigned callbacks, leave.
1236 * At the same time, advance "i" one sublist, so that "i" will
1237 * index into the sublist where all the remaining callbacks should
1238 * be grouped into.
1239 */
1240 if (++i >= RCU_NEXT_TAIL)
1241 return;
1242
1243 /*
1244 * Assign all subsequent callbacks' ->completed number to the next
1245 * full grace period and group them all in the sublist initially
1246 * indexed by "i".
1247 */
1248 for (; i <= RCU_NEXT_TAIL; i++) {
1249 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1250 rdp->nxtcompleted[i] = c;
1251 }
1252 /* Record any needed additional grace periods. */
1253 rcu_start_future_gp(rnp, rdp);
1254
1255 /* Trace depending on how much we were able to accelerate. */
1256 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1257 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccWaitCB");
1258 else
1259 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccReadyCB");
1260 }
1261
1262 /*
1263 * Move any callbacks whose grace period has completed to the
1264 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1265 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1266 * sublist. This function is idempotent, so it does not hurt to
1267 * invoke it repeatedly. As long as it is not invoked -too- often...
1268 *
1269 * The caller must hold rnp->lock with interrupts disabled.
1270 */
1271 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1272 struct rcu_data *rdp)
1273 {
1274 int i, j;
1275
1276 /* If the CPU has no callbacks, nothing to do. */
1277 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1278 return;
1279
1280 /*
1281 * Find all callbacks whose ->completed numbers indicate that they
1282 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1283 */
1284 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1285 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1286 break;
1287 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1288 }
1289 /* Clean up any sublist tail pointers that were misordered above. */
1290 for (j = RCU_WAIT_TAIL; j < i; j++)
1291 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1292
1293 /* Copy down callbacks to fill in empty sublists. */
1294 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1295 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1296 break;
1297 rdp->nxttail[j] = rdp->nxttail[i];
1298 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1299 }
1300
1301 /* Classify any remaining callbacks. */
1302 rcu_accelerate_cbs(rsp, rnp, rdp);
1303 }
1304
1305 /*
1306 * Advance this CPU's callbacks, but only if the current grace period
1307 * has ended. This may be called only from the CPU to whom the rdp
1308 * belongs. In addition, the corresponding leaf rcu_node structure's
1309 * ->lock must be held by the caller, with irqs disabled.
1310 */
1311 static void
1312 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1313 {
1314 /* Did another grace period end? */
1315 if (rdp->completed == rnp->completed) {
1316
1317 /* No, so just accelerate recent callbacks. */
1318 rcu_accelerate_cbs(rsp, rnp, rdp);
1319
1320 } else {
1321
1322 /* Advance callbacks. */
1323 rcu_advance_cbs(rsp, rnp, rdp);
1324
1325 /* Remember that we saw this grace-period completion. */
1326 rdp->completed = rnp->completed;
1327 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1328
1329 /*
1330 * If we were in an extended quiescent state, we may have
1331 * missed some grace periods that others CPUs handled on
1332 * our behalf. Catch up with this state to avoid noting
1333 * spurious new grace periods. If another grace period
1334 * has started, then rnp->gpnum will have advanced, so
1335 * we will detect this later on. Of course, any quiescent
1336 * states we found for the old GP are now invalid.
1337 */
1338 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1339 rdp->gpnum = rdp->completed;
1340 rdp->passed_quiesce = 0;
1341 }
1342
1343 /*
1344 * If RCU does not need a quiescent state from this CPU,
1345 * then make sure that this CPU doesn't go looking for one.
1346 */
1347 if ((rnp->qsmask & rdp->grpmask) == 0)
1348 rdp->qs_pending = 0;
1349 }
1350 }
1351
1352 /*
1353 * Advance this CPU's callbacks, but only if the current grace period
1354 * has ended. This may be called only from the CPU to whom the rdp
1355 * belongs.
1356 */
1357 static void
1358 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1359 {
1360 unsigned long flags;
1361 struct rcu_node *rnp;
1362
1363 local_irq_save(flags);
1364 rnp = rdp->mynode;
1365 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1366 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1367 local_irq_restore(flags);
1368 return;
1369 }
1370 __rcu_process_gp_end(rsp, rnp, rdp);
1371 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1372 }
1373
1374 /*
1375 * Do per-CPU grace-period initialization for running CPU. The caller
1376 * must hold the lock of the leaf rcu_node structure corresponding to
1377 * this CPU.
1378 */
1379 static void
1380 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1381 {
1382 /* Prior grace period ended, so advance callbacks for current CPU. */
1383 __rcu_process_gp_end(rsp, rnp, rdp);
1384
1385 /* Set state so that this CPU will detect the next quiescent state. */
1386 __note_new_gpnum(rsp, rnp, rdp);
1387 }
1388
1389 /*
1390 * Initialize a new grace period.
1391 */
1392 static int rcu_gp_init(struct rcu_state *rsp)
1393 {
1394 struct rcu_data *rdp;
1395 struct rcu_node *rnp = rcu_get_root(rsp);
1396
1397 raw_spin_lock_irq(&rnp->lock);
1398 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1399
1400 if (rcu_gp_in_progress(rsp)) {
1401 /* Grace period already in progress, don't start another. */
1402 raw_spin_unlock_irq(&rnp->lock);
1403 return 0;
1404 }
1405
1406 /* Advance to a new grace period and initialize state. */
1407 rsp->gpnum++;
1408 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1409 record_gp_stall_check_time(rsp);
1410 raw_spin_unlock_irq(&rnp->lock);
1411
1412 /* Exclude any concurrent CPU-hotplug operations. */
1413 mutex_lock(&rsp->onoff_mutex);
1414
1415 /*
1416 * Set the quiescent-state-needed bits in all the rcu_node
1417 * structures for all currently online CPUs in breadth-first order,
1418 * starting from the root rcu_node structure, relying on the layout
1419 * of the tree within the rsp->node[] array. Note that other CPUs
1420 * will access only the leaves of the hierarchy, thus seeing that no
1421 * grace period is in progress, at least until the corresponding
1422 * leaf node has been initialized. In addition, we have excluded
1423 * CPU-hotplug operations.
1424 *
1425 * The grace period cannot complete until the initialization
1426 * process finishes, because this kthread handles both.
1427 */
1428 rcu_for_each_node_breadth_first(rsp, rnp) {
1429 raw_spin_lock_irq(&rnp->lock);
1430 rdp = this_cpu_ptr(rsp->rda);
1431 rcu_preempt_check_blocked_tasks(rnp);
1432 rnp->qsmask = rnp->qsmaskinit;
1433 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1434 WARN_ON_ONCE(rnp->completed != rsp->completed);
1435 ACCESS_ONCE(rnp->completed) = rsp->completed;
1436 if (rnp == rdp->mynode)
1437 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1438 rcu_preempt_boost_start_gp(rnp);
1439 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1440 rnp->level, rnp->grplo,
1441 rnp->grphi, rnp->qsmask);
1442 raw_spin_unlock_irq(&rnp->lock);
1443 #ifdef CONFIG_PROVE_RCU_DELAY
1444 if ((prandom_u32() % (rcu_num_nodes * 8)) == 0 &&
1445 system_state == SYSTEM_RUNNING)
1446 schedule_timeout_uninterruptible(2);
1447 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1448 cond_resched();
1449 }
1450
1451 mutex_unlock(&rsp->onoff_mutex);
1452 return 1;
1453 }
1454
1455 /*
1456 * Do one round of quiescent-state forcing.
1457 */
1458 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1459 {
1460 int fqs_state = fqs_state_in;
1461 struct rcu_node *rnp = rcu_get_root(rsp);
1462
1463 rsp->n_force_qs++;
1464 if (fqs_state == RCU_SAVE_DYNTICK) {
1465 /* Collect dyntick-idle snapshots. */
1466 force_qs_rnp(rsp, dyntick_save_progress_counter);
1467 fqs_state = RCU_FORCE_QS;
1468 } else {
1469 /* Handle dyntick-idle and offline CPUs. */
1470 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1471 }
1472 /* Clear flag to prevent immediate re-entry. */
1473 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1474 raw_spin_lock_irq(&rnp->lock);
1475 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1476 raw_spin_unlock_irq(&rnp->lock);
1477 }
1478 return fqs_state;
1479 }
1480
1481 /*
1482 * Clean up after the old grace period.
1483 */
1484 static void rcu_gp_cleanup(struct rcu_state *rsp)
1485 {
1486 unsigned long gp_duration;
1487 int nocb = 0;
1488 struct rcu_data *rdp;
1489 struct rcu_node *rnp = rcu_get_root(rsp);
1490
1491 raw_spin_lock_irq(&rnp->lock);
1492 gp_duration = jiffies - rsp->gp_start;
1493 if (gp_duration > rsp->gp_max)
1494 rsp->gp_max = gp_duration;
1495
1496 /*
1497 * We know the grace period is complete, but to everyone else
1498 * it appears to still be ongoing. But it is also the case
1499 * that to everyone else it looks like there is nothing that
1500 * they can do to advance the grace period. It is therefore
1501 * safe for us to drop the lock in order to mark the grace
1502 * period as completed in all of the rcu_node structures.
1503 */
1504 raw_spin_unlock_irq(&rnp->lock);
1505
1506 /*
1507 * Propagate new ->completed value to rcu_node structures so
1508 * that other CPUs don't have to wait until the start of the next
1509 * grace period to process their callbacks. This also avoids
1510 * some nasty RCU grace-period initialization races by forcing
1511 * the end of the current grace period to be completely recorded in
1512 * all of the rcu_node structures before the beginning of the next
1513 * grace period is recorded in any of the rcu_node structures.
1514 */
1515 rcu_for_each_node_breadth_first(rsp, rnp) {
1516 raw_spin_lock_irq(&rnp->lock);
1517 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1518 rdp = this_cpu_ptr(rsp->rda);
1519 if (rnp == rdp->mynode)
1520 __rcu_process_gp_end(rsp, rnp, rdp);
1521 nocb += rcu_future_gp_cleanup(rsp, rnp);
1522 raw_spin_unlock_irq(&rnp->lock);
1523 cond_resched();
1524 }
1525 rnp = rcu_get_root(rsp);
1526 raw_spin_lock_irq(&rnp->lock);
1527 rcu_nocb_gp_set(rnp, nocb);
1528
1529 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1530 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1531 rsp->fqs_state = RCU_GP_IDLE;
1532 rdp = this_cpu_ptr(rsp->rda);
1533 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
1534 if (cpu_needs_another_gp(rsp, rdp))
1535 rsp->gp_flags = 1;
1536 raw_spin_unlock_irq(&rnp->lock);
1537 }
1538
1539 /*
1540 * Body of kthread that handles grace periods.
1541 */
1542 static int __noreturn rcu_gp_kthread(void *arg)
1543 {
1544 int fqs_state;
1545 unsigned long j;
1546 int ret;
1547 struct rcu_state *rsp = arg;
1548 struct rcu_node *rnp = rcu_get_root(rsp);
1549
1550 for (;;) {
1551
1552 /* Handle grace-period start. */
1553 for (;;) {
1554 wait_event_interruptible(rsp->gp_wq,
1555 rsp->gp_flags &
1556 RCU_GP_FLAG_INIT);
1557 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1558 rcu_gp_init(rsp))
1559 break;
1560 cond_resched();
1561 flush_signals(current);
1562 }
1563
1564 /* Handle quiescent-state forcing. */
1565 fqs_state = RCU_SAVE_DYNTICK;
1566 j = jiffies_till_first_fqs;
1567 if (j > HZ) {
1568 j = HZ;
1569 jiffies_till_first_fqs = HZ;
1570 }
1571 for (;;) {
1572 rsp->jiffies_force_qs = jiffies + j;
1573 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1574 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1575 (!ACCESS_ONCE(rnp->qsmask) &&
1576 !rcu_preempt_blocked_readers_cgp(rnp)),
1577 j);
1578 /* If grace period done, leave loop. */
1579 if (!ACCESS_ONCE(rnp->qsmask) &&
1580 !rcu_preempt_blocked_readers_cgp(rnp))
1581 break;
1582 /* If time for quiescent-state forcing, do it. */
1583 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1584 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1585 cond_resched();
1586 } else {
1587 /* Deal with stray signal. */
1588 cond_resched();
1589 flush_signals(current);
1590 }
1591 j = jiffies_till_next_fqs;
1592 if (j > HZ) {
1593 j = HZ;
1594 jiffies_till_next_fqs = HZ;
1595 } else if (j < 1) {
1596 j = 1;
1597 jiffies_till_next_fqs = 1;
1598 }
1599 }
1600
1601 /* Handle grace-period end. */
1602 rcu_gp_cleanup(rsp);
1603 }
1604 }
1605
1606 /*
1607 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1608 * in preparation for detecting the next grace period. The caller must hold
1609 * the root node's ->lock and hard irqs must be disabled.
1610 *
1611 * Note that it is legal for a dying CPU (which is marked as offline) to
1612 * invoke this function. This can happen when the dying CPU reports its
1613 * quiescent state.
1614 */
1615 static void
1616 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1617 struct rcu_data *rdp)
1618 {
1619 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1620 /*
1621 * Either we have not yet spawned the grace-period
1622 * task, this CPU does not need another grace period,
1623 * or a grace period is already in progress.
1624 * Either way, don't start a new grace period.
1625 */
1626 return;
1627 }
1628 rsp->gp_flags = RCU_GP_FLAG_INIT;
1629
1630 /* Wake up rcu_gp_kthread() to start the grace period. */
1631 wake_up(&rsp->gp_wq);
1632 }
1633
1634 /*
1635 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1636 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1637 * is invoked indirectly from rcu_advance_cbs(), which would result in
1638 * endless recursion -- or would do so if it wasn't for the self-deadlock
1639 * that is encountered beforehand.
1640 */
1641 static void
1642 rcu_start_gp(struct rcu_state *rsp)
1643 {
1644 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1645 struct rcu_node *rnp = rcu_get_root(rsp);
1646
1647 /*
1648 * If there is no grace period in progress right now, any
1649 * callbacks we have up to this point will be satisfied by the
1650 * next grace period. Also, advancing the callbacks reduces the
1651 * probability of false positives from cpu_needs_another_gp()
1652 * resulting in pointless grace periods. So, advance callbacks
1653 * then start the grace period!
1654 */
1655 rcu_advance_cbs(rsp, rnp, rdp);
1656 rcu_start_gp_advanced(rsp, rnp, rdp);
1657 }
1658
1659 /*
1660 * Report a full set of quiescent states to the specified rcu_state
1661 * data structure. This involves cleaning up after the prior grace
1662 * period and letting rcu_start_gp() start up the next grace period
1663 * if one is needed. Note that the caller must hold rnp->lock, which
1664 * is released before return.
1665 */
1666 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1667 __releases(rcu_get_root(rsp)->lock)
1668 {
1669 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1670 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1671 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1672 }
1673
1674 /*
1675 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1676 * Allows quiescent states for a group of CPUs to be reported at one go
1677 * to the specified rcu_node structure, though all the CPUs in the group
1678 * must be represented by the same rcu_node structure (which need not be
1679 * a leaf rcu_node structure, though it often will be). That structure's
1680 * lock must be held upon entry, and it is released before return.
1681 */
1682 static void
1683 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1684 struct rcu_node *rnp, unsigned long flags)
1685 __releases(rnp->lock)
1686 {
1687 struct rcu_node *rnp_c;
1688
1689 /* Walk up the rcu_node hierarchy. */
1690 for (;;) {
1691 if (!(rnp->qsmask & mask)) {
1692
1693 /* Our bit has already been cleared, so done. */
1694 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1695 return;
1696 }
1697 rnp->qsmask &= ~mask;
1698 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1699 mask, rnp->qsmask, rnp->level,
1700 rnp->grplo, rnp->grphi,
1701 !!rnp->gp_tasks);
1702 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1703
1704 /* Other bits still set at this level, so done. */
1705 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1706 return;
1707 }
1708 mask = rnp->grpmask;
1709 if (rnp->parent == NULL) {
1710
1711 /* No more levels. Exit loop holding root lock. */
1712
1713 break;
1714 }
1715 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1716 rnp_c = rnp;
1717 rnp = rnp->parent;
1718 raw_spin_lock_irqsave(&rnp->lock, flags);
1719 WARN_ON_ONCE(rnp_c->qsmask);
1720 }
1721
1722 /*
1723 * Get here if we are the last CPU to pass through a quiescent
1724 * state for this grace period. Invoke rcu_report_qs_rsp()
1725 * to clean up and start the next grace period if one is needed.
1726 */
1727 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1728 }
1729
1730 /*
1731 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1732 * structure. This must be either called from the specified CPU, or
1733 * called when the specified CPU is known to be offline (and when it is
1734 * also known that no other CPU is concurrently trying to help the offline
1735 * CPU). The lastcomp argument is used to make sure we are still in the
1736 * grace period of interest. We don't want to end the current grace period
1737 * based on quiescent states detected in an earlier grace period!
1738 */
1739 static void
1740 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1741 {
1742 unsigned long flags;
1743 unsigned long mask;
1744 struct rcu_node *rnp;
1745
1746 rnp = rdp->mynode;
1747 raw_spin_lock_irqsave(&rnp->lock, flags);
1748 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1749 rnp->completed == rnp->gpnum) {
1750
1751 /*
1752 * The grace period in which this quiescent state was
1753 * recorded has ended, so don't report it upwards.
1754 * We will instead need a new quiescent state that lies
1755 * within the current grace period.
1756 */
1757 rdp->passed_quiesce = 0; /* need qs for new gp. */
1758 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1759 return;
1760 }
1761 mask = rdp->grpmask;
1762 if ((rnp->qsmask & mask) == 0) {
1763 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1764 } else {
1765 rdp->qs_pending = 0;
1766
1767 /*
1768 * This GP can't end until cpu checks in, so all of our
1769 * callbacks can be processed during the next GP.
1770 */
1771 rcu_accelerate_cbs(rsp, rnp, rdp);
1772
1773 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1774 }
1775 }
1776
1777 /*
1778 * Check to see if there is a new grace period of which this CPU
1779 * is not yet aware, and if so, set up local rcu_data state for it.
1780 * Otherwise, see if this CPU has just passed through its first
1781 * quiescent state for this grace period, and record that fact if so.
1782 */
1783 static void
1784 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1785 {
1786 /* If there is now a new grace period, record and return. */
1787 if (check_for_new_grace_period(rsp, rdp))
1788 return;
1789
1790 /*
1791 * Does this CPU still need to do its part for current grace period?
1792 * If no, return and let the other CPUs do their part as well.
1793 */
1794 if (!rdp->qs_pending)
1795 return;
1796
1797 /*
1798 * Was there a quiescent state since the beginning of the grace
1799 * period? If no, then exit and wait for the next call.
1800 */
1801 if (!rdp->passed_quiesce)
1802 return;
1803
1804 /*
1805 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1806 * judge of that).
1807 */
1808 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1809 }
1810
1811 #ifdef CONFIG_HOTPLUG_CPU
1812
1813 /*
1814 * Send the specified CPU's RCU callbacks to the orphanage. The
1815 * specified CPU must be offline, and the caller must hold the
1816 * ->orphan_lock.
1817 */
1818 static void
1819 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1820 struct rcu_node *rnp, struct rcu_data *rdp)
1821 {
1822 /* No-CBs CPUs do not have orphanable callbacks. */
1823 if (is_nocb_cpu(rdp->cpu))
1824 return;
1825
1826 /*
1827 * Orphan the callbacks. First adjust the counts. This is safe
1828 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1829 * cannot be running now. Thus no memory barrier is required.
1830 */
1831 if (rdp->nxtlist != NULL) {
1832 rsp->qlen_lazy += rdp->qlen_lazy;
1833 rsp->qlen += rdp->qlen;
1834 rdp->n_cbs_orphaned += rdp->qlen;
1835 rdp->qlen_lazy = 0;
1836 ACCESS_ONCE(rdp->qlen) = 0;
1837 }
1838
1839 /*
1840 * Next, move those callbacks still needing a grace period to
1841 * the orphanage, where some other CPU will pick them up.
1842 * Some of the callbacks might have gone partway through a grace
1843 * period, but that is too bad. They get to start over because we
1844 * cannot assume that grace periods are synchronized across CPUs.
1845 * We don't bother updating the ->nxttail[] array yet, instead
1846 * we just reset the whole thing later on.
1847 */
1848 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1849 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1850 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1851 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1852 }
1853
1854 /*
1855 * Then move the ready-to-invoke callbacks to the orphanage,
1856 * where some other CPU will pick them up. These will not be
1857 * required to pass though another grace period: They are done.
1858 */
1859 if (rdp->nxtlist != NULL) {
1860 *rsp->orphan_donetail = rdp->nxtlist;
1861 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1862 }
1863
1864 /* Finally, initialize the rcu_data structure's list to empty. */
1865 init_callback_list(rdp);
1866 }
1867
1868 /*
1869 * Adopt the RCU callbacks from the specified rcu_state structure's
1870 * orphanage. The caller must hold the ->orphan_lock.
1871 */
1872 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1873 {
1874 int i;
1875 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1876
1877 /* No-CBs CPUs are handled specially. */
1878 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1879 return;
1880
1881 /* Do the accounting first. */
1882 rdp->qlen_lazy += rsp->qlen_lazy;
1883 rdp->qlen += rsp->qlen;
1884 rdp->n_cbs_adopted += rsp->qlen;
1885 if (rsp->qlen_lazy != rsp->qlen)
1886 rcu_idle_count_callbacks_posted();
1887 rsp->qlen_lazy = 0;
1888 rsp->qlen = 0;
1889
1890 /*
1891 * We do not need a memory barrier here because the only way we
1892 * can get here if there is an rcu_barrier() in flight is if
1893 * we are the task doing the rcu_barrier().
1894 */
1895
1896 /* First adopt the ready-to-invoke callbacks. */
1897 if (rsp->orphan_donelist != NULL) {
1898 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1899 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1900 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1901 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1902 rdp->nxttail[i] = rsp->orphan_donetail;
1903 rsp->orphan_donelist = NULL;
1904 rsp->orphan_donetail = &rsp->orphan_donelist;
1905 }
1906
1907 /* And then adopt the callbacks that still need a grace period. */
1908 if (rsp->orphan_nxtlist != NULL) {
1909 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1910 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1911 rsp->orphan_nxtlist = NULL;
1912 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1913 }
1914 }
1915
1916 /*
1917 * Trace the fact that this CPU is going offline.
1918 */
1919 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1920 {
1921 RCU_TRACE(unsigned long mask);
1922 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1923 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1924
1925 RCU_TRACE(mask = rdp->grpmask);
1926 trace_rcu_grace_period(rsp->name,
1927 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1928 "cpuofl");
1929 }
1930
1931 /*
1932 * The CPU has been completely removed, and some other CPU is reporting
1933 * this fact from process context. Do the remainder of the cleanup,
1934 * including orphaning the outgoing CPU's RCU callbacks, and also
1935 * adopting them. There can only be one CPU hotplug operation at a time,
1936 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1937 */
1938 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1939 {
1940 unsigned long flags;
1941 unsigned long mask;
1942 int need_report = 0;
1943 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1944 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1945
1946 /* Adjust any no-longer-needed kthreads. */
1947 rcu_boost_kthread_setaffinity(rnp, -1);
1948
1949 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1950
1951 /* Exclude any attempts to start a new grace period. */
1952 mutex_lock(&rsp->onoff_mutex);
1953 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1954
1955 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1956 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1957 rcu_adopt_orphan_cbs(rsp);
1958
1959 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1960 mask = rdp->grpmask; /* rnp->grplo is constant. */
1961 do {
1962 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1963 rnp->qsmaskinit &= ~mask;
1964 if (rnp->qsmaskinit != 0) {
1965 if (rnp != rdp->mynode)
1966 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1967 break;
1968 }
1969 if (rnp == rdp->mynode)
1970 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1971 else
1972 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1973 mask = rnp->grpmask;
1974 rnp = rnp->parent;
1975 } while (rnp != NULL);
1976
1977 /*
1978 * We still hold the leaf rcu_node structure lock here, and
1979 * irqs are still disabled. The reason for this subterfuge is
1980 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1981 * held leads to deadlock.
1982 */
1983 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1984 rnp = rdp->mynode;
1985 if (need_report & RCU_OFL_TASKS_NORM_GP)
1986 rcu_report_unblock_qs_rnp(rnp, flags);
1987 else
1988 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1989 if (need_report & RCU_OFL_TASKS_EXP_GP)
1990 rcu_report_exp_rnp(rsp, rnp, true);
1991 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1992 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1993 cpu, rdp->qlen, rdp->nxtlist);
1994 init_callback_list(rdp);
1995 /* Disallow further callbacks on this CPU. */
1996 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1997 mutex_unlock(&rsp->onoff_mutex);
1998 }
1999
2000 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2001
2002 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2003 {
2004 }
2005
2006 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2007 {
2008 }
2009
2010 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2011
2012 /*
2013 * Invoke any RCU callbacks that have made it to the end of their grace
2014 * period. Thottle as specified by rdp->blimit.
2015 */
2016 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2017 {
2018 unsigned long flags;
2019 struct rcu_head *next, *list, **tail;
2020 long bl, count, count_lazy;
2021 int i;
2022
2023 /* If no callbacks are ready, just return. */
2024 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2025 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2026 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2027 need_resched(), is_idle_task(current),
2028 rcu_is_callbacks_kthread());
2029 return;
2030 }
2031
2032 /*
2033 * Extract the list of ready callbacks, disabling to prevent
2034 * races with call_rcu() from interrupt handlers.
2035 */
2036 local_irq_save(flags);
2037 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2038 bl = rdp->blimit;
2039 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2040 list = rdp->nxtlist;
2041 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2042 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2043 tail = rdp->nxttail[RCU_DONE_TAIL];
2044 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2045 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2046 rdp->nxttail[i] = &rdp->nxtlist;
2047 local_irq_restore(flags);
2048
2049 /* Invoke callbacks. */
2050 count = count_lazy = 0;
2051 while (list) {
2052 next = list->next;
2053 prefetch(next);
2054 debug_rcu_head_unqueue(list);
2055 if (__rcu_reclaim(rsp->name, list))
2056 count_lazy++;
2057 list = next;
2058 /* Stop only if limit reached and CPU has something to do. */
2059 if (++count >= bl &&
2060 (need_resched() ||
2061 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2062 break;
2063 }
2064
2065 local_irq_save(flags);
2066 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2067 is_idle_task(current),
2068 rcu_is_callbacks_kthread());
2069
2070 /* Update count, and requeue any remaining callbacks. */
2071 if (list != NULL) {
2072 *tail = rdp->nxtlist;
2073 rdp->nxtlist = list;
2074 for (i = 0; i < RCU_NEXT_SIZE; i++)
2075 if (&rdp->nxtlist == rdp->nxttail[i])
2076 rdp->nxttail[i] = tail;
2077 else
2078 break;
2079 }
2080 smp_mb(); /* List handling before counting for rcu_barrier(). */
2081 rdp->qlen_lazy -= count_lazy;
2082 ACCESS_ONCE(rdp->qlen) -= count;
2083 rdp->n_cbs_invoked += count;
2084
2085 /* Reinstate batch limit if we have worked down the excess. */
2086 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2087 rdp->blimit = blimit;
2088
2089 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2090 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2091 rdp->qlen_last_fqs_check = 0;
2092 rdp->n_force_qs_snap = rsp->n_force_qs;
2093 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2094 rdp->qlen_last_fqs_check = rdp->qlen;
2095 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2096
2097 local_irq_restore(flags);
2098
2099 /* Re-invoke RCU core processing if there are callbacks remaining. */
2100 if (cpu_has_callbacks_ready_to_invoke(rdp))
2101 invoke_rcu_core();
2102 }
2103
2104 /*
2105 * Check to see if this CPU is in a non-context-switch quiescent state
2106 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2107 * Also schedule RCU core processing.
2108 *
2109 * This function must be called from hardirq context. It is normally
2110 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2111 * false, there is no point in invoking rcu_check_callbacks().
2112 */
2113 void rcu_check_callbacks(int cpu, int user)
2114 {
2115 trace_rcu_utilization("Start scheduler-tick");
2116 increment_cpu_stall_ticks();
2117 if (user || rcu_is_cpu_rrupt_from_idle()) {
2118
2119 /*
2120 * Get here if this CPU took its interrupt from user
2121 * mode or from the idle loop, and if this is not a
2122 * nested interrupt. In this case, the CPU is in
2123 * a quiescent state, so note it.
2124 *
2125 * No memory barrier is required here because both
2126 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2127 * variables that other CPUs neither access nor modify,
2128 * at least not while the corresponding CPU is online.
2129 */
2130
2131 rcu_sched_qs(cpu);
2132 rcu_bh_qs(cpu);
2133
2134 } else if (!in_softirq()) {
2135
2136 /*
2137 * Get here if this CPU did not take its interrupt from
2138 * softirq, in other words, if it is not interrupting
2139 * a rcu_bh read-side critical section. This is an _bh
2140 * critical section, so note it.
2141 */
2142
2143 rcu_bh_qs(cpu);
2144 }
2145 rcu_preempt_check_callbacks(cpu);
2146 if (rcu_pending(cpu))
2147 invoke_rcu_core();
2148 trace_rcu_utilization("End scheduler-tick");
2149 }
2150
2151 /*
2152 * Scan the leaf rcu_node structures, processing dyntick state for any that
2153 * have not yet encountered a quiescent state, using the function specified.
2154 * Also initiate boosting for any threads blocked on the root rcu_node.
2155 *
2156 * The caller must have suppressed start of new grace periods.
2157 */
2158 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
2159 {
2160 unsigned long bit;
2161 int cpu;
2162 unsigned long flags;
2163 unsigned long mask;
2164 struct rcu_node *rnp;
2165
2166 rcu_for_each_leaf_node(rsp, rnp) {
2167 cond_resched();
2168 mask = 0;
2169 raw_spin_lock_irqsave(&rnp->lock, flags);
2170 if (!rcu_gp_in_progress(rsp)) {
2171 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2172 return;
2173 }
2174 if (rnp->qsmask == 0) {
2175 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2176 continue;
2177 }
2178 cpu = rnp->grplo;
2179 bit = 1;
2180 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2181 if ((rnp->qsmask & bit) != 0 &&
2182 f(per_cpu_ptr(rsp->rda, cpu)))
2183 mask |= bit;
2184 }
2185 if (mask != 0) {
2186
2187 /* rcu_report_qs_rnp() releases rnp->lock. */
2188 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2189 continue;
2190 }
2191 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2192 }
2193 rnp = rcu_get_root(rsp);
2194 if (rnp->qsmask == 0) {
2195 raw_spin_lock_irqsave(&rnp->lock, flags);
2196 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2197 }
2198 }
2199
2200 /*
2201 * Force quiescent states on reluctant CPUs, and also detect which
2202 * CPUs are in dyntick-idle mode.
2203 */
2204 static void force_quiescent_state(struct rcu_state *rsp)
2205 {
2206 unsigned long flags;
2207 bool ret;
2208 struct rcu_node *rnp;
2209 struct rcu_node *rnp_old = NULL;
2210
2211 /* Funnel through hierarchy to reduce memory contention. */
2212 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2213 for (; rnp != NULL; rnp = rnp->parent) {
2214 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2215 !raw_spin_trylock(&rnp->fqslock);
2216 if (rnp_old != NULL)
2217 raw_spin_unlock(&rnp_old->fqslock);
2218 if (ret) {
2219 rsp->n_force_qs_lh++;
2220 return;
2221 }
2222 rnp_old = rnp;
2223 }
2224 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2225
2226 /* Reached the root of the rcu_node tree, acquire lock. */
2227 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2228 raw_spin_unlock(&rnp_old->fqslock);
2229 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2230 rsp->n_force_qs_lh++;
2231 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2232 return; /* Someone beat us to it. */
2233 }
2234 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2235 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2236 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2237 }
2238
2239 /*
2240 * This does the RCU core processing work for the specified rcu_state
2241 * and rcu_data structures. This may be called only from the CPU to
2242 * whom the rdp belongs.
2243 */
2244 static void
2245 __rcu_process_callbacks(struct rcu_state *rsp)
2246 {
2247 unsigned long flags;
2248 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2249
2250 WARN_ON_ONCE(rdp->beenonline == 0);
2251
2252 /* Handle the end of a grace period that some other CPU ended. */
2253 rcu_process_gp_end(rsp, rdp);
2254
2255 /* Update RCU state based on any recent quiescent states. */
2256 rcu_check_quiescent_state(rsp, rdp);
2257
2258 /* Does this CPU require a not-yet-started grace period? */
2259 local_irq_save(flags);
2260 if (cpu_needs_another_gp(rsp, rdp)) {
2261 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2262 rcu_start_gp(rsp);
2263 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2264 } else {
2265 local_irq_restore(flags);
2266 }
2267
2268 /* If there are callbacks ready, invoke them. */
2269 if (cpu_has_callbacks_ready_to_invoke(rdp))
2270 invoke_rcu_callbacks(rsp, rdp);
2271 }
2272
2273 /*
2274 * Do RCU core processing for the current CPU.
2275 */
2276 static void rcu_process_callbacks(struct softirq_action *unused)
2277 {
2278 struct rcu_state *rsp;
2279
2280 if (cpu_is_offline(smp_processor_id()))
2281 return;
2282 trace_rcu_utilization("Start RCU core");
2283 for_each_rcu_flavor(rsp)
2284 __rcu_process_callbacks(rsp);
2285 trace_rcu_utilization("End RCU core");
2286 }
2287
2288 /*
2289 * Schedule RCU callback invocation. If the specified type of RCU
2290 * does not support RCU priority boosting, just do a direct call,
2291 * otherwise wake up the per-CPU kernel kthread. Note that because we
2292 * are running on the current CPU with interrupts disabled, the
2293 * rcu_cpu_kthread_task cannot disappear out from under us.
2294 */
2295 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2296 {
2297 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2298 return;
2299 if (likely(!rsp->boost)) {
2300 rcu_do_batch(rsp, rdp);
2301 return;
2302 }
2303 invoke_rcu_callbacks_kthread();
2304 }
2305
2306 static void invoke_rcu_core(void)
2307 {
2308 if (cpu_online(smp_processor_id()))
2309 raise_softirq(RCU_SOFTIRQ);
2310 }
2311
2312 /*
2313 * Handle any core-RCU processing required by a call_rcu() invocation.
2314 */
2315 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2316 struct rcu_head *head, unsigned long flags)
2317 {
2318 /*
2319 * If called from an extended quiescent state, invoke the RCU
2320 * core in order to force a re-evaluation of RCU's idleness.
2321 */
2322 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2323 invoke_rcu_core();
2324
2325 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2326 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2327 return;
2328
2329 /*
2330 * Force the grace period if too many callbacks or too long waiting.
2331 * Enforce hysteresis, and don't invoke force_quiescent_state()
2332 * if some other CPU has recently done so. Also, don't bother
2333 * invoking force_quiescent_state() if the newly enqueued callback
2334 * is the only one waiting for a grace period to complete.
2335 */
2336 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2337
2338 /* Are we ignoring a completed grace period? */
2339 rcu_process_gp_end(rsp, rdp);
2340 check_for_new_grace_period(rsp, rdp);
2341
2342 /* Start a new grace period if one not already started. */
2343 if (!rcu_gp_in_progress(rsp)) {
2344 struct rcu_node *rnp_root = rcu_get_root(rsp);
2345
2346 raw_spin_lock(&rnp_root->lock);
2347 rcu_start_gp(rsp);
2348 raw_spin_unlock(&rnp_root->lock);
2349 } else {
2350 /* Give the grace period a kick. */
2351 rdp->blimit = LONG_MAX;
2352 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2353 *rdp->nxttail[RCU_DONE_TAIL] != head)
2354 force_quiescent_state(rsp);
2355 rdp->n_force_qs_snap = rsp->n_force_qs;
2356 rdp->qlen_last_fqs_check = rdp->qlen;
2357 }
2358 }
2359 }
2360
2361 /*
2362 * Helper function for call_rcu() and friends. The cpu argument will
2363 * normally be -1, indicating "currently running CPU". It may specify
2364 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2365 * is expected to specify a CPU.
2366 */
2367 static void
2368 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2369 struct rcu_state *rsp, int cpu, bool lazy)
2370 {
2371 unsigned long flags;
2372 struct rcu_data *rdp;
2373
2374 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2375 debug_rcu_head_queue(head);
2376 head->func = func;
2377 head->next = NULL;
2378
2379 /*
2380 * Opportunistically note grace-period endings and beginnings.
2381 * Note that we might see a beginning right after we see an
2382 * end, but never vice versa, since this CPU has to pass through
2383 * a quiescent state betweentimes.
2384 */
2385 local_irq_save(flags);
2386 rdp = this_cpu_ptr(rsp->rda);
2387
2388 /* Add the callback to our list. */
2389 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2390 int offline;
2391
2392 if (cpu != -1)
2393 rdp = per_cpu_ptr(rsp->rda, cpu);
2394 offline = !__call_rcu_nocb(rdp, head, lazy);
2395 WARN_ON_ONCE(offline);
2396 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2397 local_irq_restore(flags);
2398 return;
2399 }
2400 ACCESS_ONCE(rdp->qlen)++;
2401 if (lazy)
2402 rdp->qlen_lazy++;
2403 else
2404 rcu_idle_count_callbacks_posted();
2405 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2406 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2407 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2408
2409 if (__is_kfree_rcu_offset((unsigned long)func))
2410 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2411 rdp->qlen_lazy, rdp->qlen);
2412 else
2413 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2414
2415 /* Go handle any RCU core processing required. */
2416 __call_rcu_core(rsp, rdp, head, flags);
2417 local_irq_restore(flags);
2418 }
2419
2420 /*
2421 * Queue an RCU-sched callback for invocation after a grace period.
2422 */
2423 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2424 {
2425 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2426 }
2427 EXPORT_SYMBOL_GPL(call_rcu_sched);
2428
2429 /*
2430 * Queue an RCU callback for invocation after a quicker grace period.
2431 */
2432 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2433 {
2434 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2435 }
2436 EXPORT_SYMBOL_GPL(call_rcu_bh);
2437
2438 /*
2439 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2440 * any blocking grace-period wait automatically implies a grace period
2441 * if there is only one CPU online at any point time during execution
2442 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2443 * occasionally incorrectly indicate that there are multiple CPUs online
2444 * when there was in fact only one the whole time, as this just adds
2445 * some overhead: RCU still operates correctly.
2446 */
2447 static inline int rcu_blocking_is_gp(void)
2448 {
2449 int ret;
2450
2451 might_sleep(); /* Check for RCU read-side critical section. */
2452 preempt_disable();
2453 ret = num_online_cpus() <= 1;
2454 preempt_enable();
2455 return ret;
2456 }
2457
2458 /**
2459 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2460 *
2461 * Control will return to the caller some time after a full rcu-sched
2462 * grace period has elapsed, in other words after all currently executing
2463 * rcu-sched read-side critical sections have completed. These read-side
2464 * critical sections are delimited by rcu_read_lock_sched() and
2465 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2466 * local_irq_disable(), and so on may be used in place of
2467 * rcu_read_lock_sched().
2468 *
2469 * This means that all preempt_disable code sequences, including NMI and
2470 * non-threaded hardware-interrupt handlers, in progress on entry will
2471 * have completed before this primitive returns. However, this does not
2472 * guarantee that softirq handlers will have completed, since in some
2473 * kernels, these handlers can run in process context, and can block.
2474 *
2475 * Note that this guarantee implies further memory-ordering guarantees.
2476 * On systems with more than one CPU, when synchronize_sched() returns,
2477 * each CPU is guaranteed to have executed a full memory barrier since the
2478 * end of its last RCU-sched read-side critical section whose beginning
2479 * preceded the call to synchronize_sched(). In addition, each CPU having
2480 * an RCU read-side critical section that extends beyond the return from
2481 * synchronize_sched() is guaranteed to have executed a full memory barrier
2482 * after the beginning of synchronize_sched() and before the beginning of
2483 * that RCU read-side critical section. Note that these guarantees include
2484 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2485 * that are executing in the kernel.
2486 *
2487 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2488 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2489 * to have executed a full memory barrier during the execution of
2490 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2491 * again only if the system has more than one CPU).
2492 *
2493 * This primitive provides the guarantees made by the (now removed)
2494 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2495 * guarantees that rcu_read_lock() sections will have completed.
2496 * In "classic RCU", these two guarantees happen to be one and
2497 * the same, but can differ in realtime RCU implementations.
2498 */
2499 void synchronize_sched(void)
2500 {
2501 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2502 !lock_is_held(&rcu_lock_map) &&
2503 !lock_is_held(&rcu_sched_lock_map),
2504 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2505 if (rcu_blocking_is_gp())
2506 return;
2507 if (rcu_expedited)
2508 synchronize_sched_expedited();
2509 else
2510 wait_rcu_gp(call_rcu_sched);
2511 }
2512 EXPORT_SYMBOL_GPL(synchronize_sched);
2513
2514 /**
2515 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2516 *
2517 * Control will return to the caller some time after a full rcu_bh grace
2518 * period has elapsed, in other words after all currently executing rcu_bh
2519 * read-side critical sections have completed. RCU read-side critical
2520 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2521 * and may be nested.
2522 *
2523 * See the description of synchronize_sched() for more detailed information
2524 * on memory ordering guarantees.
2525 */
2526 void synchronize_rcu_bh(void)
2527 {
2528 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2529 !lock_is_held(&rcu_lock_map) &&
2530 !lock_is_held(&rcu_sched_lock_map),
2531 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2532 if (rcu_blocking_is_gp())
2533 return;
2534 if (rcu_expedited)
2535 synchronize_rcu_bh_expedited();
2536 else
2537 wait_rcu_gp(call_rcu_bh);
2538 }
2539 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2540
2541 static int synchronize_sched_expedited_cpu_stop(void *data)
2542 {
2543 /*
2544 * There must be a full memory barrier on each affected CPU
2545 * between the time that try_stop_cpus() is called and the
2546 * time that it returns.
2547 *
2548 * In the current initial implementation of cpu_stop, the
2549 * above condition is already met when the control reaches
2550 * this point and the following smp_mb() is not strictly
2551 * necessary. Do smp_mb() anyway for documentation and
2552 * robustness against future implementation changes.
2553 */
2554 smp_mb(); /* See above comment block. */
2555 return 0;
2556 }
2557
2558 /**
2559 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2560 *
2561 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2562 * approach to force the grace period to end quickly. This consumes
2563 * significant time on all CPUs and is unfriendly to real-time workloads,
2564 * so is thus not recommended for any sort of common-case code. In fact,
2565 * if you are using synchronize_sched_expedited() in a loop, please
2566 * restructure your code to batch your updates, and then use a single
2567 * synchronize_sched() instead.
2568 *
2569 * Note that it is illegal to call this function while holding any lock
2570 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2571 * to call this function from a CPU-hotplug notifier. Failing to observe
2572 * these restriction will result in deadlock.
2573 *
2574 * This implementation can be thought of as an application of ticket
2575 * locking to RCU, with sync_sched_expedited_started and
2576 * sync_sched_expedited_done taking on the roles of the halves
2577 * of the ticket-lock word. Each task atomically increments
2578 * sync_sched_expedited_started upon entry, snapshotting the old value,
2579 * then attempts to stop all the CPUs. If this succeeds, then each
2580 * CPU will have executed a context switch, resulting in an RCU-sched
2581 * grace period. We are then done, so we use atomic_cmpxchg() to
2582 * update sync_sched_expedited_done to match our snapshot -- but
2583 * only if someone else has not already advanced past our snapshot.
2584 *
2585 * On the other hand, if try_stop_cpus() fails, we check the value
2586 * of sync_sched_expedited_done. If it has advanced past our
2587 * initial snapshot, then someone else must have forced a grace period
2588 * some time after we took our snapshot. In this case, our work is
2589 * done for us, and we can simply return. Otherwise, we try again,
2590 * but keep our initial snapshot for purposes of checking for someone
2591 * doing our work for us.
2592 *
2593 * If we fail too many times in a row, we fall back to synchronize_sched().
2594 */
2595 void synchronize_sched_expedited(void)
2596 {
2597 long firstsnap, s, snap;
2598 int trycount = 0;
2599 struct rcu_state *rsp = &rcu_sched_state;
2600
2601 /*
2602 * If we are in danger of counter wrap, just do synchronize_sched().
2603 * By allowing sync_sched_expedited_started to advance no more than
2604 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2605 * that more than 3.5 billion CPUs would be required to force a
2606 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2607 * course be required on a 64-bit system.
2608 */
2609 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2610 (ulong)atomic_long_read(&rsp->expedited_done) +
2611 ULONG_MAX / 8)) {
2612 synchronize_sched();
2613 atomic_long_inc(&rsp->expedited_wrap);
2614 return;
2615 }
2616
2617 /*
2618 * Take a ticket. Note that atomic_inc_return() implies a
2619 * full memory barrier.
2620 */
2621 snap = atomic_long_inc_return(&rsp->expedited_start);
2622 firstsnap = snap;
2623 get_online_cpus();
2624 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2625
2626 /*
2627 * Each pass through the following loop attempts to force a
2628 * context switch on each CPU.
2629 */
2630 while (try_stop_cpus(cpu_online_mask,
2631 synchronize_sched_expedited_cpu_stop,
2632 NULL) == -EAGAIN) {
2633 put_online_cpus();
2634 atomic_long_inc(&rsp->expedited_tryfail);
2635
2636 /* Check to see if someone else did our work for us. */
2637 s = atomic_long_read(&rsp->expedited_done);
2638 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2639 /* ensure test happens before caller kfree */
2640 smp_mb__before_atomic_inc(); /* ^^^ */
2641 atomic_long_inc(&rsp->expedited_workdone1);
2642 return;
2643 }
2644
2645 /* No joy, try again later. Or just synchronize_sched(). */
2646 if (trycount++ < 10) {
2647 udelay(trycount * num_online_cpus());
2648 } else {
2649 wait_rcu_gp(call_rcu_sched);
2650 atomic_long_inc(&rsp->expedited_normal);
2651 return;
2652 }
2653
2654 /* Recheck to see if someone else did our work for us. */
2655 s = atomic_long_read(&rsp->expedited_done);
2656 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2657 /* ensure test happens before caller kfree */
2658 smp_mb__before_atomic_inc(); /* ^^^ */
2659 atomic_long_inc(&rsp->expedited_workdone2);
2660 return;
2661 }
2662
2663 /*
2664 * Refetching sync_sched_expedited_started allows later
2665 * callers to piggyback on our grace period. We retry
2666 * after they started, so our grace period works for them,
2667 * and they started after our first try, so their grace
2668 * period works for us.
2669 */
2670 get_online_cpus();
2671 snap = atomic_long_read(&rsp->expedited_start);
2672 smp_mb(); /* ensure read is before try_stop_cpus(). */
2673 }
2674 atomic_long_inc(&rsp->expedited_stoppedcpus);
2675
2676 /*
2677 * Everyone up to our most recent fetch is covered by our grace
2678 * period. Update the counter, but only if our work is still
2679 * relevant -- which it won't be if someone who started later
2680 * than we did already did their update.
2681 */
2682 do {
2683 atomic_long_inc(&rsp->expedited_done_tries);
2684 s = atomic_long_read(&rsp->expedited_done);
2685 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2686 /* ensure test happens before caller kfree */
2687 smp_mb__before_atomic_inc(); /* ^^^ */
2688 atomic_long_inc(&rsp->expedited_done_lost);
2689 break;
2690 }
2691 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2692 atomic_long_inc(&rsp->expedited_done_exit);
2693
2694 put_online_cpus();
2695 }
2696 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2697
2698 /*
2699 * Check to see if there is any immediate RCU-related work to be done
2700 * by the current CPU, for the specified type of RCU, returning 1 if so.
2701 * The checks are in order of increasing expense: checks that can be
2702 * carried out against CPU-local state are performed first. However,
2703 * we must check for CPU stalls first, else we might not get a chance.
2704 */
2705 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2706 {
2707 struct rcu_node *rnp = rdp->mynode;
2708
2709 rdp->n_rcu_pending++;
2710
2711 /* Check for CPU stalls, if enabled. */
2712 check_cpu_stall(rsp, rdp);
2713
2714 /* Is the RCU core waiting for a quiescent state from this CPU? */
2715 if (rcu_scheduler_fully_active &&
2716 rdp->qs_pending && !rdp->passed_quiesce) {
2717 rdp->n_rp_qs_pending++;
2718 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2719 rdp->n_rp_report_qs++;
2720 return 1;
2721 }
2722
2723 /* Does this CPU have callbacks ready to invoke? */
2724 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2725 rdp->n_rp_cb_ready++;
2726 return 1;
2727 }
2728
2729 /* Has RCU gone idle with this CPU needing another grace period? */
2730 if (cpu_needs_another_gp(rsp, rdp)) {
2731 rdp->n_rp_cpu_needs_gp++;
2732 return 1;
2733 }
2734
2735 /* Has another RCU grace period completed? */
2736 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2737 rdp->n_rp_gp_completed++;
2738 return 1;
2739 }
2740
2741 /* Has a new RCU grace period started? */
2742 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2743 rdp->n_rp_gp_started++;
2744 return 1;
2745 }
2746
2747 /* nothing to do */
2748 rdp->n_rp_need_nothing++;
2749 return 0;
2750 }
2751
2752 /*
2753 * Check to see if there is any immediate RCU-related work to be done
2754 * by the current CPU, returning 1 if so. This function is part of the
2755 * RCU implementation; it is -not- an exported member of the RCU API.
2756 */
2757 static int rcu_pending(int cpu)
2758 {
2759 struct rcu_state *rsp;
2760
2761 for_each_rcu_flavor(rsp)
2762 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2763 return 1;
2764 return 0;
2765 }
2766
2767 /*
2768 * Return true if the specified CPU has any callback. If all_lazy is
2769 * non-NULL, store an indication of whether all callbacks are lazy.
2770 * (If there are no callbacks, all of them are deemed to be lazy.)
2771 */
2772 static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2773 {
2774 bool al = true;
2775 bool hc = false;
2776 struct rcu_data *rdp;
2777 struct rcu_state *rsp;
2778
2779 for_each_rcu_flavor(rsp) {
2780 rdp = per_cpu_ptr(rsp->rda, cpu);
2781 if (rdp->qlen != rdp->qlen_lazy)
2782 al = false;
2783 if (rdp->nxtlist)
2784 hc = true;
2785 }
2786 if (all_lazy)
2787 *all_lazy = al;
2788 return hc;
2789 }
2790
2791 /*
2792 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2793 * the compiler is expected to optimize this away.
2794 */
2795 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2796 int cpu, unsigned long done)
2797 {
2798 trace_rcu_barrier(rsp->name, s, cpu,
2799 atomic_read(&rsp->barrier_cpu_count), done);
2800 }
2801
2802 /*
2803 * RCU callback function for _rcu_barrier(). If we are last, wake
2804 * up the task executing _rcu_barrier().
2805 */
2806 static void rcu_barrier_callback(struct rcu_head *rhp)
2807 {
2808 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2809 struct rcu_state *rsp = rdp->rsp;
2810
2811 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2812 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2813 complete(&rsp->barrier_completion);
2814 } else {
2815 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2816 }
2817 }
2818
2819 /*
2820 * Called with preemption disabled, and from cross-cpu IRQ context.
2821 */
2822 static void rcu_barrier_func(void *type)
2823 {
2824 struct rcu_state *rsp = type;
2825 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2826
2827 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2828 atomic_inc(&rsp->barrier_cpu_count);
2829 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2830 }
2831
2832 /*
2833 * Orchestrate the specified type of RCU barrier, waiting for all
2834 * RCU callbacks of the specified type to complete.
2835 */
2836 static void _rcu_barrier(struct rcu_state *rsp)
2837 {
2838 int cpu;
2839 struct rcu_data *rdp;
2840 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2841 unsigned long snap_done;
2842
2843 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2844
2845 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2846 mutex_lock(&rsp->barrier_mutex);
2847
2848 /*
2849 * Ensure that all prior references, including to ->n_barrier_done,
2850 * are ordered before the _rcu_barrier() machinery.
2851 */
2852 smp_mb(); /* See above block comment. */
2853
2854 /*
2855 * Recheck ->n_barrier_done to see if others did our work for us.
2856 * This means checking ->n_barrier_done for an even-to-odd-to-even
2857 * transition. The "if" expression below therefore rounds the old
2858 * value up to the next even number and adds two before comparing.
2859 */
2860 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2861 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2862 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2863 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2864 smp_mb(); /* caller's subsequent code after above check. */
2865 mutex_unlock(&rsp->barrier_mutex);
2866 return;
2867 }
2868
2869 /*
2870 * Increment ->n_barrier_done to avoid duplicate work. Use
2871 * ACCESS_ONCE() to prevent the compiler from speculating
2872 * the increment to precede the early-exit check.
2873 */
2874 ACCESS_ONCE(rsp->n_barrier_done)++;
2875 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2876 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2877 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2878
2879 /*
2880 * Initialize the count to one rather than to zero in order to
2881 * avoid a too-soon return to zero in case of a short grace period
2882 * (or preemption of this task). Exclude CPU-hotplug operations
2883 * to ensure that no offline CPU has callbacks queued.
2884 */
2885 init_completion(&rsp->barrier_completion);
2886 atomic_set(&rsp->barrier_cpu_count, 1);
2887 get_online_cpus();
2888
2889 /*
2890 * Force each CPU with callbacks to register a new callback.
2891 * When that callback is invoked, we will know that all of the
2892 * corresponding CPU's preceding callbacks have been invoked.
2893 */
2894 for_each_possible_cpu(cpu) {
2895 if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
2896 continue;
2897 rdp = per_cpu_ptr(rsp->rda, cpu);
2898 if (is_nocb_cpu(cpu)) {
2899 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2900 rsp->n_barrier_done);
2901 atomic_inc(&rsp->barrier_cpu_count);
2902 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2903 rsp, cpu, 0);
2904 } else if (ACCESS_ONCE(rdp->qlen)) {
2905 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2906 rsp->n_barrier_done);
2907 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2908 } else {
2909 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2910 rsp->n_barrier_done);
2911 }
2912 }
2913 put_online_cpus();
2914
2915 /*
2916 * Now that we have an rcu_barrier_callback() callback on each
2917 * CPU, and thus each counted, remove the initial count.
2918 */
2919 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2920 complete(&rsp->barrier_completion);
2921
2922 /* Increment ->n_barrier_done to prevent duplicate work. */
2923 smp_mb(); /* Keep increment after above mechanism. */
2924 ACCESS_ONCE(rsp->n_barrier_done)++;
2925 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2926 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2927 smp_mb(); /* Keep increment before caller's subsequent code. */
2928
2929 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2930 wait_for_completion(&rsp->barrier_completion);
2931
2932 /* Other rcu_barrier() invocations can now safely proceed. */
2933 mutex_unlock(&rsp->barrier_mutex);
2934 }
2935
2936 /**
2937 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2938 */
2939 void rcu_barrier_bh(void)
2940 {
2941 _rcu_barrier(&rcu_bh_state);
2942 }
2943 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2944
2945 /**
2946 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2947 */
2948 void rcu_barrier_sched(void)
2949 {
2950 _rcu_barrier(&rcu_sched_state);
2951 }
2952 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2953
2954 /*
2955 * Do boot-time initialization of a CPU's per-CPU RCU data.
2956 */
2957 static void __init
2958 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2959 {
2960 unsigned long flags;
2961 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2962 struct rcu_node *rnp = rcu_get_root(rsp);
2963
2964 /* Set up local state, ensuring consistent view of global state. */
2965 raw_spin_lock_irqsave(&rnp->lock, flags);
2966 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2967 init_callback_list(rdp);
2968 rdp->qlen_lazy = 0;
2969 ACCESS_ONCE(rdp->qlen) = 0;
2970 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2971 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2972 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2973 rdp->cpu = cpu;
2974 rdp->rsp = rsp;
2975 rcu_boot_init_nocb_percpu_data(rdp);
2976 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2977 }
2978
2979 /*
2980 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2981 * offline event can be happening at a given time. Note also that we
2982 * can accept some slop in the rsp->completed access due to the fact
2983 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2984 */
2985 static void __cpuinit
2986 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2987 {
2988 unsigned long flags;
2989 unsigned long mask;
2990 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2991 struct rcu_node *rnp = rcu_get_root(rsp);
2992
2993 /* Exclude new grace periods. */
2994 mutex_lock(&rsp->onoff_mutex);
2995
2996 /* Set up local state, ensuring consistent view of global state. */
2997 raw_spin_lock_irqsave(&rnp->lock, flags);
2998 rdp->beenonline = 1; /* We have now been online. */
2999 rdp->preemptible = preemptible;
3000 rdp->qlen_last_fqs_check = 0;
3001 rdp->n_force_qs_snap = rsp->n_force_qs;
3002 rdp->blimit = blimit;
3003 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3004 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3005 atomic_set(&rdp->dynticks->dynticks,
3006 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3007 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3008
3009 /* Add CPU to rcu_node bitmasks. */
3010 rnp = rdp->mynode;
3011 mask = rdp->grpmask;
3012 do {
3013 /* Exclude any attempts to start a new GP on small systems. */
3014 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3015 rnp->qsmaskinit |= mask;
3016 mask = rnp->grpmask;
3017 if (rnp == rdp->mynode) {
3018 /*
3019 * If there is a grace period in progress, we will
3020 * set up to wait for it next time we run the
3021 * RCU core code.
3022 */
3023 rdp->gpnum = rnp->completed;
3024 rdp->completed = rnp->completed;
3025 rdp->passed_quiesce = 0;
3026 rdp->qs_pending = 0;
3027 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
3028 }
3029 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3030 rnp = rnp->parent;
3031 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3032 local_irq_restore(flags);
3033
3034 mutex_unlock(&rsp->onoff_mutex);
3035 }
3036
3037 static void __cpuinit rcu_prepare_cpu(int cpu)
3038 {
3039 struct rcu_state *rsp;
3040
3041 for_each_rcu_flavor(rsp)
3042 rcu_init_percpu_data(cpu, rsp,
3043 strcmp(rsp->name, "rcu_preempt") == 0);
3044 }
3045
3046 /*
3047 * Handle CPU online/offline notification events.
3048 */
3049 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
3050 unsigned long action, void *hcpu)
3051 {
3052 long cpu = (long)hcpu;
3053 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3054 struct rcu_node *rnp = rdp->mynode;
3055 struct rcu_state *rsp;
3056
3057 trace_rcu_utilization("Start CPU hotplug");
3058 switch (action) {
3059 case CPU_UP_PREPARE:
3060 case CPU_UP_PREPARE_FROZEN:
3061 rcu_prepare_cpu(cpu);
3062 rcu_prepare_kthreads(cpu);
3063 break;
3064 case CPU_ONLINE:
3065 case CPU_DOWN_FAILED:
3066 rcu_boost_kthread_setaffinity(rnp, -1);
3067 break;
3068 case CPU_DOWN_PREPARE:
3069 rcu_boost_kthread_setaffinity(rnp, cpu);
3070 break;
3071 case CPU_DYING:
3072 case CPU_DYING_FROZEN:
3073 for_each_rcu_flavor(rsp)
3074 rcu_cleanup_dying_cpu(rsp);
3075 break;
3076 case CPU_DEAD:
3077 case CPU_DEAD_FROZEN:
3078 case CPU_UP_CANCELED:
3079 case CPU_UP_CANCELED_FROZEN:
3080 for_each_rcu_flavor(rsp)
3081 rcu_cleanup_dead_cpu(cpu, rsp);
3082 break;
3083 default:
3084 break;
3085 }
3086 trace_rcu_utilization("End CPU hotplug");
3087 return NOTIFY_OK;
3088 }
3089
3090 /*
3091 * Spawn the kthread that handles this RCU flavor's grace periods.
3092 */
3093 static int __init rcu_spawn_gp_kthread(void)
3094 {
3095 unsigned long flags;
3096 struct rcu_node *rnp;
3097 struct rcu_state *rsp;
3098 struct task_struct *t;
3099
3100 for_each_rcu_flavor(rsp) {
3101 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
3102 BUG_ON(IS_ERR(t));
3103 rnp = rcu_get_root(rsp);
3104 raw_spin_lock_irqsave(&rnp->lock, flags);
3105 rsp->gp_kthread = t;
3106 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3107 rcu_spawn_nocb_kthreads(rsp);
3108 }
3109 return 0;
3110 }
3111 early_initcall(rcu_spawn_gp_kthread);
3112
3113 /*
3114 * This function is invoked towards the end of the scheduler's initialization
3115 * process. Before this is called, the idle task might contain
3116 * RCU read-side critical sections (during which time, this idle
3117 * task is booting the system). After this function is called, the
3118 * idle tasks are prohibited from containing RCU read-side critical
3119 * sections. This function also enables RCU lockdep checking.
3120 */
3121 void rcu_scheduler_starting(void)
3122 {
3123 WARN_ON(num_online_cpus() != 1);
3124 WARN_ON(nr_context_switches() > 0);
3125 rcu_scheduler_active = 1;
3126 }
3127
3128 /*
3129 * Compute the per-level fanout, either using the exact fanout specified
3130 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3131 */
3132 #ifdef CONFIG_RCU_FANOUT_EXACT
3133 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3134 {
3135 int i;
3136
3137 for (i = rcu_num_lvls - 1; i > 0; i--)
3138 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3139 rsp->levelspread[0] = rcu_fanout_leaf;
3140 }
3141 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3142 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3143 {
3144 int ccur;
3145 int cprv;
3146 int i;
3147
3148 cprv = nr_cpu_ids;
3149 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3150 ccur = rsp->levelcnt[i];
3151 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3152 cprv = ccur;
3153 }
3154 }
3155 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3156
3157 /*
3158 * Helper function for rcu_init() that initializes one rcu_state structure.
3159 */
3160 static void __init rcu_init_one(struct rcu_state *rsp,
3161 struct rcu_data __percpu *rda)
3162 {
3163 static char *buf[] = { "rcu_node_0",
3164 "rcu_node_1",
3165 "rcu_node_2",
3166 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3167 static char *fqs[] = { "rcu_node_fqs_0",
3168 "rcu_node_fqs_1",
3169 "rcu_node_fqs_2",
3170 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3171 int cpustride = 1;
3172 int i;
3173 int j;
3174 struct rcu_node *rnp;
3175
3176 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3177
3178 /* Silence gcc 4.8 warning about array index out of range. */
3179 if (rcu_num_lvls > RCU_NUM_LVLS)
3180 panic("rcu_init_one: rcu_num_lvls overflow");
3181
3182 /* Initialize the level-tracking arrays. */
3183
3184 for (i = 0; i < rcu_num_lvls; i++)
3185 rsp->levelcnt[i] = num_rcu_lvl[i];
3186 for (i = 1; i < rcu_num_lvls; i++)
3187 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3188 rcu_init_levelspread(rsp);
3189
3190 /* Initialize the elements themselves, starting from the leaves. */
3191
3192 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3193 cpustride *= rsp->levelspread[i];
3194 rnp = rsp->level[i];
3195 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3196 raw_spin_lock_init(&rnp->lock);
3197 lockdep_set_class_and_name(&rnp->lock,
3198 &rcu_node_class[i], buf[i]);
3199 raw_spin_lock_init(&rnp->fqslock);
3200 lockdep_set_class_and_name(&rnp->fqslock,
3201 &rcu_fqs_class[i], fqs[i]);
3202 rnp->gpnum = rsp->gpnum;
3203 rnp->completed = rsp->completed;
3204 rnp->qsmask = 0;
3205 rnp->qsmaskinit = 0;
3206 rnp->grplo = j * cpustride;
3207 rnp->grphi = (j + 1) * cpustride - 1;
3208 if (rnp->grphi >= NR_CPUS)
3209 rnp->grphi = NR_CPUS - 1;
3210 if (i == 0) {
3211 rnp->grpnum = 0;
3212 rnp->grpmask = 0;
3213 rnp->parent = NULL;
3214 } else {
3215 rnp->grpnum = j % rsp->levelspread[i - 1];
3216 rnp->grpmask = 1UL << rnp->grpnum;
3217 rnp->parent = rsp->level[i - 1] +
3218 j / rsp->levelspread[i - 1];
3219 }
3220 rnp->level = i;
3221 INIT_LIST_HEAD(&rnp->blkd_tasks);
3222 rcu_init_one_nocb(rnp);
3223 }
3224 }
3225
3226 rsp->rda = rda;
3227 init_waitqueue_head(&rsp->gp_wq);
3228 rnp = rsp->level[rcu_num_lvls - 1];
3229 for_each_possible_cpu(i) {
3230 while (i > rnp->grphi)
3231 rnp++;
3232 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3233 rcu_boot_init_percpu_data(i, rsp);
3234 }
3235 list_add(&rsp->flavors, &rcu_struct_flavors);
3236 }
3237
3238 /*
3239 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3240 * replace the definitions in rcutree.h because those are needed to size
3241 * the ->node array in the rcu_state structure.
3242 */
3243 static void __init rcu_init_geometry(void)
3244 {
3245 int i;
3246 int j;
3247 int n = nr_cpu_ids;
3248 int rcu_capacity[MAX_RCU_LVLS + 1];
3249
3250 /* If the compile-time values are accurate, just leave. */
3251 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3252 nr_cpu_ids == NR_CPUS)
3253 return;
3254
3255 /*
3256 * Compute number of nodes that can be handled an rcu_node tree
3257 * with the given number of levels. Setting rcu_capacity[0] makes
3258 * some of the arithmetic easier.
3259 */
3260 rcu_capacity[0] = 1;
3261 rcu_capacity[1] = rcu_fanout_leaf;
3262 for (i = 2; i <= MAX_RCU_LVLS; i++)
3263 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3264
3265 /*
3266 * The boot-time rcu_fanout_leaf parameter is only permitted
3267 * to increase the leaf-level fanout, not decrease it. Of course,
3268 * the leaf-level fanout cannot exceed the number of bits in
3269 * the rcu_node masks. Finally, the tree must be able to accommodate
3270 * the configured number of CPUs. Complain and fall back to the
3271 * compile-time values if these limits are exceeded.
3272 */
3273 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3274 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3275 n > rcu_capacity[MAX_RCU_LVLS]) {
3276 WARN_ON(1);
3277 return;
3278 }
3279
3280 /* Calculate the number of rcu_nodes at each level of the tree. */
3281 for (i = 1; i <= MAX_RCU_LVLS; i++)
3282 if (n <= rcu_capacity[i]) {
3283 for (j = 0; j <= i; j++)
3284 num_rcu_lvl[j] =
3285 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3286 rcu_num_lvls = i;
3287 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3288 num_rcu_lvl[j] = 0;
3289 break;
3290 }
3291
3292 /* Calculate the total number of rcu_node structures. */
3293 rcu_num_nodes = 0;
3294 for (i = 0; i <= MAX_RCU_LVLS; i++)
3295 rcu_num_nodes += num_rcu_lvl[i];
3296 rcu_num_nodes -= n;
3297 }
3298
3299 void __init rcu_init(void)
3300 {
3301 int cpu;
3302
3303 rcu_bootup_announce();
3304 rcu_init_geometry();
3305 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3306 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3307 __rcu_init_preempt();
3308 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3309
3310 /*
3311 * We don't need protection against CPU-hotplug here because
3312 * this is called early in boot, before either interrupts
3313 * or the scheduler are operational.
3314 */
3315 cpu_notifier(rcu_cpu_notify, 0);
3316 for_each_online_cpu(cpu)
3317 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3318 }
3319
3320 #include "rcutree_plugin.h"
This page took 0.21578 seconds and 6 git commands to generate.